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ASCII CONTROL CHARACTERS

 

The following list shows the ASCII codes generated when a control key combination is pressed.
The mnemonics and descriptions refer to ASCII functions used for screen and printer formatting
and data communications.

 

ALT-KEY COMBINATIONS

 

The following hexadecimal scan codes are produced by holding down
the ALT key and pressing each character:

 

ASCII 
Code* Ctrl- Mnemonic Description

ASCII 
Code* Ctrl- Mnemonic Description

 

00  NUL Null character 10 Ctrl-P DLE Data link escape

01 Ctrl-A SOH Start of header 11 Ctrl-Q DC1 Device control 1

02 Ctrl-B STX Start of text 12 Ctrl-R DC2 Device control 2

03 Ctrl-C ETX End of text 13 Ctrl-S DC3 Device control 3

04 Ctrl-D EOT End of transmission 14 Ctrl-T DC4 Device control 4

05 Ctrl-E ENQ Enquiry 15 Ctrl-U NAK Negative acknowledge

06 Ctrl-F ACK Acknowledge 16 Ctrl-V SYN Synchronous idle

07 Ctrl-G BEL Bell 17 Ctrl-W ETB End transmission block

08 Ctrl-H BS Backspace 18 Ctrl-X CAN Cancel

09 Ctrl-I HT Horizontal tab 19 Ctrl-Y EM End of medium

0A Ctrl-J LF Line feed 1A Ctrl-Z SUB Substitute

0B Ctrl-K VT Vertical tab 1B Ctrl-I ESC Escape

0C Ctrl-L FF Form feed 1C Ctrl-\ FS File separator

0D Ctrl-M CR Carriage return 1D Ctrl-] GS Group separator

0E Ctrl-N SO Shift out 1E Ctrl- ^ RS Record separator

0F Ctrl-O SI Shift in 1F Ctrl-† US Unit separator

* ASCII codes are in hexadecimal.

 

† 

 

ASCII code 1Fh is Ctrl-Hyphen (-).

 

Key Scan Code Key Scan Code Key Scan Code

 

1 78 A 1E N 31

2 79 B 30 O 18

3 7A C 2E P 19

4 7B D 20 Q 10

5 7C E 12 R 13

6 7D F 21 S 1F

7 7E G 22 T 14

8 7F H 23 U 16

9 80 I 17 V 2F

0 81 J 24 W 11

 

�

 

 82 K 25 X 2D

 

�

 

 83 L 26 Y 15

  M 32 Z 2C
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KEYBOARD SCAN CODES

 

The following keyboard scan codes may be retrieved either by calling INT 16h or by calling
INT 21h for keyboard input a second time (the first keyboard read returns 0). All codes are in
hexadecimal:

 

FUNCTION KEYS

 

Key Normal
With 
Shift 

With 
Ctrl With Alt

 

F1 3B 54 5E 68

F2 3C 55 5F 69

F3 3D 56 60 6A

F4 3E 57 61 6B

F5 3F 58 62 6C

F6 40 59 63 6D

F7 41 5A 64 6E

F8 42 5B 65 6F

F9 43 5C 66 70

F10 44 5D 67 71

F11 85  87  89 8B

F12 86  88  8A 8C

 

Key Alone 
With 
Ctrl Key

 

Home 47 77

End 4F 75

PgUp 49 84

PgDn 51 76

PrtSc 37 72

Left arrow 4B 73

Rt arrow 4D 74

Up arrow 48 8D

Dn arrow 50 91

Ins 52 92

Del 53 93

Back tab 0F 94

Gray + 4E 90

Gray 

 

−

 

 4A 8E
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Preface

Assembly Language for x86 Processors, Seventh Edition, teaches assembly language program-
ming and architecture for x86 and Intel64 processors. It is an appropriate text for the following
types of college courses:

• Assembly Language Programming
• Fundamentals of Computer Systems
• Fundamentals of Computer Architecture

Students use Intel or AMD processors and program with Microsoft Macro Assembler (MASM),
running on recent versions of Microsoft Windows. Although this book was originally designed as
a programming textbook for college students, it serves as an effective supplement to computer
architecture courses. As a testament to its popularity, previous editions have been translated into
numerous languages.

Emphasis of Topics This edition includes topics that lead naturally into subsequent courses
in computer architecture, operating systems, and compiler writing:

• Virtual machine concept
• Instruction set architecture
• Elementary Boolean operations
• Instruction execution cycle
• Memory access and handshaking
• Interrupts and polling
• Hardware-based I/O
• Floating-point binary representation

Other topics relate specially to x86 and Intel64 architecture:

• Protected memory and paging
• Memory segmentation in real-address mode
• 16-Bit interrupt handling
• MS-DOS and BIOS system calls (interrupts)
• Floating-point unit architecture and programming
• Instruction encoding

Certain examples presented in the book lend themselves to courses that occur later in a computer
science curriculum: 

• Searching and sorting algorithms
• High-level language structures
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• Finite-state machines
• Code optimization examples

What’s New in the Seventh Edition
In this revision, we increased the discussions of program examples early in the book, added more sup-
plemental review questions and key terms, introduced 64-bit programming, and reduced our depen-
dence on the book’s subroutine library. To be more specific, here are the details:

• Early chapters now include short sections that feature 64-bit CPU architecture and program-
ming, and we have created a 64-bit version of the book’s subroutine library named Irvine64.

• Many of the review questions and exercises have been modified, replaced, and moved from
the middle of the chapter to the end of chapters, and divided into two sections: (1) Short
answer questions, and (2) Algorithm workbench exercises. The latter exercises require the
student to write a short amount of code to accomplish a goal.

• Each chapter now has a Key Terms section, listing new terms and concepts, as well as new
MASM directives and Intel instructions.

• New programming exercises have been added, others removed, and a few existing exercises
were modified.

• There is far less dependency on the author's subroutine libraries in this edition. Students are
encouraged to call system functions themselves and use the Visual Studio debugger to step
through the programs. The Irvine32 and Irvine64 libraries are available to help students han-
dle input/output, but their use is not required.

• New tutorial videos covering essential content topics have been created by the author and
added to the Pearson website.

This book is still focused on its primary goal, to teach students how to write and debug programs at
the machine level. It will never replace a complete book on computer architecture, but it does give
students the first-hand experience of writing software in an environment that teaches them how a
computer works. Our premise is that students retain knowledge better when theory is combined with
experience. In an engineering course, students construct prototypes; in a computer architecture
course, students should write machine-level programs. In both cases, they have a memorable experi-
ence that gives them the confidence to work in any OS/machine-oriented environment.

Protected mode programming is entirely the focus of the printed chapters (1 through 13). As such,
students will create 32-bit and 64-bit programs that run under the most recent versions of Microsoft
Windows. The remaining four chapters cover 16-bit programming, and are supplied in electronic
form.  These chapters cover BIOS programming, MS-DOS services, keyboard and mouse input,
video  programming, and graphics. One chapter covers disk storage fundamentals. Another chapter
covers advanced DOS programming techniques. 

Subroutine Libraries We supply three versions of the subroutine library that students use for
basic input/output, simulations, timing, and other useful tasks. The Irvine32 and Irvine64 libraries run
in protected mode. The 16-bit version (Irvine16.lib) runs in real-address mode and is used only by
Chapters 14 through 17. Full source code for the libraries is supplied on the companion website. The
link libraries are available only for convenience, not to prevent students from learning how to pro-
gram input–output themselves. Students are encouraged to create their own libraries. 

Included Software and Examples All the example programs were tested with Microsoft
Macro Assembler Version 11.0, running in Microsoft Visual Studio 2012. In addition, batch files
are supplied that permit students to assemble and run applications from the Windows command
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prompt. The 32-bit C++ applications in Chapter 14 were tested with Microsoft Visual C++ .NET.
Information Updates and corrections to this book may be found at the Companion Web site, includ-
ing additional programming projects for instructors to assign at the ends of chapters.

Overall Goals 
The following goals of this book are designed to broaden the student’s interest and knowledge in
topics related to assembly language:

• Intel and AMD processor architecture and programming
• Real-address mode and protected mode programming
• Assembly language directives, macros, operators, and program structure
• Programming methodology, showing how to use assembly language to create system-level

software tools and application programs
• Computer hardware manipulation
• Interaction between assembly language programs, the operating system, and other applica-

tion programs

One of our goals is to help students approach programming problems with a machine-level mind
set. It is important to think of the CPU as an interactive tool, and to learn to monitor its operation
as directly as possible. A debugger is a programmer’s best friend, not only for catching errors,
but as an educational tool that teaches about the CPU and operating system. We encourage stu-
dents to look beneath the surface of high-level languages and to realize that most programming
languages are designed to be portable and, therefore, independent of their host machines. In
addition to the short examples, this book contains hundreds of ready-to-run programs that dem-
onstrate instructions or ideas as they are presented in the text. Reference materials, such as
guides to MS-DOS interrupts and instruction mnemonics, are available at the end of the book.

Required Background The reader should already be able to program confidently in at least
one high-level programming language such as Python, Java, C, or C++. One chapter covers C++
interfacing, so it is very helpful to have a compiler on hand. I have used this book in the class-
room with majors in both computer science and management information systems, and it has
been used elsewhere in engineering courses.

Features
Complete Program Listings The Companion Web site contains supplemental learning mate-
rials, study guides, and all the source code from the book’s examples. An extensive link library
is supplied with the book, containing more than 30 procedures that simplify user input–output,
numeric processing, disk and file handling, and string handling. In the beginning stages of the
course, students can use this library to enhance their programs. Later, they can create their
own procedures and add them to the library.

Programming Logic Two chapters emphasize Boolean logic and bit-level manipulation. A
conscious attempt is made to relate high-level programming logic to the low-level details of the
machine. This approach helps students to create more efficient implementations and to better
understand how compilers generate object code.
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Hardware and Operating System Concepts The first two chapters introduce basic hard-
ware and data representation concepts, including binary numbers, CPU architecture, status flags,
and memory mapping. A survey of the computer’s hardware and a historical perspective of the
Intel processor family helps students to better understand their target computer system. 

Structured Programming Approach Beginning with Chapter 5, procedures and functional
decomposition are emphasized. Students are given more complex programming exercises,
requiring them to focus on design before starting to write code.

Java Bytecodes and the Java Virtual Machine In Chapters 8 and 9, the author explains the
basic operation of Java bytecodes with short illustrative examples. Numerous short examples are
shown in disassembled bytecode format, followed by detailed step-by-step explanations.

Disk Storage Concepts Students learn the fundamental principles behind the disk storage
system on MS-Windows–based systems from hardware and software points of view.

Creating Link Libraries Students are free to add their own procedures to the book’s link
library and create new libraries. They learn to use a toolbox approach to programming and to
write code that is useful in more than one program.

Macros and Structures A chapter is devoted to creating structures, unions, and macros,
which are essential in assembly language and systems programming. Conditional macros with
advanced operators serve to make the macros more professional.

Interfacing to High-Level Languages A chapter is devoted to interfacing assembly lan-
guage to C and C++. This is an important job skill for students who are likely to find jobs pro-
gramming in high-level languages. They can learn to optimize their code and see examples of
how C++ compilers optimize code.

Instructional Aids All the program listings are available on the Web. Instructors are provided
a test bank, answers to review questions, solutions to programming exercises, and a Microsoft
PowerPoint slide presentation for each chapter.

VideoNotes VideoNotes are Pearson’s new visual tool designed to teach students key pro-
gramming concepts and techniques. These short step-by-step videos demonstrate basic assembly
language concepts. VideoNotes allow for self-paced instruction with easy navigation including
the ability to select, play, rewind, fast-forward, and stop within each VideoNote exercise.

VideoNotes are free with the purchase of a new textbook. To purchase access to VideoNotes,
go to www.pearsonhighered.com/irvine and click on the VideoNotes under Student Resources.

Chapter Descriptions
Chapters 1 to 8 contain core concepts of assembly language and should be covered in sequence.
After that, you have a fair amount of freedom. The following chapter dependency graph shows
how later chapters depend on knowledge gained from other chapters.

www.pearsonhighered.com/irvine
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1. Basic Concepts: Applications of assembly language, basic concepts, machine language, and data
representation.

2. x86 Processor Architecture: Basic microcomputer design, instruction execution cycle, x86
processor architecture, Intel64 architecture, x86 memory management, components of a
microcomputer, and the input–output system.

3. Assembly Language Fundamentals: Introduction to assembly language, linking and
debugging, and defining constants and variables.

4. Data Transfers, Addressing, and Arithmetic: Simple data transfer and arithmetic instructions,
assemble-link-execute cycle, operators, directives, expressions, JMP and LOOP instructions, and
indirect addressing.

5. Procedures: Linking to an external library, description of the book’s link library, stack oper-
ations, defining and using procedures, flowcharts, and top-down structured design.

6. Conditional Processing: Boolean and comparison instructions, conditional jumps and
loops, high-level logic structures, and finite-state machines.

7. Integer Arithmetic: Shift and rotate instructions with useful applications, multiplication
and division, extended addition and subtraction, and ASCII and packed decimal arithmetic.

8. Advanced Procedures: Stack parameters, local variables, advanced PROC and INVOKE
directives, and recursion.

9. Strings and Arrays: String primitives, manipulating arrays of characters and integers, two-
dimensional arrays, sorting, and searching.

10. Structures and Macros: Structures, macros, conditional assembly directives, and defining
repeat blocks.

11. MS-Windows Programming: Protected mode memory management concepts, using the
Microsoft-Windows API to display text and colors, and dynamic memory allocation.

12. Floating-Point Processing and Instruction Encoding: Floating-point binary representa-
tion and floating-point arithmetic. Learning to program the IA-32 floating-point unit. Under-
standing the encoding of IA-32 machine instructions.

13. High-Level Language Interface: Parameter passing conventions, inline assembly code, and
linking assembly language modules to C and C++ programs.

• Appendix A: MASM Reference
• Appendix B: The x86 Instruction Set
• Appendix C: Answers to Review Questions

1 through 9

10

11 12 13 14 16 17

15

www.allitebooks.com

http://www.allitebooks.org
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The following chapters and appendices are supplied online at the Companion Web site:

14. 16-Bit MS-DOS Programming: Memory organization, interrupts, function calls, and stan-
dard MS-DOS file I/O services.

15. Disk Fundamentals: Disk storage systems, sectors, clusters, directories, file allocation
tables, handling MS-DOS error codes, and drive and directory manipulation.

16. BIOS-Level Programming: Keyboard input, video text, graphics, and mouse programming.
17. Expert MS-DOS Programming: Custom-designed segments, runtime program structure,

and Interrupt handling. Hardware control using I/O ports.

• Appendix D: BIOS and MS-DOS Interrupts
• Appendix E: Answers to Review Questions (Chapters 14–17)

Instructor and Student Resources
Instructor Resource Materials
The following protected instructor material is available on the Companion Web site:

www.pearsonhighered.com/irvine

For username and password information, please contact your Pearson Representative.

• Lecture PowerPoint Slides
• Instructor Solutions Manual

Student Resource Materials
The student resource materials can be accessed through the publisher’s Web site located at
www.pearsonhighered.com/irvine. These resources include: 

• VideoNotes
• Online Chapters and Appendices

• Chapter 14: 16-Bit MS-DOS Programming
• Chapter 15: Disk Fundamentals
• Chapter 16: BIOS-Level Programming
• Chapter 17: Expert MS-DOS Programming
• Appendix D: BIOS and MS-DOS Interrupts
• Appendix E: Answers to Review Questions (Chapters 14–17)

Students must use the access card located in the front of the book to register and access the online chap-
ters and VideoNotes. If there is no access card in the front of this textbook, students can purchase access
by going to www.pearsonhighered.com/irvine and selecting “Video Notes and Web Chapters.” Instruc-
tors must also register on the site to access this material. Students will also find a link to the author’s Web
site. An access card is not required for the following materials, located at www.asmirvine.com:

• Getting Started, a comprehensive step-by-step tutorial that helps students customize Visual
Studio for assembly language programming.

• Supplementary articles on assembly language programming topics.
• Complete source code for all example programs in the book, as well as the source code for

the author’s supplementary library.

www.pearsonhighered.com/irvine
www.pearsonhighered.com/irvine
www.pearsonhighered.com/irvine
www.asmirvine.com
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• Assembly Language Workbook, an interactive workbook covering number conversions, address-
ing modes, register usage, debug programming, and floating-point binary numbers. Content
pages are HTML documents to allow for customization. Help File in Windows Help Format.

• Debugging Tools: Tutorials on using the Microsoft Visual Studio debugger.

Acknowledgments
Many thanks are due to Tracy Johnson, Executive Editor for Computer Science at Pearson Edu-
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1.1.2 Assembly Language Applications 
1.1.3 Section Review 

1.2 Virtual Machine Concept 
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1.3 Data Representation 
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This chapter establishes some core concepts relating to assembly language programming. For
example, it shows how assembly language fits into the wide spectrum of languages and applica-
tions. We introduce the virtual machine concept, which is so important in understanding the rela-
tionship between software and hardware layers. A large part of the chapter is devoted to the
binary and hexadecimal numbering systems, showing how to perform conversions and do basic
arithmetic. Finally, this chapter introduces fundamental boolean operations (AND, OR, NOT,
XOR), which will prove to be essential in later chapters.

1.1 Welcome to Assembly Language
Assembly Language for x86 Processors focuses on programming microprocessors compatible
with Intel and AMD processors running under 32-bit and 64-bit versions of Microsoft Windows.
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The latest version of Microsoft Macro Assembler (known as MASM) should be used with this
book. MASM is included with most versions of Microsoft Visual Studio (Pro, Ultimate,
Express, . . . ). Please check our web site (asmirvine.com) for the latest details about support for
MASM in Visual Studio. We also include lots of helpful information about how to set up your
software and get started.

Some other well-known assemblers for x86 systems running under Microsoft Windows
include TASM (Turbo Assembler), NASM (Netwide Assembler), and MASM32 (a variant of
MASM). Two popular Linux-based assemblers are GAS (GNU assembler) and NASM. Of
these, NASM’s syntax is most similar to that of MASM.

Assembly language is the oldest programming language, and of all languages, bears the
closest resemblance to native machine language. It provides direct access to computer hard-
ware, requiring you to understand much about your computer’s architecture and operating
system.

Educational Value Why read this book? Perhaps you’re taking a college course whose title is
similar to one of the following courses that often use our book:

• Microcomputer Assembly Language
• Assembly Language Programming
• Introduction to Computer Architecture
• Fundamentals of Computer Systems
• Embedded Systems Programming

This book will help you learn basic principles about computer architecture, machine lan-
guage, and low-level programming. You will learn enough assembly language to test your
knowledge on today’s most widely used microprocessor family. You won’t be learning to pro-
gram a “toy” computer using a simulated assembler; MASM is an industrial-strength assembler,
used by practicing professionals. You will learn the architecture of the Intel processor family
from a programmer’s point of view. 

If you are planning to be a C or C++ developer, you need to develop an understanding of how
memory, address, and instructions work at a low level. A lot of programming errors are not eas-
ily recognized at the high-level language level. You will often find it necessary to “drill down”
into your program’s internals to find out why it isn’t working.

If you doubt the value of low-level programming and studying details of computer software
and hardware, take note of the following quote from a leading computer scientist, Donald Knuth,
in discussing his famous book series, The Art of Computer Programming:

Some people [say] that having machine language, at all, was the great mistake that I made.
I really don’t think you can write a book for serious computer programmers unless you are
able to discuss low-level detail.1

Visit this book’s web site to get lots of supplemental information, tutorials, and exercises at
www.asmirvine.com

www.asmirvine.com
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1.1.1 Questions You Might Ask

What Background Should I Have? Before reading this book, you should have programmed
in at least one structured high-level language, such as Java, C, Python, or C++. You should know
how to use IF statements, arrays, and functions to solve programming problems.

What Are Assemblers and Linkers? An assembler is a utility program that converts source
code programs from assembly language into machine language. A linker is a utility program that com-
bines individual files created by an assembler into a single executable program. A related utility, called a
debugger, lets you to step through a program while it’s running and examine registers and memory.

What Hardware and Software Do I Need? You need a computer that runs a 32-bit or 64-bit
version of Microsoft Windows, along with one of the recent versions of Microsoft Visual Studio. 

What Types of Programs Can Be Created Using MASM?

• 32-Bit Protected Mode: 32-bit protected mode programs run under all 32-bit versions of
Microsoft Windows. They are usually easier to write and understand than real-mode pro-
grams. From now on, we will simply call this 32-bit mode.

• 64-Bit Mode: 64-bit programs run under all 64-bit versions of Microsoft Windows.
• 16-Bit Real-Address Mode: 16-bit programs run under 32-bit versions of Windows and on

embedded systems. Because they are not supported by 64-bit Windows, we will restrict dis-
cussions of this mode to Chapters 14 through 17. These chapters are in electronic form, avail-
able from the publisher’s web site.

What Supplements Are Supplied with This Book? The book’s web site (www.asmirvine.com)
has the following: 

• Assembly Language Workbook, a collection of tutorials
• Irvine32, Irvine64, and Irvine16 subroutine libraries for 64-bit, 32-bit, and 16-bit program-

ming, with complete source code
• Example programs with all source code from the book
• Corrections to the book
• Getting Started, a detailed tutorial designed to help you set up Visual Studio to use the

Microsoft assembler
• Articles on advanced topics not included in the printed book for lack of space
• A link to an online discussion forum, where you can get help from other experts who use the book

What Will I Learn? This book should make you better informed about data representation,
debugging, programming, and hardware manipulation. Here’s what you will learn:

• Basic principles of computer architecture as applied to x86 processors 
• Basic boolean logic and how it applies to programming and computer hardware
• How x86 processors manage memory, using protected mode and virtual mode
• How high-level language compilers (such as C++) translate statements from their language

into assembly language and native machine code

www.asmirvine.com
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• How high-level languages implement arithmetic expressions, loops, and logical structures at
the machine level

• Data representation, including signed and unsigned integers, real numbers, and character data
• How to debug programs at the machine level. The need for this skill is vital when you work in

languages such as C and C++, which generate native machine code
• How application programs communicate with the computer’s operating system via interrupt

handlers and system calls
• How to interface assembly language code to C++ programs
• How to create assembly language application programs

How Does Assembly Language Relate to Machine Language? Machine language is a
numeric language specifically understood by a computer’s processor (the CPU). All x86 processors
understand a common machine language. Assembly language consists of statements written with
short mnemonics such as ADD, MOV, SUB, and CALL. Assembly language has a one-to-one rela-
tionship with machine language: Each assembly language instruction corresponds to a
single machine-language instruction. 

How Do C++ and Java Relate to Assembly Language? High-level languages such as
Python, C++, and Java have a one-to-many relationship with assembly language and machine
language. A single statement in C++, for example, expands into multiple assembly language or
machine instructions. Most people cannot read raw machine code, so in this book, we examine
its closest relative, assembly language. For example, the following C++ code carries out two
arithmetic operations and assigns the result to a variable. Assume X and Y are integers:

int Y;
int X = (Y + 4) * 3;

Following is the equivalent translation to assembly language. The translation requires multiple
statements because each assembly language statement corresponds to a single machine instruction:

mov eax,Y ; move Y to the EAX register
add eax,4 ; add 4 to the EAX register
mov ebx,3 ; move 3 to the EBX register
imul ebx ; multiply EAX by EBX
mov X,eax ; move EAX to X

(Registers are named storage locations in the CPU that hold intermediate results of operations.)
The point of this example is not to claim that C++ is superior to assembly language or vice
versa, but to show their relationship.

Is Assembly Language Portable? A language whose source programs can be compiled and
run on a wide variety of computer systems is said to be portable. A C++ program, for example,
will compile and run on just about any computer, unless it makes specific references to library
functions that exist under a single operating system. A major feature of the Java language is that
compiled programs run on nearly any computer system.

Assembly language is not portable, because it is designed for a specific processor family. There
are a number of different assembly languages widely used today, each based on a processor family.
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Some well-known processor families are Motorola 68x00, x86, SUN Sparc, Vax, and IBM-370.
The instructions in assembly language may directly match the computer’s architecture or they may
be translated during execution by a program inside the processor known as a microcode interpreter.

Why Learn Assembly Language? If you’re still not convinced that you should learn assembly
language, consider the following points:

• If you study computer engineering, you may likely be asked to write embedded programs.
They are short programs stored in a small amount of memory in single-purpose devices such
as telephones, automobile fuel and ignition systems, air-conditioning control systems, secu-
rity systems, data acquisition instruments, video cards, sound cards, hard drives, modems,
and printers. Assembly language is an ideal tool for writing embedded programs because of
its economical use of memory.

• Real-time applications dealing with simulation and hardware monitoring require precise
timing and responses. High-level languages do not give programmers exact control over
machine code generated by compilers. Assembly language permits you to precisely specify a
program’s executable code.

• Computer game consoles require their software to be highly optimized for small code size and fast
execution. Game programmers are experts at writing code that takes full advantage of hardware
features in a target system. They often use assembly language as their tool of choice because it
permits direct access to computer hardware, and code can be hand optimized for speed.

• Assembly language helps you to gain an overall understanding of the interaction between
computer hardware, operating systems, and application programs. Using assembly language,
you can apply and test theoretical information you are given in computer architecture and
operating systems courses.

• Some high-level languages abstract their data representation to the point that it becomes awk-
ward to perform low-level tasks such as bit manipulation. In such an environment, program-
mers will often call subroutines written in assembly language to accomplish their goal.

• Hardware manufacturers create device drivers for the equipment they sell. Device drivers
are programs that translate general operating system commands into specific references to
hardware details. Printer manufacturers, for example, create a different MS-Windows device
driver for each model they sell. Often these device drivers contain significant amounts of
assembly language code.

Are There Rules in Assembly Language? Most rules in assembly language are based on
physical limitations of the target processor and its machine language. The CPU, for example,
requires two instruction operands to be the same size. Assembly language has fewer rules than
C++ or Java because the latter use syntax rules to reduce unintended logic errors at the expense
of low-level data access. Assembly language programmers can easily bypass restrictions charac-
teristic of high-level languages. Java, for example, does not permit access to specific memory
addresses. One can work around the restriction by calling a C function using JNI (Java Native
Interface) classes, but the resulting program can be awkward to maintain. Assembly language,
on the other hand, can access any memory address. The price for such freedom is high: Assem-
bly language programmers spend a lot of time debugging!

www.allitebooks.com
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1.1.2 Assembly Language Applications
In the early days of programming, most applications were written partially or entirely in assem-
bly language. They had to fit in a small area of memory and run as efficiently as possible on slow
processors. As memory became more plentiful and processors dramatically increased in speed,
programs became more complex. Programmers switched to high-level languages such as C,
FORTRAN, and COBOL that contained a certain amount of structuring capability. More
recently, object-oriented languages such as Python, C++, C#, and Java have made it possible to
write complex programs containing millions of lines of code.

It is rare to see large application programs coded completely in assembly language because
they would take too much time to write and maintain. Instead, assembly language is used to opti-
mize certain sections of application programs for speed and to access computer hardware.
Table 1-1 compares the adaptability of assembly language to high-level languages in relation to
various types of applications.

The C and C++ languages have the unique quality of offering a compromise between high-
level structure and low-level details. Direct hardware access is possible but completely nonport-
able. Most C and C++ compilers allow you to embed assembly language statements in their
code, providing access to hardware details. 

1.1.3 Section Review
1. How do assemblers and linkers work together?

2. How will studying assembly language enhance your understanding of operating systems?

Table 1-1  Comparison of Assembly Language to High-Level Languages.

Type of Application High-Level Languages Assembly Language

Commercial or scientific appli-
cation, written for single plat-
form, medium to large size.

Formal structures make it easy to orga-
nize and maintain large sections of
code.

Minimal formal structure, so one
must be imposed by programmers
who have varying levels of experi-
ence. This leads to difficulties main-
taining existing code.

Hardware device driver. The language may not provide for direct
hardware access. Even if it does, awk-
ward coding techniques may be required,
resulting in maintenance difficulties.

Hardware access is straightforward and
simple. Easy to maintain when pro-
grams are short and well documented.

Commercial or scientific appli-
cation written for multiple
platforms (different operating
systems).

Usually portable. The source code can
be recompiled on each target operating
system with minimal changes.

Must be recoded separately for each
platform, using an assembler with a
different syntax. Difficult to maintain.

Embedded systems and com-
puter games requiring direct
hardware access.

May produce large executable files that
exceed the memory capacity of the
device.

Ideal, because the executable code is
small and runs quickly.
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3. What is meant by a one-to-many relationship when comparing a high-level language to
machine language?

4. Explain the concept of portability as it applies to programming languages.

5. Is the assembly language for x86 processors the same as those for computer systems such as
the Vax or Motorola 68x00?

6. Give an example of an embedded systems application.

7. What is a device driver?

8. Do you suppose type checking on pointer variables is stronger (stricter) in assembly lan-
guage, or in C and C++?

9. Name two types of applications that would be better suited to assembly language than a
high-level language.

10. Why would a high-level language not be an ideal tool for writing a program that directly
accesses a printer port?

11. Why is assembly language not usually used when writing large application programs?

12. Challenge: Translate the following C++ expression to assembly language, using the example
presented earlier in this chapter as a guide: X � (Y * 4) � 3.

1.2 Virtual Machine Concept
An effective way to explain how a computer’s hardware and software are related is called the
virtual machine concept. A well-known explanation of this model can be found in Andrew
Tanenbaum’s book, Structured Computer Organization. To explain this concept, let us begin
with the most basic function of a computer, executing programs.

A computer can usually execute programs written in its native machine language. Each
instruction in this language is simple enough to be executed using a relatively small number of
electronic circuits. For simplicity, we will call this language L0.

Programmers would have a difficult time writing programs in L0 because it is enormously
detailed and consists purely of numbers. If a new language, L1, could be constructed that was
easier to use, programs could be written in L1. There are two ways to achieve this:

• Interpretation: As the L1 program is running, each of its instructions could be decoded and
executed by a program written in language L0. The L1 program begins running immediately,
but each instruction has to be decoded before it can execute.

• Translation: The entire L1 program could be converted into an L0 program by an L0 program
specifically designed for this purpose. Then the resulting L0 program could be executed
directly on the computer hardware.

Virtual Machines
Rather than using only languages, it is easier to think in terms of a hypothetical computer, or vir-
tual machine, at each level. Informally, we can define a virtual machine as a software program
that emulates the functions of some other physical or virtual computer. The virtual machine
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VM1, as we will call it, can execute commands written in language L1. The virtual machine
VM0 can execute commands written in language L0:

Each virtual machine can be constructed of either hardware or software. People can write pro-
grams for virtual machine VM1, and if it is practical to implement VM1 as an actual computer,
programs can be executed directly on the hardware. Or programs written in VM1 can be inter-
preted/translated and executed on machine VM0.

Machine VM1 cannot be radically different from VM0 because the translation or interpreta-
tion would be too time-consuming. What if the language VM1 supports is still not programmer-
friendly enough to be used for useful applications? Then another virtual machine, VM2, can be
designed that is more easily understood. This process can be repeated until a virtual machine
VMn can be designed to support a powerful, easy-to-use language. 

The Java programming language is based on the virtual machine concept. A program written
in the Java language is translated by a Java compiler into Java byte code. The latter is a low-level
language quickly executed at runtime by a program known as a Java virtual machine (JVM). The
JVM has been implemented on many different computer systems, making Java programs rela-
tively system independent.

Specific Machines
Let us relate this to actual computers and languages, using names such as Level 2 for VM2 and Level 1
for VM1, shown in Figure 1-1. A computer’s digital logic hardware represents machine Level 1. Above
this is Level 2, called the instruction set Architecture (ISA). This is the first level at which users can typi-
cally write programs, although the programs consist of binary values called machine language.

Instruction Set Architecture (Level 2) Computer chip manufacturers design into the proces-
sor an instruction set to carry out basic operations, such as move, add, or multiply. This set of
instructions is also referred to as machine language. Each machine-language instruction is exe-
cuted either directly by the computer’s hardware or by a program embedded in the microprocessor
chip called a microprogram. A discussion of microprograms is beyond the scope of this book, but
you can refer to Tanenbaum for more details.

Assembly Language (Level 3) Above the ISA level, programming languages provide trans-
lation layers to make large-scale software development practical. Assembly language, which
appears at Level 3, uses short mnemonics such as ADD, SUB, and MOV, which are easily trans-
lated to the ISA level. Assembly language programs are translated (assembled) in their entirety
into machine language before they begin to execute.

Virtual Machine VM0

Virtual Machine VM1
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Figure 1–1 Virtual machine levels.

High-Level Languages (Level 4) At Level 4 are high-level programming languages such as
C, C++, and Java. Programs in these languages contain powerful statements that translate into
multiple assembly language instructions. You can see such a translation, for example, by exam-
ining the listing file output created by a C++ compiler. The assembly language code is automati-
cally assembled by the compiler into machine language.

1.2.1 Section Review
1. In your own words, describe the virtual machine concept.

2. Why do you suppose translated programs often execute more quickly than interpreted ones?

3. (True/False): When an interpreted program written in language L1 runs, each of its instruc-
tions is decoded and executed by a program written in language L0.

4. Explain the importance of translation when dealing with languages at different virtual
machine levels.

5. At which level does assembly language appear in the virtual machine example shown in this
section?

6. What software utility permits compiled Java programs to run on almost any computer?

7. Name the four virtual machine levels named in this section, from lowest to highest.

8. Why don’t programmers write applications in machine language?

9. Machine language is used at which level of the virtual machine shown in Figure 1-1?

10. Statements at the assembly language level of a virtual machine are translated into state-
ments at which other level?

1.3 Data Representation
Assembly language programmers deal with data at the physical level, so they must be adept at
examining memory and registers. Often, binary numbers are used to describe the contents of
computer memory; at other times, decimal and hexadecimal numbers are used. You must develop

Assembly language

Instruction set
architecture (ISA)

Digital logicLevel 1

Level 2

Level 3

Level 4 High-level language
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a certain fluency with number formats, so you can quickly translate numbers from one format to
another. 

Each numbering format, or system, has a base, or maximum number of symbols that can be
assigned to a single digit. Table 1-2 shows the possible digits for the numbering systems used
most commonly in hardware and software manuals. In the last row of the table, hexadecimal
numbers use the digits 0 through 9 and continue with the letters A through F to represent deci-
mal values 10 through 15. It is quite common to use hexadecimal numbers when showing the
contents of computer memory and machine-level instructions.

1.3.1 Binary Integers
A computer stores instructions and data in memory as collections of electronic charges. Representing
these entities with numbers requires a system geared to the concepts of on and off or true and false.
Binary numbers are base 2 numbers, in which each binary digit (called a bit) is either 0 or 1. Bits are
numbered sequentially starting at zero on the right side and increasing toward the left. The bit on the
left is called the most significant bit (MSB), and the bit on the right is the least significant bit (LSB).
The MSB and LSB bit numbers of a 16-bit binary number are shown in the following figure:

0 Bit number15

1  0  1  1  0  0  1  0  1  0  0  1  1  1  0  0

MSB LSB

Binary integers can be signed or unsigned. A signed integer is positive or negative. An
unsigned integer is by default positive. Zero is considered positive. When writing down large
binary numbers, many people like to insert a dot every 4 bits or 8 bits to make the numbers eas-
ier to read. Examples are 1101.1110.0011.1000.0000 and 11001010.10101100. 

Unsigned Binary Integers
Starting with the LSB, each bit in an unsigned binary integer represents an increasing power of
2. The following figure contains an 8-bit binary number, showing how powers of two increase
from right to left:

Table 1-3 lists the decimal values of 20 through 215.

Table 1-2  Binary, Octal, Decimal, and Hexadecimal Digits.

System Base Possible Digits

Binary 2 0 1

Octal 8 0 1 2 3 4 5 6 7 

Decimal 10 0 1 2 3 4 5 6 7 8 9

Hexadecimal 16 0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 1 1 1 1 1

26 25 24 23 22 21 20

1

27



1.3   Data Representation 11

Translating Unsigned Binary Integers to Decimal
Weighted positional notation represents a convenient way to calculate the decimal value of an
unsigned binary integer having n digits:

dec � (Dn�1 � 2n�1) � (Dn�2 � 2n�2) � ��� � (D1 � 21) � (D0 � 20)

D indicates a binary digit. For example, binary 00001001 is equal to 9. We calculate this value
by leaving out terms equal to zero:

(1 � 23) � (1 � 20) � 9

The same calculation is shown by the following figure: 

Translating Unsigned Decimal Integers to Binary
To translate an unsigned decimal integer into binary, repeatedly divide the integer by 2, saving each
remainder as a binary digit. The following table shows the steps required to translate decimal 37 to
binary. The remainder digits, starting from the top row, are the binary digits D0, D1, D2, D3, D4, and D5:

Table 1-3  Binary Bit Position Values.

 2n Decimal Value  2n Decimal Value

20 1 28 256

21 2 29 512

22 4 210 1024

23 8 211 2048

24 16 212 4096

25 32 213 8192

26 64 214 16384

27 128 215 32768

Division Quotient Remainder

37 / 2 18 1

18 / 2 9 0

9 / 2 4 1

4 / 2 2 0

2 / 2 1 0

1 / 2 0 1

8

� 1

9

10010000
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We can concatenate the binary bits from the remainder column of the table in reverse order
(D5, D4, . . .) to produce binary 100101. Because computer storage always consists of binary
numbers whose lengths are multiples of 8, we fill the remaining two digit positions on the left
with zeros, producing 00100101.

1.3.2 Binary Addition
When adding two binary integers, proceed bit by bit, starting with the low-order pair of bits (on
the right) and add each subsequent pair of bits. There are four ways to add two binary digits, as
shown here:

When adding 1 to 1, the result is 10 binary (think of it as the decimal value 2). The extra
digit generates a carry to the next-highest bit position. In the following figure, we add binary
00000100 to 00000111:

Beginning with the lowest bit in each number (bit position 0), we add 0 � 1, producing a 1 in
the bottom row. The same happens in the next highest bit (position 1). In bit position 2, we add
1 � 1, generating a sum of zero and a carry of 1. In bit position 3, we add the carry bit to 0 � 0,
producing 1. The rest of the bits are zeros. You can verify the addition by adding the decimal
equivalents shown on the right side of the figure (4 � 7 � 11).

Sometimes a carry is generated out of the highest bit position. When that happens, the size
of the storage area set aside becomes important. If we add 11111111 to 00000001, for exam-
ple, a 1 carries out of the highest bit position, and the lowest 8 bits of the sum equal all zeros.
If the storage location for the sum is at least 9 bits long, we can represent the sum as
100000000. But if the sum can only store 8 bits, it will equal to 00000000, the lowest 8 bits of
the calculated value.

Tip: How many bits? There’s a simple formula to find b, the number of binary bits you need to
represent the unsigned decimal value n. It is b = ceiling ( log2 n). If n = 17, for example, log2 17 =
4.087463, which when raised to the smallest following integer, equals 5. Most calculators don’t
have a log base 2 operation, but you can find web pages that will calculate it for you.

0 � 0 � 0 0 � 1 � 1

1 � 0 � 1 1 � 1 � 10

0 0 0 0 1 1

0 0 0 0 1 0

�

0 0 0 1 0 1

1

(4)

(7)

(11)

Carry:

1

0

1

01234Bit position: 56

0

0

0

7
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1.3.3 Integer Storage Sizes
The basic storage unit for all data in an x86 computer is a byte, containing 8 bits. Other
storage sizes are word (2 bytes), doubleword (4 bytes), and quadword (8 bytes). In the following
figure, the number of bits is shown for each size:

Table 1-4 shows the range of possible values for each type of unsigned integer. 

Large Measurements A number of large measurements are used when referring to both
memory and disk space:

• One kilobyte is equal to 210, or 1024 bytes.
• One megabyte (1 MByte) is equal to 220, or 1,048,576 bytes.
• One gigabyte (1 GByte) is equal to 230, or 10243, or 1,073,741,824 bytes.
• One terabyte (1 TByte) is equal to 240, or 10244, or 1,099,511,627,776 bytes.

• One petabyte is equal to 250, or 1,125,899,906,842,624 bytes.
• One exabyte is equal to 260, or 1,152,921,504,606,846,976 bytes.
• One zettabyte is equal to 270 bytes.
• One yottabyte is equal to 280 bytes.

1.3.4 Hexadecimal Integers
Large binary numbers are cumbersome to read, so hexadecimal digits offer a convenient way to
represent binary data. Each digit in a hexadecimal integer represents four binary bits, and two
hexadecimal digits together represent a byte. A single hexadecimal digit represents decimal 0 to
15, so letters A to F represent decimal values in the range 10 through 15. Table 1-5 shows how
each sequence of four binary bits translates into a decimal or hexadecimal value.

Table 1-4  Ranges and Sizes of Unsigned Integer Types.

Type Range
Storage Size 

in Bits

Unsigned byte 0 to 28 − 1 8

Unsigned word 0 to 216 − 1 16

Unsigned doubleword 0 to 232 − 1 32

Unsigned quadword 0 to 264 − 1 64

Unsigned double quadword 0 to 2128− 1 128

Byte

16

8

32

Word

Doubleword

64Quadword

128Double quadword
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The following example shows how binary 0001 0110 1010 0111 1001 0100 is equivalent to
hexadecimal 16A794: 

Converting Unsigned Hexadecimal to Decimal
In hexadecimal, each digit position represents a power of 16. This is helpful when calculating the
decimal value of a hexadecimal integer. Suppose we number the digits in a four-digit hexadecimal
integer with subscripts as D3D2D1D0. The following formula calculates the integer’s decimal value:

dec � (D3 � 163) � (D2 � 162) � (D1 � 161) � (D0 � 160)

The formula can be generalized for any n-digit hexadecimal integer:

dec � (Dn�1 � 16n�1) � (Dn�2 � 16n�2) � � � � � (D1 � 161) � (D0 � 160)

For example, hexadecimal 1234 is equal to (1 � 163) � (2 � 162) � (3 � 161) � (4 � 160), or
decimal 4660. Similarly, hexadecimal 3BA4 is equal to (3 � 163) � (11 � 162) � (10 � 161) �

(4 � 160), or decimal 15,268. The following figure shows this last calculation:

Table 1-5  Binary, Decimal, and Hexadecimal Equivalents.

Binary Decimal Hexadecimal Binary Decimal Hexadecimal

0000 0 0 1000 8 8

0001 1 1 1001 9 9

0010 2 2 1010 10 A

0011 3 3 1011 11 B

0100 4 4 1100 12 C

0101 5 5 1101 13 D

0110 6 6 1110 14 E

0111 7 7 1111 15 F

1 6 A 7 9 4

0001 0110 1010 0111 1001 0100

In general, you can convert an n-digit integer in any base B to decimal using the following
formula: dec = (Dn�1 � Bn�1) � (Dn�2 � Bn�2) � � � � � (D1 × B1) � (D0 � B0).

Total:     15,2684AB3

  3 × 163 � 12,288

11 × 162 �   2,816

10 × 161 �      160

  4 × 160 � �     4
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Table 1-6 lists the powers of 16 from 160 to 167.

Converting Unsigned Decimal to Hexadecimal
To convert an unsigned decimal integer to hexadecimal, repeatedly divide the decimal value by
16 and retain each remainder as a hexadecimal digit. For example, the following table lists the
steps when converting decimal 422 to hexadecimal:

The resulting hexadecimal number is assembled from the digits in the remainder column, start-
ing from the last row and working upward to the top row. In this example, the hexadecimal rep-
resentation is 1A6. The same algorithm was used for binary integers in Section 1.3.1. To convert
from decimal into some other number base other than hexadecimal, replace the divisor (16) in
each calculation with the desired number base.

1.3.5 Hexadecimal Addition
Debugging utility programs (known as debuggers) usually display memory addresses in hexa-
decimal. It is often necessary to add two addresses in order to locate a new address. Fortu-
nately, hexadecimal addition works the same way as decimal addition, if you just change the
number base. 

Suppose we want to add two numbers X and Y, using numbering base b. We will number
their digits from the lowest position (x0) to the highest. If we add digits xi and yi in X and
Y, we produce the value si. If , we recalculate si � (si MOD b) and generate a carry
value of 1. When we move to the next pair of digits xi+1 and yi+1, we add the carry value to
their sum.

For example, let’s add the hexadecimal values 6A2 and 49A. In the lowest digit position,
2 � A � decimal 12, so there is no carry and we use C to indicate the hexadecimal sum
digit. In the next position, A � 9 � decimal 19, so there is a carry because , the num-
ber base. We calculate 19 MOD 16 � 3, and carry a 1 into the third digit position. Finally,
we add 1 � 6 � 4 � decimal 11, which is shown as the letter B in the third position of the
sum. The hexadecimal sum is B3C.

Table 1-6  Powers of 16 in Decimal.

16n Decimal Value 16n Decimal Value

160 1 164 65,536

161 16 165 1,048,576

162 256 166 16,777,216

163 4096 167 268,435,456

Division Quotient Remainder

422 / 16 26 6

26 / 16 1 A

1 / 16 0 1

si b≥

19 16≥
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1.3.6 Signed Binary Integers
Signed binary integers are positive or negative. For x86 processors, the MSB indicates the
sign: 0 is positive and 1 is negative. The following figure shows examples of 8-bit negative
and positive integers:

Two’s-Complement Representation
Negative integers use two’s-complement representation, using the mathematical principle that
the two’s complement of an integer is its additive inverse. (If you add a number to its additive
inverse, the sum is zero.)

Two’s-complement representation is useful to processor designers because it removes the need
for separate digital circuits to handle both addition and subtraction. For example, if presented with
the expression A � B, the processor can simply convert it to an addition expression: A � (�B).

The two’s complement of a binary integer is formed by inverting (complementing) its bits
and adding 1. Using the 8-bit binary value 00000001, for example, its two’s complement turns
out to be 11111111, as can be seen as follows:

11111111 is the two’s-complement representation of �1. The two’s-complement operation is
reversible, so the two’s complement of 11111111 is 00000001.

Hexadecimal Two’s Complement To create the two’s complement of a hexadecimal integer,
reverse all bits and add 1. An easy way to reverse the bits of a hexadecimal digit is to subtract the
digit from 15. Here are examples of hexadecimal integers converted to their two’s complements:

6A3D --> 95C2 + 1 --> 95C3
95C3 --> 6A3C + 1 --> 6A3D

Carry 1

X 6 A 2

Y 4 9 A

S B 3 C

Starting value  00000001

Step 1: Reverse the bits  11111110

Step 2: Add 1 to the value from Step 1  11111110
+00000001

Sum: Two’s-complement representation  11111111

1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

Sign bit

Negative

Positive

1
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Converting Signed Binary to Decimal Use the following algorithm to calculate the decimal
equivalent of a signed binary integer:

• If the highest bit is a 1, the number is stored in two’s-complement notation. Create its two’s
complement a second time to get its positive equivalent. Then convert this new number to
decimal as if it were an unsigned binary integer.

• If the highest bit is a 0, you can convert it to decimal as if it were an unsigned binary integer.

For example, signed binary 11110000 has a 1 in the highest bit, indicating that it is a negative
integer. First we create its two’s complement, and then convert the result to decimal. Here are the
steps in the process:

Because the original integer (11110000) was negative, we know that its decimal value is −16.

Converting Signed Decimal to Binary To create the binary representation of a signed deci-
mal integer, do the following:

1. Convert the absolute value of the decimal integer to binary. 
2. If the original decimal integer was negative, create the two’s complement of the binary num-

ber from the previous step.

For example, −43 decimal is translated to binary as follows:

1. The binary representation of unsigned 43 is 00101011.
2. Because the original value was negative, we create the two’s complement of 00101011,

which is 11010101. This is the representation of −43 decimal.

Converting Signed Decimal to Hexadecimal To convert a signed decimal integer to hexa-
decimal, do the following:

1. Convert the absolute value of the decimal integer to hexadecimal.
2. If the decimal integer was negative, create the two’s complement of the hexadecimal number

from the previous step. 

Converting Signed Hexadecimal to Decimal To convert a signed hexadecimal integer to
decimal, do the following:

1. If the hexadecimal integer is negative, create its two’s complement; otherwise, retain the
integer as is.

2. Using the integer from the previous step, convert it to decimal. If the original value was nega-
tive, attach a minus sign to the beginning of the decimal integer.

Starting value  11110000

Step 1: Reverse the bits  00001111

Step 2: Add 1 to the value from Step 1  00001111
+       1

Step 3: Create the two’s complement  00010000

Step 4: Convert to decimal        16

You can tell whether a hexadecimal integer is positive or negative by inspecting its most signifi-
cant (highest) digit. If the digit is ≥ 8, the number is negative; if the digit is ≤ 7, the number is pos-
itive. For example, hexadecimal 8A20 is negative and 7FD9 is positive.
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Maximum and Minimum Values
A signed integer of n bits uses only n � 1 bits to represent the number’s magnitude. Table 1-7
shows the minimum and maximum values for signed bytes, words, doublewords, and quadwords.

1.3.7 Binary Subtraction
Subtracting a smaller unsigned binary number from a large one is easy if you go about it in the
same way you handle decimal subtraction. Here’s an example:

  0 1 1 0 1 (decimal 13)
- 0 0 1 1 1 (decimal 7)
-----------

Subtracting the bits in position 0 is straightforward:

  0 1 1 0 1
- 0 0 1 1 1
-----------
          0

In the next position (0 – 1), we are forced to borrow a 1 from the next position to the left. Here’s
the result of subtracting 1 from 2:

  0 1 0 0 1
- 0 0 1 1 1
-----------
        1 0

In the next bit position, we again have to borrow a bit from the column just to the left and sub-
tract 1 from 2:

  0 0 0 1 1
- 0 0 1 1 1
-----------
      1 1 0

Finally, the two high-order bits are zero minus zero:

  0 0 0 1 1
- 0 0 1 1 1
-----------
  0 0 1 1 0 (decimal 6)

Table 1-7  Ranges and Sizes of Signed Integer Types.

Type Range Storage Size in Bits

Signed byte –27 to +27– 1 8

Signed word –215 to +215– 1 16

Signed doubleword –231 to +231– 1 32

Signed quadword –263 to +263– 1 64

Signed double quadword –2127 to +2127– 1 128
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A simpler way to approach binary subtraction is to reverse the sign of the value being subtracted,
and then add the two values. This method requires you to have an extra empty bit to hold the
number’s sign. Let’s try it with the same problem we just calculated: (01101 minus 00111).
First, we negate 00111 by inverting its bits (11000) and adding 1, producing 11001. Next, we
add the binary values and ignore the carry out of the highest bit:

0 1 1 0 1 (+13)
1 1 0 0 1 (-7)
---------
0 0 1 1 0 (+6)

The result, +6, is exactly what we expected.

1.3.8 Character Storage
If computers only store binary data, how do they represent characters? They use a character set,
which is a mapping of characters to integers. In earlier times, character sets used only 8 bits. Even
now, when running in character mode (such as MS-DOS), IBM-compatible microcomputers use
the ASCII (pronounced “askey”) character set. ASCII is an acronym for American Standard Code
for Information Interchange. In ASCII, a unique 7-bit integer is assigned to each character.
Because ASCII codes use only the lower 7 bits of every byte, the extra bit is used on various com-
puters to create a proprietary character set. On IBM-compatible microcomputers, for example,
values 128 through 255 represent graphic symbols and Greek characters. 

ANSI Character Set The American National Standards Institute (ANSI) defines an 8-bit
character set that represents up to 256 characters. The first 128 characters correspond to the
letters and symbols on a standard U.S. keyboard. The second 128 characters represent spe-
cial characters such as letters in international alphabets, accents, currency symbols, and
fractions. Early version of Microsoft Windows used the ANSI character set.

Unicode Standard Today, computers must be able to represent a wide variety of international
languages in computer software. As a result, the Unicode standard was created as a universal
way of defining characters and symbols. It defines numeric codes (called code points) for char-
acters, symbols, and punctuation used in all major languages, as well as European alphabetic
scripts, Middle Eastern right-to-left scripts, and many scripts of Asia. Three transformation for-
mats are used to transform code points into displayable characters:

• UTF-8 is used in HTML, and has the same byte values as ASCII.
• UTF-16 is used in environments that balance efficient access to characters with economical

use of storage. Recent versions of Microsoft Windows, for example, use UTF-16 encoding.
Each character is encoded in 16 bits.

• UTF-32 is used in environments where space is no concern and fixed-width characters are
required. Each character is encoded in 32 bits.

ASCII Strings A sequence of one or more characters is called a string. More specifically, an ASCII
string is stored in memory as a succession of bytes containing ASCII codes. For example, the numeric
codes for the string “ABC123” are 41h, 42h, 43h, 31h, 32h, and 33h. A null-terminated string is a string
of characters followed by a single byte containing zero. The C and C++ languages use null-terminated
strings, and many Windows operating system functions require strings to be in this format.
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Using the ASCII Table A table on the inside back cover of this book lists ASCII codes used
when running in Windows Console mode. To find the hexadecimal ASCII code of a character, look
along the top row of the table and find the column containing the character you want to translate.
The most significant digit of the hexadecimal value is in the second row at the top of the table; the
least significant digit is in the second column from the left. For example, to find the ASCII code of
the letter a, find the column containing the a and look in the second row: The first hexadecimal digit
is 6. Next, look to the left along the row containing a and note that the second column contains the
digit 1. Therefore, the ASCII code of a is 61 hexadecimal. This is shown as follows in simplified
form:

ASCII Control Characters Character codes in the range 0 through 31 are called ASCII
control characters. If a program writes these codes to standard output (as in C++), the con-
trol characters will carry out predefined actions. Table 1-8 lists the most commonly used
characters in this range, and a complete list may be found in the inside front cover of this
book.

a

6

1

Terminology for Numeric Data Representation It is important to use precise terminology
when describing the way numbers and characters are represented in memory and on the display
screen. Decimal 65, for example, is stored in memory as a single binary byte as 01000001.
A debugging program would probably display the byte as “41,” which is the number’s hexadeci-
mal representation. If the byte were copied to video memory, the letter “A” would appear on the
screen because 01000001 is the ASCII code for the letter A. Because a number’s interpretation
can depend on the context in which it appears, we assign a specific name to each type of data
representation to clarify future discussions:

• A binary integer is an integer stored in memory in its raw format, ready to be used in a calcu-
lation. Binary integers are stored in multiples of 8 bits (such as 8, 16, 32, or 64).

Table 1-8  ASCII Control Characters.

ASCII Code (Decimal) Description

8 Backspace (moves one column to the left)

9 Horizontal tab (skips forward n columns)

10 Line feed (moves to next output line)

12 Form feed (moves to next printer page)

13 Carriage return (moves to leftmost output column)

27 Escape character
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• A digit string is a string of ASCII characters, such as “123” or “65.” This is simply a repre-
sentation of the number and can be in any of the formats shown for the decimal number 65 in
Table 1-9:

1.3.9 Section Review
1. Explain the term least significant bit (LSB).

2. What is the decimal representation of each of the following unsigned binary integers?

a. 11111000
b. 11001010
c. 11110000

3. What is the sum of each pair of binary integers?

a. 00001111 � 00000010
b. 11010101 � 01101011
c. 00001111 � 00001111

4. How many bytes are contained in each of the following data types?

a. word
b. doubleword
c. quadword

d. double quadword

5. What is the minimum number of binary bits needed to represent each of the following
unsigned decimal integers?

a. 65
b. 409
c. 16385

6. What is the hexadecimal representation of each of the following binary numbers?

a. 0011 0101 1101 1010
b. 1100 1110 1010 0011
c. 1111 1110 1101 1011

7. What is the binary representation of the following hexadecimal numbers? 

a. A4693FBC
b. B697C7A1
c. 2B3D9461

Table 1-9  Types of Digit Strings.

Format Value

Binary digit string “01000001”

Decimal digit string “65”

Hexadecimal digit string “41”

Octal digit string “101”
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1.4 Boolean Expressions
Boolean algebra defines a set of operations on the values true and false. It was invented by George
Boole, a mid-nineteenth-century mathematician. When early digital computers were invented, it
was found that Boole’s algebra could be used to describe the design of digital circuits. At the same
time, boolean expressions are used in computer programs to express logical operations.

A boolean expression involves a boolean operator and one or more operands. Each boolean
expression implies a value of true or false. The set of operators includes the following:

• NOT: notated as ¬ or ~ or ’
• AND: notated as ∧ or •
• OR: notated as ∨ or �

The NOT operator is unary, and the other operators are binary. The operands of a boolean
expression can also be boolean expressions. The following are examples:

NOT The NOT operation reverses a boolean value. It can be written in mathematical notation
as ¬X, where X is a variable (or expression) holding a value of true (T) or false (F). The follow-
ing truth table shows all the possible outcomes of NOT using a variable X. Inputs are on the left
side and outputs (shaded) are on the right side:

A truth table can use 0 for false and 1 for true.

AND The Boolean AND operation requires two operands, and can be expressed using the notation
X ∧ Y. The following truth table shows all the possible outcomes (shaded) for the values of X and Y:

Expression Description

¬X NOT X

X ∧ Y X AND Y

X ∨  Y X OR Y

¬X ∨  Y (NOT X) OR Y

¬(X ∧ Y) NOT (X AND Y)

X ∧ ¬Y X AND (NOT Y)

X ¬X

F T

T F

X Y X ∧ Y

F F F

F T F

T F F

T T T



1.4   Boolean Expressions 23

The output is true only when both inputs are true. This corresponds to the logical AND used
in compound boolean expressions in C++ and Java.

The AND operation is often carried out at the bit level in assembly language. In the following
example, each bit in X is ANDed with its corresponding bit in Y:

X: 11111111
Y: 00011100
X ∧ Y: 00011100

As Figure 1-2 shows, each bit of the resulting value, 00011100, represents the result of ANDing
the corresponding bits in X and Y.

Figure 1–2 ANDing the bits of two binary integers.

OR The Boolean OR operation requires two operands, and is often expressed using the nota-
tion X ∨ Y. The following truth table shows all the possible outcomes (shaded) for the values of
X and Y:

The output is false only when both inputs are false. This truth table corresponds to the
logical OR used in compound boolean expressions in C++ and Java.

The OR operation is often carried out at the bit level. In the following example, each bit in X
is ORed with its corresponding bit in Y, producing 11111100:

X: 11101100
Y: 00011100
X ∨ Y: 11111100

X Y X ∨ Y

F F F

F T T

T F T

T T T

1 1 1 1 1 1 1 1

0 0 0 1 1 1 0 0

0

X:

Y:

X^Y: 0 0 1 1 1 0 0

AND AND AND AND AND AND AND AND
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As shown in Figure 1-3, the bits are ORed individually, producing a corresponding bit in the
result.

Figure 1–3 ORing the bits in two binary integers.

Operator Precedence Operator precedence rules are used to indicate which operators exe-
cute first in expressions involving multiple operators. In a boolean expression involving more
than one operator, precedence is important. As shown in the following table, the NOT operator
has the highest precedence, followed by AND and OR. You can use parentheses to force the ini-
tial evaluation of an expression:

1.4.1 Truth Tables for Boolean Functions
A boolean function receives boolean inputs and produces a boolean output. A truth table can be
constructed for any boolean function, showing all possible inputs and outputs. The following are
truth tables representing boolean functions having two inputs named X and Y. The shaded col-
umn on the right is the function’s output:

Expression Order of Operations

¬X ∨  Y NOT, then OR

¬(X ∨  Y) OR, then NOT

X ∨  (Y ∧ Z) AND, then OR

1 1 1 0 1 1 0 0

0 0 0 1 1 1 0 0

1 1 1 1 1 1 0 0

OR OR OR OR OR OR OR OR

X:

Y:

X   Y:

^
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Example 1: ¬X ∨  Y

Example 2: X ∧ ¬Y

Example 3: (Y ∧ S) ∨ (X ∧ ¬S)

X ¬X Y ¬X ∨ Y

F T F T

F T T T

T F F F

T F T T

X Y ¬Y X ∧¬Y

F F T F

F T F F

T F T T

T T F F

X Y S Y ∧ S ¬S X ∧¬S (Y ∧ S) ∨ (X ∧ ¬S)

F F F F T F F

F T F F T F F

T F F F T T T

T T F F T T T

F F T F F F F

F T T T F F T

T F T F F F F

T T T T F F T

www.allitebooks.com
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The boolean function in Example 3 describes a multiplexer, a digital component that uses
a selector bit (S) to select one of two outputs (X or Y). If S � false, the function output (Z) is
the same as X. If S � true, the function output is the same as Y. Here is a block diagram of a
multiplexer:

1.4.2 Section Review
1. Describe the following boolean expression: ¬X ∨  Y.

2. Describe the following boolean expression: (X ∧ Y).

3. What is the value of the boolean expression (T ∧ F) ∨ T ?

4. What is the value of the boolean expression ¬(F ∨ T) ?

5. What is the value of the boolean expression ¬F ∨ ¬T ?

1.5 Chapter Summary
This book focuses on programming x86 processors, using the MS-Windows platform. We cover
basic principles about computer architecture, machine language, and low-level programming.
You will learn enough assembly language to test your knowledge on today’s most widely used
microprocessor family. 

Before reading this book, you should have completed a single college course or equivalent in
computer programming. 

An assembler is a program that converts source-code programs from assembly language into
machine language. A companion program, called a linker, combines individual files created by
an assembler into a single executable program. A third program, called a debugger, provides a
way for a programmer to trace the execution of a program and examine the contents of memory. 

You will create 32-bit and 64-bit programs for the most part, and 16-bit programs if you focus
on the last four chapters.

You will learn the following concepts from this book: basic computer architecture applied to
x86 (and Intel 64) processors; elementary boolean logic; how x86 processors manage memory;
how high-level language compilers translate statements from their language into assembly lan-
guage and native machine code; how high-level languages implement arithmetic expressions,
loops, and logical structures at the machine level; and the data representation of signed and
unsigned integers, real numbers, and character data.

Assembly language has a one-to-one relationship with machine language, in which a single
assembly language instruction corresponds to one machine language instruction. Assembly lan-
guage is not portable because it is tied to a specific processor family. 

mux
X

Y

S

Z
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Programming languages are tools that you can use to create individual applications or parts of
applications. Some applications, such as device drivers and hardware interface routines, are
more suited to assembly language. Other applications, such as multiplatform commercial and
scientific applications, are more easily written in high-level languages.

The virtual machine concept is an effective way of showing how each layer in a computer
architecture represents an abstraction of a machine. Layers can be constructed of hardware or
software, and programs written at any layer can be translated or interpreted by the next-lowest
layer. The virtual machine concept can be related to real-world computer layers, including digi-
tal logic, instruction set architecture, assembly language, and high-level languages.

Binary and hexadecimal numbers are essential notational tools for programmers working at
the machine level. For this reason, you must understand how to manipulate and translate
between number systems and how character representations are created by computers.

The following boolean operators were presented in this chapter: NOT, AND, and OR. A bool-
ean expression combines a boolean operator with one or more operands. A truth table is an
effective way to show all possible inputs and outputs of a boolean function.

1.6 Key Terms
ASCII

ASCII control characters

ASCII digit string

assembler

assembly language

binary digit string

binary integer

bit

boolean algebra

boolean expression

boolean function

character set

code interpretation

code point (Unicode)

code translation

debugger

device driver

digit string

embedded systems application

exabyte

gigabyte

hexadecimal digit string

hexadecimal integer

high-level language

instruction set architecture (ISA)

Java Native Interface (JNI)

kilobyte

language portability

least significant bit (LSB)

machine language

megabyte

microcode interpreter

microprogram

Microsoft Macro Assembler (MASM)

most significant bit (MSB)

multiplexer

null-terminated string

octal digit string

one-to-many relationship

operator precedence

petabyte

registers

signed binary integer

terabyte

Unicode

Unicode Transformation Format (UTF)
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unsigned binary integer

UTF-8

UTF-16

UTF-32

virtual machine (VM)

virtual machine concept

Visual Studio

yottabyte

zettabyte

1.7 Review Questions and Exercises

1.7.1 Short Answer
1. In an 8-bit binary number, which is the most significant bit (MSB)?

2. What is the decimal representation of each of the following unsigned binary integers?

a.  00110101
b.  10010110
c.  11001100

3. What is the sum of each pair of binary integers?

a.  10101111 + 11011011
b.  10010111 + 11111111
c.  01110101 + 10101100

4. Calculate binary 00001101 minus 00000111. 

5. How many bits are used by each of the following data types?

a. word
b. doubleword
c. quadword
d. double quadword

6. What is the minimum number of binary bits needed to represent each of the following
unsigned decimal integers?

a. 4095
b. 65534
c. 42319

7. What is the hexadecimal representation of each of the following binary numbers?

a. 0011 0101 1101 1010
b. 1100 1110 1010 0011
c. 1111 1110 1101 1011

8. What is the binary representation of the following hexadecimal numbers?

a. 0126F9D4
b. 6ACDFA95
c. F69BDC2A

9. What is the unsigned decimal representation of each of the following hexadecimal integers?

a. 3A
b. 1BF
c. 1001
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10. What is the unsigned decimal representation of each of the following hexadecimal integers?

a. 62
b. 4B3
c. 29F

11. What is the 16-bit hexadecimal representation of each of the following signed decimal integers?

a.
b.

12. What is the 16-bit hexadecimal representation of each of the following signed decimal integers?

a.
b.

13. The following 16-bit hexadecimal numbers represent signed integers. Convert each to
decimal.

a. 6BF9
b. C123

14. The following 16-bit hexadecimal numbers represent signed integers. Convert each to
decimal.

a. 4CD2
b. 8230

15. What is the decimal representation of each of the following signed binary numbers?

a. 10110101
b. 00101010
c. 11110000

16. What is the decimal representation of each of the following signed binary numbers?

a. 10000000
b. 11001100
c. 10110111

17. What is the 8-bit binary (two’s-complement) representation of each of the following signed
decimal integers?

a.
b.
c.

18. What is the 8-bit binary (two’s-complement) representation of each of the following signed
decimal integers?

a.
b.
c.

19. What is the sum of each pair of hexadecimal integers?

a. 6B4 + 3FE
b. A49 + 6BD

24–

331–

21–

45–

5–

42–

16–

72–

98–

26–
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20. What is the sum of each pair of hexadecimal integers?

a. 7C4 � 3BE
b. B69 � 7AD

21. What are the hexadecimal and decimal representations of the ASCII character capital B?

22. What are the hexadecimal and decimal representations of the ASCII character capital G?

23. Challenge: What is the largest decimal value you can represent, using a 129-bit unsigned
integer?

24. Challenge: What is the largest decimal value you can represent, using a 86-bit signed
integer?

25. Create a truth table to show all possible inputs and outputs for the boolean function
described by ¬( ).

26. Create a truth table to show all possible inputs and outputs for the boolean function
described by ( ). How would you describe the rightmost column of this table in
relation to the table from question number 25? Have you heard of De Morgan’s Theorem?

27. If a boolean function has four inputs, how many rows are required for its truth table?

28. How many selector bits are required for a four-input multiplexer?

1.7.2 Algorithm Workbench
Use any high-level programming language you wish for the following programming exercises.
Do not call built-in library functions that accomplish these tasks automatically. (Examples are
sprintf and sscanf from the Standard C library.)

1. Write a function that receives a string containing a 16-bit binary integer. The function must
return the string’s integer value.

2. Write a function that receives a string containing a 32-bit hexadecimal integer. The function
must return the string’s integer value.

3. Write a function that receives an integer. The function must return a string containing the
binary representation of the integer.

4. Write a function that receives an integer. The function must return a string containing the
hexadecimal representation of the integer.

5. Write a function that adds two digit strings in base b, where . Each string may
contain as many as 1,000 digits. Return the sum in a string that uses the same number base.

6. Write a function that adds two hexadecimal strings, each as long as 1,000 digits. Return a
hexadecimal string that represents the sum of the inputs.

7. Write a function that multiplies a single hexadecimal digit by a hexadecimal digit string as
long as 1,000 digits. Return a hexadecimal string that represents the product.

A B∨

A¬ B¬∧

2 b 10≤ ≤
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8. Write a Java program that contains the calculation shown below. Then, use the javap –c
command to disassemble your code. Add comments to each line that provide your best
guess as to its purpose.

int Y;
int X = (Y + 4) * 3;

9. Devise a way of subtracting unsigned binary integers. Test your technique by subtracting binary
00000101 from binary 10001000, producing 10000011. Test your technique with at least two
other sets of integers, in which a smaller value is always subtracted from a larger one.

Chapter End Notes
1. Donald Knuth, MMIX, A RISC Computer for the New Millennium, Transcript of a lecture given at the Mas-

sachusetts Institute of Technology, December 30, 1999.
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This chapter focuses on the underlying hardware associated with x86 assembly language. It may
be said that assembly language is the ideal software tool for communicating directly with a
machine. If that is true, then assembly programmers must be intimately familiar with the proces-
sor’s internal architecture and capabilities. We will discuss some of the basic operations that take
place inside the processor when instructions are executed. We will talk about how programs are
loaded and executed by the operating system. A sample motherboard layout will give some
insight into the hardware environment of x86 systems, and the chapter ends with a discussion of
how layered input/output works between application programs and operating systems. All of the
topics in this chapter provide the hardware foundation for you to begin writing assembly lan-
guage programs.
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2.1 General Concepts
This chapter describes the architecture of the x86 processor family and its host computer sys-
tem from a programmer’s point of view. Included in this group are all Intel IA-32 and Intel 64
processors, such as the Intel Pentium and Core-Duo, as well as the Advanced Micro Devices
(AMD) processors, such as Athlon, Phenom, Opteron, and AMD64. Assembly language is a great
tool for learning how a computer works, and it requires you to have a working knowledge of com-
puter hardware. To that end, the concepts and details in this chapter will help you to understand
the assembly language code you write. 

We strike a balance between concepts applying to all microcomputer systems and specifics
about x86 processors. You may work on various processors in the future, so we expose you to
broad concepts. To avoid giving you a superficial understanding of machine architecture, we focus
on specifics of the x86, which will give you a solid grounding when programming in assembly
language.

2.1.1 Basic Microcomputer Design
Figure 2-1 shows the basic design of a hypothetical microcomputer. The central processor
unit (CPU), where calculations and logical operations take place, contains a limited number of
storage locations named registers, a high-frequency clock, a control unit, and an arithmetic
logic unit.

• The clock synchronizes the internal operations of the CPU with other system components.
• The control unit (CU) coordinates the sequencing of steps involved in executing machine

instructions.
• The arithmetic logic unit (ALU) performs arithmetic operations such as addition and subtrac-

tion and logical operations such as AND, OR, and NOT. 

The CPU is attached to the rest of the computer via pins attached to the CPU socket in the
computer’s motherboard. Most pins connect to the data bus, the control bus, and the address bus.
The memory storage unit is where instructions and data are held while a computer program is
running. The storage unit receives requests for data from the CPU, transfers data from random
access memory (RAM) to the CPU, and transfers data from the CPU into memory. All process-
ing of data takes place within the CPU, so programs residing in memory must be copied into the
CPU before they can execute. Individual program instructions can be copied into the CPU one at
a time, or groups of instructions can be copied together.

A bus is a group of parallel wires that transfer data from one part of the computer to another.
A computer system usually contains four bus types: data, I/O, control, and address. The data bus
transfers instructions and data between the CPU and memory. The I/O bus transfers data

If you want to learn more about the Intel IA-32 architecture, read the Intel 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1: Basic Architecture. It’s a free download from the
Intel web site (www.intel.com). 

www.intel.com
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between the CPU and the system input/output devices. The control bus uses binary signals to
synchronize actions of all devices attached to the system bus. The address bus holds the
addresses of instructions and data when the currently executing instruction transfers data
between the CPU and memory.

Clock Each operation involving the CPU and the system bus is synchronized by an internal
clock pulsing at a constant rate. The basic unit of time for machine instructions is a machine cycle
(or clock cycle). The length of a clock cycle is the time required for one complete clock pulse. In
the following figure, a clock cycle is depicted as the time between one falling edge and the next:

The duration of a clock cycle is calculated as the reciprocal of the clock’s speed, which in
turn is measured in oscillations per second. A clock that oscillates 1 billion times per second
(1 GHz), for example, produces a clock cycle with a duration of one billionth of a second
(1 nanosecond). 

A machine instruction requires at least one clock cycle to execute, and a few require in excess
of 50 clocks (the multiply instruction on the 8088 processor, for example). Instructions requiring
memory access often have empty clock cycles called wait states because of the differences in the
speeds of the CPU, the system bus, and memory circuits.

2.1.2 Instruction Execution Cycle
A single machine instruction does not just magically execute all at once. The CPU has to go
through a predefined sequence of steps to execute a machine instruction, called the instruction
execution cycle. Let’s assume that the instruction pointer register holds the address of the
instruction we want to execute. Here are the steps to execute it:

One cycle

1

0

Figure 2–1 Block diagram of a microcomputer.
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1. First, the CPU has to fetch the instruction from an area of memory called the instruction
queue. Right after doing this, it increments the instruction pointer.

2. Next, the CPU decodes the instruction by looking at its binary bit pattern. This bit pattern
might reveal that the instruction has operands (input values).

3. If operands are involved, the CPU fetches the operands from registers and memory. Some-
times, this involves address calculations.

4. Next, the CPU executes the instruction, using any operand values it fetched during the earlier
step. It also updates a few status flags, such as Zero, Carry, and Overflow.

5. Finally, if an output operand was part of the instruction, the CPU stores the result of its exe-
cution in the operand. 

We usually simplify this complicated-sounding process to three basic steps: Fetch,
Decode, and Execute. An operand is a value that is either an input or an output to an opera-
tion. For example, the expression Z = X + Y has two input operands (X and Y) and a single
output operand (Z). 

A block diagram showing data flow within a typical CPU is shown in Figure 2-2. The diagram
helps to show relationships between components that interact during the instruction execution
cycle. In order to read program instructions from memory, an address is placed on the address
bus. Next, the memory controller places the requested code on the data bus, making the code
available inside the code cache. The instruction pointer’s value determines which instruction will
be executed next. The instruction is analyzed by the instruction decoder, causing the appropriate

Figure 2–2 Simplified CPU block diagram.
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digital signals to be sent to the control unit, which coordinates the ALU and floating-point unit.
Although the control bus is not shown in this figure, it carries signals that use the system clock to
coordinate the transfer of data between the different CPU components.

2.1.3 Reading from Memory
As a rule, computers read memory much more slowly than they access internal registers. This is
because reading a single value from memory involves four separate steps:

1. Place the address of the value you want to read on the address bus.
2. Assert (change the value of) the processor’s RD (read) pin.
3. Wait one clock cycle for the memory chips to respond.
4. Copy the data from the data bus into the destination operand.

Each of these steps generally requires a single clock cycle, a measurement of time based on a
clock that ticks inside the processor at a regular rate. Computer CPUs are often described in
terms of their clock speeds. A speed of 1.2 GHz, for example, means the clock ticks, or oscil-
lates, 1.2 billion times per second. So, 4 clock cycles go by fairly fast, considering each one lasts
for only 1/1,200,000,000th of a second. Still, that’s much slower than the CPU registers, which
are usually accessed in only one clock cycle.

Fortunately, CPU designers figured out a long time ago that computer memory creates a
speed bottleneck because most programs have to access variables. They came up with a clever
way to reduce the amount of time spent reading and writing memory—they store the most
recently used instructions and data in high-speed memory called cache. The idea is that a pro-
gram is more likely to want to access the same memory and instructions repeatedly, so cache
keeps these values where they can be accessed quickly. Also, when the CPU begins to execute a
program, it can look ahead and load the next thousand instructions (for example) into cache, on
the assumption that these instructions will be needed fairly soon. If there happens to be a loop in
that block of code, the same instructions will be in cache. When the processor is able to find its
data in cache memory, we call that a cache hit. On the other hand, if the CPU tries to find some-
thing in cache and it’s not there, we call that a cache miss.

Cache memory for the x86 family comes in two types. Level-1 cache (or primary cache)
is stored right on the CPU. Level-2 cache (or secondary cache) is a little bit slower, and
attached to the CPU by a high-speed data bus. The two types of cache work together in an
optimal way.

There’s a reason why cache memory is faster than conventional RAM—it’s because cache
memory is constructed from a special type of memory chip called static RAM. It’s expensive, but
it does not have to be constantly refreshed in order to keep its contents. On the other hand, con-
ventional memory, known as dynamic RAM, must be refreshed constantly. It’s much slower, but
cheaper.

2.1.4 Loading and Executing a Program
Before a program can run, it must be loaded into memory by a utility known as a program
loader. After loading, the operating system must point the CPU to the program’s entry point,
which is the address at which the program is to begin execution. The following steps break this
process down in more detail:



2.2   32-Bit x86 Processors 37

• The operating system (OS) searches for the program’s filename in the current disk directory.
If it cannot find the name there, it searches a predetermined list of directories (called paths)
for the filename. If the OS fails to find the program filename, it issues an error message.

• If the program file is found, the OS retrieves basic information about the program’s file from
the disk directory, including the file size and its physical location on the disk drive. 

• The OS determines the next available location in memory and loads the program file into mem-
ory. It allocates a block of memory to the program and enters information about the program’s
size and location into a table (sometimes called a descriptor table). Additionally, the OS may
adjust the values of pointers within the program so they contain addresses of program data.

• The OS begins execution of the program’s first machine instruction (its entry point). As soon
as the program begins running, it is called a process. The OS assigns the process an identifi-
cation number (process ID), which is used to keep track of it while running.

• The process runs by itself. It is the OS’s job to track the execution of the process and to
respond to requests for system resources. Examples of resources are memory, disk files, and
input-output devices.

• When the process ends, it is removed from memory.

2.1.5 Section Review
1. The central processor unit (CPU) contains registers and what other basic elements?

2. The central processor unit is connected to the rest of the computer system using what three
buses? 

3. Why does memory access take more machine cycles than register access? 

4. What are the three basic steps in the instruction execution cycle? 

5. Which two additional steps are required in the instruction execution cycle when a memory
operand is used?

2.2 32-Bit x86 Processors
In this section, we focus on the basic architectural features of all x86 processors. This includes
members of the Intel IA-32 family as well as all 32-bit AMD processors.

2.2.1 Modes of Operation
x86 processors have three primary modes of operation: protected mode, real-address mode, and
system management mode. A sub-mode, named virtual-8086, is a special case of protected
mode. Here are short descriptions of each:

Tip: If you’re using any version of Microsoft Windows, press Ctrl-Alt-Delete and select the
Task Manager item. The Task Manager window lets you view lists of Applications and Pro-
cesses. Applications are the names of complete programs currently running, such as Windows
Explorer or Microsoft Visual C++. When you click on the Processes tab, you see a long list of
process names. Each of those processes is a small program running independently of all the
others. You can continuously track the amount of CPU time and memory used by each pro-
cess. In some cases, you can shut down a process by selecting its name and pressing the
Delete key.
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Protected Mode Protected mode is the native state of the processor, in which all instructions
and features are available. Programs are given separate memory areas named segments, and the
processor prevents programs from referencing memory outside their assigned segments.

Virtual-8086 Mode While in protected mode, the processor can directly execute real-address
mode software such as MS-DOS programs in a safe environment. In other words, if a program
crashes or attempts to write data into the system memory area, it will not affect other programs
running at the same time. A modern operating system can execute multiple separate virtual-8086
sessions at the same time.

Real-Address Mode Real-address mode implements the programming environment of an
early Intel processor with a few extra features, such as the ability to switch into other modes.
This mode is useful if a program requires direct access to system memory and hardware
devices.

System Management Mode System management mode (SMM) provides an operating sys-
tem with a mechanism for implementing functions such as power management and system secu-
rity. These functions are usually implemented by computer manufacturers who customize the
processor for a particular system setup.

2.2.2 Basic Execution Environment

Address Space
In 32-bit protected mode, a task or program can address a linear address space of up to 4 GBytes.
Beginning with the P6 processor, a technique called extended physical addressing allows a total
of 64 GBytes of physical memory to be addressed. Real-address mode programs, on the other
hand, can only address a range of 1 MByte. If the processor is in protected mode and running
multiple programs in virtual-8086 mode, each program has its own 1-MByte memory area.

Figure 2–3 Basic program execution registers.
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Basic Program Execution Registers
Registers are high-speed storage locations directly inside the CPU, designed to be accessed at
much higher speed than conventional memory. When a processing loop is optimized for speed,
for example, loop counters are held in registers rather than variables. Figure 2-3 shows the basic
program execution registers. There are eight general-purpose registers, six segment registers, a
processor status flags register (EFLAGS), and an instruction pointer (EIP).

General-Purpose Registers The general-purpose registers are primarily used for arith-
metic and data movement. As shown in Figure 2-4, the lower 16 bits of the EAX register can be
referenced by the name AX.

Figure 2–4 General-purpose registers.

Portions of some registers can be addressed as 8-bit values. For example, the AX register has an
8-bit upper half named AH and an 8-bit lower half named AL. The same overlapping relationship
exists for the EAX, EBX, ECX, and EDX registers:

The remaining general-purpose registers can only be accessed using 32-bit or 16-bit names,
as shown in the following table:
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Specialized Uses Some general-purpose registers have specialized uses:

• EAX is automatically used by multiplication and division instructions. It is often called the
extended accumulator register.

• The CPU automatically uses ECX as a loop counter.
• ESP addresses data on the stack (a system memory structure). It is rarely used for ordinary

arithmetic or data transfer. It is often called the extended stack pointer register.
• ESI and EDI are used by high-speed memory transfer instructions. They are sometimes called

the extended source index and extended destination index registers.
• EBP is used by high-level languages to reference function parameters and local variables on

the stack. It should not be used for ordinary arithmetic or data transfer except at an advanced
level of programming. It is often called the extended frame pointer register.

Segment Registers In real-address mode, 16-bit segment registers indicate base addresses of
preassigned memory areas named segments. In protected mode, segment registers hold pointers
to segment descriptor tables. Some segments hold program instructions (code), others hold vari-
ables (data), and another segment named the stack segment holds local function variables and
function parameters. 

Instruction Pointer The EIP, or instruction pointer, register contains the address of the next
instruction to be executed. Certain machine instructions manipulate EIP, causing the program to
branch to a new location. 

EFLAGS Register The EFLAGS (or just Flags) register consists of individual binary bits
that control the operation of the CPU or reflect the outcome of some CPU operation. Some
instructions test and manipulate individual processor flags.

Control Flags Control flags control the CPU’s operation. For example, they can cause the
CPU to break after every instruction executes, interrupt when arithmetic overflow is detected,
enter virtual-8086 mode, and enter protected mode. 

Programs can set individual bits in the EFLAGS register to control the CPU’s operation.
Examples are the Direction and Interrupt flags.

Status Flags The status flags reflect the outcomes of arithmetic and logical operations per-
formed by the CPU. They are the Overflow, Sign, Zero, Auxiliary Carry, Parity, and Carry flags.
Their abbreviations are shown immediately after their names:

• The Carry flag (CF) is set when the result of an unsigned arithmetic operation is too large to
fit into the destination. 

• The Overflow flag (OF) is set when the result of a signed arithmetic operation is too large or
too small to fit into the destination. 

• The Sign flag (SF) is set when the result of an arithmetic or logical operation generates a
negative result. 

• The Zero flag (ZF) is set when the result of an arithmetic or logical operation generates a
result of zero. 

A flag is set when it equals 1; it is clear (or reset) when it equals 0.
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• The Auxiliary Carry flag (AC) is set when an arithmetic operation causes a carry from bit 3
to bit 4 in an 8-bit operand.

• The Parity flag (PF) is set if the least-significant byte in the result contains an even number
of 1 bits. Otherwise, PF is clear. In general, it is used for error checking when there is a possi-
bility that data might be altered or corrupted.

MMX Registers
MMX technology improves the performance of Intel processors when implementing advanced
multimedia and communications applications. The eight 64-bit MMX registers support special
instructions called SIMD (Single-Instruction, Multiple-Data). As the name implies, MMX
instructions operate in parallel on the data values contained in MMX registers. Although they
appear to be separate registers, the MMX register names are in fact aliases to the same registers
used by the floating-point unit.

XMM Registers
The x86 architecture also contains eight 128-bit registers called XMM registers. They are used
by streaming SIMD extensions to the instruction set.

Floating-Point Unit The floating-point unit (FPU) performs high-speed floating-point arith-
metic. At one time a separate coprocessor chip was required for this. From the Intel486 onward,
the FPU has been integrated into the main processor chip. There are eight floating-point data
registers in the FPU, named ST(0), ST(1), ST(2), ST(3), ST(4), ST(5), ST(6), and ST(7). The
remaining control and pointer registers are shown in Figure 2-5.

Figure 2–5 Floating-point unit registers.
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In real-address mode, only 1 MByte of memory can be addressed, from hexadecimal 00000
to FFFFF. The processor can run only one program at a time, but it can momentarily interrupt
that program to process requests (called interrupts) from peripherals. Application programs are
permitted to access any memory location, including addresses that are linked directly to system
hardware. The MS-DOS operating system runs in real-address mode, and Windows 95 and 98
can be booted into this mode.

In protected mode, the processor can run multiple programs at the same time. It assigns each
process (running program) a total of 4 GByte of memory. Each program can be assigned its own
reserved memory area, and programs are prevented from accidentally accessing each other’s
code and data. MS-Windows and Linux run in protected mode.

In virtual-8086 mode, the computer runs in protected mode and creates a virtual-8086
machine with its own 1-MByte address space that simulates an 80x86 computer running in real-
address mode. Windows NT and 2000, for example, create a virtual-8086 machine when you
open a Command window. You can run many such windows at the same time, and each is pro-
tected from the actions of the others. Some MS-DOS programs that make direct references to
computer hardware will not run in this mode under Windows NT, 2000, and XP.

Chapter 11 explains many more details of both real-address mode and protected mode.

2.2.4 Section Review
1. What are the x86 processor’s three basic modes of operation?

2. Name all eight 32-bit general-purpose registers.

3. Name all six segment registers.

4. What special purpose does the ECX register serve?

2.3 64-Bit x86-64 Processors
In this section, we focus on the basic architectural details of all 64-bit processors that use the
x86-64 instruction set. This group the Intel 64 and AMD64 processor families. The instruction
set is a 64-bit extension of the x86 instruction set we’ve already looked at. Here are some of the
essential features:

1. It is backward-compatible with the x86 instruction set.
2. Addresses are 64 bits long, allowing for a virtual address space of size 264 bytes. In current

chip implementations, only the lowest 48 bits are used.
3. It can use 64-bit general-purpose registers, allowing instructions to have 64-bit integer

operands.
4. It uses eight more general-purpose registers than the x86.
5. It uses a 48-bit physical address space, which supports up to 256 terabytes of RAM.

On the other hand, when running in native 64-bit mode, these processors do not support
16-bit real mode or virtual-8086 mode. (There is a legacy mode that still supports 16-bit pro-
gramming, but it is not available in 64-bit versions of Microsoft Windows.)

Note: Although x86-64 refers to an instruction set, we will from this point on treat it as a processor
type. For the purpose of learning assembly language, it is not necessary to consider hardware
implementation differences between processors that support x86-64.
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The first Intel processor to use x86-64 was the Xeon, followed by a host of other processors,
including Core i5 and Core i7 processors. Examples of AMD’s processors that use x86-64 are
Opteron and Athlon 64.

You might also have heard of another 64-bit architecture from Intel known as IA-64, later
renamed to Itanium. The IA-64 instruction set is completely different from x86 and x86-64. Ita-
nium processors are often used for high-performance database and network servers.

2.3.1 64-Bit Operation Modes
The Intel 64 architecture introduces a new mode named IA-32e. Technically it contains two sub-
modes, named compatibility mode and 64-bit mode. But it’s easier to refer to these as modes
rather than submodes, so we will do that from now on. 

Compatibility Mode
When running in compatibility mode, existing 16-bit and 32-bit applications can usually run
without being recompiled. However, 16-bit Windows (Win16) and DOS applications will not
run in 64-bit Microsoft Windows. Unlike earlier versions of Windows, 64-bit Windows does not
have a virtual DOS machine subsystem to take advantage of the processor’s ability to switch into
virtual-8086 mode.

64-Bit Mode
In 64-bit mode, the processor runs applications that use the 64-bit linear address space. This is
the native mode for 64-bit Microsoft Windows. This mode enables 64-bit instruction operands.

2.3.2 Basic 64-Bit Execution Environment
In 64-bit mode, addresses can theoretically be as large as 64-bits, although processors currently
only support 48 bits for addresses. In terms of registers, the following are the most important
differences from 32-bit processors:

• Sixteen 64-bit general purpose registers (in 32-bit mode, you have only eight general-purpose
registers)

• Eight 80-bit floating-point registers 
• A 64-bit status flags register named RFLAGS (only the lower 32 bits are used)
• A 64-bit instruction pointer named RIP

As you may recall, the 32-bit flags and instruction pointers are named EFLAGS and EIP. In
addition, there are some specialized registers for multimedia processing we mentioned when
talking about the x86 processor:

• Eight 64-bit MMX registers
• Sixteen 128-bit XMM registers (in 32-bit mode, you have only 8 of these)

General-Purpose Registers
The general-purpose registers, introduced when we described 32-bit processors, are the basic
operands for instructions that do arithmetic, move data, and loop through data. The general-
purpose registers can access 8-bit, 16-bit, 32-bit, or 64-bit operands (with a special prefix).

In 64-bit mode, the default operand size is 32 bits and there are eight general-purpose regis-
ters. By adding the REX (register extension) prefix to each instruction, however, the operands
can be 64 bits long and a total of 16 general-purpose registers become available. You have all the
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same registers as in 32-bit mode, plus eight numbered registers, R8 through R15. Table 2-1
shows which registers are available when the REX prefix is enabled.

Table 2-1  Operand Sizes in 64-Bit Mode When REX Is Enabled.

Here are a few more details to remember:

• In 64-bit mode, a single instruction cannot access both a high-byte register, such as AH, BH,
CH, and DH, and at the same time, the low byte of one of the new byte registers (such as
DIL).

• The 32-bit EFLAGS register is replaced by a 64-bit RFLAGS register in 64-bit mode. The
two registers share the same lower 32 bits, and the upper 32 bits of RFLAGS are not used.

• The status flags are the same in 32-bit mode and 64-bit mode.

2.4 Components of a Typical x86 Computer
Let us look at how the x86 integrates with other components by examining a typical mother-
board configuration and the set of chips that surround the CPU. Then we will discuss memory,
I/O ports, and common device interfaces. Finally, we will show how assembly language pro-
grams can perform I/O at different levels of access by tapping into system hardware, firmware,
and by calling functions in the operating system.

2.4.1 Motherboard
The heart of a microcomputer is its motherboard, a flat circuit board onto which are placed the
computer’s CPU, supporting processors (chipset), main memory, input-output connectors,
power supply connectors, and expansion slots. The various components are connected to each
other by a bus, a set of wires etched directly on the motherboard. Dozens of motherboards are
available on the PC market, varying in expansion capabilities, integrated components, and
speed. The following components have traditionally been found on PC motherboards:

• A CPU socket. Sockets are different shapes and sizes, depending on the type of processor
they support

• Memory slots (SIMM or DIMM), holding small plug-in memory boards
• BIOS (basic input–output system) computer chips, holding system software
• CMOS RAM, with a small circular battery to keep it powered
• Connectors for mass-storage devices such as hard drives and CD-ROMs
• USB connectors for external devices
• Keyboard and mouse ports

Operand Size Available Registers

8 bits AL, BL, CL, DL, DIL, SIL, BPL, SPL, R8L, R9L, R10L, R11L, R12L, R13L, R14L, R15L

16 bits AX, BX, CX, DX, DI, SI, BP, SP, R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W

32 bits EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D, R9D, R10D, R11D, R12D, R13D,
R14D, R15D

64 bits RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8, R9, R10, R11, R12, R13, R14, R15
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• PCI bus connectors for sound cards, graphics cards, data acquisition boards, and other input–
output devices

The following components are optional:

• Integrated sound processor 
• Parallel and serial device connectors
• Integrated network adapter
• AGP bus connector for a high-speed video card

Following are some important support processors in a typical system:

• The Floating-Point Unit (FPU) handles floating-point and extended integer calculations. 
• The 8284/82C284 Clock Generator, known simply as the clock, oscillates at a constant speed.

The clock generator synchronizes the CPU and the rest of the computer. 
• The 8259A Programmable Interrupt Controller (PIC) handles external interrupts from hard-

ware devices, such as the keyboard, system clock, and disk drives. These devices interrupt the
CPU and make it process their requests immediately. 

• The 8253 Programmable Interval Timer/Counter interrupts the system 18.2 times per second,
updates the system date and clock, and controls the speaker. It is also responsible for con-
stantly refreshing memory because RAM memory chips can remember their data for only a
few milliseconds. 

• The 8255 Programmable Parallel Port transfers data to and from the computer using the
IEEE Parallel Port interface. This port is commonly used for printers, but it can be used with
other input–output devices as well.

PCI and PCI Express Bus Architectures
The PCI (Peripheral Component Interconnect) bus provides a connecting bridge between the CPU
and other system devices such as hard drives, memory, video controllers, sound cards, and network
controllers. More recently, the PCI Express bus provides two-way serial connections between
devices, memory, and the processor. It carries data in packets, similar to networks, in separate
“lanes.” It is widely supported by graphics controllers, and can transfer data at very high speeds.

Motherboard Chipset
A motherboard chipset is a collection of processor chips designed to work together on a specific
type of motherboard. Various chipsets have features that increase processing power, multimedia
capabilities, or reduce power consumption. The Intel P965 Express Chipset can be used as an
example. It is used in desktop PCs, with either an Intel Core 2 Duo or a Pentium D processor.
Here are some of its features:

• Intel Fast Memory Access uses an updated Memory Controller Hub (MCH). It can access
dual-channel DDR2 memory, at an 800 MHz clock speed.

• An I/O Controller Hub (Intel ICH8/R/DH) uses Intel Matrix Storage Technology (MST) to
support multiple Serial ATA devices (disk drives).

• Support for multiple USB ports, multiple PCI express slots, networking, and Intel Quiet Sys-
tem technology.

• A high definition audio chip provides digital sound capabilities.



46 Chapter 2  •  x86 Processor Architecture

A diagram may be seen in Figure 2-6. Motherboard manufacturers will build products around
specific chipsets. For example, the P5B-E P965 motherboard by Asus Corporation uses the P965
chipset.

Figure 2–6 Intel 965 express chipset block diagram.

2.4.2 Memory
Several basic types of memory are used in Intel-based systems: read-only memory (ROM), eras-
able programmable read-only memory (EPROM), dynamic random-access memory (DRAM),
static RAM (SRAM), video RAM (VRAM), and complimentary metal oxide semiconductor
(CMOS) RAM:

• ROM is permanently burned into a chip and cannot be erased. 
• EPROM can be erased slowly with ultraviolet light and reprogrammed.
• DRAM, commonly known as main memory, is where programs and data are kept when a

program is running. It is inexpensive, but must be refreshed every millisecond to avoid losing
its contents. Some systems use ECC (error checking and correcting) memory.

• SRAM is used primarily for expensive, high-speed cache memory. It does not have to be
refreshed. CPU cache memory is comprised of SRAM.

• VRAM holds video data. It is dual ported, allowing one port to continuously refresh the dis-
play while another port writes data to the display. 

• CMOS RAM on the system motherboard stores system setup information. It is refreshed by
a battery, so its contents are retained when the computer’s power is off.

2.4.3 Section Review
1. Describe SRAM and its most common use.

2. Describe VRAM.

Source: The Intel P965 Express Chipset (product brief), 
© 2006 by Intel Corporation, used by permission. 
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3. List at least two features found in the Intel P965 Express chipset.

4. Name four types of RAM mentioned in this chapter.

5. What is the purpose of the 8259A PIC controller?

2.5 Input–Output System

2.5.1 Levels of I/O Access
Application programs routinely read input from keyboard and disk files and write output to the
screen and to files. I/O need not be accomplished by directly accessing hardware—instead, you
can call functions provided by the operating system. I/O is available at different access levels,
similar to the virtual machine concept shown in Chapter 1. There are three primary levels:

• High-level language functions: A high-level programming language such as C++ or Java
contains functions to perform input–output. These functions are portable because they work
on a variety of different computer systems and are not dependent on any one operating
system.

• Operating system: Programmers can call operating system functions from a library known
as the API (application programming interface). The operating system provides high-level opera-
tions such as writing strings to files, reading strings from the keyboard, and allocating blocks of
memory. 

• BIOS: The basic input–output system is a collection of low-level subroutines that communi-
cate directly with hardware devices. The BIOS is installed by the computer’s manufacturer and
is tailored to fit the computer’s hardware. Operating systems typically communicate with
the BIOS.

Device Drivers Device drivers are programs that permit the operating system to communicate
directly with hardware devices and the system BIOS. For example, a device driver might receive
a request from the OS to read some data; the device driver satisfies the request by executing code
in the device firmware that reads data in a way that is unique to the device. Device drivers are
usually installed in one of two ways: (1) before a specific hardware device is attached to a com-
puter, or (2) after a device has been attached and identified. In the latter case, the OS recognizes
the device name and signature; it then locates and installs the device driver software onto the
computer.

We can put the I/O hierarchy into perspective by showing what happens when an application
program displays a string of characters on the screen (Fig. 2-7). The following steps are
involved:

1. A statement in the application program calls an HLL library function that writes the string to
standard output.

2. The library function (Level 3) calls an operating system function, passing a string pointer. 

Tip: Because computer games are so memory and I/O intensive, they push computer performance to the
max. Programmers who excel at game programming often know a lot about video and sound hardware,
and optimize their code for hardware features. 
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3. The operating system function (Level 2) uses a loop to call a BIOS subroutine, passing it the
ASCII code and color of each character. The operating system calls another BIOS subroutine
to advance the cursor to the next position on the screen.

4. The BIOS subroutine (Level 1) receives a character, maps it to a particular system font, and
sends the character to a hardware port attached to the video controller card. 

5. The video controller card (Level 0) generates timed hardware signals to the video display that
control the raster scanning and displaying of pixels.

Figure 2–7 Access levels for input–output operations.

Programming at Multiple Levels Assembly language programs have power and flexibility in
the area of input-output programming. They can choose from the following access levels
(Figure 2-8):

• Level 3: Call library functions to perform generic text I/O and file-based I/O. We supply such
a library with this book, for instance.

• Level 2: Call operating system functions to perform generic text I/O and file-based I/O. If the OS
uses a graphical user interface, it has functions to display graphics in a device-independent way.

• Level 1: Call BIOS functions to control device-specific features such as color, graphics,
sound, keyboard input, and low-level disk I/O.

• Level 0: Send and receive data from hardware ports, having absolute control over specific
devices. This approach cannot be used with a wide variety of hardware devices, so we say
that it is not portable. Different devices often use different hardware ports, so the program
code must be customized for each specific type of device.

What are the tradeoffs? Control versus portability is the primary one. Level 2 (OS) works on
any computer running the same operating system. If an I/O device lacks certain capabilities, the
OS will do its best to approximate the intended result. Level 2 is not particularly fast because
each I/O call must go through several layers before it executes.
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Figure 2–8 Assembly language access levels.

Level 1 (BIOS) works on all systems having a standard BIOS, but will not produce the same
result on all systems. For example, two computers might have video displays with different res-
olution capabilities. A programmer at Level 1 would have to write code to detect the user’s hard-
ware setup and adjust the output format to match. Level 1 runs faster than Level 2 because it is
only one level above the hardware.

Level 0 (hardware) works with generic devices such as serial ports and with specific I/O
devices produced by known manufacturers. Programs using this level must extend their coding
logic to handle variations in I/O devices. Real-mode game programs are prime examples
because they usually take control of the computer. Programs at this level execute as quickly as
the hardware will permit. 

Suppose, for example, you wanted to play a WAV file using an audio controller device. At the
OS level, you would not have to know what type of device was installed, and you would not be
concerned with nonstandard features the card might have. At the BIOS level, you would query
the sound card (using its installed device driver software) and find out whether it belonged to a
certain class of sound cards having known features. At the hardware level, you would fine tune
the program for certain models of audio cards, taking advantage of each card’s special features.

General-purpose operating systems rarely permit application programs to directly access system
hardware, because to do so would make it nearly impossible for multiple programs to run simulta-
neously. Instead, hardware is accessed only by device drivers, in a carefully controlled manner. On the
other hand, smaller operating systems for specialized devices often do connect directly to hardware.
They do this in order to reduce the amount of memory taken up by operating system code, and they
almost always run just a single program at one time. The last Microsoft operating system to allow pro-
grams to directly access hardware was MS-DOS, and it was only able to run one program at a time.

2.5.2 Section Review
1. Of the four levels of input/output in a computer system, which is the most universal and

portable?

2. What characteristics distinguish BIOS-level input/output? 

3. Why are device drivers necessary, given that the BIOS already has code that communicates
with the computer’s hardware? 

ASM program

Level 0

Level 1

Level 2OS function

BIOS function

Hardware

Library Level 3
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4. In the example regarding displaying a string of characters, which level exists between the
operating system and the video controller card? 

5. Is it likely that the BIOS for a computer running MS-Windows would be different from that
used by a computer running Linux? 

2.6 Chapter Summary
The central processor unit (CPU) is where calculations and logic processing occur. It contains a
limited number of storage locations called registers, a high-frequency clock to synchronize its
operations, a control unit, and an arithmetic logic unit. The memory storage unit is where
instructions and data are held while a computer program is running. A bus is a series of parallel
wires that transmit data among various parts of the computer.

The execution of a single machine instruction can be divided into a sequence of individual
operations called the instruction execution cycle. The three primary operations are fetch, decode,
and execute. Each step in the instruction cycle takes at least one tick of the system clock, called
a clock cycle. The load and execute sequence describes how a program is located by the operat-
ing system, loaded into memory, and executed by the operating system.

x86 processors have three basic modes of operation: protected mode, real-address mode, and
system management mode. In addition, virtual-8086 mode is a special case of protected mode.
Intel64 processors have two basic modes of operation: compatibility mode and 64-bit mode.
In compatibility mode they can run 16-bit and 32-bit applications.

Registers are named locations within the CPU that can be accessed much more quickly than
conventional memory. Following are brief descriptions of register types:

• The general-purpose registers are primarily used for arithmetic, data movement, and logical
operations.

• The segment registers are used as base locations for preassigned memory areas called
segments. 

• The instruction pointer register contains the address of the next instruction to be executed. 
• The flags register consists of individual binary bits that control the operation of the CPU and

reflect the outcome of ALU operations.

The x86 has a floating-point unit (FPU) expressly used for the execution of high-speed floating-
point instructions.

The heart of any microcomputer is its motherboard, holding the computer’s CPU, supporting
processors, main memory, input–output connectors, power supply connectors, and expansion
slots. The PCI (Peripheral Component Interconnect) bus provides a convenient upgrade path for
Pentium processors. Most motherboards contain an integrated set of several microprocessors
and controllers, called a chipset. The chipset largely determines the capabilities of the computer. 

Several basic types of memory are used in PCs: ROM, EPROM, Dynamic RAM (DRAM),
Static RAM (SRAM), Video RAM (VRAM), and CMOS RAM.

Input–output is accomplished via different access levels, similar to the virtual machine con-
cept. Library functions are at the highest level, and the operating system is at the next level
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below. The BIOS (basic input–output system) is a collection of functions that communicate
directly with hardware devices. Programs can also directly access input–output devices.

2.7 Key Terms

32-bit mode

64-bit mode

address bus

application programming interface (API)

arithmetic logic unit (ALU)

auxiliary carry flag

basic program execution registers

BIOS (basic input–output system)

bus

cache

carry flag

central processor unit (CPU)

clock

clock cycle

clock generator

code cache

control flags

control unit

data bus

data cache

device drivers

direction flag

dynamic RAM

EFLAGS register

extended destination index

extended physical addressing

extended source index

extended stack pointer

fetch-decode-execute

flags register

floating-point unit

general-purpose registers

instruction decoder

instruction execution cycle

instruction queue

instruction pointer

interrupt flag

Level-1 cache

Level-2 cache

machine cycle

memory storage unit

MMX registers

motherboard

motherboard chipset

operating system (OS)

overflow flag

parity flag

PCI (peripheral component interconnect)

PCI express

process

process ID

programmable interrupt controller (PIC)

programmable interval timer/counter

programmable parallel port

protected mode

random access memory (RAM)

read-only memory (ROM)

real-address mode

registers

segment registers

sign flag

single-instruction, multiple-data (SIMD)

static RAM

status flags

system management mode (SMM)

Task Manager

virtual-8086 mode

wait states

XMM registers

zero flag
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2.8 Review Questions
1. In 32-bit mode, aside from the stack pointer (ESP), what other register points to variables on

the stack?

2. Name at least four CPU status flags.

3. Which flag is set when the result of an unsigned arithmetic operation is too large to fit into
the destination?

4. Which flag is set when the result of a signed arithmetic operation is either too large or too
small to fit into the destination?

5. (True/False): When a register operand size is 32 bits and the REX prefix is used, the R8D
register is available for programs to use.

6. Which flag is set when an arithmetic or logical operation generates a negative result?

7. Which part of the CPU performs floating-point arithmetic?

8. On a 32-bit processor, how many bits are contained in each floating-point data register?

9. (True/False): The x86-64 instruction set is backward-compatible with the x86 instruction set.

10. (True/False): In current 64-bit chip implementations, all 64 bits are used for addressing.

11. (True/False): The Itanium instruction set is completely different from the x86 instruction set.

12. (True/False): Static RAM is usually less expensive than dynamic RAM.

13. (True/False): The 64-bit RDI register is available when the REX prefix is used.

14. (True/False): In native 64-bit mode, you can use 16-bit real mode, but not the virtual-8086
mode.

15. (True/False): The x86-64 processors have 4 more general-purpose registers than the x86
processors.

16. (True/False): The 64-bit version of Microsoft Windows does not support virtual-8086 mode.

17. (True/False): DRAM can only be erased using ultraviolet light.

18. (True/False): In 64-bit mode, you can use up to eight floating-point registers.

19. (True/False): A bus is a plastic cable that is attached to the motherboard at both ends, but
does not sit directly on the motherboard.

20. (True/False): CMOS RAM is the same as static RAM, meaning that it holds its value with-
out any extra power or refresh cycles.

21. (True/False): PCI connectors are used for graphics cards and sound cards.

22. (True/False): The 8259A is a controller that handles external interrupts from hardware
devices.

23. (True/False): The acronym PCI stands for programmable component interface.

24. (True/False): VRAM stands for virtual random access memory.

25. At which level(s) can an assembly language program manipulate input/output?

26. Why do game programs often send their sound output directly to the sound card’s hardware
ports?



53

3
Assembly Language 
Fundamentals

3.1 Basic Language Elements 
3.1.1 First Assembly Language Program 
3.1.2 Integer Literals 
3.1.3 Constant Integer Expressions 
3.1.4 Real Number Literals 
3.1.5 Character Literals 
3.1.6 String Literals 
3.1.7 Reserved Words 
3.1.8 Identifiers 
3.1.9 Directives 
3.1.10 Instructions 
3.1.11 Section Review 

3.2 Example: Adding and Subtracting Integers 
3.2.1 The AddTwo Program 
3.2.2 Running and Debugging the AddTwo

Program
3.2.3 Program Template 
3.2.4 Section Review 

3.3 Assembling, Linking, and Running 
Programs
3.3.1 The Assemble-Link-Execute Cycle 
3.3.2 Listing File 
3.3.3 Section Review 

3.4 Defining Data 
3.4.1 Intrinsic Data Types 
3.4.2 Data Definition Statement 
3.4.3 Adding a Variable to the AddTwo Program 

3.4.4 Defining BYTE and SBYTE Data 
3.4.5 Defining WORD and SWORD Data 
3.4.6 Defining DWORD and SDWORD Data 
3.4.7 Defining QWORD Data 
3.4.8 Defining Packed BCD (TBYTE) Data 
3.4.9 Defining Floating-Point Types 
3.4.10 A Program that Adds Variables
3.4.11 Little-Endian Order 
3.4.12 Declaring Uninitialized Data 
3.4.13 Section Review 

3.5 Symbolic Constants
3.5.1 Equal-Sign Directive 
3.5.2 Calculating the Sizes of Arrays and Strings 
3.5.3 EQU Directive 
3.5.4 TEXTEQU Directive 
3.5.5 Section Review 

3.6 64-Bit Programming
3.7 Chapter Summary 
3.8 Key Terms 

3.8.1 Terms 
3.8.2 Instructions, Operators, and Directives 

3.9 Review Questions and Exercises 
3.9.1 Short Answer 
3.9.2 Algorithm Workbench 

3.10 Programming Exercises 



54 Chapter 3  •  Assembly Language Fundamentals

This chapter focuses on the basic building blocks of the Microsoft MASM assembler. You
will see how constants and variables are defined, standard formats for numeric and string lit-
erals, and how to assemble and run your first programs. We particularly emphasize the Visual
Studio debugger in this chapter, as an excellent tool for understanding how programs work.
The important thing in this chapter is to move one step at a time, mastering each detail before
you move to the next step. You are building a foundation that will greatly help you in upcom-
ing chapters.

3.1 Basic Language Elements

3.1.1 First Assembly Language Program
Assembly language programming might have a reputation for being obscure and tricky, but we
like to think of it another way—it is a language that gives you nearly total information. You get
to see everything that is going on, even in the CPU’s registers and flags! With this powerful abil-
ity, however, you have the responsibility to manage data representation details and instruction
formats. You work at a very detailed level. To see how this works, let’s look at a simple assembly
language program that adds two numbers and saves the result in a register. We will call it the
AddTwo program: 

1: main PROC
2:  mov eax,5 ; move 5 to the eax register
3:  add eax,6 ; add 6 to the eax register
4:
5:  INVOKE ExitProcess,0 ; end the program
6: main ENDP

Although line numbers have been inserted in the beginning of each line to aid our discussion,
you never actually type line numbers when you create assembly programs. Also, don’t try to
type in and run this program just yet—it’s missing some important declarations that we will
include later on in this chapter.

Let’s go through the program one line at a time: Line 1 starts the main procedure, the entry
point for the program. Line 2 places the integer 5 in the eax register. Line 3 adds 6 to the value in
EAX, giving it a new value of 11. Line 5 calls a Windows service (also known as a function)
named ExitProcess that halts the program and returns control to the operating system. Line 6 is
the ending marker of the main procedure. 

You probably noticed that we included comments, which always begin with a semicolon
character. We’ve left out a few declarations at the top of the program that we can show later,
but essentially this is a working program. It does not display anything on the screen, but we
could run it with a utility program called a debugger that would let us step through the pro-
gram one line at a time and look at the register values. Later in this chapter, we will show how
to do that.

Adding a Variable
Let’s make our program a little more interesting by saving the results of our addition in a vari-
able named sum. To do this, we will add a couple of markers, or declarations, that identify the
code and data areas of the program:
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1: .data ; this is the data area
2: sum DWORD 0 ; create a variable named sum
3:
4: .code ; this is the code area
5: main PROC
6: mov eax,5 ; move 5 to the eax register
7: add eax,6 ; add 6 to the eax register
8: mov sum,eax
9:
10: INVOKE ExitProcess,0 ; end the program
11: main ENDP

The sum variable is declared on Line 2, where we give it a size of 32 bits, using the DWORD
keyword. There are a number of these size keywords, which work more or less like data types.
But they are not as specific as types you might be familiar with, such as int, double, float, and so
on. They only specify a size, but there’s no checking into what actually gets put inside the vari-
able. Remember, you are in total control. 

By the way, those code and data areas we mentioned, which were marked by the .code and
.data directives, are called segments. So you have the code segment and the data segment. Later
on, we will see a third segment named stack.

Next, let’s dive deeper into some of the language details, showing how to declare literals (also
known as constants), identifiers, directives, and instructions. You will probably have to read this
chapter a couple of times to retain it all, but it’s definitely worth the time. By the way, throughout
this chapter, when we refer to syntax rules imposed by the assembler, we really mean rules
imposed by the Microsoft MASM assembler. Other assemblers are out there with different syntax
rules, but we will ignore them. We will probably save at least one tree (somewhere in the world) by
not reprinting the word MASM every time we refer to the assembler.

3.1.2 Integer Literals
An integer literal (also known as an integer constant) is made up of an optional leading sign, one
or more digits, and an optional radix character that indicates the number’s base:

[{+ | - }] digits [ radix ]

So, for example, 26 is a valid integer literal. It doesn’t have a radix, so we assume it’s in decimal
format. If we wanted it to be 26 hexadecimal, we would have to write it as 26h. Similarly, the
number 1101 would be considered a decimal value until we added a “b” at the end to make it
1101b (binary). Here are the possible radix values:

We will use Microsoft syntax notation throughout the book. Elements within square brackets [..] are
optional and elements within braces {..} require a choice of one of the enclosed elements, separated
by the | character. Elements in italics identify items that have known definitions or descriptions.

h hexadecimal r encoded real

q/o octal t decimal (alternate)

d decimal y binary (alternate)

b binary
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And here are some integer literals declared with various radixes. Each line contains a comment:

26 ; decimal
26d ; decimal
11010011b ; binary
42q ; octal
42o ; octal
1Ah ; hexadecimal
0A3h ; hexadecimal

A hexadecimal literal beginning with a letter must have a leading zero to prevent the assembler
from interpreting it as an identifier.

3.1.3 Constant Integer Expressions
A constant integer expression is a mathematical expression involving integer literals and arithmetic
operators. Each expression must evaluate to an integer, which can be stored in 32 bits (0 through
FFFFFFFFh). The arithmetic operators are listed in Table 3-1 according to their precedence order,
from highest (1) to lowest (4). The important thing to realize about constant integer expressions is that
they can only be evaluated at assembly time. From now on, we will just call them integer expressions.

Operator precedence refers to the implied order of operations when an expression contains
two or more operators. The order of operations is shown for the following expressions:

The following are examples of valid expressions and their values:

Table 3-1  Arithmetic Operators.

Operator Name Precedence Level

( ) Parentheses 1

�, � Unary plus, minus 2

*, / Multiply, divide 3

MOD Modulus 3

�, � Add, subtract 4

4 + 5 * 2 Multiply, add

12 -1 MOD 5 Modulus, subtract

-5 + 2 Unary minus, add

(4 + 2) * 6 Add, multiply

Expression Value

16 / 5 3

�(3 � 4) * (6 � 1) �35
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3.1.4 Real Number Literals
Real number literals (also known as floating-point literals) are represented as either decimal
reals or encoded (hexadecimal) reals. A decimal real contains an optional sign followed by an
integer, a decimal point, an optional integer that expresses a fraction, and an optional exponent:

[sign]integer.[integer][exponent]

These are the formats for the sign and exponent:

sign {+,-}
exponent E[{+,-}]integer

Following are examples of valid decimal reals:

2.
+3.0
-44.2E+05
26.E5

At least one digit and a decimal point are required. 

An encoded real represents a real number in hexadecimal, using the IEEE floating-point for-
mat for short reals (see Chapter 12). The binary representation of decimal +1.0, for example, is

0011 1111 1000 0000 0000 0000 0000 0000

The same value would be encoded as a short real in assembly language as

3F800000r

We will not be using real-number constants for a while, because most of the x86 instruction set
is geared toward integer processing. However, Chapter 12 will show how to do arithmetic with
real numbers, also known as floating-point numbers. It’s very interesting, and very technical.

3.1.5 Character Literals
A character literal is a single character enclosed in single or double quotes. The assembler
stores the value in memory as the character’s binary ASCII code. Examples are

'A'
"d"

Recall that Chapter 1 showed that character literals are stored internally as integers, using the
ASCII encoding sequence. So, when you write the character constant “A,” it’s stored in memory

�3 � 4 * 6 � 1 20

25 mod 3 1

Suggestion: Use parentheses in expressions to clarify the order of operations so you don’t have to
remember precedence rules.

Expression Value
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as the number 65 (or 41 hex). We have a complete table of ASCII codes on the inside back cover
of this book, so be sure to look over them from time to time.

3.1.6 String Literals
A string literal is a sequence of characters (including spaces) enclosed in single or double quotes:

'ABC'
'X'
"Good night, Gracie"
'4096'

Embedded quotes are permitted when used in the manner shown by the following examples:

"This isn't a test"
'Say "Good night," Gracie'

Just as character constants are stored as integers, we can say that string literals are stored in
memory as sequences of integer byte values. So, for example, the string literal “ABCD” contains
the four bytes 41h, 42h, 43h, and 44h.

3.1.7 Reserved Words
Reserved words have special meaning and can only be used in their correct context. Reserved
works, by default, are not case-sensitive. For example, MOV is the same as mov and Mov. There
are different types of reserved words:

• Instruction mnemonics, such as MOV, ADD, and MUL
• Register names
• Directives, which tell the assembler how to assemble programs
• Attributes, which provide size and usage information for variables and operands. Examples

are BYTE and WORD
• Operators, used in constant expressions
• Predefined symbols, such as @data, which return constant integer values at assembly time

A common list of reserved words can be found in Appendix A.

3.1.8 Identifiers
An identifier is a programmer-chosen name. It might identify a variable, a constant, a procedure,
or a code label. There are a few rules on how they can be formed:

• They may contain between 1 and 247 characters.
• They are not case sensitive.
• The first character must be a letter (A..Z, a..z), underscore (_), @ , ?, or $. Subsequent

characters may also be digits.
• An identifier cannot be the same as an assembler reserved word. 

Tip: You can make all keywords and identifiers case sensitive by adding the −Cp command line
switch when running the assembler.
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In general, it’s a good idea to use descriptive names for identifiers, as you do in high-level
programming language code. Although assembly language instructions are short and cryptic,
there’s no reason to make your identifiers hard to understand also! Here are some examples of
well-formed names:

lineCount firstValue index line_count
myFile xCoord main x_Coord

The following names are legal, but not as desirable:

_lineCount $first @myFile

Generally, you should avoid the @ symbol and underscore as leading characters, since they
are used both by the assembler and by high-level language compilers.

3.1.9 Directives
A directive is a command embedded in the source code that is recognized and acted upon by the
assembler. Directives do not execute at runtime, but they let you define variables, macros, and
procedures. They can assign names to memory segments and perform many other housekeeping
tasks related to the assembler. Directives are not, by default, case sensitive. For example, .data,
.DATA, and .Data are equivalent.

The following example helps to show the difference between directives and instructions. The
DWORD directive tells the assembler to reserve space in the program for a doubleword variable.
The MOV instruction, on the other hand, executes at runtime, copying the contents of myVar to
the EAX register:

myVar DWORD 26
mov eax,myVar

Although all assemblers for Intel processors share the same instruction set, they usually have
different sets of directives. The Microsoft assembler’s REPT directive, for example, is not recog-
nized by some other assemblers.

Defining Segments One important function of assembler directives is to define program sec-
tions, or segments. Segments are sections of a program that have different purposes. For exam-
ple, one segment can be used to define variables, and is identified by the .DATA directive:

.data

The .CODE directive identifies the area of a program containing executable instructions:

.code

The .STACK directive identifies the area of a program holding the runtime stack, setting its size:

.stack 100h

Appendix A contains a useful reference for directives and operators.
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3.1.10 Instructions
An instruction is a statement that becomes executable when a program is assembled. Instruc-
tions are translated by the assembler into machine language bytes, which are loaded and exe-
cuted by the CPU at runtime. An instruction contains four basic parts:

• Label (optional)
• Instruction mnemonic (required)
• Operand(s) (usually required)
• Comment (optional)

This is how the different parts are arranged:

[label:] mnemonic [operands] [;comment]

Let’s explore each part separately, beginning with the label field.

Label
A label is an identifier that acts as a place marker for instructions and data. A label placed just
before an instruction implies the instruction’s address. Similarly, a label placed just before a vari-
able implies the variable’s address. There are two types of labels: Data labels and Code labels.

A data label identifies the location of a variable, providing a convenient way to reference the
variable in code. The following, for example, defines a variable named count:

count DWORD 100

The assembler assigns a numeric address to each label. It is possible to define multiple data
items following a label. In the following example, array defines the location of the first number
(1024). The other numbers following in memory immediately afterward:

array DWORD 1024, 2048
DWORD 4096, 8192

Variables will be explained in Section 3.4.2, and the MOV instruction will be explained in
Section 4.1.4.

A label in the code area of a program (where instructions are located) must end with a colon
(:) character. Code labels are used as targets of jumping and looping instructions. For example,
the following JMP (jump) instruction transfers control to the location marked by the label named
target, creating a loop:

target:
mov ax,bx
...
jmp target

A code label can share the same line with an instruction, or it can be on a line by itself:

L1: mov ax,bx
L2:

Label names follow the same rules we described for identifiers in Section 3.1.8. You can use the
same code label more than once in a program as long as each label is unique within its enclosing
procedure. We will show how to create procedures in Chapter 5.
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Instruction Mnemonic
An instruction mnemonic is a short word that identifies an instruction. In English, a mnemonic is
a device that assists memory. Similarly, assembly language instruction mnemonics such as mov,
add, and sub provide hints about the type of operation they perform. Following are examples of
instruction mnemonics:

Operands
An operand is a value that is used for input or output for an instruction. Assembly language
instructions can have between zero and three operands, each of which can be a register, memory
operand, integer expression, or input–output port. We discussed register names in Chapter 2, and
we discussed integer expressions in Section 3.1.2. There are different ways to create memory
operands—using variable names, registers surrounded by brackets, for example. We will go into
more details about that later. A variable name implies the address of the variable and instructs
the computer to reference the contents of memory at the given address. The following table con-
tains several sample operands:

Let’s look at examples of assembly language instructions having varying numbers of oper-
ands. The STC instruction, for example, has no operands:

stc ; set Carry flag

The INC instruction has one operand:

inc  eax ; add 1 to EAX

The MOV instruction has two operands:

mov count,ebx ; move EBX to count

There is a natural ordering of operands. When instructions have multiple operands, the first one
is typically called the destination operand. The second operand is usually called the source
operand. In general, the contents of the destination operand are modified by the instruction. In a
MOV instruction, for example, data is copied from the source to the destination. 

Mnemonic Description
MOV Move (assign) one value to another

ADD Add two values

SUB Subtract one value from another

MUL Multiply two values

JMP Jump to a new location

CALL Call a procedure

Example Operand Type
96 Integer literal

2 � 4 Integer expression

eax Register

count Memory
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The IMUL instruction has three operands, in which the first operand is the destination, and
the following two operands are source operands, which are multiplied together:

imul eax,ebx,5

In this case, EBX is multiplied by 5, and the product is stored in the EAX register.

Comments
Comments are an important way for the writer of a program to communicate information about
the program’s design to a person reading the source code. The following information is typically
included at the top of a program listing:

• Description of the program’s purpose
• Names of persons who created and/or revised the program
• Program creation and revision dates
• Technical notes about the program’s implementation

Comments can be specified in two ways:

• Single-line comments, beginning with a semicolon character (;). All characters following the
semicolon on the same line are ignored by the assembler.

• Block comments, beginning with the COMMENT directive and a user-specified symbol. All
subsequent lines of text are ignored by the assembler until the same user-specified symbol
appears. Here is an example:

COMMENT  !
This line is a comment.
This line is also a comment.

!

We can also use any other symbol, as long as it does not appear within the comment lines:

COMMENT &
This line is a comment.
This line is also a comment.

&

Of course, you should provide comments throughout a program, particularly where the intent of
your code is not obvious. 

The NOP (No Operation) Instruction
The safest (and the most useless) instruction is NOP (no operation). It takes up 1 byte of pro-
gram storage and doesn’t do any work. It is sometimes used by compilers and assemblers to
align code to efficient address boundaries. In the following example, the first MOV instruction
generates three machine code bytes. The NOP instruction aligns the address of the third instruc-
tion to a doubleword boundary (even multiple of 4):

00000000 66 8B C3 mov ax,bx
00000003 90 nop ; align next instruction
00000004 8B D1 mov edx,ecx

x86 processors are designed to load code and data more quickly from even doubleword addresses.
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3.1.11 Section Review
1. Using the value –35, write it as an integer literal in decimal, hexadecimal, octal, and binary

formats that are consistent with MASM syntax.

2. (Yes/No): Is A5h a valid hexadecimal literal?

3. (Yes/No): Does the multiplication operator (*) have a higher precedence than the division
operator (/) in integer expressions?

4. Create a single integer expression that uses all the operators from Section 3.1.2. Calculate
the value of the expression.

5. Write the real number –6.2 � 104 as a real number literal using MASM syntax.

6. (Yes/No): Must string literals be enclosed in single quotes?

7. Reserved words can be instruction mnemonics, attributes, operators, predefined symbols,
and __________.

8. What is the maximum length of an identifier?

3.2 Example: Adding and Subtracting Integers

3.2.1 The AddTwo Program
Let’s revisit the AddTwo program we showed at the beginning of this chapter and add the neces-
sary declarations to make it a fully operational program. Remember, the line numbers are not
really part of the program:

 1: ; AddTwo.asm - adds two 32-bit integers
 2: ; Chapter 3 example
 3: 
 4: .386
 5: .model flat,stdcall
 6: .stack 4096
 7: ExitProcess PROTO, dwExitCode:DWORD
 8: 
 9: .code
10: main PROC
11: mov  eax,5 ; move 5 to the eax register
12: add  eax,6 ; add 6 to the eax register
13:
14: INVOKE ExitProcess,0
15: main ENDP
16: END main

Line 4 contains the .386 directive, which identifies this as a 32-bit program that can access
32-bit registers and addresses. Line 5 selects the program’s memory model (flat), and iden-
tifies the calling convention (named stdcall) for procedures. We use this because 32-bit
Windows services require the stdcall convention to be used. (Chapter 8 explains how stdcall
works.) Line 6 sets aside 4096 bytes of storage for the runtime stack, which every program
must have. 
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Line 7 declares a prototype for the ExitProcess function, which is a standard Windows ser-
vice. A prototype consists of the function name, the PROTO keyword, a comma, and a list of
input parameters. The input parameter for ExitProcess is named dwExitCode. You might
think of it as a return value passed back to the Window operating system. A return value of
zero usually means our program was successful. Any other integer value generally indicates
an error code number. So, you can think of your assembly programs as subroutines, or pro-
cesses, which are called by the operating system. When your program is ready to finish, it
calls ExitProcess and returns an integer that tells the operating system that your program
worked just fine.

Let’s return to our listing of the AddTwo program. Line 16 uses the end directive to mark the last
line to be assembled, and it identifies the program entry point (main). The label main was
declared on Line 10, and it marks the address at which the program will begin to execute.

A Review of the Assembler Directives
Let’s review some of the most important assembler directives we used in the sample program.
First, the .MODEL directive tells the assembler which memory model to use:

.model flat,stdcall

In 32-bit programs, we always use the flat memory model, which is associated with the proces-
sor’s protected mode. We talked about protected mode in Chapter 2. The stdcall keyword tells
the assembler how to manage the runtime stack when procedures are called. That’s a compli-
cated subject that we will address in Chapter 8. Next, the .STACK directive tells the assembler
how many bytes of memory to reserve for the program’s runtime stack:

.stack 4096

More Info: You might be wondering why the operating system wants to know if your program
completed successfully. Here’s why: system administrators often create script files than execute a
number of programs in sequence. At each point in the script, they need to know if the most
recently executed program has failed, so they can exit the script if necessary. It often goes some-
thing like the script shown below, where ErrorLevel 1 indicates that the process return code from
the previous step was greater than or equal to 1:

call program_1
if ErrorLevel 1 goto FailedLabel
call program_2
if ErrorLevel 1 goto FailedLabel
:SuccessLabel
Echo Great, everything worked!

Tip: Visual Studio’s syntax highlighting and wavy lines under keywords are not consistent
when displaying assembly language code. If you want to disable it, here’s how: Choose
Options from the Tools menu, select Text Editor, select C/C++, select Advanced, and under the
Intellisense heading, set Disable Squiggles to True. Click OK to close the Options window.
Also, remember that MASM is not case-sensitive, so you can capitalize or not capitalize key-
words in any combination.
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The value 4096 is probably more than we will ever use, but it happens to correspond to the size
of a memory page in the processor’s system for managing memory. All modern programs use a
stack when calling subroutines—first, to hold passed parameters, and second, to hold the address
of the code that called the function. The CPU uses this address to return when the function call
finishes, back to the spot where the function was called. In addition, the runtime stack can hold
local variables, that is, variables declared inside a function. 

The .CODE directive marks the beginning of the code area of a program, the area that con-
tains executable instructions. Usually the next line after .CODE is the declaration of the pro-
gram’s entry point, and by convention, it is usually a procedure named main. The entry point of
a program is the location of the very first instruction the program will execute. We used the fol-
lowing lines to convey this information:

.code
main PROC

The ENDP directive marks the end of a procedure. Our program had a procedure named main,
so the endp must use the same name:

main ENDP

Finally, the END directive marks the end of the program, and references the program entry
point:

END main

If you add any more lines to a program after the END directive, they will be ignored by the
assembler. You can put anything there—program comments, copies of your code, etc.—it
doesn’t matter.

3.2.2 Running and Debugging the AddTwo Program
You can easily use Visual Studio to edit, build, and run assembly language programs. The book’s
example files directory has a folder named Project32 that contains a Visual Studio 2012 Win-
dows Console project that has been configured for 32-bit assembly language programming.
(Another folder named Project64 is configured for 64-bit assembly.) The following instructions,
modeled after Visual Studio 2012, tell you how to open the sample project and create the
AddTwo program:

1. Open the Project32 folder and double-click the file named Project.sln. This should launch
the latest version of Visual Studio installed on your computer. 

2. Open the Solution Explorer window inside Visual Studio. It should already be visible, but
you can always make it visible by selecting Solution Explorer from the View menu.

3. Right-click the project name in Solution Explorer, select Add from the context menu, and
then select New Item from the popup menu. 

4. In the Add New File dialog window (see Figure 3-1), name the file AddTwo.asm, and choose
an appropriate disk folder for the file by filling in the Location entry. 

5. Click the Add button to save the file.
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Figure 3–1 Adding a new source code file to a Visual Studio project. 

6. Type in the program’s source code, shown here. The capitalization of keywords here is not
required:

; AddTwo.asm - adds two 32-bit integers.

.386

.model flat,stdcall

.stack 4096
ExitProcess PROTO,dwExitCode:DWORD

.code
main PROC
  mov  eax,5
  add  eax,6

  INVOKE ExitProcess,0
main ENDP
END main

7. Select Build Project from the Project menu, and look for error messages at the bottom of the
Visual Studio workspace. It’s called the Error List window. Figure 3-2 shows our sample
program after it has been opened and assembled. Notice that the status line on the bottom of
the window says Build succeeded when there are no errors.

Debugging Demonstration
We will demonstrate a sample debugging session for the AddTwo program. We have not shown
you a way to display variable values directly in the console window yet, so we will run the pro-
gram in a debugging session. We will use Visual Studio 2012 for this demonstration, but it would
work just as well in any version of Visual Studio from 2008 onward.

One way to run and debug a program is to, select Step Over from the Debug menu. Depend-
ing on how Visual Studio was configured, either the F10 function key or the Shift+F8 keys will
execute the Step Over command.
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Figure 3–2 Building the Visual Studio project.

Another way to start a debugging session is to set a breakpoint on a program statement by
clicking the mouse in the vertical gray bar just to the left of the code window. A large red dot
will mark the breakpoint location. Then you can run the program by selecting Start Debugging
from the Debug menu.

Figure 3-3 shows the program at the start of a debugging session. A breakpoint was set on
Line 11, the first MOV instruction, and the debugger has paused on that line. The line has not
executed yet. When the debugger is active, the bottom status line of the Visual Studio window
turns orange. When you stop the debugger and return to edit mode, the status line turns blue. The
visual cue is helpful because you cannot edit or save a program while the debugger is running.

Figure 3-4 shows the debugger after the user has stepped through lines 11 and 12, and is
paused on line 14. By hovering the mouse over the EAX register name, we can see its current
contents (11). We can then finish the program execution by clicking the Continue button on the
toolbar, or by clicking the red Stop Debugging button (on the right side of the toolbar).

Customizing the Debugging Interface
You can customize the debugging interface while it is running. For example, you might want
to display the CPU registers; to do this, select Windows from the Debug menu, and then select
Registers. Figure 3-5 shows the same debugging session we used just now, with the Registers
window visible. We also closed some other nonessential windows. The value shown in EAX,
0000000B, is the hexadecimal representation of 11 decimal. We’ve drawn an arrow in the

Tip: If you try to set a breakpoint on a non-executable line, Visual Studio will just move the break-
point forward to the next executable line when you run the program.
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Figure 3–3 Debugger paused at a breakpoint.

Figure 3–4 After executing lines 11 and 12 in the debugger.
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Figure 3–5 Adding the Registers window to a debugging session.

figure, pointing to the value. In the Registers window, the EFL register contains all the status flag
settings (Zero, Carry, Overflow, etc.). If you right-click the Registers window and select Flags
from the popup menu, the window will display the individual flag values. Figure 3-6 shows an
example, where the flag values from left to right are: OV (overflow flag), UP (direction flag), EI
(interrupt flag), PL (sign flag), ZR (zero flag), AC (auxiliary carry), PE (parity flag), and CY
(carry flag). The precise meaning of these flags will be explained in Chapter 4.

One of the great things about the Registers window is that as you step through a program, any
register whose value is changed by the current instruction will turn red. Although we cannot
show it on the printed page (which is black and white), the red highlighting really jumps out at
you, to let you know how your program is affecting the registers. 

Figure 3–6 Showing the CPU status flags in the Registers window.

Tip: The book’s web site (asmirvine.com) has tutorials that show you how to assemble and debug
assembly language programs.
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When you run an assembly language program inside Visual Studio, it launches inside a console
window. This is the same window you see when you run the program named cmd.exe from the
Windows Start menu. Alternatively, you could open up a command prompt in the project’s
Debug\Bin folder and run the application directly from the command line. If you did this, you
would only see the program’s output, which consists of text written to the console window. Look
for an executable filename having the same name as your Visual Studio project.

3.2.3 Program Template
Assembly language programs have a simple structure, with small variations. When you begin a
new program, it helps to start with an empty shell program with all basic elements in place. You
can avoid redundant typing by filling in the missing parts and saving the file under a new name.
The following program (Template.asm) can easily be customized. Note that comments have
been inserted, marking the points where your own code should be added. Capitalization of key-
words is optional:

; Program template (Template.asm)

.386

.model flat,stdcall

.stack 4096
ExitProcess PROTO, dwExitCode:DWORD

.data
; declare variables here

.code
main PROC

; write your code here

INVOKE ExitProcess,0
main ENDP
END main

Use Comments It’s a very good idea to include a program description, the name of the pro-
gram’s author, creation date, and information about subsequent modifications. Documentation of
this kind is useful to anyone who reads the program listing (including you, months or years from
now). Many programmers have discovered, years after writing a program, that they must
become reacquainted with their own code before they can modify it. If you’re taking a
programming course, your instructor may insist on additional information.

3.2.4 Section Review
1. In the AddTwo program, what is the meaning of the INCLUDE directive?

2. In the AddTwo program, what does the .CODE directive identify?

3. What are the names of the two segments in the AddTwo program?

4. In the AddTwo program, which register holds the sum?

5. In the AddTwo program, which statement halts the program?
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3.3 Assembling, Linking, and Running Programs
A source program written in assembly language cannot be executed directly on its target
computer. It must be translated, or assembled into executable code. In fact, an assembler is very
similar to a compiler, the type of program you would use to translate a C++ or Java program into
executable code. 

The assembler produces a file containing machine language called an object file. This file
isn’t quite ready to execute. It must be passed to another program called a linker, which in turn
produces an executable file. This file is ready to execute from the operating system’s command
prompt.

3.3.1 The Assemble-Link-Execute Cycle
The process of editing, assembling, linking, and executing assembly language programs is sum-
marized in Figure 3-7. Following is a detailed description of each step.

Step 1: A programmer uses a text editor to create an ASCII text file named the source file.

Step 2: The assembler reads the source file and produces an object file, a machine-language
translation of the program. Optionally, it produces a listing file. If any errors occur, the program-
mer must return to Step 1 and fix the program.

Step 3: The linker reads the object file and checks to see if the program contains any calls to
procedures in a link library. The linker copies any required procedures from the link library,
combines them with the object file, and produces the executable file.

Step 4: The operating system loader utility reads the executable file into memory and branches
the CPU to the program’s starting address, and the program begins to execute.

See the topic “Getting Started” on the author’s Web site (www.asmirvine.com) for detailed
instructions on assembling, linking, and running assembly language programs using Microsoft
Visual Studio.

Figure 3–7 Assemble-Link-Execute cycle.

3.3.2 Listing File
A listing file contains a copy of the program’s source code, with line numbers, the numeric
address of each instruction, the machine code bytes of each instruction (in hexadecimal), and
a symbol table. The symbol table contains the names of all program identifiers, segments, and
related information. Advanced programmers sometimes use the listing file to get detailed
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information about the program. Figure 3-8 shows a partial listing file for the AddTwo program.
Let’s examine it in more detail. Lines 1–7 contain no executable code, so they are copied
directly from the source file without changes. Line 9 shows that the beginning of the code seg-
ment is located at address 00000000 (in a 32-bit program, addresses display as 8 hexadecimal
digits). This address is relative to the beginning of the program’s memory footprint, but it will
be converted into an absolute memory address when the program is loaded into memory.
When that happens, the program might start at an address such as 00040000h.

Figure 3–8 Excerpt from the AddTwo source listing file.

Lines 10 and 11 also show the same starting address of 00000000, because the first executable
statement is the MOV instruction on line 11. Notice on line 11 that several hexadecimal bytes
appear between the address and the source code. These bytes (B8 00000005) represent the
machine code instruction (B8), and the constant 32-bit value (00000005) that is assigned to
EAX by the instruction:

11:  00000000  B8 00000005  mov eax,5

The value B8 is also known as an operation code (or just opcode), because it represents the spe-
cific machine instruction to move a 32-bit integer into the eax register. In Chapter 12 we explain
the structure of x86 machine instructions in great detail.

Line 12 also contains an executable instruction, starting at offset 00000005. That offset is a
distance of 5 bytes from the beginning of the program. Perhaps you can guess how that offset
was calculated.

Line 14 contains the invoke directive. Notice how lines 15 and 16 seem to have been inserted into
our code. This is because the INVOKE directive causes the assembler to generate the PUSH and
CALL statements shown on lines 15 and 16. In Chapter 5 we will show how to use PUSH and CALL.

The sample listing file in Figure 3-8 shows that the machine instructions are loaded into
memory as a sequence of integer values, expressed here in hexadecimal:  B8, 00000005, 83, C0,

 1:    ; AddTwo.asm - adds two 32-bit integers.
 2:    ; Chapter 3 example
 3:
 4:    .386
 5:    .model flat,stdcall
 6:    .stack 4096
 7:    ExitProcess PROTO,dwExitCode:DWORD
 8:
 9:     00000000 .code
10:     00000000 main PROC
11:     00000000  B8 00000005    mov  eax,5
12:     00000005  83 C0 06      add  eax,6
13:
14:       invoke ExitProcess,0
15:     00000008  6A 00        push   +000000000h
16:     0000000A  E8 00000000 E       call   ExitProcess
17:     0000000F main ENDP
18:    END main
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06, 6A, 00, EB, 00000000. The number of digits in each number indicates the number of bits: a
2-digit number is 8 bits, a 4-digit number is 16 bits, an 8-digit number is 32 bits, and so on. So
our machine instructions are exactly 15 bytes long (two 4-byte values and seven 1-byte values).

Whenever you want to make sure the assembler is generating the correct machine code bytes
based on your program, the listing file is your best resource. It is also a great teaching tool if
you’re just learning how machine code instructions are generated.

Figure 3–9 Configuring Visual Studio to generate a listing file.

The rest of the listing file contains a list of structures and unions, as well as procedures, parame-
ters, and local variables. We will not show those elements here, but we will discuss them in later
chapters.

3.3.3 Section Review
1. What types of files are produced by the assembler?

2. (True/False): The linker extracts assembled procedures from the link library and inserts
them in the executable program.

3. (True/False): When a program’s source code is modified, it must be assembled and linked
again before it can be executed with the changes.

4. Which operating system component reads and executes programs?

5. What types of files are produced by the linker?

Tip: To tell Visual Studio to generate a listing file, do the following when a project is open:
Select Properties from the Project menu. Under Configuration Properties, select Microsoft
Macro Assembler. Then select Listing File. In the dialog window, set Generate Preprocessed
Source Listing to Yes, and set List All Available Information to Yes. The dialog window is shown
in Figure 3-9.
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3.4 Defining Data

3.4.1 Intrinsic Data Types
The assembler recognizes a basic set of intrinsic data types, which describe types in terms of
their size (byte, word, doubleword, and so on), whether they are signed, and whether they are
integers or reals. There’s a fair amount of overlap in these types—for example, the DWORD
type (32-bit, unsigned integer) is interchangeable with the SDWORD type (32-bit, signed inte-
ger). You might say that programmers use SDWORD to communicate to readers that a value will
contain a sign, but there is no enforcement by the assembler. The assembler only evaluates the
sizes of operands. So, for example, you can only assign variables of type DWORD, SDWORD,
or REAL4 to a 32-bit integer. Table 3-2 contains a list of all the intrinsic data types. The notation
IEEE in some of the table entries refers to standard real number formats published by the IEEE
Computer Society.

3.4.2 Data Definition Statement
A data definition statement sets aside storage in memory for a variable, with an optional name.
Data definition statements create variables based on intrinsic data types (Table 3-2). A data defi-
nition has the following syntax: 

 [name] directive initializer [,initializer]...

Table 3-2  Intrinsic Data Types.

Type Usage

BYTE 8-bit unsigned integer. B stands for byte

SBYTE 8-bit signed integer. S stands for signed

WORD 16-bit unsigned integer

SWORD 16-bit signed integer

DWORD 32-bit unsigned integer. D stands for double

SDWORD 32-bit signed integer. SD stands for signed double

FWORD 48-bit integer (Far pointer in protected mode)

QWORD 64-bit integer. Q stands for quad

TBYTE 80-bit (10-byte) integer. T stands for Ten-byte

REAL4 32-bit (4-byte) IEEE short real

REAL8 64-bit (8-byte) IEEE long real

REAL10 80-bit (10-byte) IEEE extended real
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This is an example of a data definition statement:

count DWORD 12345

Name The optional name assigned to a variable must conform to the rules for identifiers
(Section 3.1.8).

Directive The directive in a data definition statement can be BYTE, WORD, DWORD,
SBYTE, SWORD, or any of the types listed in Table 3-2. In addition, it can be any of the legacy
data definition directives shown in Table 3-3. 

Initializer At least one initializer is required in a data definition, even if it is zero. Additional ini-
tializers, if any, are separated by commas. For integer data types, initializer is an integer literal or
integer expression matching the size of the variable’s type, such as BYTE or WORD. If you prefer
to leave the variable uninitialized (assigned a random value), the ? symbol can be used as the ini-
tializer. All initializers, regardless of their format, are converted to binary data by the assembler.
Initializers such as 00110010b, 32h, and 50d all have the same binary value.

3.4.3 Adding a Variable to the AddTwo Program
Let’s create a new version of the AddTwo program we introduced at the beginning of this chap-
ter, which we will now call AddTwoSum. This version introduces a variable named sum, which
appears in the complete program listing:

 1: ; AddTwoSum.asm - Chapter 3 example
 2:
 3:    .386
 4:    .model flat,stdcall
 5:    .stack 4096
 6:    ExitProcess PROTO, dwExitCode:DWORD
 7:
 8:    .data
 9:    sum DWORD 0
10:
11:    .code
12:    main PROC
13:    mov eax,5

Table 3-3  Legacy Data Directives.

Directive Usage

DB 8-bit integer

DW 16-bit integer

DD 32-bit integer or real

DQ 64-bit integer or real

DT define 80-bit (10-byte) integer
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14:    add eax,6
15:    mov sum,eax
16:
17:    INVOKE ExitProcess,0
18:    main ENDP
19:    END main

You can run this in the debugger by setting a breakpoint on line 13 and stepping through the pro-
gram one line at a time. After executing line 15, hover the mouse over the sum variable to see its
value. Or, you can open a Watch window. To do that, select Windows from the Debug menu (dur-
ing a debugging session), select Watch, and select one of the four available choices (Watch1,
Watch2, Watch3, or Watch4). Then, highlight the sum variable with the mouse and drag it into
the Watch window. Figure 3-10 shows a sample, with a large arrow pointing at the current value
of sum after executing line 15.

Figure 3–10 Using a Watch window in a debugging session.

3.4.4 Defining BYTE and SBYTE Data
The BYTE (define byte) and SBYTE (define signed byte) directives allocate storage for one or
more unsigned or signed values. Each initializer must fit into 8 bits of storage. For example,

value1 BYTE  'A' ; character literal
value2 BYTE   0 ; smallest unsigned byte
value3 BYTE  255 ; largest unsigned byte
value4 SBYTE −128 ; smallest signed byte
value5 SBYTE +127 ; largest signed byte
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A question mark (?) initializer leaves the variable uninitialized, implying that it will be assigned
a value at runtime:

value6 BYTE ?

The optional name is a label marking the variable’s offset from the beginning of its enclosing
segment. For example, if value1 is located at offset 0000 in the data segment and consumes one
byte of storage, value2 is automatically located at offset 0001:

value1 BYTE 10h
value2 BYTE 20h

The DB directive can also define an 8-bit variable, signed or unsigned:

val1 DB 255 ; unsigned byte
val2 DB -128 ; signed byte

Multiple Initializers
If multiple initializers are used in the same data definition, its label refers only to the offset of the
first initializer. In the following example, assume list is located at offset 0000. If so, the value 10
is at offset 0000, 20 is at offset 0001, 30 is at offset 0002, and 40 is at offset 0003:

list BYTE 10,20,30,40

Figure 3-11 shows list as a sequence of bytes, each with its own offset.

Figure 3–11 Memory layout of a byte sequence.

Not all data definitions require labels. To continue the array of bytes begun with list, for
example, we can define additional bytes on the next lines:

list BYTE 10,20,30,40
     BYTE 50,60,70,80
     BYTE 81,82,83,84

Within a single data definition, its initializers can use different radixes. Character and string
literals can be freely mixed. In the following example, list1 and list2 have the same contents:

list1 BYTE 10, 32, 41h, 00100010b
list2 BYTE 0Ah, 20h, 'A', 22h

Defining Strings
To define a string of characters, enclose them in single or double quotation marks. The most
common type of string ends with a null byte (containing 0). Called a null-terminated string,
strings of this type are used in many programming languages:

0000:

0001:

0002:

0003:

Offset

10

20

30

40

Value
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greeting1 BYTE "Good afternoon",0
greeting2 BYTE 'Good night',0

Each character uses a byte of storage. Strings are an exception to the rule that byte values must
be separated by commas. Without that exception, greeting1 would have to be defined as

greeting1 BYTE 'G','o','o','d'....etc.

which would be exceedingly tedious. A string can be divided between multiple lines without
having to supply a label for each line:

greeting1 BYTE "Welcome to the Encryption Demo program "
  BYTE "created by Kip Irvine.",0dh,0ah
  BYTE "If you wish to modify this program, please "
  BYTE "send me a copy.",0dh,0ah,0

The hexadecimal codes 0Dh and 0Ah are alternately called CR/LF (carriage-return line-feed)
or end-of-line characters. When written to standard output, they move the cursor to the left col-
umn of the line following the current line.

The line continuation character (\) concatenates two source code lines into a single statement.
It must be the last character on the line. The following statements are equivalent:

greeting1 BYTE "Welcome to the Encryption Demo program "

and

greeting1 \
BYTE "Welcome to the Encryption Demo program "

DUP Operator
The DUP operator allocates storage for multiple data items, using a integer expression as a
counter. It is particularly useful when allocating space for a string or array, and can be used with
initialized or uninitialized data:

BYTE 20 DUP(0) ; 20 bytes, all equal to zero
BYTE 20 DUP(?) ; 20 bytes, uninitialized
BYTE  4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTACK"

3.4.5 Defining WORD and SWORD Data
The WORD (define word) and SWORD (define signed word) directives create storage for one or
more 16-bit integers:

word1  WORD   65535 ; largest unsigned value
word2  SWORD  -32768 ; smallest signed value
word3  WORD   ? ; uninitialized, unsigned

The legacy DW directive can also be used:

val1  DW 65535 ; unsigned
val2  DW -32768 ; signed

Array of 16-Bit Words Create an array of words by listing the elements or using the DUP
operator. The following array contains a list of values:

myList  WORD 1,2,3,4,5
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Figure 3-12 shows a diagram of the array in memory, assuming myList starts at offset 0000. The
addresses increment by 2 because each value occupies 2 bytes.

Figure 3–12 Memory layout, 16-bit word array.

The DUP operator provides a convenient way to declare an array:

array WORD 5 DUP(?) ; 5 values, uninitialized

3.4.6 Defining DWORD and SDWORD Data
The DWORD directive (define doubleword) and SDWORD directive (define signed double-
word) allocate storage for one or more 32-bit integers:

val1 DWORD   12345678h ; unsigned
val2 SDWORD −2147483648 ; signed
val3 DWORD   20 DUP(?) ; unsigned array

The legacy DD directive can also be used to define doubleword data.

val1 DD 12345678h ; unsigned
val2 DD −2147483648 ; signed

The DWORD can be used to declare a variable that contains the 32-bit offset of another variable.
Below, pVal contains the offset of val3:

pVal DWORD val3

Array of 32-Bt Doublewords Let’s create an array of doublewords by explicitly initializing
each value:

myList DWORD 1,2,3,4,5

Figure 3-13 shows a diagram of this array in memory, assuming myList starts at offset 0000.
The offsets increment by 4.

3.4.7 Defining QWORD Data
The QWORD (define quadword) directive allocates storage for 64-bit (8-byte) values:

quad1 QWORD 1234567812345678h

The legacy DQ directive can also be used to define quadword data:

quad1 DQ 1234567812345678h

Offset

1

2

3

4

5

Value

0000:

0002:

0004:

0006:

0008:
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Figure 3–13 Memory layout, 32-bit doubleword array.

3.4.8 Defining Packed BCD (TBYTE) Data
Intel stores a packed binary coded decimal (BCD) integers in a 10-byte package. Each byte
(except the highest) contains two decimal digits. In the lower 9 storage bytes, each half-byte
holds a single decimal digit. In the highest byte, the highest bit indicates the number’s sign. If
the highest byte equals 80h, the number is negative; if the highest byte equals 00h, the number is
positive. The integer range is �999,999,999,999,999,999 to +999,999,999,999,999,999.

Example The hexadecimal storage bytes for positive and negative decimal 1234 are shown in
the following table, from the least significant byte to the most significant byte:

MASM uses the TBYTE directive to declare packed BCD variables. Constant initializers
must be in hexadecimal because the assembler does not automatically translate decimal initializ-
ers to BCD. The following two examples demonstrate both valid and invalid ways of represent-
ing decimal �1234:

intVal TBYTE 800000000000001234h  ; valid
intVal TBYTE -1234  ; invalid

The reason the second example is invalid is that MASM encodes the constant as a binary integer
rather than a packed BCD integer.

If you want to encode a real number as packed BCD, you can first load it onto the floating-
point register stack with the FLD instruction and then use the FBSTP instruction to convert it to
packed BCD. This instruction rounds the value to the nearest integer:

.data
posVal REAL8 1.5
bcdVal TBYTE ?

.code
fld posVal ; load onto floating-point stack
fbstp bcdVal ; rounds up to 2 as packed BCD

If posVal were equal to 1.5, the resulting BCD value would be 2. In Chapter 7, you will learn
how to do arithmetic with packed BCD values.

Decimal Value Storage Bytes

+1234 34 12 00 00 00 00 00 00 00 00

�1234 34 12 00 00 00 00 00 00 00 80

Offset

1

2

3

4

5

Value

0000:

0004:

0008:

000C:

0010:
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3.4.9 Defining Floating-Point Types
REAL4 defines a 4-byte single-precision floating-point variable. REAL8 defines an 8-byte double-
precision value, and REAL10 defines a 10-byte extended-precision value. Each requires one or
more real constant initializers:

rVal1      REAL4 -1.2
rVal2      REAL8  3.2E-260
rVal3      REAL10 4.6E+4096
ShortArray REAL4  20 DUP(0.0)

Table 3-4 describes each of the standard real types in terms of their minimum number of sig-
nificant digits and approximate range:

Table 3-4  Standard Real Number Types.

The DD, DQ, and DT directives can define also real numbers:

rVal1 DD -1.2 ; short real
rVal2 DQ  3.2E-260 ; long real
rVal3 DT  4.6E+4096 ; extended-precision real

3.4.10 A Program That Adds Variables
The sample programs shown so far in this chapter added integers stored in registers. Now that
you have some understanding of how to declare data, we will revise the same program by mak-
ing it add the contents of three integer variables and store the sum in a fourth variable.

 1: ; AddVariables.asm - Chapter 3 example
 2:
 3:    .386
 4:    .model flat,stdcall
 5:    .stack 4096
 6:    ExitProcess PROTO, dwExitCode:DWORD
 7:
 8:    .data
 9:    firstval  DWORD 20002000h
10:    secondval DWORD 11111111h

Data Type Significant Digits Approximate Range

Short real 6 1.18 � 10-38 to 3.40 � 1038

Long real 15 2.23 � 10-308 to 1.79 � 10308

Extended-precision real 19 3.37 � 10-4932 to 1.18 � 104932

Clarification: The MASM assembler includes data types such as real4 and real8, suggesting that
the values they represent are real numbers. More correctly, the values are floating-point numbers,
which have a limited amount of precision and range. Mathematically, a real number has unlimited
precision and size. 
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11:    thirdval  DWORD 22222222h
12:    sum       DWORD 0
13:
14:    .code
15:    main PROC
16:       mov eax,firstval
17:       add eax,secondval
18:       add eax,thirdval
19:       mov sum,eax
20:
21:       INVOKE ExitProcess,0
22:    main ENDP
23:    END main

Notice that we have initialized three variables with nonzero values (lines 9–11). Lines 16–18 add
the variables. The x86 instruction set does not let us add one variable directly to another, but it does
allow a variable to be added to a register. That is why lines 16–17 use EAX as an accumulator:

16:    mov eax,firstval
17:    add eax,secondval

After line 17, EAX contains the sum of firstval and secondval. Next, line 18 adds thirdval to
the sum in EAX:

18:    add eax,thirdval

Finally, on line 19, the sum is copied into the variable named sum:

19:    mov sum,eax

As an exercise, we encourage you to run this program in a debugging session and examine each
of the registers after each instruction executes. The final sum should be hexadecimal 53335333.

3.4.11 Little-Endian Order
x86 processors store and retrieve data from memory using little-endian order (low to high). The
least significant byte is stored at the first memory address allocated for the data. The remaining
bytes are stored in the next consecutive memory positions. Consider the doubleword 12345678h. If
placed in memory at offset 0000, 78h would be stored in the first byte, 56h would be stored in the
second byte, and the remaining bytes would be at offsets 0002 and 0003, as shown in Figure 3-14.

Figure 3–14 Little-endian representation of 12345678h.

Tip: During a debugging session, if you want to display the variable in hexadecimal, do the fol-
lowing: Hover the mouse over a variable or register for a second until a gray rectangle appears
under the mouse. Right-click the rectangle and select Hexadecimal Display from the popup menu.

0000: 78

56

34

12

0001:

0002:

0003:
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Some other computer systems use big-endian order (high to low). Figure 3-15 shows an exam-
ple of 12345678h stored in big-endian order at offset 0:

Figure 3–15 Big-endian representation of 12345678h.

3.4.12 Declaring Uninitialized Data
The .DATA? directive declares uninitialized data. When defining a large block of uninitialized
data, the .DATA? directive reduces the size of a compiled program. For example, the following
code is declared efficiently:

.data
smallArray DWORD 10 DUP(0) ; 40 bytes
.data?
bigArray DWORD 5000 DUP(?) ; 20,000 bytes, not initialized

The following code, on the other hand, produces a compiled program 20,000 bytes larger:

.data
smallArray DWORD 10 DUP(0) ; 40 bytes
bigArray DWORD 5000 DUP(?) ; 20,000 bytes

Mixing Code and Data The assembler lets you switch back and forth between code and data
in your programs. You might, for example, want to declare a variable used only within a local-
ized area of a program. The following example inserts a variable named temp between two code
statements:

.code
mov eax,ebx
.data
temp DWORD ?
.code
mov temp,eax
. . .

Although the declaration of temp appears to interrupt the flow of executable instructions,
MASM places temp in the data segment, separate from the segment holding compiled code.
At the same time, intermixing .code and .data directives can cause a program to become hard
to read.

3.4.13 Section Review
1. Create an uninitialized data declaration for a 16-bit signed integer.

2. Create an uninitialized data declaration for an 8-bit unsigned integer.

3. Create an uninitialized data declaration for an 8-bit signed integer.

12

34

56

78

0001:

0002:

0003:

0000:
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4. Create an uninitialized data declaration for a 64-bit integer.

5. Which data type can hold a 32-bit signed integer?

3.5 Symbolic Constants
A symbolic constant (or symbol definition) is created by associating an identifier (a symbol) with
an integer expression or some text. Symbols do not reserve storage. They are used only by the
assembler when scanning a program, and they cannot change at runtime. The following table
summarizes their differences:

We will show how to use the equal-sign directive (=) to create symbols representing integer
expressions. We will use the EQU and TEXTEQU directives to create symbols representing
arbitrary text.

3.5.1 Equal-Sign Directive
The equal-sign directive associates a symbol name with an integer expression (see Section
3.1.3). The syntax is

name = expression

Ordinarily, expression is a 32-bit integer value. When a program is assembled, all occurrences of
name are replaced by expression during the assembler’s preprocessor step. Suppose the follow-
ing statement occurs near the beginning of a source code file:

COUNT = 500

Further, suppose the following statement should be found in the file 10 lines later:

mov eax, COUNT

When the file is assembled, MASM will scan the source file and produce the corresponding code
lines:

mov eax, 500

Why Use Symbols? We might have skipped the COUNT symbol entirely and simply coded
the MOV instruction with the literal 500, but experience has shown that programs are easier to
read and maintain if symbols are used. Suppose COUNT were used many times throughout a
program. At a later time, we could easily redefine its value:

COUNT = 600

Assuming that the source file was assembled again, all instances of COUNT would be automati-
cally replaced by the value 600.

Symbol Variable

Uses storage? No Yes

Value changes at runtime? No Yes
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Current Location Counter One of the most important symbols of all, shown as $, is called
the current location counter. For example, the following declaration declares a variable named
selfPtr and initializes it with the variable’s offset value:

selfPtr DWORD $

Keyboard Definitions Programs often define symbols that identify commonly used numeric key-
board codes. For example, 27 is the ASCII code for the Esc key:

Esc_key = 27

Later in the same program, a statement is more self-describing if it uses the symbol rather than
an integer literal. Use

mov  al,Esc_key ; good style

rather than

mov  al,27 ; poor style

Using the DUP Operator Section 3.4.4 showed how to use the DUP operator to create stor-
age for arrays and strings. The counter used by DUP should be a symbolic constant, to simplify
program maintenance. In the next example, if COUNT has been defined, it can be used in the
following data definition:

array dword COUNT DUP(0)

Redefinitions A symbol defined with � can be redefined within the same program. The fol-
lowing example shows how the assembler evaluates COUNT as it changes value:

COUNT = 5
mov al,COUNT ; AL = 5
COUNT = 10
mov al,COUNT ; AL = 10
COUNT = 100
mov al,COUNT ; AL = 100

The changing value of a symbol such as COUNT has nothing to do with the runtime execution
order of statements. Instead, the symbol changes value according to the assembler’s sequential
processing of the source code during the assembler’s preprocessing stage.

3.5.2 Calculating the Sizes of Arrays and Strings
When using an array, we usually like to know its size. The following example uses a constant
named ListSize to declare the size of list:

list BYTE 10,20,30,40
ListSize = 4

Explicitly stating an array’s size can lead to a programming error, particularly if you should later
insert or remove array elements. A better way to declare an array size is to let the assembler
calculate its value for you. The $ operator (current location counter) returns the offset associated
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with the current program statement. In the following example, ListSize is calculated by subtract-
ing the offset of list from the current location counter ($):

list BYTE 10,20,30,40
ListSize = ($ - list)

ListSize must follow immediately after list. The following, for example, produces too large a
value (24) for ListSize because the storage used by var2 affects the distance between the current
location counter and the offset of list:

list BYTE 10,20,30,40
var2 BYTE 20 DUP(?)
ListSize = ($ - list)

Rather than calculating the length of a string manually, let the assembler do it:

myString  BYTE "This is a long string, containing"
          BYTE "any number of characters"
myString_len = ($ − myString)

Arrays of Words and DoubleWords When calculating the number of elements in an array
containing values other than bytes, you should always divide the total array size (in bytes) by the
size of the individual array elements. The following code, for example, divides the address range
by 2 because each word in the array occupies 2 bytes (16 bits):

list  WORD  1000h,2000h,3000h,4000h
ListSize = ($ − list) / 2

Similarly, each element of an array of doublewords is 4 bytes long, so its overall length must be
divided by four to produce the number of array elements:

list  DWORD  10000000h,20000000h,30000000h,40000000h
ListSize = ($ − list) / 4

3.5.3 EQU Directive
The EQU directive associates a symbolic name with an integer expression or some arbitrary text.
There are three formats:

name EQU expression
name EQU symbol
name EQU <text>

In the first format, expression must be a valid integer expression (see Section 3.1.3). In the sec-
ond format, symbol is an existing symbol name, already defined with = or EQU. In the third for-
mat, any text may appear within the brackets <. . .>. When the assembler encounters name later
in the program, it substitutes the integer value or text for the symbol. 

EQU can be useful when defining a value that does not evaluate to an integer. A real number
constant, for example, can be defined using EQU:

PI EQU <3.1416>

Example The following example associates a symbol with a character string. Then a variable
can be created using the symbol:
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pressKey EQU <"Press any key to continue...",0>
.
.
.data
prompt  BYTE   pressKey

Example Suppose we would like to define a symbol that counts the number of cells in a
10-by-10 integer matrix. We will define symbols two different ways, first as an integer expres-
sion and second as a text expression. The two symbols are then used in data definitions:

matrix1  EQU   10 * 10
matrix2  EQU  <10 * 10>
.data
M1 WORD matrix1
M2 WORD matrix2

The assembler produces different data definitions for M1 and M2. The integer expression in
matrix1 is evaluated and assigned to M1. On the other hand, the text in matrix2 is copied
directly into the data definition for M2:

M1 WORD  100
M2 WORD  10 * 10

No Redefinition Unlike the = directive, a symbol defined with EQU cannot be redefined in
the same source code file. This restriction prevents an existing symbol from being inadvertently
assigned a new value. 

3.5.4 TEXTEQU Directive
The TEXTEQU directive, similar to EQU, creates what is known as a text macro. There are three
different formats: the first assigns text, the second assigns the contents of an existing text macro,
and the third assigns a constant integer expression:

name TEXTEQU <text>
name TEXTEQU textmacro
name TEXTEQU %constExpr

For example, the prompt1 variable uses the continueMsg text macro:

continueMsg TEXTEQU <"Do you wish to continue (Y/N)?">
.data
prompt1 BYTE continueMsg

Text macros can build on each other. In the next example, count is set to the value of an integer
expression involving rowSize. Then the symbol move is defined as mov. Finally, setupAL is
built from move and count:

rowSize = 5
count   TEXTEQU  %(rowSize * 2)
move    TEXTEQU  <mov>
setupAL TEXTEQU  <move al,count>
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Therefore, the statement

setupAL

would be assembled as

mov al,10

A symbol defined by TEXTEQU can be redefined at any time. 

3.5.5 Section Review
1. Declare a symbolic constant using the equal-sign directive that contains the ASCII code

(08h) for the Backspace key.

2. Declare a symbolic constant named SecondsInDay using the equal-sign directive and
assign it an arithmetic expression that calculates the number of seconds in a 24-hour period.

3. Write a statement that causes the assembler to calculate the number of bytes in the follow-
ing array, and assign the value to a symbolic constant named ArraySize:

myArray WORD 20 DUP(?)

4. Show how to calculate the number of elements in the following array, and assign the value
to a symbolic constant named ArraySize:

myArray DWORD 30 DUP(?)

5. Use a TEXTEQU expression to redefine “proc” as “procedure.”

6. Use TEXTEQU to create a symbol named Sample for a string constant, and then use the
symbol when defining a string variable named MyString.

7. Use TEXTEQU to assign the symbol SetupESI to the following line of code:

mov esi,OFFSET myArray

3.6 64-Bit Programming
With the advent of 64-bit processors by AMD and Intel, there has been increased interest in 64-bit
programming. MASM supports 64-bit code, and the 64-bit version of the assembler is installed
with all full versions of Visual Studio 2012 (Ultimate, Premium, or Professional) and with the
Visual Studio 2012 Express for Desktop. In each chapter, beginning with this one, we will
include 64-bit versions of some of the sample programs. We will also discuss the Irvine64 sub-
routine library supplied with this book.

Let’s borrow the AddTwoSum program shown earlier in this chapter, and modify it for 64-bit
programming. We will use the 64-bit register RAX to accumulate two integers, and store their
sum in a 64-bit variable:

 1: ; AddTwoSum_64.asm - Chapter 3 example.
 2: 
 3: ExitProcess PROTO
 4: 
 5: .data
 6: sum DWORD 0
 7: 
 8: .code
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 9: main PROC
10:   mov  eax,5
11:   add  eax,6
12:   mov  sum,eax
13:
14:   mov  ecx,0
15:   call ExitProcess
16: main ENDP
17: END

Here’s how this program is different from the 32-bit version we showed earlier in the chapter:

• The following three lines, which were in the 32-bit version of the AddTwoSum program are
not used in the 64-bit version:

.386

.model flat,stdcall

.stack 4096

• Statements using the PROTO keyword do not have parameters in 64-bit programs. This is
from Line 3:

  ExitProcess PROTO

This was our earlier 32-bit version:

  ExitProcess PROTO,dwExitCode:DWORD

• Lines 14–15 use two instructions to end the program (mov and call). The 32-bit version used
an INVOKE statement to do the same thing. The 64-bit version of MASM does not support
the INVOKE directive.

• In line 17, the end directive does not specify a program entry point. The 32-bit version of the
program did.

Using 64-Bit Registers
In some applications, you may need to perform arithmetic with integers that are larger than
32 bits. In that case, you can use 64-bit registers and variables. For example, this is how we
could make our sample program use 64-bit values:

• In line 6, we would change DWORD to QWORD when declaring the sum variable.
• In lines 10–12, we would change EAX to its 64-bit version, named RAX.

This is how lines 6–12 would appear after we made the changes:

 6: sum QWORD 0
 7: 
 8: .code
 9: main PROC
10:    mov  rax,5
11:    add  rax,6
12:    mov  sum,rax

Whether you write 32-bit or 64-bit assembly programs is largely a matter of preference. Here’s
something to remember: the 64-bit version of MASM 11.0 (shipped with Visual Studio 12) does
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not support the INVOKE directive. Also, you must be running the 64-bit version of Windows in
order to run 64-bit programs. 

You can find instructions at the author’s web site (asmirvine.com) to help you configure
Visual Studio for 64-bit programming.

3.7 Chapter Summary
A constant integer expression is a mathematical expression involving integer literals, symbolic
constants, and arithmetic operators. Precedence refers to the implied order of operations when
an expression contains two or more operators.

A character literal is a single character enclosed in quotes. The assembler converts a character
to a byte containing the character’s binary ASCII code. A string literal is a sequence of charac-
ters enclosed in quotes, optionally ending with a null byte.

Assembly language has a set of reserved words with special meanings that may only be used
in the correct context. An identifier is a programmer-chosen name identifying a variable, a sym-
bolic constant, a procedure, or a code label. Identifiers cannot be reserved words.

A directive is a command embedded in the source code and interpreted by the assembler. An
instruction is a source code statement that is executed by the processor at runtime. An instruc-
tion mnemonic is a short keyword that identifies the operation carried out by an instruction.
A label is an identifier that acts as a place marker for instructions or data.

Operands are values passed to instructions. An assembly language instruction can have
between zero and three operands, each of which can be a register, memory operand, integer
expression, or input-output port number. 

Programs contain logical segments named code, data, and stack. The code segment contains
executable instructions. The stack segment holds procedure parameters, local variables, and
return addresses. The data segment holds variables.

A source file contains assembly language statements. A listing file contains a copy of the pro-
gram’s source code, suitable for printing, with line numbers, offset addresses, translated
machine code, and a symbol table. A source file is created with a text editor. An assembler is a
program that reads the source file, producing both object and listing files. The linker is a pro-
gram that reads one or more object files and produces an executable file. The latter is executed
by the operating system loader. 

MASM recognizes intrinsic data types, each of which describes a set of values that can be
assigned to variables and expressions of the given type:

• BYTE and SBYTE define 8-bit variables.
• WORD and SWORD define 16-bit variables.
• DWORD and SDWORD define 32-bit variables.
• QWORD and TBYTE define 8-byte and 10-byte variables, respectively.
• REAL4, REAL8, and REAL10 define 4-byte, 8-byte, and 10-byte real number variables,

respectively.
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A data definition statement sets aside storage in memory for a variable, and may optionally
assign it a name. If multiple initializers are used in the same data definition, its label refers only to
the offset of the first initializer. To create a string data definition, enclose a sequence of characters
in quotes. The DUP operator generates a repeated storage allocation, using a constant expression
as a counter. The current location counter operator ($) is used in address-calculation expressions.

x86 processors store and retrieve data from memory using little-endian order: The least sig-
nificant byte of a variable is stored at its starting (lowest) address value.

A symbolic constant (or symbol definition) associates an identifier with an integer or text
expression. Three directives create symbolic constants:

• The equal-sign directive (�) associates a symbol name with a constant integer expression.
• The EQU and TEXTEQU directives associate a symbolic name with a constant integer

expression or some arbitrary text. 

3.8 Key Terms

3.8.1 Terms

assembler

big endian

binary coded decimal (BCD)

calling convention

character literal

code label

code segment

compiler

constant integer expression

data definition statement

data label

data segment

decimal real

directive

encoded real

executable file

floating-point literal

identifier

initializer

instruction

instruction mnemonic

integer constant

integer literal

intrinsic data type

label

linker

link library

listing file

little-endian order

macro

memory model

memory operand

object file

operand

operator precedence

packed binary coded decimal

process return code

program entry point

real number literal

reserved word

source file

stack segment

string literal

symbolic constant

system function
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3.8.2 Instructions, Operators, and Directives

3.9 Review Questions and Exercises

3.9.1 Short Answer
1. Provide examples of three different instruction mnemonics.

2. What is a calling convention, and how is it used in assembly language declarations?

3. How do you reserve space for the stack in a program?

4. Explain why the term assembler language is not quite correct.

5. Explain the difference between big endian and little endian. Also, look up the origins of this
term on the Web.

6. Why might you use a symbolic constant rather than an integer literal in your code?

7. How is a source file different from a listing file?

8. How are data labels and code labels different?

9. (True/False): An identifier cannot begin with a numeric digit.

10. (True/False): A hexadecimal literal may be written as 0x3A.

11. (True/False): Assembly language directives execute at runtime.

12. (True/False): Assembly language directives can be written in any combination of uppercase
and lowercase letters.

13. Name the four basic parts of an assembly language instruction.

14. (True/False): MOV is an example of an instruction mnemonic.

15. (True/False): A code label is followed by a colon (:), but a data label does not end with a 
colon.

16. Show an example of a block comment.

17. Why is it not a good idea to use numeric addresses when writing instructions that access 
variables?

+ (add, unary plus)

= (assign, compare for equality)

/ (divide)

∗ (multiply)

( ) (parentheses)

− (subtract, unary minus)

ADD

BYTE

CALL

.CODE

COMMENT

.DATA

DWORD

END

ENDP

DUP

EQU

MOD

MOV

NOP

PROC

SBYTE

SDWORD

.STACK

TEXTEQU
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18. What type of argument must be passed to the ExitProcess procedure?

19. Which directive ends a procedure?

20. In 32-bit mode, what is the purpose of the identifier in the END directive?

21. What is the purpose of the PROTO directive?

22. (True/False): An Object file is produced by the Linker.

23. (True/False): A Listing file is produced by the Assembler.

24. (True/False): A link library is added to a program just before producing an Execut-
able file.

25. Which data directive creates a 32-bit signed integer variable?

26. Which data directive creates a 16-bit signed integer variable?

27. Which data directive creates a 64-bit unsigned integer variable?

28. Which data directive creates an 8-bit signed integer variable?

29. Which data directive creates a 10-byte packed BCD variable?

3.9.2 Algorithm Workbench
1. Define four symbolic constants that represent integer 25 in decimal, binary, octal,

and hexadecimal formats.

2. Find out, by trial and error, if a program can have multiple code and data segments.

3. Create a data definition for a doubleword that stored it in memory in big endian
format.

4. Find out if you can declare a variable of type DWORD and assign it a negative
value. What does this tell you about the assembler’s type checking?

5. Write a program that contains two instructions: (1) add the number 5 to the EAX
register, and (2) add 5 to the EDX register. Generate a listing file and examine the
machine code generated by the assembler. What differences, if any, did you find
between the two instructions?

6. Given the number 456789ABh, list out its byte values in little-endian order.

7. Declare an array of 120 uninitialized unsigned doubleword values.

8. Declare an array of byte and initialize it to the first 5 letters of the alphabet.

9. Declare a 32-bit signed integer variable and initialize it with the smallest possible
negative decimal value. (Hint: Refer to integer ranges in Chapter 1.)

10. Declare an unsigned 16-bit integer variable named wArray that uses three initial-
izers.

11. Declare a string variable containing the name of your favorite color. Initialize it as
a nullterminated string.

12. Declare an uninitialized array of 50 signed doublewords named dArray.

13. Declare a string variable containing the word “TEST” repeated 500 times.

14. Declare an array of 20 unsigned bytes named bArray and initialize all elements to
zero.
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15. Show the order of individual bytes in memory (lowest to highest) for the following double-
word variable:

val1 DWORD 87654321h

3.10 Programming Exercises

1. Integer Expression Calculation
Using the AddTwo program from Section 3.2 as a reference, write a program that calculates the
following expression, using registers: A = (A + B) − (C + D). Assign integer values to the EAX,
EBX, ECX, and EDX registers.

2. Symbolic Integer Constants
Write a program that defines symbolic constants for all seven days of the week. Create an array
variable that uses the symbols as initializers.

3. Data Definitions
Write a program that contains a definition of each data type listed in Table 3-2 in Section 3.4.
Initialize each variable to a value that is consistent with its data type.

4. Symbolic Text Constants
Write a program that defines symbolic names for several string literals (characters between
quotes). Use each symbolic name in a variable definition.

5. Listing File for AddTwoSum
Generate a listing file for the AddTwoSum program and write a description of the machine code
bytes generated for each instruction. You might have to guess at some of the meanings of the
byte values.

6. AddVariables Program
Modify the AddVariables program so it uses 64-bit variables. Describe the syntax errors gener-
ated by the assembler and what steps you took to resolve the errors.

★

★

★★

★

★★★★

★★★
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This chapter introduces some essential instructions for transferring data and performing arith-
metic. A large part of this chapter is devoted to the basic addressing modes, such as direct,
immediate, and indirect, which make it possible to process arrays. Along with that, we show
how to create loops, and use some of the basic operators, such as OFFSET, PTR, and
LENGTHOF. After reading this chapter, you should have a basic working knowledge of assem-
bly language, with the exception of conditional statements.

4.1 Data Transfer Instructions

4.1.1 Introduction
When programming in languages like Java or C++, it’s easy for beginners to be annoyed when
the compilers generate lots of syntax error messages. Compilers perform strict type checking in
order to help you avoid possible errors such as mismatching variables and data. Assemblers, on
the other hand, let you do just about anything you want, as long as the processor’s instruction set
can do what you ask. In other words, assembly language forces you to pay attention to data stor-
age and machine-specific details. You must understand the processor’s limitations when you
write assembly language code. As it happens, x86 processors have what is commonly known as
a complex instruction set, so they offer a lot of ways of doing things.

If you take the time to thoroughly learn the material presented in this chapter, the rest of this
book will read a lot more smoothly. As the example programs become more complicated, you
will rely on mastery of fundamental tools presented in this chapter.

4.1.2 Operand Types
Chapter 3 introduced x86 instruction formats:

[label:] mnemonic [operands][ ; comment ]

Instructions can have zero, one, two, or three operands. Here, we omit the label and comment
fields for clarity:

mnemonic
mnemonic [destination]
mnemonic [destination],[source]
mnemonic [destination],[source-1],[source-2]

There are three basic types of operands:

• Immediate—uses a numeric literal expression
• Register—uses a named register in the CPU
• Memory—references a memory location

Table 4-1 describes the standard operand types. It uses a simple notation for operands (in 32-bit
mode) freely adapted from the Intel manuals. We will use it from this point on to describe the
syntax of individual instructions. 

4.1.3 Direct Memory Operands
Variable names are references to offsets within the data segment. For example, the following
declaration for a variable named var1 says that its size attribute is byte and it contains the value
10 hexadecimal:
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.data
var1 BYTE 10h

We can write instructions that dereference (look up) memory operands using their addresses.
Suppose var1 were located at offset 10400h. The following instruction copies its value into the
AL register:

mov al var1

It would be assembled into the following machine instruction:

A0 00010400

The first byte in the machine instruction is the operation code (known as the opcode). The
remaining part is the 32-bit hexadecimal address of var1. Although it might be possible to write
programs using only numeric addresses, symbolic names such as var1 make it easier to refer-
ence memory.

Table 4-1  Instruction Operand Notation, 32-Bit Mode.

Operand Description

reg8 8-bit general-purpose register: AH, AL, BH, BL, CH, CL, DH, DL

reg16 16-bit general-purpose register: AX, BX, CX, DX, SI, DI, SP, BP

reg32 32-bit general-purpose register: EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP

reg Any general-purpose register

sreg 16-bit segment register: CS, DS, SS, ES, FS, GS

imm 8-, 16-, or 32-bit immediate value

imm8 8-bit immediate byte value

imm16 16-bit immediate word value

imm32 32-bit immediate doubleword value

reg/mem8 8-bit operand, which can be an 8-bit general register or memory byte

reg/mem16 16-bit operand, which can be a 16-bit general register or memory word

reg/mem32 32-bit operand, which can be a 32-bit general register or memory doubleword

mem An 8-, 16-, or 32-bit memory operand

Alternative Notation. Some programmers prefer to use the following notation with direct oper-
ands because the brackets imply a dereference operation:

mov  al,[var1]

MASM permits this notation, so you can use it in your own programs if you want. Because so
many programs (including those from Microsoft) are printed without the brackets, we will only
use them in this book when an arithmetic expression is involved:

mov  al,[var1 + 5]

(This is called a direct-offset operand, a subject discussed at length in Section 4.1.8.)
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4.1.4 MOV Instruction
The MOV instruction copies data from a source operand to a destination operand. Known as a
data transfer instruction, it is used in virtually every program. Its basic format shows that the
first operand is the destination and the second operand is the source:

MOV destination,source

The destination operand’s contents change, but the source operand is unchanged. The right to
left movement of data is similar to the assignment statement in C++ or Java:

dest = source;

In nearly all assembly language instructions, the left-hand operand is the destination and the right-
hand operand is the source. MOV is very flexible in its use of operands, as long as the following
rules are observed:

• Both operands must be the same size.
• Both operands cannot be memory operands.
• The instruction pointer register (IP, EIP, or RIP) cannot be a destination operand.

Here is a list of the standard MOV instruction formats:

MOV reg,reg
MOV mem,reg
MOV reg,mem
MOV mem,imm
MOV reg,imm

Memory to Memory A single MOV instruction cannot be used to move data directly from
one memory location to another. Instead, you must move the source operand’s value to a register
before assigning its value to a memory operand:

.data
var1 WORD ?
var2 WORD ?
.code
mov  ax,var1
mov  var2,ax

You must consider the minimum number of bytes required by an integer constant when copying
it to a variable or register. For unsigned integer constant sizes, refer to Table 1-4 in Chapter 1. For
signed integer constants, refer to Table 1-7.

Overlapping Values
The following code example shows how the same 32-bit register can be modified using differently sized
data. When oneWord is moved to AX, it overwrites the existing value of AL. When oneDword is
moved to EAX, it overwrites AX. Finally, when 0 is moved to AX, it overwrites the lower half of EAX.

.data
oneByte BYTE 78h
oneWord WORD 1234h
oneDword DWORD 12345678h
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.code
mov  eax,0 ; EAX = 00000000h
mov  al,oneByte ; EAX = 00000078h
mov  ax,oneWord ; EAX = 00001234h
mov  eax,oneDword ; EAX = 12345678h
mov  ax,0 ; EAX = 12340000h

4.1.5 Zero/Sign Extension of Integers

Copying Smaller Values to Larger Ones
Although MOV cannot directly copy data from a smaller operand to a larger one, programmers
can create workarounds. Suppose count (unsigned, 16 bits) must be moved to ECX (32 bits). We
can set ECX to zero and move count to CX:

.data
count WORD 1
.code
mov ecx,0
mov cx,count

What happens if we try the same approach with a signed integer equal to �16?

.data
signedVal SWORD -16 ; FFF0h (-16)
.code
mov ecx,0
mov cx,signedVal ; ECX = 0000FFF0h (+65,520)

The value in ECX (�65,520) is completely different from �16. On the other hand, if we had
filled ECX first with FFFFFFFFh and then copied signedVal to CX, the final value would have
been correct:

mov ecx,0FFFFFFFFh
mov cx,signedVal ; ECX = FFFFFFF0h (-16)

The effective result of this example was to use the highest bit of the source operand (1) to fill
the upper 16 bits of the destination operand, ECX. This technique is called sign extension. Of
course, we cannot always assume that the highest bit of the source is a 1. Fortunately, the engi-
neers at Intel anticipated this problem when designing the instruction set and introduced the
MOVZX and MOVSX instructions to deal with both unsigned and signed integers.

MOVZX Instruction
The MOVZX instruction (move with zero-extend) copies the contents of a source operand into a
destination operand and zero-extends the value to 16 or 32 bits. This instruction is only used
with unsigned integers. There are three variants:

MOVZX reg32,reg/mem8
MOVZX reg32,reg/mem16
MOVZX reg16,reg/mem8
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(Operand notation was explained in Table 4-1.) In each of the three variants, the first operand (a
register) is the destination and the second is the source. Notice that the source operand cannot be
a constant. The following example zero-extends binary 10001111 into AX:

.data
byteVal BYTE 10001111b
.code
movzx  ax,byteVal ; AX = 0000000010001111b

Figure 4-1 shows how the source operand is zero-extended into the 16-bit destination.

Figure 4–1 Using MOVZX to copy a byte into a 16-bit destination.

The following examples use registers for all operands, showing all the size variations:

mov bx,0A69Bh
movzx eax,bx ; EAX = 0000A69Bh
movzx edx,bl ; EDX = 0000009Bh
movzx cx,bl ; CX  = 009Bh

The following examples use memory operands for the source and produce the same results:

.data
byte1 BYTE 9Bh
word1 WORD 0A69Bh
.code
movzx eax,word1 ; EAX = 0000A69Bh
movzx edx,byte1 ; EDX = 0000009Bh
movzx cx,byte1 ; CX  = 009Bh

MOVSX Instruction
The MOVSX instruction (move with sign-extend) copies the contents of a source operand into a
destination operand and sign-extends the value to 16 or 32 bits. This instruction is only used
with signed integers. There are three variants:

MOVSX reg32,reg/mem8
MOVSX reg32,reg/mem16
MOVSX reg16,reg/mem8

An operand is sign-extended by taking the smaller operand’s highest bit and repeating (repli-
cating) the bit throughout the extended bits in the destination operand. The following example
sign-extends binary 10001111b into AX:

1  0  0  0  1  1  1  1

1  0  0  0  1  1  1  1

Source

Destination0  0  0  0  0  0  0  0

0
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.data
byteVal BYTE 10001111b
.code
movsx  ax,byteVal ; AX = 1111111110001111b

The lowest 8 bits are copied as in Figure 4-2. The highest bit of the source is copied into each of
the upper 8 bit positions of the destination.

A hexadecimal constant has its highest bit set if its most significant hexadecimal digit is
greater than 7. In the following example, the hexadecimal value moved to BX is A69B, so the
leading “A” digit tells us that the highest bit is set. (The leading zero appearing before A69B is
just a notational convenience so the assembler does not mistake the constant for the name of an
identifier.)

mov bx,0A69Bh
movsx eax,bx ; EAX = FFFFA69Bh
movsx edx,bl ; EDX = FFFFFF9Bh
movsx cx,bl ; CX  = FF9Bh

Figure 4–2 Using MOVSX to copy a byte into a 16-bit destination.

4.1.6 LAHF and SAHF Instructions
The LAHF (load status flags into AH) instruction copies the low byte of the EFLAGS register
into AH. The following flags are copied: Sign, Zero, Auxiliary Carry, Parity, and Carry. Using
this instruction, you can easily save a copy of the flags in a variable for safekeeping: 

.data
saveflags BYTE ?
.code
lahf  ; load flags into AH
mov saveflags,ah ; save them in a variable

The SAHF (store AH into status flags) instruction copies AH into the low byte of the
EFLAGS (or RFLAGS) register. For example, you can retrieve the values of flags saved earlier
in a variable:

mov ah,saveflags ; load saved flags into AH
sahf ; copy into Flags register

1  0  0  0  1  1  1  1

(Copy 8 bits)

1  0  0  0  1  1  1  1

Source

Destination1  1  1  1  1  1  1  1
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4.1.7 XCHG Instruction
The XCHG (exchange data) instruction exchanges the contents of two operands. There are three
variants:

XCHG reg,reg
XCHG reg,mem
XCHG mem,reg

The rules for operands in the XCHG instruction are the same as those for the MOV instruction
(Section 4.1.4), except that XCHG does not accept immediate operands. In array sorting
applications, XCHG provides a simple way to exchange two array elements. Here are a few
examples using XCHG:

xchg ax,bx      ; exchange 16-bit regs
xchg ah,al     ; exchange 8-bit regs
xchg var1,bx ; exchange 16-bit mem op with BX
xchg eax,ebx    ; exchange 32-bit regs

To exchange two memory operands, use a register as a temporary container and combine MOV
with XCHG:

mov ax,val1
xchg ax,val2
mov val1,ax

4.1.8 Direct-Offset Operands
You can add a displacement to the name of a variable, creating a direct-offset operand. This lets
you access memory locations that may not have explicit labels. Let’s begin with an array of
bytes named arrayB:

arrayB  BYTE 10h,20h,30h,40h,50h

If we use MOV with arrayB as the source operand, we automatically move the first byte in the
array:

mov al,arrayB ; AL = 10h

We can access the second byte in the array by adding 1 to the offset of arrayB:

mov al,[arrayB+1] ; AL = 20h

The third byte is accessed by adding 2:

mov al,[arrayB+2] ; AL = 30h

An expression such as arrayB�1 produces what is called an effective address by adding a constant
to the variable’s offset. Surrounding an effective address with brackets makes it clear that the expres-
sion is dereferenced to obtain the contents of memory at the address. The assembler does not require
you to surround address expressions with brackets, but we highly recommend their use for clarity.

MASM has no built-in range checking for effective addresses. In the following example,
assuming arrayB holds five bytes, the instruction retrieves a byte of memory outside the array.
The result is a sneaky logic bug, so be extra careful when checking array references:

mov al,[arrayB+20] ; AL = ??
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Word and Doubleword Arrays In an array of 16-bit words, the offset of each array element
is 2 bytes beyond the previous one. That is why we add 2 to ArrayW in the next example to
reach the second element:

.data
arrayW WORD 100h,200h,300h
.code
mov ax,arrayW ; AX = 100h
mov ax,[arrayW+2] ; AX = 200h

Similarly, the second element in a doubleword array is 4 bytes beyond the first one:

.data
arrayD DWORD 10000h,20000h
.code
mov eax,arrayD ; EAX = 10000h
mov eax,[arrayD+4] ; EAX = 20000h

4.1.9 Example Program (Moves)
Let’s combine all the instructions we’ve covered so far in this chapter, including MOV, XCHG,
MOVSX, and MOVDX, to show how bytes, words, and doublewords are affected. We will also
include some direct-offset operands.

; Data Transfer Examples            (Moves.asm)

.386

.model flat,stdcall

.stack 4096
ExitProcess PROTO,dwExitCode:DWORD
.data
val1 WORD 1000h
val2 WORD 2000h
arrayB BYTE 10h,20h,30h,40h,50h
arrayW WORD 100h,200h,300h
arrayD DWORD 10000h,20000h

.code
main PROC

; Demonstrating MOVZX instruction:
mov bx,0A69Bh
movzx eax,bx ; EAX = 0000A69Bh
movzx edx,bl ; EDX = 0000009Bh
movzx cx,bl ; CX  = 009Bh

; Demonstrating MOVSX instruction:
mov bx,0A69Bh
movsx eax,bx ; EAX = FFFFA69Bh
movsx edx,bl ; EDX = FFFFFF9Bh
mov bl,7Bh
movsx cx,bl ; CX  = 007Bh

; Memory-to-memory exchange:
mov ax,val1 ; AX = 1000h
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xchg ax,val2 ; AX=2000h, val2=1000h
mov val1,ax ; val1 = 2000h

; Direct-Offset Addressing (byte array):
mov al,arrayB ; AL = 10h
mov al,[arrayB+1] ; AL = 20h
mov al,[arrayB+2] ; AL = 30h

; Direct-Offset Addressing (word array):
mov ax,arrayW ; AX = 100h
mov ax,[arrayW+2] ; AX = 200h

; Direct-Offset Addressing (doubleword array):
mov eax,arrayD ; EAX = 10000h
mov eax,[arrayD+4] ; EAX = 20000h
mov eax,[arrayD+4] ; EAX = 20000h

INVOKE ExitProcess,0
main ENDP
END main

This program generates no screen output, but you can (and should) run it using a debugger.

Displaying CPU Flags in the Visual Studio Debugger
To display the CPU status flags during a debugging session, select Windows from the Debug
menu, then select Registers from the Windows menu. Inside the Registers window, right-click
and select Flags from the dropdown list. You must be currently debugging a program in order to
see these menu options. The following table identifies the flag symbols used inside the Registers
window:

Each flag is assigned a value of 0 (clear) or 1 (set). Here’s an example:

As you step through your code during a debugging session, each flag displays in red when an
instruction modifies the flag’s value. You can learn how instructions affect the flags by stepping
through instructions and keeping an eye on the changing values of the flags.

4.1.10 Section Review
1. What are the three basic types of operands?

2. (True/False): The destination operand of a MOV instruction cannot be a segment register.

3. (True/False): In a MOV instruction, the second operand is known as the destination operand.

Flag 
Name Overflow Direction Interrupt Sign Zero

Aux 
Carry Parity Carry

Symbol OV UP EI PL ZR AC PE CY

� �OV 10 UP �0 EI
� �PL 00 ZR �1 AC

� �PE 1 CY 0
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4. (True/False): The EIP register cannot be the destination operand of a MOV instruction.

5. In the operand notation used by Intel, what does reg/mem32 indicate?

6. In the operand notation used by Intel, what does imm16 indicate?

4.2 Addition and Subtraction
Arithmetic is a surprisingly big topic in assembly language! This chapter will focus on addition
and subtraction. Then we will talk about multiplication and division later in Chapter 7. Then
we’ll switch over to floating point arithmetic in Chapter 12.

Let’s start with the easiest and most efficient instructions of them all: INC (increment) and
DEC (decrement), which add 1 and subtract 1. Then we will move on to the ADD, SUB, and
NEG (negate) instructions, which offer more possibilities. Last of all, we will get into a discus-
sion about how the CPU status flags (Carry, Sign, Zero, etc.) are affected by arithmetic instruc-
tions. Remember, assembly language is all about the details.

4.2.1 INC and DEC Instructions
The INC (increment) and DEC (decrement) instructions, respectively, add 1 and subtract 1 from
a register or memory operand. The syntax is

INC reg/mem
DEC reg/mem

Following are some examples:

.data
myWord WORD 1000h
.code
inc myWord ; myWord = 1001h
mov bx,myWord
dec bx ; BX = 1000h

The Overflow, Sign, Zero, Auxiliary Carry, and Parity flags are changed according to the
value of the destination operand. The INC and DEC instructions do not affect the Carry flag
(which is something of a surprise). 

4.2.2 ADD Instruction
The ADD instruction adds a source operand to a destination operand of the same size. The syntax is

ADD dest,source

Source is unchanged by the operation, and the sum is stored in the destination operand. The set
of possible operands is the same as for the MOV instruction (Section 4.1.4). Here is a short code
example that adds two 32-bit integers:

.data
var1 DWORD 10000h
var2 DWORD 20000h
.code
mov eax,var1 ; EAX = 10000h
add eax,var2 ; EAX = 30000h
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Flags The Carry, Zero, Sign, Overflow, Auxiliary Carry, and Parity flags are changed accord-
ing to the value that is placed in the destination operand. We will explain how the flags work in
Section 4.2.6.

4.2.3 SUB Instruction
The SUB instruction subtracts a source operand from a destination operand. The set of pos-
sible operands is the same as for the ADD and MOV instructions. The syntax is

SUB dest,source

Here is a short code example that subtracts two 32-bit integers:

.data
var1 DWORD 30000h
var2 DWORD 10000h
.code
mov eax,var1 ; EAX = 30000h
sub eax,var2 ; EAX = 20000h

Flags The Carry, Zero, Sign, Overflow, Auxiliary Carry, and Parity flags are changed accord-
ing to the value that is placed in the destination operand. 

4.2.4 NEG Instruction
The NEG (negate) instruction reverses the sign of a number by converting the number to its
two’s complement. The following operands are permitted:

NEG reg
NEG mem

(Recall that the two’s complement of a number can be found by reversing all the bits in the desti-
nation operand and adding 1.)

Flags The Carry, Zero, Sign, Overflow, Auxiliary Carry, and Parity flags are changed accord-
ing to the value that is placed in the destination operand. 

4.2.5 Implementing Arithmetic Expressions
Armed with the ADD, SUB, and NEG instructions, you have the means to implement arithmetic
expressions involving addition, subtraction, and negation in assembly language. In other words,
you can simulate what a C++ compiler might do when a statement such as this:

Rval = -Xval + (Yval - Zval);

Let’s see how the sample statement would be implemented in assembly language. The following
signed 32-bit variables will be used:

Rval SDWORD ? 
Xval SDWORD 26
Yval SDWORD 30
Zval SDWORD 40
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When translating an expression, evaluate each term separately and combine the terms at the end.
First, we negate a copy of Xval and store it in a register:

; first term: -Xval
mov eax,Xval
neg eax ; EAX = -26

Then Yval is copied to a register and Zval is subtracted:

; second term: (Yval - Zval)
mov  ebx,Yval
sub  ebx,Zval ; EBX = -10

Finally, the two terms (in EAX and EBX) are added:

; add the terms and store:
add  eax,ebx
mov  Rval,eax ; -36

4.2.6 Flags Affected by Addition and Subtraction
When executing arithmetic instructions, we often want to know something about the result. Is it neg-
ative, positive, or zero? Is it too large or too small to fit into the destination operand? Answers to
such questions can help us detect calculation errors that might otherwise cause erratic program
behavior. We use the values of CPU status flags to check the outcome of arithmetic operations.
We also use status flag values to activate conditional branching instructions, the basic tools of
program logic. Here’s a quick overview of the status flags.

• The Carry flag indicates unsigned integer overflow. For example, if an instruction has an 8-bit
destination operand but the instruction generates a result larger than 11111111 binary, the
Carry flag is set.

• The Overflow flag indicates signed integer overflow. For example, if an instruction has a 16-
bit destination operand but it generates a negative result smaller than �32,768 decimal, the
Overflow flag is set.

• The Zero flag indicates that an operation produced zero. For example, if an operand is sub-
tracted from another of equal value, the Zero flag is set.

• The Sign flag indicates that an operation produced a negative result. If the most significant bit
(MSB) of the destination operand is set, the Sign flag is set.

• The Parity flag indicates whether or not an even number of 1 bits occurs in the least signifi-
cant byte of the destination operand, immediately after an arithmetic or boolean instruction
has executed. 

• The Auxiliary Carry flag is set when a 1 bit carries out of position 3 in the least significant
byte of the destination operand.

To display CPU status flag values when debugging, open the Registers window, right-click in the
window, and select Flags.
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Unsigned Operations: Zero, Carry, and Auxiliary Carry
The Zero flag is set when the result of an arithmetic operation equals zero. The following exam-
ples show the state of the destination register and Zero flag after executing the SUB, INC, and
DEC instructions:

mov ecx,1
sub ecx,1 ; ECX = 0, ZF = 1
mov eax,0FFFFFFFFh
inc eax ; EAX = 0, ZF = 1
inc eax ; EAX = 1, ZF = 0
dec eax ; EAX = 0, ZF = 1

Addition and the Carry Flag The Carry flag’s operation is easiest to explain if we consider
addition and subtraction separately. When adding two unsigned integers, the Carry flag is a copy of
the carry out of the most significant bit of the destination operand. Intuitively, we can say CF � 1
when the sum exceeds the storage size of its destination operand. In the next example, ADD sets
the Carry flag because the sum (100h) is too large for AL:

mov al,0FFh
add al,1 ; AL = 00, CF = 1

Figure 4-3 shows what happens at the bit level when 1 is added to 0FFh. The carry out of the
highest bit position of AL is copied into the Carry flag.

Figure 4–3 Adding 1 to 0FFh sets the Carry flag.

On the other hand, if 1 is added to 00FFh in AX, the sum easily fits into 16 bits and the Carry
flag is clear:

mov ax,00FFh
add ax,1 ; AX = 0100h, CF = 0

But adding 1 to FFFFh in the AX register generates a Carry out of the high bit position of AX:

mov ax,0FFFFh
add ax,1 ; AX = 0000, CF = 1

Subtraction and the Carry Flag A subtract operation sets the Carry flag when a larger
unsigned integer is subtracted from a smaller one. Figure 4-4 shows what happens when we sub-
tract 2 from 1, using 8-bit operands. Here is the corresponding assembly code:

mov al,1
sub al,2 ; AL = FFh, CF = 1

0 0 0 0 0 0�

0 0 0 0 0 0

1

0

1 1 1111

0

01CF

1

1 1 1 1 1 1 11
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Figure 4–4 Subtracting 2 from 1 sets the Carry flag.

Auxiliary Carry The Auxiliary Carry (AC) flag indicates a carry or borrow out of bit 3 in the
destination operand. It is primarily used in binary coded decimal (BCD) arithmetic, but can be
used in other contexts. Suppose we add 1 to 0Fh. The sum (10h) contains a 1 in bit position 4
that was carried out of bit position 3:

mov al,0Fh
add al,1 ; AC = 1

Here is the arithmetic:

 0 0 0 0 1 1 1 1
+ 0 0 0 0 0 0 0 1
------------------
 0 0 0 1 0 0 0 0

Parity The Parity flag (PF) is set when the least significant byte of the destination has an even
number of 1 bits. The following ADD and SUB instructions alter the parity of AL:

mov al,10001100b
add al,00000010b ; AL = 10001110, PF = 1
sub al,10000000b ; AL = 00001110, PF = 0

After the ADD instruction executes, AL contains binary 10001110 (four 0 bits and four 1 bits),
and PF � 1. After the SUB instruction executes, AL contains an odd number of 1 bits, so the
Parity flag equals 0.

Signed Operations: Sign and Overflow Flags

Sign Flag The Sign flag is set when the result of a signed arithmetic operation is negative. The
next example subtracts a larger integer (5) from a smaller one (4):

mov eax,4
sub eax,5 ; EAX = -1, SF = 1

From a mechanical point of view, the Sign flag is a copy of the destination operand’s high bit.
The next example shows the hexadecimal values of BL when a negative result is generated:

mov bl,1 ; BL = 01h
sub bl,2 ; BL = FFh (-1), SF = 1

Tip: The INC and DEC instructions do not affect the Carry flag. Applying the NEG instruction to
a nonzero operand always sets the Carry flag.

1 1 1 1 1 1

0 0 0 0 0 0

�

1 1 1 1 1 1

0

1

1

1

0

1

(1)

(�2)

(FFh)1CF
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Overflow Flag The Overflow flag is set when the result of a signed arithmetic operation over-
flows or underflows the destination operand. For example, from Chapter 1 we know that the
largest possible integer signed byte value is �127; adding 1 to it causes overflow:

mov al,+127
add al,1 ; OF = 1

Similarly, the smallest possible negative integer byte value is �128. Subtracting 1 from it causes
underflow. The destination operand value does not hold a valid arithmetic result, and the Over-
flow flag is set:

mov al,-128
sub al,1 ; OF = 1

The Addition Test There is a very easy way to tell whether signed overflow has occurred
when adding two operands. Overflow occurs when:

• Adding two positive operands generates a negative sum
• Adding two negative operands generates a positive sum

Overflow never occurs when the signs of two addition operands are different.

How the Hardware Detects Overflow The CPU uses an interesting mechanism to determine
the state of the Overflow flag after an addition or subtraction operation. The value that carries out of the
highest bit position is exclusive ORed with the carry into the high bit of the result. The resulting value
is placed in the Overflow flag. In Figure 4-5, we show that adding the 8-bit binary integers 10000000
and 11111110 produces CF = 1, with carryIn(bit7) = 0. In other words, 1 XOR 0 produces OF = 1.

Figure 4–5 Demonstration of how the Overflow flag is set.

NEG Instruction The NEG instruction produces an invalid result if the destination operand can-
not be stored correctly. For example, if we move �128 to AL and try to negate it, the correct value
(�128) will not fit into AL. The Overflow flag is set, indicating that AL contains an invalid value: 

mov al,-128 ; AL = 10000000b
neg al ; AL = 10000000b, OF = 1

On the other hand, if �127 is negated, the result is valid and the Overflow flag is clear:

mov al,+127 ; AL = 01111111b
neg al ; AL = 10000001b, OF = 0

How does the CPU know whether an arithmetic operation is signed or unsigned? We can only give
what seems a dumb answer: It doesn’t! The CPU sets all status flags after an arithmetic operation
using a set of boolean rules, regardless of which flags are relevant. You (the programmer) decide
which flags to interpret and which to ignore, based on your knowledge of the type of operation
performed.

1   0   0   0   0   0   0   0

1   1   1   1   1   1   1   0

0   1   1   1   1   1   1   0

�

1CF
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4.2.7 Example Program (AddSubTest)
The AddSubTest program shown below implements various arithmetic expressions using the
ADD, SUB, INC, DEC, and NEG instructions, and shows how certain status flags are affected:

; Addition and Subtraction     (AddSubTest.asm)

.386

.model flat,stdcall

.stack 4096
ExitProcess proto,dwExitCode:dword
.data
Rval   SDWORD ?
Xval   SDWORD 26
Yval   SDWORD 30
Zval   SDWORD 40

.code
main PROC

; INC and DEC
mov ax,1000h
inc ax ; 1001h
dec ax ; 1000h

; Expression: Rval = -Xval + (Yval - Zval)
mov eax,Xval
neg eax ; -26
mov ebx,Yval
sub ebx,Zval ; -10
add eax,ebx
mov Rval,eax ; -36

; Zero flag example:
mov cx,1
sub cx,1 ; ZF = 1
mov ax,0FFFFh
inc ax ; ZF = 1

; Sign flag example:
mov cx,0
sub cx,1 ; SF = 1
mov ax,7FFFh
add ax,2 ; SF = 1

; Carry flag example:
mov al,0FFh
add al,1 ; CF = 1,  AL = 00

; Overflow flag example:
mov al,+127
add al,1 ; OF = 1
mov al,-128
sub al,1 ; OF = 1

INVOKE ExitProcess,0
main ENDP
END main
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4.2.8 Section Review
Use the following data for Questions 1-5:

.data
val1 BYTE  10h
val2 WORD  8000h
val3 DWORD 0FFFFh
val4 WORD  7FFFh

1. Write an instruction that increments val2.

2. Write an instruction that subtracts val3 from EAX.

3. Write instructions that subtract val4 from val2.

4. If val2 is incremented by 1 using the ADD instruction, what will be the values of the Carry
and Sign flags?

5. If val4 is incremented by 1 using the ADD instruction, what will be the values of the Over-
flow and Sign flags?

6. Where indicated, write down the values of the Carry, Sign, Zero, and Overflow flags after
each instruction has executed:

mov ax,7FF0h
add al,10h ; a. CF =    SF =    ZF =    OF = 
add ah,1 ; b. CF =    SF =    ZF =    OF = 
add ax,2 ; c. CF =    SF =    ZF =    OF = 

4.3 Data-Related Operators and Directives
Operators and directives are not executable instructions; instead, they are interpreted by the
assembler. You can use a number of assembly language directives to get information about the
addresses and size characteristics of data:

• The OFFSET operator returns the distance of a variable from the beginning of its enclosing
segment.

• The PTR operator lets you override an operand’s default size. 
• The TYPE operator returns the size (in bytes) of an operand or of each element in an

array. 
• The LENGTHOF operator returns the number of elements in an array. 
• The SIZEOF operator returns the number of bytes used by an array initializer.

In addition, the LABEL directive provides a way to redefine the same variable with different
size attributes. The operators and directives in this chapter represent only a small subset of the
operators supported by MASM. You may want to view the complete list in Appendix D.

4.3.1 OFFSET Operator
The OFFSET operator returns the offset of a data label. The offset represents the distance, in
bytes, of the label from the beginning of the data segment. To illustrate, Figure 4-6 shows a vari-
able named myByte inside the data segment.
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Figure 4–6 A variable named myByte.

OFFSET Examples
In the next example, we declare three different types of variables:

.data
bVal  BYTE  ?
wVal  WORD  ?
dVal  DWORD ?
dVal2 DWORD ?

If bVal were located at offset 00404000 (hexadecimal), the OFFSET operator would return the
following values:

mov esi,OFFSET bVal ; ESI = 00404000h
mov esi,OFFSET wVal ; ESI = 00404001h
mov esi,OFFSET dVal ; ESI = 00404003h
mov esi,OFFSET dVal2 ; ESI = 00404007h

OFFSET can also be applied to a direct-offset operand. Suppose myArray contains five
16-bit words. The following MOV instruction obtains the offset of myArray, adds 4, and
moves the resulting address to ESI. We can say that ESI points to the third integer in the array:

.data
myArray WORD 1,2,3,4,5
.code
mov esi,OFFSET myArray + 4

You can initialize a doubleword variable with the offset of another variable, effectively creating
a pointer. In the following example, pArray points to the beginning of bigArray:

.data
bigArray DWORD 500 DUP(?)
pArray DWORD bigArray

The following statement loads the pointer’s value into ESI, so the register can point to the begin-
ning of the array:

mov esi,pArray

4.3.2 ALIGN Directive
The ALIGN directive aligns a variable on a byte, word, doubleword, or paragraph boundary. The
syntax is

ALIGN bound

Offset

myByte

Data segment:
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Bound can be 1, 2, 4, 8, or 16. A value of 1 aligns the next variable on a 1-byte boundary (the
default). If bound is 2, the next variable is aligned on an even-numbered address. If bound is 4,
the next address is a multiple of 4. If bound is 16, the next address is a multiple of 16, a
paragraph boundary. The assembler can insert one or more empty bytes before the variable to fix
the alignment. Why bother aligning data? Because the CPU can process data stored at even-
numbered addresses more quickly than those at odd-numbered addresses.

In the following example, bVal is arbitrarily located at offset 00404000. Inserting the
ALIGN 2 directive before wVal causes it to be assigned an even-numbered offset:

bVal  BYTE  ? ; 00404000h
ALIGN 2
wVal  WORD  ? ; 00404002h
bVal2 BYTE  ? ; 00404004h
ALIGN 4
dVal  DWORD ? ; 00404008h
dVal2 DWORD ? ; 0040400Ch

Note that dVal would have been at offset 00404005, but the ALIGN 4 directive bumped it up to
offset 00404008.

4.3.3 PTR Operator
You can use the PTR operator to override the declared size of an operand. This is only necessary
when you’re trying to access the operand using a size attribute that is different from the one
assumed by the assembler. 

Suppose, for example, that you would like to move the lower 16 bits of a doubleword variable
named myDouble into AX. The assembler will not permit the following move because the oper-
and sizes do not match:

.data
myDouble  DWORD  12345678h
.code
mov ax,myDouble ; error

But the WORD PTR operator makes it possible to move the low-order word (5678h) to AX:

mov ax,WORD PTR myDouble

Why wasn’t 1234h moved into AX? x86 processors use the little endian storage format
(Section 3.4.9), in which the low-order byte is stored at the variable’s starting address. In
Figure 4-7, the memory layout of myDouble is shown three ways: first as a doubleword, then as
two words (5678h, 1234h), and finally as four bytes (78h, 56h, 34h, 12h).

We can access memory in any of these three ways, independent of the way a variable was
defined. For example, if myDouble begins at offset 0000, the 16-bit value stored at that address
is 5678h. We could also retrieve 1234h, the word at location myDouble�2, using the following
statement:

mov   ax,WORD PTR [myDouble+2] ; 1234h
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Figure 4–7 Memory layout of myDouble.

Similarly, we could use the BYTE PTR operator to move a single byte from myDouble to BL:

mov   bl,BYTE PTR myDouble ; 78h

Note that PTR must be used in combination with one of the standard assembler data types,
BYTE, SBYTE, WORD, SWORD, DWORD, SDWORD, FWORD, QWORD, or TBYTE.

Moving Smaller Values into Larger Destinations We might want to move two smaller val-
ues from memory to a larger destination operand. In the next example, the first word is copied to
the lower half of EAX and the second word is copied to the upper half. The DWORD PTR oper-
ator makes this possible:

.data
wordList WORD 5678h,1234h
.code
mov eax,DWORD PTR wordList ; EAX = 12345678h

4.3.4 TYPE Operator
The TYPE operator returns the size, in bytes, of a single element of a variable. For example, the
TYPE of a byte equals 1, the TYPE of a word equals 2, the TYPE of a doubleword is 4, and the
TYPE of a quadword is 8. Here are examples of each:

.data
var1 BYTE  ?
var2 WORD  ?
var3 DWORD ?
var4 QWORD ?

The following table shows the value of each TYPE expression.

Expression Value

TYPE var1 1

TYPE var2 2

TYPE var3 4

TYPE var4 8

12345678 5678 78

56

1234 34

12

OffsetDoubleword Word Byte

0000 myDouble

0001 myDouble � 1

0002 myDouble � 2

0003 myDouble � 3
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4.3.5 LENGTHOF Operator
The LENGTHOF operator counts the number of elements in an array, defined by the values
appearing on the same line as its label. We will use the following data as an example:

.data
byte1    BYTE  10,20,30
array1   WORD  30 DUP(?),0,0
array2   WORD  5 DUP(3 DUP(?))
array3   DWORD 1,2,3,4
digitStr BYTE  "12345678",0

When nested DUP operators are used in an array definition, LENGTHOF returns the prod-
uct of the two counters. The following table lists the values returned by each LENGTHOF
expression:

If you declare an array that spans multiple program lines, LENGTHOF only regards the data
from the first line as part of the array. Given the following data, LENGTHOF myArray would
return the value 5:

myArray BYTE 10,20,30,40,50
        BYTE 60,70,80,90,100

Alternatively, you can end the first line with a comma and continue the list of initializers onto
the next line. Given the following data, LENGTHOF myArray would return the value 10:

myArray BYTE 10,20,30,40,50,
             60,70,80,90,100

4.3.6 SIZEOF Operator
The SIZEOF operator returns a value that is equivalent to multiplying LENGTHOF by TYPE. In
the following example, intArray has TYPE � 2 and LENGTHOF � 32. Therefore, SIZEOF
intArray equals 64:

.data
intArray WORD 32 DUP(0)
.code
mov eax,SIZEOF intArray ; EAX = 64

4.3.7 LABEL Directive
The LABEL directive lets you insert a label and give it a size attribute without allocating any
storage. All standard size attributes can be used with LABEL, such as BYTE, WORD, DWORD,
QWORD or TBYTE. A common use of LABEL is to provide an alternative name and size

Expression Value

LENGTHOF byte1 3

LENGTHOF array1 30 � 2

LENGTHOF array2 5 * 3

LENGTHOF array3 4

LENGTHOF digitStr 9
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attribute for the variable declared next in the data segment. In the following example, we declare
a label just before val32 named val16 and give it a WORD attribute:

.data
val16 LABEL WORD
val32 DWORD 12345678h
.code
mov ax,val16 ; AX = 5678h
mov dx,[val16+2] ; DX = 1234h

val16 is an alias for the same storage location as val32. The LABEL directive itself allocates no
storage.

Sometimes we need to construct a larger integer from two smaller integers. In the next
example, a 32-bit value is loaded into EAX from two 16-bit variables:

.data
LongValue LABEL DWORD
val1  WORD  5678h
val2  WORD  1234h
.code
mov eax,LongValue ; EAX = 12345678h

4.3.8 Section Review
1. (True/False): The OFFSET operator always returns a 16-bit value.

2. (True/False): The PTR operator returns the 32-bit address of a variable.

3. (True/False): The TYPE operator returns a value of 4 for doubleword operands.

4. (True/False): The LENGTHOF operator returns the number of bytes in an operand.

5. (True/False): The SIZEOF operator returns the number of bytes in an operand.

4.4 Indirect Addressing
Direct addressing is rarely used for array processing because it is impractical to use constant off-
sets to address more than a few array elements. Instead, we use a register as a pointer (called
indirect addressing) and manipulate the register’s value. When an operand uses indirect address-
ing, it is called an indirect operand.

4.4.1 Indirect Operands

Protected Mode An indirect operand can be any 32-bit general-purpose register (EAX, EBX,
ECX, EDX, ESI, EDI, EBP, and ESP) surrounded by brackets. The register is assumed to contain the
address of some data. In the next example, ESI contains the offset of byteVal. The MOV instruction
uses the indirect operand as the source, the offset in ESI is dereferenced, and a byte is moved to AL:

.data
byteVal BYTE 10h
.code
mov esi,OFFSET byteVal
mov al,[esi] ; AL = 10h
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If the destination operand uses indirect addressing, a new value is placed in memory at the loca-
tion pointed to by the register. In the following example, the contents of the BL register are cop-
ied to the memory location addressed by ESI.

mov [esi],bl

Using PTR with Indirect Operands The size of an operand may not be evident from the
context of an instruction. The following instruction causes the assembler to generate an “oper-
and must have size” error message:

inc [esi] ; error: operand must have size

The assembler does not know whether ESI points to a byte, word, doubleword, or some other
size. The PTR operator confirms the operand size:

inc BYTE PTR [esi]

4.4.2 Arrays
Indirect operands are ideal tools for stepping through arrays. In the next example, arrayB con-
tains 3 bytes. As ESI is incremented, it points to each byte, in order:

.data
arrayB  BYTE 10h,20h,30h
.code
mov esi,OFFSET arrayB
mov al,[esi] ; AL = 10h
inc esi
mov al,[esi] ; AL = 20h
inc esi
mov al,[esi] ; AL = 30h

If we use an array of 16-bit integers, we add 2 to ESI to address each subsequent array element:

.data
arrayW  WORD 1000h,2000h,3000h
.code
mov esi,OFFSET arrayW
mov ax,[esi] ; AX = 1000h
add esi,2
mov ax,[esi] ; AX = 2000h
add esi,2
mov ax,[esi] ; AX = 3000h

Suppose arrayW is located at offset 10200h. The following illustration shows the initial value
of ESI in relation to the array data:

Offset

1000h

2000h

10200

10202

10204 3000h

Value

[esi]
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Example: Adding 32-Bit Integers The following code example adds three doublewords.
A displacement of 4 must be added to ESI as it points to each subsequent array value because
doublewords are 4 bytes long:

.data
arrayD DWORD 10000h,20000h,30000h
.code
mov esi,OFFSET arrayD
mov eax,[esi] ; first number
add esi,4
add eax,[esi] ; second number
add esi,4
add eax,[esi] ; third number

Suppose arrayD is located at offset 10200h. Then the following illustration shows the initial
value of ESI in relation to the array data:

4.4.3 Indexed Operands
An indexed operand adds a constant to a register to generate an effective address. Any of the
32-bit general-purpose registers may be used as index registers. There are different notational
forms permitted by MASM (the brackets are part of the notation):

constant[reg]
[constant + reg]

The first notational form combines the name of a variable with a register. The variable name is
translated by the assembler into a constant that represents the variable’s offset. Here are exam-
ples that show both notational forms:

Indexed operands are ideally suited to array processing. The index register should be initialized
to zero before accessing the first array element:

.data
arrayB BYTE 10h,20h,30h
.code
mov esi,0
mov al,arrayB[esi] ; AL = 10h

arrayB[esi] [arrayB + esi]

arrayD[ebx] [arrayD + ebx]

Offset

10200

10204

10208

[esi]

[esi] � 4

[esi] � 8

10000h

20000h

30000h

Value



120 Chapter 4  •  Data Transfers, Addressing, and Arithmetic

The last statement adds ESI to the offset of arrayB. The address generated by the expression
[arrayB � ESI] is dereferenced and the byte in memory is copied to AL. 

Adding Displacements The second type of indexed addressing combines a register with a
constant offset. The index register holds the base address of an array or structure, and the con-
stant identifies offsets of various array elements. The following example shows how to do this
with an array of 16-bit words:

.data
arrayW  WORD 1000h,2000h,3000h
.code
mov esi,OFFSET arrayW
mov ax,[esi] ; AX = 1000h
mov ax,[esi+2] ; AX = 2000h
mov ax,[esi+4] ; AX = 3000h

Using 16-Bit Registers It is usual to use 16-bit registers as indexed operands in real-address
mode. In that case, you are limited to using SI, DI, BX, or BP:

mov al,arrayB[si]
mov ax,arrayW[di]
mov eax,arrayD[bx]

As is the case with indirect operands, avoid using BP except when addressing data on the stack.

Scale Factors in Indexed Operands
Indexed operands must take into account the size of each array element when calculating
offsets. Using an array of doublewords, as in the following example, we multiply the sub-
script (3) by 4 (the size of a doubleword) to generate the offset of the array element contain-
ing 400h:

.data
arrayD  DWORD 100h, 200h, 300h, 400h
.code
mov esi,3 * TYPE arrayD ; offset of arrayD[3]
mov eax,arrayD[esi] ; EAX = 400h

Intel designers wanted to make a common operation easier for compiler writers, so they
provided a way for offsets to be calculated, using a scale factor. The scale factor is the size of the
array component (word � 2, doubleword � 4, or quadword � 8). Let’s revise our previous
example by setting ESI to the array subscript (3) and multiplying ESI by the scale factor (4) for
doublewords:

.data
arrayD  DWORD 1,2,3,4
.code
mov esi,3 ; subscript
mov eax,arrayD[esi*4] ; EAX = 4

The TYPE operator can make the indexing more flexible should arrayD be redefined as another
type in the future:
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mov esi,3 ; subscript
mov eax,arrayD[esi*TYPE arrayD] ; EAX = 4

4.4.4 Pointers
A variable containing the address of another variable is called a pointer. Pointers are a great tool for
manipulating arrays and data structures because the address they hold can be modified at runtime.
You might use a system call to allocate (reserve) a block of memory, for example, and save the
address of that block in a variable. A pointer’s size is affected by the processor’s current mode (32-bit
or 64-bit). In the following 32-bit code example, ptrB contains the offset of arrayB:

.data
arrayB byte 10h,20h,30h,40h
ptrB dword arrayB

Optionally, you can declare ptrB with the OFFSET operator to make the relationship
clearer:

ptrB dword OFFSET arrayB

The 32-bit mode programs in this book use near pointers, so they are stored in doubleword
variables. Here are two examples: ptrB contains the offset of arrayB, and ptrW contains the
offset of arrayW:

arrayB BYTE 10h,20h,30h,40h
arrayW WORD 1000h,2000h,3000h
ptrB DWORD arrayB
ptrW DWORD arrayW

Optionally, you can use the OFFSET operator to make the relationship clearer:

ptrB   DWORD OFFSET arrayB
ptrW   DWORD OFFSET arrayW

Using the TYPEDEF Operator
The TYPEDEF operator lets you create a user-defined type that has all the status of a built-in
type when defining variables. TYPEDEF is ideal for creating pointer variables. For example, the
following declaration creates a new data type PBYTE that is a pointer to bytes:

PBYTE TYPEDEF PTR BYTE

This declaration would usually be placed near the beginning of a program, before the data seg-
ment. Then, variables could be defined using PBYTE:

.data
arrayB BYTE 10h,20h,30h,40h
ptr1   PBYTE ? ; uninitialized
ptr2   PBYTE arrayB ; points to an array

High-level languages purposely hide physical details about pointers because their implementa-
tions vary among different machine architectures. In assembly language, because we deal with a
single implementation, we examine and use pointers at the physical level. This approach helps to
remove some of the mystery surrounding pointers. 
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Example Program: Pointers The following program (pointers.asm) uses TYPDEF to create
three pointer types (PBYTE, PWORD, PDWORD). It creates several pointers, assigns several
array offsets, and dereferences the pointers:

TITLE Pointers                       (Pointers.asm)

.386

.model flat,stdcall

.stack 4096
ExitProcess proto,dwExitCode:dword

; Create user-defined types.
PBYTE  TYPEDEF PTR BYTE ; pointer to bytes
PWORD  TYPEDEF PTR WORD ; pointer to words
PDWORD TYPEDEF PTR DWORD ; pointer to doublewords

.data
arrayB BYTE  10h,20h,30h
arrayW WORD  1,2,3
arrayD DWORD 4,5,6

; Create some pointer variables.
ptr1 PBYTE  arrayB
ptr2 PWORD  arrayW
ptr3 PDWORD arrayD

.code
main PROC
; Use the pointers to access data.

mov esi,ptr1
mov al,[esi] ; 10h
mov esi,ptr2
mov ax,[esi] ; 1
mov esi,ptr3
mov eax,[esi] ; 4
invoke ExitProcess,0

main ENDP
END main

4.4.5 Section Review
1. (True/False): Any 32-bit general-purpose register can be used as an indirect operand.

2. (True/False): The EBX register is usually reserved for addressing the stack.

3. (True/False): The following instruction is invalid: inc [esi]

4. (True/False): The following is an indexed operand: array[esi]

Use the following data definitions for Questions 5 and 6:

myBytes  BYTE 10h,20h,30h,40h
myWords  WORD 8Ah,3Bh,72h,44h,66h
myDoubles  DWORD 1,2,3,4,5
myPointer  DWORD myDoubles
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5. Fill in the requested register values on the right side of the following instruction sequence:

mov esi,OFFSET myBytes
mov al,[esi] ; a. AL = 
mov al,[esi+3] ; b. AL = 
mov esi,OFFSET myWords + 2
mov ax,[esi] ; c. AX = 
mov edi,8
mov edx,[myDoubles + edi] ; d. EDX = 
mov edx,myDoubles[edi] ; e. EDX = 
mov ebx,myPointer
mov eax,[ebx+4] ; f. EAX =

6. Fill in the requested register values on the right side of the following instruction sequence:

mov esi,OFFSET myBytes
mov ax,[esi] ; a. AX = 
mov eax,DWORD PTR myWords ; b. EAX =
mov esi,myPointer
mov ax,[esi+2] ; c. AX = 
mov ax,[esi+6] ; d. AX = 
mov ax,[esi-4] ; e. AX = 

4.5 JMP and LOOP Instructions
By default, the CPU loads and executes programs sequentially. But the current instruction might
be conditional, meaning that it transfers control to a new location in the program based on the
values of CPU status flags (Zero, Sign, Carry, etc.). Assembly language programs use condi-
tional instructions to implement high-level statements such as IF statements and loops. Each of
the conditional statements involves a possible transfer of control (jump) to a different memory
address. A transfer of control, or branch, is a way of altering the order in which statements are
executed. There are two basic types of transfers: 

• Unconditional Transfer: Control is transferred to a new location in all cases; a new address
is loaded into the instruction pointer, causing execution to continue at the new address. The
JMP instruction does this. 

• Conditional Transfer: The program branches if a certain condition is true. A wide variety of
conditional transfer instructions can be combined to create conditional logic structures. The
CPU interprets true/false conditions based on the contents of the ECX and Flags registers.

4.5.1 JMP Instruction
The JMP instruction causes an unconditional transfer to a destination, identified by a code label
that is translated by the assembler into an offset. The syntax is

JMP destination

When the CPU executes an unconditional transfer, the offset of destination is moved into the
instruction pointer, causing execution to continue at the new location. 
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Creating a Loop The JMP instruction provides an easy way to create a loop by jumping to a
label at the top of the loop:

top:
.
.
jmp top ; repeat the endless loop

JMP is unconditional, so a loop like this will continue endlessly unless another way is found to
exit the loop.

4.5.2 LOOP Instruction
The LOOP instruction, formally known as Loop According to ECX Counter, repeats a block of
statements a specific number of times. ECX is automatically used as a counter and is decre-
mented each time the loop repeats. Its syntax is

LOOP destination

The loop destination must be within �128 to +127 bytes of the current location counter. The
execution of the LOOP instruction involves two steps: First, it subtracts 1 from ECX. Next, it
compares ECX to zero. If ECX is not equal to zero, a jump is taken to the label identified by des-
tination. Otherwise, if ECX equals zero, no jump takes place, and control passes to the instruc-
tion following the loop.

In the following example, we add 1 to AX each time the loop repeats. When the loop ends,
AX � 5 and ECX � 0:

     mov  ax,0
     mov  ecx,5
L1:
     inc  ax
     loop L1

A common programming error is to inadvertently initialize ECX to zero before beginning a
loop. If this happens, the LOOP instruction decrements ECX to FFFFFFFFh, and the loop
repeats 4,294,967,296 times! If CX is the loop counter (in real-address mode), it repeats 65,536
times.

Occasionally, you might create a loop that is large enough to exceed the allowed relative
jump range of the LOOP instruction. Following is an example of an error message generated by
MASM because the target label of a LOOP instruction was too far away:

error A2075: jump destination too far : by 14 byte(s)

Rarely should you explicitly modify ECX inside a loop. If you do, the LOOP instruction may
not work as expected. In the following example, ECX is incremented within the loop. It never
reaches zero, so the loop never stops:

In real-address mode, CX is the default loop counter for the LOOP instruction. On the other hand,
the LOOPD instruction uses ECX as the loop counter, and the LOOPW instruction uses CX as the
loop counter.
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top:
.
.
inc  ecx
loop top

If you need to modify ECX inside a loop, you can save it in a variable at the beginning of the
loop and restore it just before the LOOP instruction:

.data
count DWORD ?
.code

mov ecx,100 ; set loop count
top:

mov count,ecx ; save the count
.
mov ecx,20 ; modify ECX
.

    mov ecx,count ; restore loop count
    loop top

Nested Loops When creating a loop inside another loop, special consideration must be
given to the outer loop counter in ECX. You can save it in a variable:

.data
count DWORD ?
.code

mov ecx,100 ; set outer loop count
L1:

mov count,ecx ; save outer loop count   
mov ecx,20 ; set inner loop count

L2:
.
.
loop L2 ; repeat the inner loop

mov ecx,count ; restore outer loop count
loop L1 ; repeat the outer loop

As a general rule, nested loops more than two levels deep are difficult to write. If the algo-
rithm you’re using requires deep loop nesting, move some of the inner loops into subroutines.

4.5.3 Displaying an Array in the Visual Studio Debugger
In a debugging session, if you want to display the contents of an array, here’s how to do it: From
the Debug menu, select Windows, select Memory, then select Memory 1. A memory window will
appear, and you can use the mouse to drag and dock it to any side of the Visual Studio work-
space. You can also right-click the window’s title bar and indicate that you want the window to
float above the editor window. In the Address field at the top of the memory window, type the &
(ampersand) character, followed by the name of the array, and press Enter. For example,
&myArray would be a valid address expression. The memory window will display a block of
memory starting at the array’s address. Figure 4-8 shows an example.
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Figure 4–8 Using the debugger’s memory window to display an array.

If your array values are doublewords, you can right-click inside the memory window and
select 4-byte integer from the popup menu. You can also select from different formats, including
Hexadecimal Display, signed decimal integer (called Signed Display), or unsigned decimal inte-
ger (called Unsigned Display) formats. The full set of choices is shown in Figure 4-9.

Figure 4–9 Popup menu for the debugger’s memory window. 

4.5.4 Summing an Integer Array
There’s hardly any task more common in beginning programming than calculating the sum of
the elements in an array. In assembly language, you would follow these steps:

1. Assign the array’s address to a register that will serve as an indexed operand.
2. Initialize the loop counter to the length of the array.
3. Assign zero to the register that accumulates the sum.
4. Create a label to mark the beginning of the loop.
5. In the loop body, add a single array element to the sum.
6. Point to the next array element.
7. Use a LOOP instruction to repeat the loop.
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Steps 1 through 3 may be performed in any order. Here’s a short program that sums an array of
16-bit integers.

; Summing an Array               (SumArray.asm)

.386

.model flat,stdcall

.stack 4096
ExitProcess proto,dwExitCode:dword
.data
intarray DWORD 10000h,20000h,30000h,40000h

.code
main PROC

mov  edi,OFFSET intarray ; 1: EDI = address of intarray
mov  ecx,LENGTHOF intarray ; 2: initialize loop counter
mov  eax,0 ; 3: sum = 0

L1: ; 4: mark beginning of loop
add  eax,[edi] ; 5: add an integer
add  edi,TYPE intarray   ; 6: point to next element
loop L1 ; 7: repeat until ECX = 0

invoke ExitProcess,0
main ENDP
END main

4.5.5 Copying a String
Programs often copy large blocks of data from one location to another. The data may be arrays
or strings, but they can contain any type of objects. Let’s see how this can be done in assembly
language, using a loop that copies a string, represented as an array of bytes with a null termina-
tor value. Indexed addressing works well for this type of operation because the same index regis-
ter references both strings. The target string must have enough available space to receive the
copied characters, including the null byte at the end:

; Copying a String                   (CopyStr.asm)

.386

.model flat,stdcall

.stack 4096
ExitProcess proto,dwExitCode:dword
.data
source  BYTE  "This is the source string",0
target  BYTE  SIZEOF source DUP(0)

.code
main PROC

mov esi,0 ; index register
mov ecx,SIZEOF source ; loop counter

L1:
mov al,source[esi] ; get a character from source
mov target[esi],al ; store it in the target
inc esi ; move to next character
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loop L1 ; repeat for entire string

invoke ExitProcess,0
main ENDP
END main

The MOV instruction cannot have two memory operands, so each character is moved from the
source string to AL, then from AL to the target string.

4.5.6 Section Review
1. (True/False): A JMP instruction can only jump to a label inside the current procedure.

2. (True/False): JMP is a conditional transfer instruction.

3. If ECX is initialized to zero before beginning a loop, how many times will the LOOP
instruction repeat? (Assume ECX is not modified by any other instructions inside the
loop.)

4. (True/False): The LOOP instruction first checks to see whether ECX is not equal to zero;
then LOOP decrements ECX and jumps to the destination label.

5. (True/False): The LOOP instruction does the following: It decrements ECX; then, if ECX is
not equal to zero, LOOP jumps to the destination label.

6. In real-address mode, which register is used as the counter by the LOOP instruction?

7. In real-address mode, which register is used as the counter by the LOOPD instruction?

8. (True/False): The target of a LOOP instruction must be within 256 bytes of the current
location.

9. (Challenge): What will be the final value of EAX in this example?

mov eax,0
mov ecx,10 ; outer loop counter

L1:
mov eax,3
mov ecx,5 ; inner loop counter

L2:
add eax,5
loop L2 ; repeat inner loop
loop L1 ; repeat outer loop

10. Revise the code from the preceding question so the outer loop counter is not erased when
the inner loop starts.

4.6 64-Bit Programming

4.6.1 MOV Instruction
The MOV instruction in 64-bit mode has a great deal in common with 32-bit mode. There are
just a few differences, which we will discuss here. Immediate operands (constants) may be 8, 16,
32, or 64 bits. Here’s a 64-bit example:

mov   rax,0ABCDEFGAFFFFFFFFh ; 64-bit immediate operand
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When you move a 32-bit constant to a 64-bit register, the upper 32 bits (bits 32–63) of the desti-
nation are cleared (equal to zero):

mov   rax,0FFFFFFFFh ; rax = 00000000FFFFFFFF

When you move a 16-bit constant or an 8-bit constant into a 64-bit register, the upper bits are
also cleared:

mov   rax,06666h ; clears bits 16-63
mov   rax,055h ; clears bits 8-63

When you move memory operands into 64-bit registers, however, the results are mixed. For
example, moving a 32-bit memory operand into EAX (the lower half of RAX) causes the upper
32 bits in RAX to be cleared:

.data
myDword DWORD 80000000h
.code
mov rax,0FFFFFFFFFFFFFFFFh
mov eax,myDword ; RAX = 0000000080000000

But when you move an 8-bit or a 16-bit memory operand into the lower bits of RAX, the highest
bits in the destination register are not affected:

.data
myByte BYTE 55h
myWord WORD 6666h
.code
mov   ax,myWord ; bits 16-63 are not affected
mov   al,myByte ; bits 8-63 are not affected

The MOVSXD instruction (move with sign-extension) permits the source operand to be a 32-bit
register or memory operand. The following instructions cause RAX to equal
FFFFFFFFFFFFFFFFh:

mov  ebx,0FFFFFFFFh
movsxd rax,ebx

The OFFSET operator generates a 64-bit address, which must be held by a 64-bit register or
variable. In the following example, we use the RSI register:

.data
myArray WORD 10,20,30,40
.code
mov  rsi,OFFSET myArray

The LOOP instruction in 64-bit mode uses the RCX register as the loop counter.

With these basic concepts, you can write quite a few programs in 64-bit mode. Most of the
time, programming is easier if you consistently use 64-bit integer variables and 64-bit registers.
ASCII strings are a special case because they always contain bytes. Usually, you use indirect or
indexed addressing when processing them.
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4.6.2 64-Bit Version of SumArray
Let’s recreate the SumArray program in 64-bit mode. It calculates the sum of an array of 64-bit
integers. First, we use the QWORD directive to create an array of quadwords. Then, we change
all 32-bit register names to 64-bit names. This is the complete program listing:

; Summing an Array (SumArray_64.asm)

ExitProcess PROTO
.data
intarray QWORD 1000000000000h,2000000000000h

QWORD 3000000000000h,4000000000000h
.code
main PROC

mov  rdi,OFFSET intarray ; RDI = address of intarray
mov  rcx,LENGTHOF intarray ; initialize loop counter
mov  rax,0 ; sum = 0

L1: ; mark beginning of loop
add  rax,[rdi] ; add an integer
add  rdi,TYPE intarray   ; point to next element
loop L1 ; repeat until RCX = 0
mov  ecx,0 ; ExitProcess return value
call ExitProcess

main ENDP
END

4.6.3 Addition and Subtraction
The ADD, SUB, INC, and DEC instructions affect the CPU status flags in the same way in 64-bit
mode as in 32-bit mode. In the following example, we add 1 to a 32-bit number in RAX. Each bit
carries to the left, causing a 1 to be inserted in bit 32:

mov  rax,0FFFFFFFFh ; fill the lower 32 bits
add  rax,1 ; RAX = 100000000h

It always pays to know the sizes of your operands. When you use a partial register operand, be
aware that the remainder of the register is not modified. In the next example, the 16-bit sum in
AX rolls over to zero without affecting the upper bits in RAX. This happens because the opera-
tion uses 16-bit registers (AX and BX):

mov  rax,0FFFFh ; RAX = 000000000000FFFF
mov  bx,1
add  ax,bx ; RAX = 0000000000000000

Similarly, in the following example, the sum in AL does not carry into any other bits within
RAX. After the ADD, RAX equals zero:

mov  rax,0FFh ; RAX = 00000000000000FF
mov  bl,1
add  al,bl ; RAX = 0000000000000000

The same principle applies to subtraction. In the following code excerpt, subtracting 1 from zero
in EAX causes the lower 32 bits of RAX to become equal to  (FFFFFFFFh). Similarly, sub-
tracting 1 from zero in AX causes the lower 16 bits of RAX to become equal to  (FFFFh).

1–

1–
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mov  rax,0 ; RAX = 0000000000000000
mov  ebx,1
sub  eax,ebx ; RAX = 00000000FFFFFFFF
mov  rax,0 ; RAX = 0000000000000000
mov  bx,1
sub  ax,bx ; RAX = 000000000000FFFF

A 64-bit general-purpose register must be used when an instruction contains an indirect operand.
Remember that you must use the PTR operator to clarify the target operand’s size. Here are
examples, including one with a 64-bit target:

dec  BYTE PTR [rdi] ; 8-bit  target
inc  WORD PTR [rbx] ; 16-bit target
inc  QWORD PTR [rsi] ; 64-bit target

In 64-bit mode, you can use scale factors in indexed operands, just as you do in 32-bit mode. If
you’re working with an array of 64-bit integers, use a scale factor of 8. Here’s an example

.data
array QWORD 1,2,3,4
.code
mov esi,3 ; subscript
mov eax,array[rsi*8] ; EAX = 4

In 64-bit mode, a pointer variable holds a 64-bit offset. In the following example, the ptrB vari-
able holds the offset of arrayB:

.data
arrayB BYTE 10h,20h,30h,40h
ptrB QWORD arrayB

Optionally, you can declare ptrB with the OFFSET operator to make the relationship clearer:

ptrB QWORD OFFSET arrayB

4.6.4 Section Review
1. (True/False): Moving a constant value of 0FFh to the RAX register clears bits 8 through 63.

2. (True/False): A 32-bit constant may be moved to a 64-bit register, but 64-bit constants are
not permitted.

3. What value will RCX contain after executing the following instructions?

mov  rcx,1234567800000000h
sub  ecx,1

4. What value will RCX contain after executing the following instructions?

mov  rcx,1234567800000000h
add  rcx,0ABABABABh

5. What value will the AL register contain after executing the following instructions?

.data
bArray BYTE 10h,20h,30h,40h,50h
.code
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mov  rdi,OFFSET bArray
dec  BYTE PTR [rdi+1]
inc  rdi
mov  al,[rdi]

6. What value will RCX contain after executing the following instructions?

mov  rcx,0DFFFh
mov  bx,3
add  cx,bx

4.7 Chapter Summary
MOV, a data transfer instruction, copies a source operand to a destination operand. The MOVZX
instruction zero-extends a smaller operand into a larger one. The MOVSX instruction sign-
extends a smaller operand into a larger one. The XCHG instruction exchanges the contents of
two operands. At least one operand must be a register. 

Operand Types The following types of operands are presented in this chapter:

• A direct operand is the name of a variable, and represents the variable’s address.
• A direct-offset operand adds a displacement to the name of a variable, generating a new off-

set. This new offset can be used to access data in memory.
• An indirect operand is a register containing the address of data. By surrounding the register with

brackets (as in [esi]), a program dereferences the address and retrieves the memory data.
• An indexed operand combines a constant with an indirect operand. The constant and register

value are added, and the resulting offset is dereferenced. For example, [array+esi] and
array[esi] are indexed operands.

The following arithmetic instructions are important:

• The INC instruction adds 1 to an operand.
• The DEC instruction subtracts 1 from an operand.
• The ADD instruction adds a source operand to a destination operand.
• The SUB instruction subtracts a source operand from a destination operand.
• The NEG instruction reverses the sign of an operand.

When converting simple arithmetic expressions to assembly language, use standard operator
precedence rules to select which expressions to evaluate first. 

Status Flags The following CPU status flags are affected by arithmetic operations:

• The Sign flag is set when the outcome of an arithmetic operation is negative. 
• The Carry flag is set when the result of an unsigned arithmetic operation is too large for the

destination operand.
• The Parity flag indicates whether or not an even number of 1 bits occurs in the least signifi-

cant byte of the destination operand immediately after an arithmetic or boolean instruction
has executed. 

• The Auxiliary Carry flag is set when a carry or borrow occurs in bit position 3 of the destina-
tion operand.

• The Zero flag is set when the outcome of an arithmetic operation is zero.
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• The Overflow flag is set when the result of an signed arithmetic operation is out of range for
the destination operand. 

Operators The following operators are common in assembly language:

• The OFFSET operator returns the distance (in bytes) of a variable from the beginning of its
enclosing segment.

• The PTR operator overrides a variable’s declared size. 
• The TYPE operator returns the size (in bytes) of a single variable or of a single element in an

array. 
• The LENGTHOF operator returns the number of elements in an array. 
• The SIZEOF operator returns the number bytes used by an array initializer.
• The TYPEDEF operator creates a user-defined type.

Loops The JMP (Jump) instruction unconditionally branches to another location. The LOOP
(Loop According to ECX Counter) instruction is used in counting-type loops. In 32-bit mode,
LOOP uses ECX as the counter; in 64-bit mode, RCX is the counter. In both modes, LOOPD
uses ECX as the counter and LOOPW uses CX as the counter.

The MOV instruction works almost the same in 64-bit mode as in 32-bit mode. However, the
rules for moving constants and memory operands to 64-bit registers are a bit tricky. Whenever
possible, try to use 64-bit operands in 64-bit mode. Indirect and indexed operands always use
64-bit registers.

4.8 Key Terms

4.8.1 Terms

Auxiliary Carry flag

Carry flag

conditional transfer

data transfer instruction

direct memory operand

direct-offset operand

effective address

immediate operand

indexed operand

indirect operand

memory operand

Overflow flag

Parity flag

pointer

register operand

scale factor

sign extension

unconditional transfer

zero extension

Zero flag

4.8.2 Instructions, Operators, and Directives 

ADD

ALIGN

DEC

INC

JMP

LABEL

LOOP

MOV
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4.9 Review Questions and Exercises

4.9.1 Short Answer
1. What will be the value in EDX after each of the lines marked (a) and (b) execute?

.data
one WORD 8002h
two WORD 4321h
.code
mov   edx,21348041h
movsx edx,one ; (a)
movsx edx,two ; (b)

2. What will be the value in EAX after the following lines execute?

mov  eax,1002FFFFh
inc ax

3. What will be the value in EAX after the following lines execute?

mov  eax,30020000h
dec  ax

4. What will be the value in EAX after the following lines execute?

mov  eax,1002FFFFh
neg  ax

5. What will be the value of the Parity flag after the following lines execute?

mov  al,1
add  al,3

6. What will be the value of EAX and the Sign flag after the following lines execute? 

mov  eax,5
sub  eax,6

7. In the following code, the value in AL is intended to be a signed byte. Explain how the
Overflow flag helps, or does not help you, to determine whether the final value in AL falls
within a valid signed range.

mov  al,-1
add  al,130

MOVSX

MOVZX

NEG

LABEL

LAHF

LENGTHOF

OFFSET

PTR

SAHF

SIZEOF

SUB

TYPE

TYPEDEF

XCHG



4.9   Review Questions and Exercises 135

8. What value will RAX contain after the following instruction executes?

mov  rax,44445555h

9. What value will RAX contain after the following instructions execute?

.data
dwordVal DWORD 84326732h
.code
mov  rax,0FFFFFFFF00000000h
mov  rax,dwordVal

10. What value will EAX contain after the following instructions execute?

.data
dVal DWORD 12345678h
.code
mov  ax,3
mov  WORD PTR dVal+2,ax
mov  eax,dVal

11. What will EAX contain after the following instructions execute?

.data

.dVal DWORD ?

.code
mov  dVal,12345678h
mov  ax,WORD PTR dVal+2
add  ax,3
mov  WORD PTR dVal,ax
mov  eax,dVal

12. (Yes/No): Is it possible to set the Overflow flag if you add a positive integer to a negative
integer?

13. (Yes/No): Will the Overflow flag be set if you add a negative integer to a negative integer
and produce a positive result?

14. (Yes/No): Is it possible for the NEG instruction to set the Overflow flag?

15. (Yes/No): Is it possible for both the Sign and Zero flags to be set at the same time?

Use the following variable definitions for Questions 16–19:

.data
var1 SBYTE -4,-2,3,1
var2 WORD 1000h,2000h,3000h,4000h
var3 SWORD -16,-42
var4 DWORD 1,2,3,4,5

16. For each of the following statements, state whether or not the instruction is valid:

a.  mov   ax,var1?
b.  mov   ax,var2
c.  mov   eax,var3
d.  mov   var2,var3
e.  movzx ax,var2
f.  movzx var2,al
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g.  mov   ds,ax
h.  mov   ds,1000h

17. What will be the hexadecimal value of the destination operand after each of the following
instructions execute in sequence?

mov  al,var1 ; a.
mov  ah,[var1+3] ; b.

18. What will be the value of the destination operand after each of the following instructions
execute in sequence?

mov  ax,var2 ; a.
mov  ax,[var2+4] ; b.
mov  ax,var3 ; c.
mov  ax,[var3-2] ; d.

19. What will be the value of the destination operand after each of the following instructions
execute in sequence?

mov    edx,var4 ; a.
movzx  edx,var2 ; b.
mov    edx,[var4+4] ; c.
movsx  edx,var1 ; d.

4.9.2 Algorithm Workbench
1. Write a sequence of MOV instructions that will exchange the upper and lower words in a

doubleword variable named three.

2. Using the XCHG instruction no more than three times, reorder the values in four 8-bit regis-
ters from the order A,B,C,D to B,C,D,A.

3. Transmitted messages often include a parity bit whose value is combined with a data byte to
produce an even number of 1 bits. Suppose a message byte in the AL register contains
01110101. Show how you could use the Parity flag combined with an arithmetic instruction
to determine if this message byte has even or odd parity.

4. Write code using byte operands that adds two negative integers and causes the Overflow
flag to be set.

5. Write a sequence of two instructions that use addition to set the Zero and Carry flags at the
same time.

6. Write a sequence of two instructions that set the Carry flag using subtraction.

7. Implement the following arithmetic expression in assembly language: EAX = –val2 + 7 –
val3 + val1. Assume that val1, val2, and val3 are 32-bit integer variables.

8. Write a loop that iterates through a doubleword array and calculates the sum of its elements
using a scale factor with indexed addressing.

9. Implement the following expression in assembly language: AX = (val2 + BX) –val4.
Assume that val2 and val4 are 16-bit integer variables.

10. Write a sequence of two instructions that set both the Carry and Overflow flags at the same time.

11. Write a sequence of instructions showing how the Zero flag could be used to indicate
unsigned overflow after executing INC and DEC instructions.
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Use the following data definitions for Questions 12–18:

.data
myBytes  BYTE 10h,20h,30h,40h
myWords  WORD 3 DUP(?),2000h
myString BYTE "ABCDE"

12. Insert a directive in the given data that aligns myBytes to an even-numbered address.

13. What will be the value of EAX after each of the following instructions execute?

mov  eax,TYPE myBytes ; a.
mov  eax,LENGTHOF myBytes ; b.
mov  eax,SIZEOF myBytes ; c.
mov  eax,TYPE myWords ; d.
mov  eax,LENGTHOF myWords ; e.
mov  eax,SIZEOF myWords ; f.
mov  eax,SIZEOF myString ; g.

14. Write a single instruction that moves the first two bytes in myBytes to the DX register. The
resulting value will be 2010h.

15. Write an instruction that moves the second byte in myWords to the AL register.

16. Write an instruction that moves all four bytes in myBytes to the EAX register.

17. Insert a LABEL directive in the given data that permits myWords to be moved directly to a
32-bit register.

18. Insert a LABEL directive in the given data that permits myBytes to be moved directly to a
16-bit register.

4.10 Programming Exercises
The following exercises may be completed in either 32-bit mode or 64-bit mode.

1. Converting from Big Endian to Little Endian 
Write a program that uses the variables below and MOV instructions to copy the value from
bigEndian to littleEndian, reversing the order of the bytes. The number’s 32-bit value is under-
stood to be 12345678 hexadecimal.

.data
bigEndian BYTE 12h,34h,56h,78h
littleEndian DWORD?

2. Exchanging Pairs of Array Values
Write a program with a loop and indexed addressing that exchanges every pair of values in an
array with an even number of elements. Therefore, item i will exchange with item i+1, and item
i+2 will exchange with item i+3, and so on.

3. Summing the Gaps between Array Values
Write a program with a loop and indexed addressing that calculates the sum of all the gaps
between successive array elements. The array elements are doublewords, sequenced in nonde-
creasing order. So, for example, the array {0, 2, 5, 9, 10} has gaps of 2, 3, 4, and 1, whose sum
equals 10.

★

★★

★★
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4. Copying a Word Array to a DoubleWord array
Write a program that uses a loop to copy all the elements from an unsigned Word (16-bit) array
into an unsigned doubleword (32-bit) array. 

5. Fibonacci Numbers
Write a program that uses a loop to calculate the first seven values of the Fibonacci number sequence,
described by the following formula: Fib(1) = 1, Fib(2) = 1, Fib(n) = Fib(n – 1) + Fib(n – 2).

6. Reverse an Array
Use a loop with indirect or indexed addressing to reverse the elements of an integer array in
place. Do not copy the elements to any other array. Use the SIZEOF, TYPE, and LENGTHOF
operators to make the program as flexible as possible if the array size and type should be
changed in the future.

7. Copy a String in Reverse Order
Write a program with a loop and indirect addressing that copies a string from source to target,
reversing the character order in the process. Use the following variables:

source BYTE "This is the source string",0
target BYTE SIZEOF source DUP('#')

8. Shifting the Elements in an Array
Using a loop and indexed addressing, write code that rotates the members of a 32-bit integer
array forward one position. The value at the end of the array must wrap around to the first posi-
tion. For example, the array [10,20,30,40] would be transformed into [40,10,20,30].

★★

★★

★★★

★★★

★★★
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5.9 Programming Exercises

This chapter introduces you to procedures, also known subroutines and functions. Any program of
reasonable size needs to be divided into parts, and certain parts need to be used more than once.
You will see that parameters can be passed in registers, and you will learn about the runtime stack
that the CPU uses to track the calling location of procedures. Finally, we will introduce you to two
code libraries supplied with this book, named Irvine32 and Irvine64, containing useful utilities that
simplify input–output.
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5.1 Stack Operations
If we place ten plates on each other as in the following diagram, the result can be called a stack.
While it might be possible to remove a dish from the middle of the stack, it is much more com-
mon to remove from the top. New plates can be added to the top of the stack, but never to the
bottom or middle (Fig. 5–1):

Figure 5–1 Stack of plates

A stack data structure follows the same principle as a stack of plates: New values are added to
the top of the stack, and existing values are removed from the top. Stacks in general are useful
structures for a variety of programming applications, and they can easily be implemented using
object-oriented programming methods. If you have taken a programming course that used data
structures, you have worked with the stack abstract data type. A stack is also called a LIFO struc-
ture (Last-In, First-Out) because the last value put into the stack is always the first value taken out.

In this chapter, we concentrate specifically on the runtime stack. It is supported directly by
hardware in the CPU, and it is an essential part of the mechanism for calling and returning from
procedures. Most of the time, we just call it the stack.

5.1.1 Runtime Stack (32-Bit Mode)
The runtime stack is a memory array managed directly by the CPU, using the ESP (extended
stack pointer) register, known as the stack pointer register. In 32-bit mode, ESP register holds a
32-bit offset into some location on the stack. We rarely manipulate ESP directly; instead, it is indi-
rectly modified by instructions such as CALL, RET, PUSH, and POP.

ESP always points to the last value to be added to, or pushed on, the top of stack. To demon-
strate, let’s begin with a stack containing one value. In Fig. 5-2, the ESP contains hexadecimal
00001000, the offset of the most recently pushed value (00000006). In our diagrams, the top of the
stack moves downward when the stack pointer decreases in value:

Figure 5–2 A stack containing a single value
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Each stack location in this figure contains 32 bits, which is the case when a program is running
in 32-bit mode.

Push Operation
A 32-bit push operation decrements the stack pointer by 4 and copies a value into the location in
the stack pointed to by the stack pointer. Figure 5-3 shows the effect of pushing 000000A5 on a
stack that already contains one value (00000006). Notice that the ESP register always points to
the last item pushed on the stack. The figure shows the stack ordering opposite to that of the
stack of plates we saw earlier, because the runtime stack grows downward in memory, from
higher addresses to lower addresses. Before the push, ESP � 00001000h; after the push, ESP �
00000FFCh. Figure 5-4 shows the same stack after pushing a total of four integers.

Figure 5–3 Pushing integers on the stack.

Figure 5–4 Stack, after pushing 00000001 and 00000002.

Pop Operation
A pop operation removes a value from the stack. After the value is popped from the stack, the
stack pointer is incremented (by the stack element size) to point to the next-highest location in the
stack. Figure 5-5 shows the stack before and after the value 00000002 is popped.

The runtime stack discussed here is not the same as the stack abstract data type (ADT) discussed in
data structures courses. The runtime stack works at the system level to handle subroutine calls. The
stack ADT is a programming construct typically written in a high-level programming language such
as C++ or Java. It is used when implementing algorithms that depend on last-in, first-out operations. 
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Figure 5–5 Popping a value from the runtime stack.

The area of the stack below ESP is logically empty, and will be overwritten the next time the
current program executes any instruction that pushes a value on the stack.

Stack Applications
There are several important uses of runtime stacks in programs:

• A stack makes a convenient temporary save area for registers when they are used for
more than one purpose. After they are modified, they can be restored to their original
values.

• When the CALL instruction executes, the CPU saves the current subroutine’s return address
on the stack. 

• When calling a subroutine, you pass input values called arguments by pushing them on the stack. 
• The stack provides temporary storage for local variables inside subroutines.

5.1.2 PUSH and POP Instructions

PUSH Instruction
The PUSH instruction first decrements ESP and then copies a source operand into the stack.
A 16-bit operand causes ESP to be decremented by 2. A 32-bit operand causes ESP to be decre-
mented by 4. There are three instruction formats:

PUSH reg/mem16
PUSH reg/mem32
PUSH imm32

POP Instruction
The POP instruction first copies the contents of the stack element pointed to by ESP into a 16- or
32-bit destination operand and then increments ESP. If the operand is 16 bits, ESP is incre-
mented by 2; if the operand is 32 bits, ESP is incremented by 4:

POP reg/mem16
POP reg/mem32

PUSHFD and POPFD Instructions
The PUSHFD instruction pushes the 32-bit EFLAGS register on the stack, and POPFD pops the
stack into EFLAGS:

pushfd
popfd
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00000002 ESP
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00001000
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00000FF8
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The MOV instruction cannot be used to copy the flags to a variable, so PUSHFD may be the
best way to save the flags. There are times when it is useful to make a backup copy of the flags
so you can restore them to their former values later. Often, we enclose a block of code within
PUSHFD and POPFD:

pushfd ; save the flags
;
; any sequence of statements here...
;
popfd ; restore the flags

When using pushes and pops of this type, be sure the program’s execution path does not skip
over the POPFD instruction. When a program is modified over time, it can be tricky to remem-
ber where all the pushes and pops are located. The need for precise documentation is critical!

A less error-prone way to save and restore the flags is to push them on the stack and immedi-
ately pop them into a variable:

.data
saveFlags DWORD ?
.code
pushfd ; push flags on stack
pop  saveFlags ; copy into a variable

The following statements restore the flags from the same variable:

push saveFlags ; push saved flag values
popfd ; copy into the flags

PUSHAD, PUSHA, POPAD, and POPA
The PUSHAD instruction pushes all of the 32-bit general-purpose registers on the stack in the following
order: EAX, ECX, EDX, EBX, ESP (value before executing PUSHAD), EBP, ESI, and EDI. The
POPAD instruction pops the same registers off the stack in reverse order. Similarly, the PUSHA instruc-
tion, pushes the 16-bit general-purpose registers (AX, CX, DX, BX, SP, BP, SI, DI) on the stack in the
order listed. The POPA instruction pops the same registers in reverse. You should only use PUSHA and
POPA when programming in 16-bit mode. We cover 16-bit programming in Chapters 14–17. 

If you write a procedure that modifies a number of 32-bit registers, use PUSHAD at the
beginning of the procedure and POPAD at the end to save and restore the registers. The follow-
ing code fragment is an example:

MySub PROC
pushad ; save general-purpose registers
.
.
mov eax,...
mov edx,...
mov ecx,...
.
.
popad ; restore general-purpose registers
ret

MySub ENDP
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An important exception to the foregoing example must be pointed out; procedures returning
results in one or more registers should not use PUSHA and PUSHAD. Suppose the following
ReadValue procedure returns an integer in EAX; the call to POPAD overwrites the return value
from EAX:

ReadValue PROC
pushad ; save general-purpose registers
.
.
mov eax,return_value
.
.
popad ; overwrites EAX!
ret

ReadValue ENDP

Example: Reversing a String
Let’s look at a program named RevStr that loops through a string and pushes each character on
the stack. It then pops the letters from the stack (in reverse order) and stores them back into
the same string variable. Because the stack is a LIFO (last-in, first-out) structure, the letters in
the string are reversed:

; Reversing a String           (RevStr.asm)

.386

.model flat,stdcall

.stack 4096
ExitProcess PROTO,dwExitCode:DWORD

.data
aName BYTE "Abraham Lincoln",0
nameSize = ($ - aName) - 1

.code
main PROC
; Push the name on the stack.

mov ecx,nameSize
mov esi,0

L1: movzx eax,aName[esi] ; get character
push eax ; push on stack
inc esi
loop L1

; Pop the name from the stack, in reverse,
; and store in the aName array.

mov ecx,nameSize
mov esi,0

L2: pop eax ; get character
mov aName[esi],al ; store in string
inc esi
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loop L2

INVOKE ExitProcess,0
main ENDP
END main

5.1.3 Section Review
1. Which register (in 32-bit mode) manages the stack?

2. How is the runtime stack different from the stack abstract data type?

3. Why is the stack called a LIFO structure?

4. When a 32-bit value is pushed on the stack, what happens to ESP?

5. (True/False): Local variables in procedures are created on the stack.

6. (True/False): The PUSH instruction cannot have an immediate operand.

5.2 Defining and Using Procedures
If you’ve already studied a high-level programming language, you know how useful it can be to
divide programs into subroutines. A complicated problem is usually divided into separate tasks
before it can be understood, implemented, and tested effectively. In assembly language, we typi-
cally use the term procedure to mean a subroutine. In other languages, subroutines are called
methods or functions.

In terms of object-oriented programming, the functions or methods in a single class are
roughly equivalent to the collection of procedures and data encapsulated in an assembly lan-
guage module. Assembly language was created long before object-oriented programming, so it
doesn’t have the formal structure found in object-oriented languages. Assembly programmers
must impose their own formal structure on programs. 

5.2.1 PROC Directive

Defining a Procedure
Informally, we can define a procedure as a named block of statements that ends in a return state-
ment. A procedure is declared using the PROC and ENDP directives. It must be assigned a name (a
valid identifier). Each program we’ve written so far contains a procedure named main, for example,

main PROC
.
.
main ENDP

When you create a procedure other than your program’s startup procedure, end it with a RET
instruction. RET forces the CPU to return to the location from where the procedure was called:

sample PROC
.
.

   ret
sample ENDP
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Labels in Procedures
By default, labels are visible only within the procedure in which they are declared. This rule
often affects jump and loop instructions. In the following example, the label named Destination
must be located in the same procedure as the JMP instruction:

jmp Destination

It is possible to work around this limitation by declaring a global label, identified by a double
colon (::) after its name:

Destination::

In terms of program design, it’s not a good idea to jump or loop outside of the current procedure.
Procedures have an automated way of returning and adjusting the runtime stack. If you directly
transfer out of a procedure, the runtime stack can easily become corrupted. For more informa-
tion about the runtime stack, see Section 8.2.

Example: SumOf Three Integers
Let’s create a procedure named SumOf that calculates the sum of three 32-bit integers. We will
assume that relevant integers are assigned to EAX, EBX, and ECX before the procedure is
called. The procedure returns the sum in EAX:

SumOf PROC
    add  eax,ebx
    add  eax,ecx
    ret
SumOf ENDP

Documenting Procedures
A good habit to cultivate is that of adding clear and readable documentation to your programs.
The following are a few suggestions for information that you can put at the beginning of each
procedure:

• A description of all tasks accomplished by the procedure.
• A list of input parameters and their usage, labeled by a word such as Receives. If any input

parameters have specific requirements for their input values, list them here.
• A description of any values returned by the procedure, labeled by a word such as Returns.
• A list of any special requirements, called preconditions, that must be satisfied before the pro-

cedure is called. These can be labeled by the word Requires. For example, for a procedure
that draws a graphics line, a useful precondition would be that the video display adapter must
already be in graphics mode.

With these ideas in mind, let’s add appropriate documentation to the SumOf procedure:

The descriptive labels we’ve chosen, such as Receives, Returns, and Requires, are not absolutes;
other useful names are often used. 
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;---------------------------------------------------------
; sumof
;
; Calculates and returns the sum of three 32-bit integers.
; Receives: EAX, EBX, ECX, the three integers. May be 
;           signed or unsigned.
; Returns:  EAX = sum
---------------------------------------------------------
SumOf PROC

add eax,ebx
add eax,ecx
ret

SumOf ENDP

Functions written in high-level languages like C and C++ typically return 8-bit values in AL,
16-bit values in AX, and 32-bit values in EAX.

5.2.2 CALL and RET Instructions
The CALL instruction calls a procedure by directing the processor to begin execution at a new mem-
ory location. The procedure uses a RET (return from procedure) instruction to bring the processor
back to the point in the program where the procedure was called. Mechanically speaking, the CALL
instruction pushes its return address on the stack and copies the called procedure’s address into the
instruction pointer. When the procedure is ready to return, its RET instruction pops the return address
from the stack into the instruction pointer. In 32-bit mode, the CPU executes the instruction in mem-
ory pointed to by EIP (instruction pointer register). In 16-bit mode, IP points to the instruction. 

Call and Return Example
Suppose that in main, a CALL statement is located at offset 00000020. Typically, this instruc-
tion requires 5 bytes of machine code, so the next statement (a MOV in this case) is located at
offset 00000025:

      main PROC
00000020     call MySub
00000025     mov  eax,ebx

Next, suppose that the first executable instruction in MySub is located at offset 00000040:

      MySub PROC
00000040    mov eax,edx

        .
        .
        ret
      MySub ENDP

When the CALL instruction executes (Fig. 5-6), the address following the call (00000025) is
pushed on the stack and the address of MySub is loaded into EIP. All instructions in MySub
execute up to its RET instruction. When the RET instruction executes, the value in the stack
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pointed to by ESP is popped into EIP (step 1 in Fig. 5-7). In step 2, ESP is incremented so it
points to the previous value on the stack (step 2). 

Figure 5–6 Executing a CALL instruction.

Figure 5–7 Executing the RET instruction.

5.2.3 Nested Procedure Calls
A nested procedure call occurs when a called procedure calls another procedure before the first
procedure returns. Suppose that main calls a procedure named Sub1. While Sub1 is executing,
it calls the Sub2 procedure. While Sub2 is executing, it calls the Sub3 procedure. The process is
shown in Fig. 5-8.

When the RET instruction at the end of Sub3 executes, it pops the value at stack[ESP] into
the instruction pointer. This causes execution to resume at the instruction following the call Sub3
instruction. The following diagram shows the stack just before the return from Sub3 is executed:
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Figure 5–8 Nested procedure calls.

After the return, ESP points to the next-highest stack entry. When the RET instruction at the
end of Sub2 is about to execute, the stack appears as follows:

Finally, when Sub1 returns, stack[ESP] is popped into the instruction pointer, and execution
resumes in main:

Clearly, the stack proves itself a useful device for remembering information, including nested
procedure calls. Stack structures, in general, are used in situations where programs must retrace
their steps in a specific order. 

main proc

   .

   .

   call Sub1

   exit

main endp

Sub1 proc

   .

   .

   call Sub2

   ret
Sub1 endp

Sub2 proc

   .

   .

   call Sub3

   ret
Sub2 endp

Sub3 proc

   .

   .

   ret
Sub3 endp

(ret to main)

(ret to Sub1)
ESP

(ret to main)
ESP
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5.2.4 Passing Register Arguments to Procedures
If you write a procedure that performs some standard operation such as calculating the sum of an
integer array, it’s not a good idea to include references to specific variable names inside the pro-
cedure. If you did, the procedure could only be used with one array. A better approach is to pass
the offset of an array to the procedure and pass an integer specifying the number of array ele-
ments. We call these arguments (or input parameters). In assembly language, it is common to
pass arguments inside general-purpose registers. 

In the preceding section we created a simple procedure named SumOf that added the integers
in the EAX, EBX, and ECX registers. In main, before calling SumOf, we assign values to EAX,
EBX, and ECX:

.data
theSum  DWORD  ?
.code
main PROC

mov eax,10000h ; argument
mov ebx,20000h ; argument
mov ecx,30000h ; argument
call Sumof     ; EAX = (EAX + EBX + ECX)
mov theSum,eax ; save the sum

After the CALL statement, we have the option of copying the sum in EAX to a variable.

5.2.5 Example: Summing an Integer Array
A very common type of loop that you may have already coded in C++ or Java is one that calcu-
lates the sum of an integer array. This is very easy to implement in assembly language, and it can
be coded in such a way that it will run as fast as possible. For example, one can use registers
rather than variables inside a loop.

Let’s create a procedure named ArraySum that receives two parameters from a calling pro-
gram: a pointer to an array of 32-bit integers, and a count of the number of array values. It calcu-
lates and returns the sum of the array in EAX:

;-----------------------------------------------------
; ArraySum
;
; Calculates the sum of an array of 32-bit integers.
; Receives: ESI = the array offset
;           ECX = number of elements in the array
; Returns:  EAX = sum of the array elements
;-----------------------------------------------------
ArraySum PROC

push esi ; save ESI, ECX
push ecx
mov eax,0 ; set the sum to zero

L1: add eax,[esi] ; add each integer to sum
add esi,TYPE DWORD ; point to next integer
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loop L1 ; repeat for array size

pop ecx ; restore ECX, ESI
pop esi
ret ; sum is in EAX

ArraySum ENDP

Nothing in this procedure is specific to a certain array name or array size. It could be used in any
program that needs to sum an array of 32-bit integers. Whenever possible, you should also create
procedures that are flexible and adaptable.

Testing the ArraySum Procedure
The following program tests the ArraySum procedure by calling it and passing the offset and
length of an array of 32-bit integers. After calling ArraySum, it saves the procedure’s return
value in a variable named theSum.

; Testing the ArraySum procedure (TestArraySum.asm)

.386

.model flat, stdcall

.stack 4096
ExitProcess PROTO, dwExitCode:DWORD

.data
array DWORD 10000h,20000h,30000h,40000h,50000h
theSum DWORD ?

.code
main PROC

mov   esi,OFFSET array ; ESI points to array
mov   ecx,LENGTHOF array ; ECX = array count
call  ArraySum ; calculate the sum
mov   theSum,eax ; returned in EAX

INVOKE ExitProcess,0
main ENDP

;-----------------------------------------------------
; ArraySum 
; Calculates the sum of an array of 32-bit integers.
; Receives: ESI = the array offset
; ECX = number of elements in the array
; Returns: EAX = sum of the array elements
;-----------------------------------------------------

ArraySum PROC
push  esi ; save ESI, ECX
push  ecx
mov   eax,0 ; set the sum to zero

L1:
add   eax,[esi] ; add each integer to sum
add   esi,TYPE DWORD ; point to next integer
loop  L1 ; repeat for array size
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pop   ecx ; restore ECX, ESI
pop   esi
ret ; sum is in EAX

ArraySum ENDP

END main

5.2.6 Saving and Restoring Registers
In the ArraySum example, ECX and ESI were pushed on the stack at the beginning of the pro-
cedure and popped at the end. This action is typical of most procedures that modify registers.
Always save and restore registers that are modified by a procedure so the calling program can be
sure that none of its own register values will be overwritten. The exception to this rule pertains to
registers used as return values, usually EAX. Do not push and pop them.

USES Operator
The USES operator, coupled with the PROC directive, lets you list the names of all registers
modified within a procedure. USES tells the assembler to do two things: First, generate PUSH
instructions that save the registers on the stack at the beginning of the procedure. Second,
generate POP instructions that restore the register values at the end of the procedure. The USES
operator immediately follows PROC, and is itself followed by a list of registers on the same line
separated by spaces or tabs (not commas).

The ArraySum procedure from Section 5.2.5 used PUSH and POP instructions to save and
restore ESI and ECX. The USES operator can more easily do the same:

ArraySum PROC USES esi ecx
mov eax,0 ; set the sum to zero

L1:
add eax,[esi] ; add each integer to sum
add esi,TYPE DWORD ; point to next integer
loop L1 ; repeat for array size

ret ; sum is in EAX
ArraySum ENDP

The corresponding code generated by the assembler shows the effect of USES:

ArraySum PROC
push esi
push ecx
mov eax,0 ; set the sum to zero

L1:
add eax,[esi] ; add each integer to sum
add esi,TYPE DWORD ; point to next integer
loop L1 ; repeat for array size

pop ecx
pop esi
ret

ArraySum ENDP
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Exception There is an important exception to our standing rule about saving registers that
applies when a procedure returns a value in a register (usually EAX). In this case, the return reg-
ister should not be pushed and popped. For example, in the SumOf procedure in the following
example, it pushes and pops EAX, causing the procedure’s return value to be lost:

SumOf PROC ; sum of three integers
push eax ; save EAX
add eax,ebx ; calculate the sum
add eax,ecx ; of EAX, EBX, ECX
pop eax ; lost the sum!
ret

SumOf ENDP

5.2.7 Section Review
1. (True/False): The PROC directive begins a procedure and the ENDP directive ends a

procedure.

2. (True/False): It is possible to define a procedure inside an existing procedure.

3. What would happen if the RET instruction was omitted from a procedure?

4. How are the words Receives and Returns used in the suggested procedure documentation?

5. (True/False): The CALL instruction pushes the offset of the CALL instruction on the stack.

6. (True/False): The CALL instruction pushes the offset of the instruction following the
CALL on the stack.

5.3 Linking to an External Library
If you spend the time, you can write detailed code for input–output in assembly language. It’s a
lot like building your own automobile from scratch so that you can drive somewhere. The work
is both interesting and time consuming. In Chapter 11 you will get a chance to see how input–
output is handled in MS-Windows protected mode. It is great fun, and a new world opens up
when you see the available tools. For now, however, input–output should be easy while you are
learning assembly language basics. Section 5.3 shows how to call procedures from the book’s
link libraries, named Irvine32.lib and Irvine64.obj. The complete library source code is available
at the author’s web site (asmirvine.com). It should be installed on your computer in the
Examples\Lib32 subfolder of the book’s install file (usually named C:\Irvine).

The Irvine32 library can only be used by programs running in 32-bit mode. It contains pro-
cedures that link to the MS-Windows API when they generate input–output. The Irvine64
library is a more limited library for 64-bit applications that is limited to essential display and
string operations.

Debugging Tip: When using the Microsoft Visual Studio debugger, you can view the hidden machine
instructions generated by MASM’s advanced operators and directives. Right-click in the Debugging
window and select Go to Disassembly. This window displays your program’s source code along with
hidden machine instructions generated by the assembler.
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5.3.1 Background Information
A link library is a file containing procedures (subroutines) that have been assembled into
machine code. A link library begins as one or more source files, which are assembled into object
files. The object files are inserted into a specially formatted file recognized by the linker utility.
Suppose a program displays a string in the console window by calling a procedure named
WriteString. The program source must contain a PROTO directive identifying the WriteString
procedure:

WriteString proto

Next, a CALL instruction executes WriteString:

call WriteString

When the program is assembled, the assembler leaves the target address of the CALL instruc-
tion blank, knowing that it will be filled in by the linker. The linker looks for WriteString in the
link library and copies the appropriate machine instructions from the library into the program’s
executable file. In addition, it inserts WriteString’s address into the CALL instruction. If a pro-
cedure you’re calling is not in the link library, the linker issues an error message and does not
generate an executable file.

Linker Command Options The linker utility combines a program’s object file with one or
more object files and link libraries. The following command, for example, links hello.obj to the
irvine32.lib and kernel32.lib libraries:

link hello.obj irvine32.lib kernel32.lib

Linking 32-Bit Programs The kernel32.lib file, part of the Microsoft Windows Platform
Software Development Kit, contains linking information for system functions located in a file
named kernel32.dll. The latter is a fundamental part of MS-Windows, and is called a dynamic
link library. It contains executable functions that perform character-based input–output.
Figure 5-9 shows how kernel32.lib is a bridge to kernel32.dll.

Figure 5–9 Linking 32-bit programs.

In Chapters 1 through 10, our programs link either Irvine32.lib or Irvine64.obj. Chapter 11
shows how to link programs directly to kernel32.lib.

Your program
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links

to
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can link to
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5.3.2 Section Review
1. (True/False): A link library consists of assembly language source code.

2. Use the PROTO directive to declare a procedure named MyProc in an external link library.

3. Write a CALL statement that calls a procedure named MyProc in an external link library.

4. What is the name of the 32-bit link library supplied with this book?

5. What type of file is kernel32.dll?

5.4 The Irvine32 Library

5.4.1 Motivation for Creating the Library
There is no Microsoft-sanctioned standard library for assembly language programming. When
programmers first started writing assembly language for x86 processors in the early 1980s, MS-
DOS was the commonly used operating system. These 16-bit programs were able to call MS-
DOS functions (known as INT 21h services) to do simple input/output. Even at that time, if you
wanted to display an integer on the console, you had to write a fairly complicated procedure that
converted from the internal binary representation of integers to a sequence of ASCII characters
that would display the integer on the screen. We called it WriteInt, and this is the logic,
abstracted into pseudocode:

Initialization:

let n equal the binary value
let buffer be an array of char[size] 

Algorithm:

i = size  -1 ; last position of buffer
repeat

r = n mod 10 ; remainder
n = n / 10 ; integer division
digit = r OR 30h ; conver r to ASCII digit
buffer[i--] = digit ; store in buffer

until n = 0

if n is negative
buffer[i] = "-" ; insert a negative sign

while i > 0
print buffer[i]
i++

Notice that the digits are generated in reverse order and inserted into a buffer, moving from the
back to the front. Then the digits are written to the console in forward order. While this code is
easy enough to implement in C/C++, it requires some advanced skills in assembly language.

Professional programmers often prefer to build their own libraries, and doing so is an
excellent educational experience. In 32-bit mode running under Windows, an input–output
library must make calls directly into the operating system. The learning curve is rather
steep, and it presents some challenges for beginning programmers. Therefore, the Irvine32
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library is designed to provide a simple interface for input–output for beginners. As you con-
tinue through the chapters in this book, you will acquire the knowledge and skills to create
your own library. You are free to modify and reuse the library, as long as you give credit to
its original author. Another alternative, which we will discuss in Chapter 13, is to call Stan-
dard C library functions from your assembly language programs. Again, that requires some
additional background.

Table 5-1 contains a complete list of procedures in the Irvine32 library.

Table 5-1  Procedures in the Irvine32 Library.

Procedure Description

CloseFile Closes a disk file that was previously opened.

Clrscr Clears the console window and locates the cursor at the upper left corner. 

CreateOutputFile Creates a new disk file for writing in output mode.

Crlf Writes an end-of-line sequence to the console window.

Delay Pauses the program execution for a specified n-millisecond interval.

DumpMem Writes a block of memory to the console window in hexadecimal. 

DumpRegs Displays the EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP, EFLAGS, and EIP registers
in hexadecimal. Also displays the most common CPU status flags.

GetCommandTail Copies the program’s command-line arguments (called the command tail) into an array
of bytes.

GetDateTime Gets the current date and time from the system.

GetMaxXY Gets the number of columns and rows in the console window’s buffer.

GetMseconds Returns the number of milliseconds elapsed since midnight.

GetTextColor Returns the active foreground and background text colors in the console window.

Gotoxy Locates the cursor at a specific row and column in the console window. 

IsDigit Sets the Zero flag if the AL register contains the ASCII code for a decimal digit (0–9).

MsgBox Displays a popup message box.

MsgBoxAsk Display a yes/no question in a popup message box.

OpenInputFile Opens an existing disk file for input.

ParseDecimal32 Converts an unsigned decimal integer string to 32-bit binary.

ParseInteger32 Converts a signed decimal integer string to 32-bit binary.

Random32 Generates a 32-bit pseudorandom integer in the range 0 to FFFFFFFFh. 

Randomize Seeds the random number generator with a unique value.

RandomRange Generates a pseudorandom integer within a specified range. 

ReadChar Waits for a single character to be typed at the keyboard and returns the character.

ReadDec Reads an unsigned 32-bit decimal integer from the keyboard, terminated by the Enter key.

ReadFromFile Reads an input disk file into a buffer.

ReadHex Reads a 32-bit hexadecimal integer from the keyboard, terminated by the Enter key.
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5.4.2 Overview

Console Window The console window (or command window) is a text-only window created
by MS-Windows when a command prompt is displayed.

To display a console window in Microsoft Windows, click the Start button on the desktop, type
cmd into the Start Search field, and press Enter. Once a console window is open, you can resize the
console window buffer by right-clicking on the system menu in the window’s upper-left corner,
selecting Properties from the popup menu, and then modifying the values, as shown in Fig. 5-10.

You can also select various font sizes and colors. The console window defaults to 25 rows by
80 columns. You can use the mode command to change the number of columns and lines. The
following, typed at the command prompt, sets the console window to 40 columns by 30 lines:

mode con cols=40 lines=30

ReadInt Reads a 32-bit signed decimal integer from the keyboard, terminated by the Enter key.

ReadKey Reads a character from the keyboard’s input buffer without waiting for input.

ReadString Reads a string from the keyboard, terminated by the Enter key.

SetTextColor Sets the foreground and background colors of all subsequent text output to the console.

Str_compare Compares two strings.

Str_copy Copies a source string to a destination string.

Str_length Returns the length of a string in EAX.

Str_trim Removes unwanted characters from a string.

Str_ucase Converts a string to uppercase letters.

WaitMsg Displays a message and waits for a key to be pressed. 

WriteBin Writes an unsigned 32-bit integer to the console window in ASCII binary format.

WriteBinB Writes a binary integer to the console window in byte, word, or doubleword format.

WriteChar Writes a single character to the console window. 

WriteDec Writes an unsigned 32-bit integer to the console window in decimal format.

WriteHex Writes a 32-bit integer to the console window in hexadecimal format.

WriteHexB Writes a byte, word, or doubleword integer to the console window in hexadecimal 
format.

WriteInt Writes a signed 32-bit integer to the console window in decimal format.

WriteStackFrame Writes the current procedure’s stack frame to the console.

WriteStackFrameName Writes the current procedure’s name and stack frame to the console.

WriteString Writes a null-terminated string to the console window.

WriteToFile Writes a buffer to an output file.

WriteWindowsMsg Displays a string containing the most recent error generated by MS-Windows.

Procedure Description

Table 5-1  (Continued)
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Figure 5–10 Modifying the console window properties.

A file handle is a 32-bit integer used by the Windows operating system to identify a file that is
currently open. When your program calls a Windows service to open or create a file, the operat-
ing system creates a new file handle and makes it available to your program. Each time you call
an OS service method to read from or write to the file, you must pass the same file handle as a
parameter to the service method.

Note: If your program calls procedures in the Irvine32 library, you must always push 32-bit
values onto the runtime stack; if you do not, the Win32 Console functions called by the library
will not work correctly.

5.4.3 Individual Procedure Descriptions
In this section, we describe how each of the procedures in the Irvine32 library is used. We will
omit a few of the more advanced procedures, which will be explained in later chapters.

CloseFile The CloseFile procedure closes a file that was previously created or opened (see
CreateOutputFile and OpenInputFile). The file is identified by a 32-bit integer handle, which is
passed in EAX. If the file is closed successfully, the value returned in EAX will be nonzero.
Sample call:

mov eax,fileHandle
call CloseFile
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Clrscr The Clrscr procedure clears the console window. This procedure is typically called at
the beginning and end of a program. If you call it at other times, you may need to pause the pro-
gram by first calling WaitMsg. Doing this allows the user to view information already on the
screen before it is erased. Sample call:

call WaitMsg ; "Press any key..."
call Clrscr

CreateOutputFile The CreateOutputFile procedure creates a new disk file and opens it for writ-
ing. When you call the procedure, place the offset of a filename in EDX. When the procedure
returns, EAX will contain a valid file handle (32-bit integer) if the file was created successfully.
Otherwise, EAX equals INVALID_HANDLE_VALUE (a predefined constant). Sample call:

.data
filename BYTE "newfile.txt",0
.code
mov  edx,OFFSET filename
call CreateOutputFile

The following pseudocode describes the possible outcomes after calling CreateOutputFile:

if EAX = INVALID_HANDLE_VALUE
the file was not created successfully

else
EAX = handle for the open file

endif

Crlf The Crlf procedure advances the cursor to the beginning of the next line in the console
window. It writes a string containing the ASCII character codes 0Dh and 0Ah. Sample call:

call Crlf

Delay The Delay procedure pauses the program for a specified number of milliseconds.
Before calling Delay, set EAX to the desired interval. Sample call:

mov eax,1000 ; 1 second
call Delay

DumpMem The DumpMem procedure writes a range of memory to the console window in hexa-
decimal. Pass it the starting address in ESI, the number of units in ECX, and the unit size in EBX
(1 � byte, 2 � word, 4 � doubleword). The following sample call displays an array of 11 doublewords
in hexadecimal:

.data
array DWORD 1,2,3,4,5,6,7,8,9,0Ah,0Bh
.code
main PROC

mov esi,OFFSET array ; starting OFFSET
mov ecx,LENGTHOF array ; number of units
mov ebx,TYPE array ; doubleword format
call DumpMem
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The following output is produced:

00000001  00000002  00000003  00000004  00000005  00000006
00000007  00000008  00000009  0000000A  0000000B

DumpRegs The DumpRegs procedure displays the EAX, EBX, ECX, EDX, ESI, EDI, EBP,
ESP, EIP, and EFL (EFLAGS) registers in hexadecimal. It also displays the values of the Carry,
Sign, Zero, Overflow, Auxiliary Carry, and Parity flags. Sample call:

call DumpRegs

Sample output:

EAX=00000613  EBX=00000000  ECX=000000FF  EDX=00000000
ESI=00000000  EDI=00000100  EBP=0000091E  ESP=000000F6
EIP=00401026  EFL=00000286  CF=0  SF=1  ZF=0  OF=0  AF=0  PF=1

The displayed value of EIP is the offset of the instruction following the call to DumpRegs.
DumpRegs can be useful when debugging programs because it displays a snapshot of the CPU.
It has no input parameters and no return value.

GetCommandTail The GetCommandTail procedure copies the program’s command line into
a null-terminated string. If the command line was found to be empty, the Carry flag is set; other-
wise, the Carry flag is cleared. This procedure is useful because it permits the user of a program
to pass parameters on the command line. Suppose a program named Encrypt.exe reads an input
file named file1.txt and produces an output file named file2.txt. The user can pass both filenames
on the command line when running the program:

Encrypt file1.txt file2.txt

When it starts up, the Encrypt program can call GetCommandTail and retrieve the two file-
names. When calling GetCommandTail, EDX must contain the offset of an array of at least 129
bytes. Sample call:

.data
cmdTail BYTE 129 DUP(0) ; empty buffer
.code
mov edx,OFFSET cmdTail
call GetCommandTail ; fills the buffer

There is a way to pass command-line arguments when running an application in Visual Studio.
From the Project menu, select <projectname> Properties. In the Property Pages window,
expand the entry under Configuration Properties, and select Debugging. Then enter your com-
mand arguments into the edit line on the right panel named Command Arguments.

GetMaxXY The GetMaxXY procedure gets the size of the console window’s buffer. If the con-
sole window buffer is larger than the visible window size, scroll bars appear automatically.
GetMaxXY has no input parameters. When it returns, the DX register contains the number of
buffer columns and AX contains the number of buffer rows. The possible range of each value can
be no greater than 255, which may be smaller than the actual window buffer size. Sample call:
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.data
rows BYTE ?
cols BYTE ?
.code
call GetMaxXY
mov rows,al
mov cols,dl

GetMseconds The GetMseconds procedure gets the number of milliseconds elapsed since
midnight on the host computer, and returns the value in the EAX register. The procedure is a
great tool for measuring the time between events. No input parameters are required. The follow-
ing example calls GetMseconds, storing its return value. After the loop executes, the code call
GetMseconds a second time and subtract the two time values. The difference is the approximate
execution time of the loop:

.data
startTime DWORD ?
.code
call GetMseconds
mov  startTime,eax
L1:
; (loop body)
loop L1

call GetMseconds
sub  eax,startTime ; EAX = loop time, in milliseconds

GetTextColor The GetTextColor procedure gets the current foreground and background
colors of the console window. It has no input parameters. It returns the background color in the
upper four bits of AL and the foreground color in the lower four bits. Sample call:

.data
color byte ?
.code
call GetTextColor
mov color,AL

Gotoxy The Gotoxy procedure locates the cursor at a given row and column in the console win-
dow. By default, the console window’s X-coordinate range is 0 to 79 and the Y-coordinate range is
0 to 24. When you call Gotoxy, pass the Y-coordinate (row) in DH and the X-coordinate (column)
in DL. Sample call:

mov dh,10 ; row 10
mov dl,20 ; column 20
call Gotoxy ; locate cursor

The user may have resized the console window, so you can call GetMaxXY to find out the cur-
rent number of rows and columns.



162 Chapter 5  •  Procedures

IsDigit The IsDigit procedure determines whether the value in AL is the ASCII code for
a valid decimal digit. When calling it, pass an ASCII character in AL. The procedure sets
the Zero flag if AL contains a valid decimal digit; otherwise, it clears Zero flag. Sample
call:

mov AL,somechar
call IsDigit

MsgBox The MsgBox procedure displays a graphical popup message box with an optional
caption. (This works when the program is running in a console window.) Pass it the offset of a
string in EDX, which will appear inside the box. Optionally, pass the offset of a string for the
box’s title in EBX. To leave the title blank, set EBX to zero. Sample call:

.data
caption BYTE "Dialog Title", 0 
HelloMsg BYTE "This is a pop-up message box.", 0dh,0ah 

   BYTE "Click OK to continue...", 0 
.code
mov ebx,OFFSET caption
mov edx,OFFSET HelloMsg
call MsgBox

Sample output:

MsgBoxAsk The MsgBoxAsk procedure displays a graphical popup message box with Yes
and No buttons. (This works when the program is running in a console window.) Pass it the
offset of a question string in EDX, which will appear inside the box. Optionally, pass the off-
set of a string for the box’s title in EBX. To leave the title blank, set EBX to zero. MsgBoxAsk
returns an integer in EAX that tells you which button was selected by the user. The value will be
one of two predefined Windows constants: IDYES (equal to 6) or IDNO (equal to 7). Sample
call:

.data
caption BYTE "Survey Completed",0
question BYTE "Thank you for completing the survey."
  BYTE 0dh,0ah
  BYTE "Would you like to receive the results?",0
.code
mov ebx,OFFSET caption
mov edx,OFFSET question
call MsgBoxAsk
;(check return value in EAX)
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Sample output:

OpenInputFile The OpenInputFile procedure opens an existing file for input. Pass it the off-
set of a filename in EDX. When it returns, if the file was opened successfully, EAX will contain
a valid file handle. Otherwise, EAX will equal INVALID_HANDLE_VALUE (a predefined
constant).

Sample call:

.data
filename BYTE "myfile.txt",0
.code
mov edx,OFFSET filename
call OpenInputFile

The following pseudocode describes the possible outcomes after calling OpenInputFile:

if EAX = INVALID_HANDLE_VALUE
the file was not opened successfully

else
EAX = handle for the open file

endif

ParseDecimal32 The ParseDecimal32 procedure converts an unsigned decimal integer string
to 32-bit binary. All valid digits occurring before a nonnumeric character are converted. Leading
spaces are ignored. Pass it the offset of a string in EDX and the string’s length in ECX. The
binary value is returned in EAX. Sample call:

.data
buffer BYTE "8193"
bufSize = ($ - buffer)
.code
mov edx,OFFSET buffer
mov ecx,bufSize
call ParseDecimal32 ; returns EAX

• If the integer is blank, EAX = 0 and CF = 1
• If the integer contains only spaces, EAX = 0 and CF = 1
• If the integer is larger than 232�1, EAX = 0 and CF = 1
• Otherwise, EAX contains the converted integer and CF = 0

See the description of the ReadDec procedure for details about how the Carry flag is affected.
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ParseInteger32 The ParseInteger32 procedure converts a signed decimal integer string to
32-bit binary. All valid digits from the beginning of the string to the first nonnumeric character
are converted. Leading spaces are ignored. Pass it the offset of a string in EDX and the string’s
length in ECX. The binary value is returned in EAX. Sample call:

.data
buffer byte "-8193"
bufSize = ($ - buffer)
.code
mov edx,OFFSET buffer
mov ecx,bufSize
call ParseInteger32 ; returns EAX

The string may contain an optional leading plus or minus sign, followed only by decimal dig-
its. The Overflow flag is set and an error message is displayed on the console if the value cannot
be represented as a 32-bit signed integer (range: �2,147,483,648 to �2,147,483,647).

Random32 The Random32 procedure generates and returns a 32-bit random integer in EAX.
When called repeatedly, Random32 generates a simulated random sequence. The numbers are
created using a simple function having an input called a seed. The function uses the seed in a
formula that generates the random value. Subsequent random values are generated using each
previously generated random value as their seeds. The following code snippet shows a sample
call to Random32:

.data
randVal DWORD ?
.code
call Random32
mov randVal,eax 

Randomize The Randomize procedure initializes the starting seed value of the Random32 and
RandomRange procedures. The seed equals the time of day, accurate to 1/100 of a second. Each
time you run a program that calls Random32 and RandomRange, the generated sequence of
random numbers will be unique. You need only to call Randomize once at the beginning of a pro-
gram. The following example produces 10 random integers:

call Randomize
mov ecx,10

L1: call Random32

    ; use or display random value in EAX here...

loop L1

RandomRange The RandomRange procedure produces a random integer within the range of
0 to n � 1, where n is an input parameter passed in the EAX register. The random integer is
returned in EAX. The following example generates a single random integer between 0 and 4999
and places it in a variable named randVal.

.data
randVal DWORD ?
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.code
mov eax,5000
call RandomRange
mov randVal,eax

ReadChar The ReadChar procedure reads a single character from the keyboard and returns
the character in the AL register. The character is not echoed in the console window. Sample
call:

.data
char BYTE ?
.code
call ReadChar
mov char,al

If the user presses an extended key such as a function key, arrow key, Ins, or Del, the proce-
dure sets AL to zero, and AH contains a keyboard scan code. A list of scan codes is shown on the
page facing the book’s inside front cover. The upper half of EAX is not preserved. The following
pseudocode describes the possible outcomes after calling ReadChar:

if an extended key was pressed
AL = 0 
AH = keyboard scan code

else
AL = ASCII key value

endif

ReadDec The ReadDec procedure reads a 32-bit unsigned decimal integer from the keyboard
and returns the value in EAX. Leading spaces are ignored. The return value is calculated from
all valid digits found until a nondigit character is encountered. For example, if the user enters
123ABC, the value returned in EAX is 123. Following is a sample call:

.data
intVal DWORD ?
.code
call ReadDec
mov intVal,eax

ReadDec affects the Carry flag in the following ways:

• If the integer is blank, EAX � 0 and CF � 1
• If the integer contains only spaces, EAX � 0 and CF � 1
• If the integer is larger than 232�1, EAX � 0 and CF � 1
• Otherwise, EAX holds the converted integer and CF � 0

ReadFromFile The ReadFromFile procedure reads an input disk file into a memory
buffer. When you call ReadFromFile, pass it an open file handle in EAX, the offset of a
buffer in EDX, and the maximum number of bytes to read in ECX. When ReadFromFile
returns, check the value of the Carry flag: If CF is clear, EAX contains a count of the
number of bytes read from the file. But if CF is set, EAX contains a numeric system error
code. You can call the WriteWindowsMsg procedure to get a text representation of the error.
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In the following example, as many as 5000 bytes are copied from the file into the buffer
variable:

.data
BUFFER_SIZE = 5000
buffer BYTE BUFFER_SIZE DUP(?)
bytesRead DWORD ?

.code
mov edx,OFFSET buffer ; points to buffer
mov ecx,BUFFER_SIZE ; max bytes to read
call ReadFromFile ; read the file

If the Carry flag were clear at this point, you could execute the following instruction:

mov bytesRead,eax ; count of bytes actually read

But if the Carry flag were set, you would call WriteWindowsMsg procedure, which displays
a string that contains the error code and description of the most recent error generated by the
application:

call  WriteWindowsMsg

ReadHex The ReadHex procedure reads a 32-bit hexadecimal integer from the keyboard and
returns the corresponding binary value in EAX. No error checking is performed for invalid charac-
ters. You can use both uppercase and lowercase letters for the digits A through F. A maximum of eight
digits may be entered (additional characters are ignored). Leading spaces are ignored. Sample call:

.data
hexVal DWORD ?
.code
call ReadHex
mov  hexVal,eax

ReadInt The ReadInt procedure reads a 32-bit signed integer from the keyboard and returns the
value in EAX. The user can type an optional leading plus or minus sign, and the rest of the number
may only consist of digits. ReadInt sets the Overflow flag and display an error message if the value
entered cannot be represented as a 32-bit signed integer (range: �2,147,483,648 to �2,147,483,647).
The return value is calculated from all valid digits found until a nondigit character is encountered.
For example, if the user enters �123ABC, the value returned is �123. Sample call:

.data
intVal SDWORD ?
.code
call ReadInt
mov intVal,eax

ReadKey The ReadKey procedure performs a no-wait keyboard check. In other words, it
inspects the keyboard input buffer to see if a key has been pressed by the user. If no keyboard
data is found, the Zero flag is set. If a keypress is found by ReadKey, the Zero flag is cleared and
AL is assigned either zero or an ASCII code. If AL contains zero, the user may have pressed a
special key (function key, arrow key, etc.) The AH register contains a virtual scan code, DX
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contains a virtual key code, and EBX contains the keyboard flag bits. The following pseudocode
describes the various outcomes when calling ReadKey:

if no_keyboard_data then
ZF = 1

else
ZF = 0
if AL = 0 then
extended key was pressed, and AH = scan code, DX = virtual 

key code, and EBX =  keyboard flag bits
else
AL = the key's ASCII code

endif
endif

The upper halves of EAX and EDX are overwritten when ReadKey is called.

ReadString The ReadString procedure reads a string from the keyboard, stopping when the
user presses the Enter key. Pass the offset of a buffer in EDX and set ECX to the maximum num-
ber of characters the user can enter, plus 1 (to save space for the terminating null byte). The pro-
cedure returns the count of the number of characters typed by the user in EAX. Sample call:

.data
buffer BYTE 21 DUP(0) ; input buffer
byteCount DWORD ? ; holds counter
.code
mov edx,OFFSET buffer ; point to the buffer
mov ecx,SIZEOF buffer ; specify max characters
call ReadString ; input the string
mov byteCount,eax ; number of characters

ReadString automatically inserts a null terminator in memory at the end of the string. The fol-
lowing is a hexadecimal and ASCII dump of the first 8 bytes of buffer after the user has entered
the string “ABCDEFG”:

The variable byteCount equals 7.

SetTextColor The SetTextColor procedure (Irvine32 library only) sets the foreground and
background colors for text output. When calling SetTextColor, assign a color attribute to EAX.
The following predefined color constants can be used for both foreground and background:

41 42 43 44 45 46 47 00        ABCDEFG

black � 0 red � 4 gray � 8 lightRed � 12

blue � 1 magenta � 5 lightBlue � 9 lightMagenta � 13

green � 2 brown � 6 lightGreen � 10 yellow � 14

cyan � 3 lightGray � 7 lightCyan � 11 white � 15
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Color constants are defined in the Irvine32.inc file. To get a complete color byte value, multi-
ply the background color by 16 and add it to the foreground color. The following constant, for
example, indicates yellow characters on a blue background:

yellow � (blue * 16)

The following statements set the color to white on a blue background:

mov eax,white � (blue * 16) ; white on blue
call SetTextColor

An alternative way to express color constants is to use the SHL operator. You shift the back-
ground color leftward by 4 bits before adding it to the foreground color.

yellow + (blue SHL 4)

The bit shifting is performed at assembly time, so it can only have constant operands. In
Chapter 7, you will learn how to shift integers at runtime. You can find a detailed explanation of
video attributes in Section 16.3.2.

Str_length The Str_length procedure returns the length of a null-terminated string. Pass the
string’s offset in EDX. The procedure returns the string’s length in EAX. Sample call:

.data
buffer BYTE "abcde",0
bufLength DWORD ?
.code
mov edx,OFFSET buffer ; point to string
call Str_length ; EAX = 5
mov bufLength,eax ; save length

WaitMsg The WaitMsg procedure displays the message “Press any key to continue. . .” and
waits for the user to press a key. This procedure is useful when you want to pause the screen dis-
play before data scrolls off and disappears. It has no input parameters. Sample call:

call WaitMsg

WriteBin The WriteBin procedure writes an integer to the console window in ASCII binary
format. Pass the integer in EAX. The binary bits are displayed in groups of four for easy reading.
Sample call:

mov eax,12346AF9h
call WriteBin

The following output would be displayed by our sample code:

0001 0010 0011 0100 0110 1010 1111 1001

WriteBinB The WriteBinB procedure writes a 32-bit integer to the console window in ASCII
binary format. Pass the value in the EAX register and let EBX indicate the display size in bytes
(1, 2, or 4). The bits are displayed in groups of four for easy reading. Sample call:

mov eax,00001234h
mov ebx,TYPE WORD ; 2 bytes
call WriteBinB ; displays 0001 0010 0011 0100
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WriteChar The WriteChar procedure writes a single character to the console window. Pass the
character (or its ASCII code) in AL. Sample call:

mov al,'A'
call WriteChar ; displays: "A"

WriteDec The WriteDec procedure writes a 32-bit unsigned integer to the console window in
decimal format with no leading zeros. Pass the integer in EAX. Sample call:

mov eax,295
call WriteDec ; displays: "295"

WriteHex The WriteHex procedure writes a 32-bit unsigned integer to the console window in
8-digit hexadecimal format. Leading zeros are inserted if necessary. Pass the integer in EAX.
Sample call:

mov eax,7FFFh
call WriteHex ; displays: "00007FFF"

WriteHexB The WriteHexB procedure writes a 32-bit unsigned integer to the console window
in hexadecimal format. Leading zeros are inserted if necessary. Pass the integer in EAX and let
EBX indicate the display format in bytes (1, 2, or 4). Sample call:

mov eax,7FFFh
mov ebx,TYPE WORD ; 2 bytes
call WriteHexB ; displays: "7FFF"

WriteInt The WriteInt procedure writes a 32-bit signed integer to the console window in
decimal format with a leading sign and no leading zeros. Pass the integer in EAX. Sample
call:

mov eax,216543
call WriteInt ; displays: "+216543"

WriteString The WriteString procedure writes a null-terminated string to the console window.
Pass the string’s offset in EDX. Sample call:

.data
prompt BYTE "Enter your name: ",0
.code
mov edx,OFFSET prompt
call WriteString

WriteToFile The WriteToFile procedure writes the contents of a buffer to an output file. Pass it a
valid file handle in EAX, the offset of the buffer in EDX, and the number of bytes to write in ECX.
When the procedure returns, if EAX is greater than zero, it contains a count of the number of bytes
written; otherwise, an error occurred. The following code calls WriteToFile:

BUFFER_SIZE = 5000
.data
fileHandle   DWORD ?
buffer       BYTE BUFFER_SIZE DUP(?)
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.code
mov  eax,fileHandle
mov  edx,OFFSET buffer
mov  ecx,BUFFER_SIZE
call WriteToFile

The following pseudocode describes how to handle the value returned in EAX after calling
WriteToFile:

if EAX = 0 then
error occurred when writing to file
call WriteWindowsMessage to see the error

else
EAX = number of bytes written to the file

endif

WriteWindowsMsg The WriteWindowsMsg procedure writes a string containing the most
recent error generated by your application to the Console window when executing a call to a sys-
tem function. Sample call:

call WriteWindowsMsg

The following is an example of a message string:

Error 2: The system cannot find the file specified.

5.4.4 Library Test Programs

Tutorial: Library Test #1
In this hands-on tutorial, you will write a program that demonstrates integer input–output with
screen colors.

Step 1: Begin the program with a standard heading:

; Library Test #1: Integer I/O (InputLoop.asm)

; Tests the Clrscr, Crlf, DumpMem, ReadInt, SetTextColor, 
; WaitMsg, WriteBin, WriteHex, and WriteString procedures.
INCLUDE Irvine32.inc

Step 2: Declare a COUNT constant that will determine the number of times the program’s loop
repeats later on. Then two constants, BlueTextOnGray and DefaultColor, are defined here so
they can be used later on when we change the console window colors. The color byte stores the
background color in the upper 4 bits, and the foreground (text) color in the lower 4 bits. We have
not yet discussed bit shifting instructions, but you can multiply the background color by 16 to
shift it into the high 4 bits of the color attribute byte:

.data
COUNT = 4
BlueTextOnGray = blue + (lightGray * 16)
DefaultColor = lightGray + (black * 16)
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Step 3: Declare an array of signed doubleword integers, using hexadecimal constants. Also, add
a string that will be used as prompt when the program asks the user to input an integer:

arrayD SDWORD 12345678h,1A4B2000h,3434h,7AB9h
prompt BYTE "Enter a 32-bit signed integer: ",0

Step 4: In the code area, declare the main procedure and write code that initializes ECX to
blue text on a light gray background. The SetTextColor method changes the foreground and
background color attributes of all text written to the window from this point onward in the pro-
gram’s execution:

.code
main PROC

mov   eax,BlueTextOnGray
call  SetTextColor

In order to set the background of the console window to the new color, you must use the Clrscr
procedure to clear the screen:

call  Clrscr ; clear the screen

Step 5: Assign to ESI the offset of arrayD, which marks the beginning of the range we wish to
display:

mov esi,OFFSET arrayD

Step 6: EBX is assigned an integer value that specifies the size of each array element. Since we
are displaying an array of doublewords, EBX equals 4. This is the value returned by the expres-
sion TYPE arrayD:

mov ebx,TYPE arrayD ; doubleword = 4 bytes

Step 7: ECX must be set to the number of units that will be displayed, using the LENGTHOF
operator. Then, when DumpMem is called, it has all the information it needs:

mov ecx,LENGTHOF arrayD ; number of units in arrayD
call DumpMem ; display memory

The following figure shows the type of output that would be generated by DumpMem:

Next, the program will display a range of doubleword values in memory, identified by the variable
named arrayD. The DumpMem procedure requires parameters to be passed in the ESI, EBX, and
ECX registers.

Dump of offset 00405000

-------------------------------

12345678  1A4B2000  00003434  00007AB9

Next, the user will be asked to input a sequence of four signed integers. After each integer is entered,
it is redisplayed in signed decimal, hexadecimal, and binary.
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Step 8: Output a blank line by calling the Crlf procedure. Then, initialize ECX to the constant
value COUNT so ECX can be the counter for the loop that follows:

call  Crlf
mov   ecx,COUNT

Step 9: We need to display a string that asks the user to enter an integer. Assign the offset of the
string to EDX, and call the WriteString procedure. Then, call the ReadInt procedure to receive
input from the user. The value the user enters will be automatically stored in EAX:

L1: mov edx,OFFSET prompt
call WriteString
call ReadInt ; input integer into EAX
call Crlf ; display a newline

Step 10: Display the integer stored in EAX in signed decimal format by calling the WriteInt pro-
cedure. Then call Crlf to move the cursor to the next output line:

call  WriteInt ; display in signed decimal
call  Crlf

Step 11: Display the same integer (still in EAX) in hexadecimal and binary formats, by calling
the WriteHex and WriteBin procedures:

call  WriteHex ; display in hexadecimal
call  Crlf
call  WriteBin ; display in binary
call  Crlf
call  Crlf

Step 12: You will insert a Loop instruction that allows the loop to repeat at Label L1. This
instruction first decrements ECX, and then jumps to label L1 only if ECX is not equal to zero:

Loop L1 ; repeat the loop

Step 13: After the loop ends, we want to display a “Press any key…” message and then pause the
output and wait for a key to be pressed by the user. To do this, we call the WaitMsg procedure:

call WaitMsg ; "Press any key..."

Step 14: Just before the program ends, the console window attributes are returned to the default
colors (light gray characters on a black background).

mov eax, DefaultColor
call SetTextColor
call Clrscr

Here are the closing lines of the program:

exit
main ENDP
END main

The remainder of the program’s output is shown in the following figure, using four sample inte-
gers entered by the user:
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A complete listing of the program appears below, with a few added comment lines:

; Library Test #1: Integer I/O   (InputLoop.asm)

; Tests the Clrscr, Crlf, DumpMem, ReadInt, SetTextColor, 
; WaitMsg, WriteBin, WriteHex, and WriteString procedures.

include Irvine32.inc

.data
COUNT = 4
BlueTextOnGray = blue + (lightGray * 16)
DefaultColor = lightGray + (black * 16)
arrayD SDWORD 12345678h,1A4B2000h,3434h,7AB9h
prompt BYTE "Enter a 32-bit signed integer: ",0

.code
main PROC

; Select blue text on a light gray background

mov eax,BlueTextOnGray
call SetTextColor
call Clrscr ; clear the screen

; Display an array using DumpMem.

mov esi,OFFSET arrayD ; starting OFFSET
mov ebx,TYPE arrayD ; doubleword = 4 bytes
mov ecx,LENGTHOF arrayD ; number of units in arrayD
call  DumpMem ; display memory

Enter a 32-bit signed integer: -42

-42

FFFFFFD6

1111 1111 1111 1111 1111 1111 1101 0110

Enter a 32-bit signed integer: 36

+36

00000024

0000 0000 0000 0000 0000 0000 0010 0100

Enter a 32-bit signed integer: 244324

+244324

0003BA64

0000 0000 0000 0011 1011 1010 0110 0100

Enter a 32-bit signed integer: -7979779

-7979779

FF863CFD

1111 1111 1000 0110 0011 1100 1111 1101
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; Ask the user to input a sequence of signed integers

call  Crlf ; new line
    mov   ecx,COUNT

L1: mov   edx,OFFSET prompt
    call  WriteString
    call  ReadInt ; input integer into EAX
    call  Crlf ; new line

; Display the integer in decimal, hexadecimal, and binary

call  WriteInt ; display in signed decimal
call  Crlf
call  WriteHex ; display in hexadecimal
call  Crlf
call  WriteBin ; display in binary
call  Crlf
call  Crlf
Loop  L1                ; repeat the loop

; Return the console window to default colors

call  WaitMsg ; "Press any key..."
mov  eax,DefaultColor
call  SetTextColor
call  Clrscr

exit
main ENDP
END main

Library Test #2: Random Integers
Let’s look at a second library test program that demonstrates random-number-generation capa-
bilities of the link library, and introduces the CALL instruction (to be covered fully in Section
5.5). First, it randomly generates 10 unsigned integers in the range 0 to 4,294,967,294. Next, it
generates 10 signed integers in the range �50 to �49:

; Link Library Test #2 (TestLib2.asm)

; Testing the Irvine32 Library procedures.

include Irvine32.inc

TAB = 9 ; ASCII code for Tab

.code
main PROC

call Randomize ; init random generator
call Rand1
call Rand2
exit

main ENDP

Rand1 PROC
; Generate ten pseudo-random integers.

mov ecx,10 ; loop 10 times

L1: call Random32 ; generate random int
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call WriteDec ; write in unsigned decimal
mov al,TAB ; horizontal tab
call WriteChar ; write the tab
loop L1

call Crlf
ret

Rand1 ENDP

Rand2 PROC
; Generate ten pseudo-random integers from -50 to +49

mov ecx,10 ; loop 10 times

L1: mov eax,100 ; values 0-99
call RandomRange ; generate random int
sub eax,50 ; values -50 to +49
call WriteInt ; write signed decimal
mov al,TAB ; horizontal tab
call WriteChar ; write the tab
loop L1

call Crlf
ret

Rand2 ENDP
END main

Here is sample output from the program:

Library Test #3: Performance Timing
Assembly language is often used to optimize sections of code seen as critical to a program’s per-
formance. The GetMseconds procedure from the book’s library returns the number of millisec-
onds elapsed since midnight. In our third library test program, we call GetMseconds, execute a
nested loop, and call GetMSeconds a second time. The difference between the two values
returned by these procedure calls gives us the elapsed time of the nested loop:

; Link Library Test #3 (TestLib3.asm)

; Calculate the elapsed execution time of a nested loop

include Irvine32.inc

.data
OUTER_LOOP_COUNT = 3
startTime DWORD ?
msg1 byte "Please wait...",0dh,0ah,0
msg2 byte "Elapsed milliseconds: ",0

.code

3221236194 2210931702 974700167 367494257 2227888607

926772240  506254858  1769123448  2288603673 736071794

-34 +27 +38 -34 +31 -13 -29 +44 -48 -43
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main PROC
mov edx,OFFSET msg1     ; "Please wait..."
call WriteString

; Save the starting time

call GetMSeconds
mov startTime,eax

; Start the outer loop

mov ecx,OUTER_LOOP_COUNT 

L1: call innerLoop
loop L1

; Calculate the elapsed time

call GetMSeconds
sub eax,startTime

; Display the elapsed time

mov edx,OFFSET msg2 ; "Elapsed milliseconds: "
call WriteString
call WriteDec ; write the milliseconds
call Crlf

exit
main ENDP

innerLoop PROC
push ecx ; save current ECX value

mov ecx,0FFFFFFFh ; set the loop counter
L1: mul eax ; use up some cycles

mul eax
mul eax
loop L1 ; repeat the inner loop

pop ecx ; restore ECX's saved value
ret

innerLoop ENDP

END main

Here is sample output from the program running on an Intel Core Duo processor:

Detailed Analysis of the Program
Let us study Library Test #3 in greater detail. The main procedure displays the string “Please
wait…” in the console window:

main PROC
mov edx,OFFSET msg1 ; "Please wait..."
call WriteString

Please wait....

Elapsed milliseconds: 4974
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When GetMSeconds is called, it returns the number of milliseconds that have elapsed since mid-
night into the EAX register. This value is saved in a variable for later use:

call GetMSeconds
mov startTime,eax

Next, we create a loop that executes based on the value of the OUTER_LOOP_COUNT con-
stant. That value is moved to ECX for use later in the LOOP instruction:

mov ecx,OUTER_LOOP_COUNT

The loop begins with label L1, where the innerLoop procedure is called. This CALL instruction
repeats until ECX is decremented down to zero:

L1: call innerLoop
loop L1

The innerLoop procedure uses an instruction named PUSH to save ECX on the stack before set-
ting it to a new value. (We will discuss PUSH and POP in the upcoming Section 5.4.) Then, the
loop itself has a few instructions designed to use up clock cycles:

innerLoop PROC
push ecx ; save current ECX value

mov ecx,0FFFFFFFh ; set the loop counter
L1: mul eax ; use up some cycles

mul eax
mul eax
loop L1 ; repeat the inner loop

The LOOP instruction will have decremented ECX down to zero at this point, so we pop the saved
value of ECX off the stack. It will now have the same value on leaving this procedure that it had when
entering. The PUSH and POP sequence is necessary because the main procedure was using ECX as
a loop counter when it called the innerLoop procedure. Here are the last few lines of innerLoop:

pop ecx ; restore ECX's saved value
ret

innerLoop ENDP

Back in the main procedure, after the loop finishes, we call GetMSeconds, which returns its
result in EAX. All we have to do is subtract the starting time from this value to get the number of
milliseconds that elapsed between the two calls to GetMSeconds:

call GetMSeconds
sub eax,startTime

The program displays a new string message, and then displays the integer in EAX that repre-
sents the number of elapsed milliseconds:

mov edx,OFFSET msg2 ; "Elapsed milliseconds: "
call WriteString
call WriteDec ; display the value in EAX
call Crlf
exit

main ENDP
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5.4.5 Section Review
1. Which procedure in the link library generates a random integer within a selected range?

2. Which procedure in the link library displays “Press [Enter] to continue. . .” and waits for the
user to press the Enter key?

3. Write statements that cause a program to pause for 700 milliseconds.

4. Which procedure from the link library writes an unsigned integer to the console window in
decimal format?

5. Which procedure from the link library places the cursor at a specific console window
location?

6. Write the INCLUDE directive that is required when using the Irvine32 library.

7. What types of statements are inside the Irvine32.inc file?

8. What are the required input parameters for the DumpMem procedure?

9. What are the required input parameters for the ReadString procedure?

10. Which processor status flags are displayed by the DumpRegs procedure?

11. Challenge: Write statements that prompt the user for an identification number and input a
string of digits into an array of bytes.

5.5 64-Bit Assembly Programming

5.5.1 The Irvine64 Library
Our book provides a minimal library to assist you with 64-bit programming, containing the fol-
lowing procedures:

• Crlf: Writes an end-of-line sequence to the console.
• Random64: Generates a 64-bit pseudorandom integer in the range 0 to 264�1. The random

value is returned in the RAX register.
• Randomize: Seeds the random number generator with a unique value.
• ReadInt64: Reads a 64-bit signed integer from the keyboard, terminated by the Enter key. It

returns the integer value in the RAX register.
• ReadString: Reads a string from the keyboard, terminated by the Enter key. Pass it the offset

of the input buffer in RDX, and set RCX to the maximum number of characters the user can
enter, plus 1 (for the null terminator byte). It returns a count (in RAX) of the number of char-
acters typed by the user. 

• Str_compare: Compares two strings. Pass it a pointer to the source string in RSI, and a
pointer to the target string in RDI. Sets the Zero and Carry flags in the same way as the CMP
(Compare) instruction.

• Str_copy: Copies a source string to the location indicated by a target pointer. Pass the source
offset in RSI, and the target offset in RDI.

• Str_length: Returns the length of a null-terminated string in the RAX register. Pass it the
string’s offset in RCX.

• WriteInt64: Displays the contents of the RAX register as a 64-bit signed decimal integer,
with a leading plus or minus sign. It has no return value.
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• WriteHex64: Displays the contents of the RAX register as a 64-bit hexadecimal integer. It
has no return value.

• WriteHexB: Displays the contents of the RAX register as a hexadecimal integer in either a
1-byte, 2-byte, 4-byte, or 8-byte format. Pass it the display size (1, 2, 4, or 8) in the RBX
register. It has no return value.

• WriteString: Displays a null-terminated ASCII string. Pass it the string’s 64-bit offset in
RDX. It has no return value.

Although this library is much smaller than our 32-bit library, it contains many of the essential
tools you need for making programs more interactive. You are also encouraged to expand this
library with your own code as you progress through the book. The Irvine64 library preserves the
values of the RBX, RBP, RDI, RSI, R12, R14, R14, and R15 registers. On the other hand, the
RAX, RCX, RDX, R8, R9, R10, and R11 register values are usually not preserved.

5.5.2 Calling 64-Bit Subroutines
If you want to call a subroutine you have created, or a subroutine in the Irvine64 library, all
you have to do is place input parameters in registers and execute the CALL instruction. For
example:

mov rax,12345678h
call WriteHex64

There’s one other small thing you have to do, which is to use the PROTO directive at the top of
your program to identify each procedure you plan to call that’s outside your own program:

ExitProcess PROTO ; located in the Windows API
WriteHex64 PROTO ; located in the Irvine64 library

5.5.3 The x64 Calling Convention
Microsoft follows a consistent scheme for passing parameters and calling procedures in 64-bit
programs known as the Microsoft x64 Calling Convention. This convention is used by C/C++
compilers, as well as by the Windows Application Programming Interface (API).  The only
times you need to use this calling convention is when you either call a function in the Windows
API, or you call a function written in C or C++. Here are some of the basic characteristics of this
calling convention:

1. The CALL instruction subtracts 8 from the RSP (stack pointer) register, since addresses are
64-bits long.

2. The first four parameters passed to a procedure are placed in the RCX, RDX, R8, and R9,
registers, in that order. If only one parameter is passed, it will be placed in RCX. If there is a
second parameter, it will be placed in RDX, and so on. Additional parameters are pushed on
the stack, in left-to-right order. 

3. It is the caller’s responsibility to allocate at least 32 bytes of shadow space on the runtime
stack, so the called procedures can optionally save the register parameters in this area. 

4. When calling a subroutine, the stack pointer (RSP) must be aligned on a 16-byte boundary
(a multiple of 16). The CALL instruction pushes an 8-byte return address on the stack, so the
calling program must subtract 8 from the stack pointer, in addition to the 32 it already sub-
tracts for the shadow space. We will soon show how this is done in a sample program.
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The remaining details about the x64 calling convention will be introduced in Chapter 8, when
we discuss the runtime stack in greater detail. Here’s the good news: you do not have to use the
Microsoft x64 calling convention when calling subroutines in the Irvine64 library. You only need
to use it when calling Windows API functions.

5.5.4 Sample Program that Calls a Procedure
Let’s create a short program that uses the Microsoft x64 calling convention to call a subroutine
named AddFour. This subroutine adds the values in the four parameter registers (RCX, RDX,
R8, and R9) and saves the sum in RAX. Because procedures normally return integer values in
RAX, the calling program expects that value to be in this register when the subroutine returns. In
this way, we can say that the subroutine is a function, because it receives four inputs and (deter-
ministically) produces a single output.

 1: ; Calling a subroutine in 64-bit mode (CallProc_64.asm)
 2: ; Chapter 5 example
 3: 
 4: ExitProcess PROTO
 5: WriteInt64 PROTO ; Irvine64 library
 6: Crlf PROTO ; Irvine64 library
 7: 
 8: .code
 9: main PROC
10: sub  rsp,8 ; align the stack pointer
11: sub  rsp,20h ; reserve 32 bytes for shadow params
12:
13: mov  rcx,1 ; pass four parameters, in order
14: mov  rdx,2
15: mov  r8,3
16: mov  r9,4
17: call AddFour ; look for return value in RAX
18: call WriteInt64 ; display the number
19: call Crlf ; output a CR/LF
20:
21: mov  ecx,0
22: call ExitProcess
23: main ENDP
24:
25: AddFour PROC
26: mov  rax,rcx
27: add  rax,rdx
28: add  rax,r8
29: add  rax,r9 ; sum is in RAX
30: ret
31: AddFour ENDP
32:
33: END

Let’s examine a few other details in the example: Line 10 aligns the stack pointer to an even
16-byte boundary. Why does this work? Before the OS called main, we assume the stack pointer
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was aligned on a 16-byte boundary. Then, when the OS called main, the CALL instruction
pushed an 8-byte return address on stack. Subtracting another 8 from the stack pointer drops it
down to a multiple of 16.

You can run this program in the Visual Studio debugger and watch the RSP register (stack
pointer) change values. When we did this, we saw the hexadecimal values shown graphically in
Fig. 5-11. The figure shows only the lower 32 bits of each address, since the upper 32 bits con-
tained all zeros:

1. Before line 10 executed, RSP = 01AFE48. This tells us that RSP was equal to 01AFE50
before the OS called our program. (The CALL instruction subtracts 8 from the stack pointer.)

2. After line 10 executed, RSP = 01AFE40, showing that the stack was properly aligned on a
16-byte boundary. 

3. After line 11 executed, RSP = 01AFE20, showing that 32 bytes of shadow space were
reserved at addresses 01AFE20 through 01AFE3F.

4. Inside the AddFour procedure, RSP = 01AFE18, showing that the caller’s return address had
been pushed on the stack.

5. After AddFour returned, RSP again was equal to 01AFE20, the same value it had before call-
ing AddFour.

Rather than calling ExitProcess to end the program, we might have chosen to execute a
RET instruction, which would return to the process that launched our program. It would
require, however, that we restore the stack pointer to the way it was when the main procedure
began to execute. The following lines would be the replacement for lines 21–22 of the
CallProc_64 program:

21: add  rsp,28 ; restore the stack pointer
22: mov  ecx,0 ; process return code
23: ret ; return to the OS

Figure 5–11 Runtime stack for the CallProc_64 program.

Tip: When using the Irvine64 library, add the file named Irvine64.obj to your Visual Studio project.
To do this in Visual Studio, right-click the project name in the Solution Explorer window, select Add,
select Existing Item, and select the Irvine64.obj filename.

(return to OS) 0 1 A F E 4 8

0 1 A F E 4 0

shadow p1 0 1 A F E 3 8

shadow p2 0 1 A F E 3 0

shadow p3 0 1 A F E 2 8

shadow p4 0 1 A F E 2 0

(return to main) 0 1 A F E 1 8
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5.6 Chapter Summary
This chapter introduces the book’s link library to make it easier for you to process input–output
in assembly language applications. 

Table 5-1 lists most of the procedures from the Irvine32 link library. The most up-to-date
listing of all procedures is available on the book’s Web site (www.asmirvine.com).

The library test program in Section 5.4.4 demonstrates a number of input–output func-
tions from the Irvine32 library. It generates and displays a list of random numbers, a register
dump, and a memory dump. It displays integers in various formats and demonstrates string
input–output.

The runtime stack is a special array that is used as a temporary holding area for addresses and
data. The ESP register holds a 32-bit OFFSET into some location on the stack. The stack is
called a LIFO structure (last-in, first-out) because the last value placed in the stack is the first
value taken out. A push operation copies a value into the stack. A pop operation removes a value
from the stack and copies it to a register or variable. Stacks often hold procedure return
addresses, procedure parameters, local variables, and registers used internally by procedures.

The PUSH instruction first decrements the stack pointer and then copies a source operand
into the stack. The POP instruction first copies the contents of the stack pointed to by ESP into a
destination operand and then increments ESP.

The PUSHAD instruction pushes the 32-bit general-purpose registers on the stack, and the
PUSHA instruction does the same for the 16-bit general-purpose registers. The POPAD instruc-
tion pops the stack into the 32-bit general-purpose registers, and the POPA instruction does the
same for the 16-bit general-purpose registers. PUSHA and POPA should only be used for 16-bit
programming.

The PUSHFD instruction pushes the 32-bit EFLAGS register on the stack, and POPFD pops
the stack into EFLAGS. PUSHF and POPF do the same for the 16-bit FLAGS register.

The RevStr program (Section 5.1.2) uses the stack to reverse a string of characters.

A procedure is a named block of code declared using the PROC and ENDP directives. A pro-
cedure’s execution ends with the RET instruction. The SumOf procedure, shown in Section 5.2.1,
calculates the sum of three integers. The CALL instruction executes a procedure by inserting the
procedure’s address into the instruction pointer register. When the procedure finishes, the RET
(return from procedure) instruction brings the processor back to the point in the program from
where the procedure was called. A nested procedure call occurs when a called procedure calls
another procedure before it returns. 

A code label followed by a single colon is only visible within its enclosing procedure. A code label
followed by :: is a global label, making it accessible from any statement in the same source code file.

The ArraySum procedure, shown in Section 5.2.5, calculates and returns the sum of the ele-
ments in an array.

The USES operator, coupled with the PROC directive, lets you list all registers modified by a
procedure. The assembler generates code that pushes the registers at the beginning of the proce-
dure and pops the registers before returning. 

www.asmirvine.com
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5.7.1 Terms
arguments

console window

file handle

global label

input parameter

label

last-in, first-out (LIFO)

link library

nested procedure call

precondition

pop operation

push operation

runtime stack

stack abstract data type

stack data structure

stack pointer register

ENDP

POP

POPA

POPAD

POPFD

PROC

PUSH

PUSHA

PUSHAD

PUSHFD

RET

USES

5.7.2 Instructions, Operators, and Directives

5.8 Review Questions and Exercises

5.8.1 Short Answer
1. Which instruction pushes all of the 32-bit general-purpose registers on the stack?

2. Which instruction pushes the 32-bit EFLAGS register on the stack?

3. Which instruction pops the stack into the EFLAGS register?

4. Challenge: Another assembler (called NASM) permits the PUSH instruction to list multiple
specific registers. Why might this approach be better than the PUSHAD instruction in
MASM? Here is a NASM example:

PUSH EAX EBX ECX

5. Challenge: Suppose there were no PUSH instruction. Write a sequence of two other instruc-
tions that would accomplish the same as push eax.

6. (True/False): The RET instruction pops the top of the stack into the instruction pointer.

7. (True/False): Nested procedure calls are not permitted by the Microsoft assembler unless
the NESTED operator is used in the procedure definition.

8. (True/False): In protected mode, each procedure call uses a minimum of 4 bytes of stack
space.

9. (True/False): The ESI and EDI registers cannot be used when passing 32-bit parameters to
procedures.
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10. (True/False): The ArraySum procedure (Section 5.2.5) receives a pointer to any array of
doublewords.

11. (True/False): The USES operator lets you name all registers that are modified within a pro-
cedure.

12. (True/False): The USES operator only generates PUSH instructions, so you must code POP
instructions yourself.

13. (True/False): The register list in the USES directive must use commas to separate the regis-
ter names.

14. Which statement(s) in the ArraySum procedure (Section 5.2.5) would have to be modified so
it could accumulate an array of 16-bit words? Create such a version of ArraySum and test it.

15. What will be the final value in EAX after these instructions execute?

push 5
push 6
pop  eax
pop  eax

16. Which statement is true about what will happen when the example code runs?

 1: main PROC
 2: push 10
 3: push 20
 4: call Ex2Sub
 5: pop  eax
 6: INVOKE ExitProcess,0
 7: main ENDP
 8:
 9: Ex2Sub PROC
10: pop eax
11: ret
12: Ex2Sub ENDP

a. EAX will equal 10 on line 6
b. The program will halt with a runtime error on Line 10
c. EAX will equal 20 on line 6
d. The program will halt with a runtime error on Line 11 

17. Which statement is true about what will happen when the example code runs?

 1: main PROC
 2: mov  eax,30
 3: push eax
 4: push 40
 5: call Ex3Sub
 6: INVOKE ExitProcess,0
 7: main ENDP
 8:
 9: Ex3Sub PROC
10: pusha
11: mov eax,80
12: popa



5.8   Review Questions and Exercises 185

13: ret
14: Ex3Sub ENDP

a. EAX will equal 40 on line 6
b. The program will halt with a runtime error on Line 6
c. EAX will equal 30 on line 6 
d. The program will halt with a runtime error on Line 13

18. Which statement is true about what will happen when the example code runs?

 1: main PROC
 2: mov eax,40
 3: push offset Here
 4: jmp  Ex4Sub
 5:    Here:
 6: mov eax,30
 7: INVOKE ExitProcess,0
 8: main ENDP
 9:
10: Ex4Sub PROC
11: ret
12: Ex4Sub ENDP

a. EAX will equal 30 on line 7
b. The program will halt with a runtime error on Line 4
c. EAX will equal 30 on line 6 
d. The program will halt with a runtime error on Line 11

19. Which statement is true about what will happen when the example code runs?

 1: main PROC
 2: mov edx,0
 3: mov eax,40
 4: push eax
 5: call Ex5Sub
 6: INVOKE ExitProcess,0
 7: main ENDP
 8:
 9: Ex5Sub PROC
10: pop  eax
11: pop  edx
12: push eax
13: ret
14: Ex5Sub ENDP

a. EDX will equal 40 on line 6 
b. The program will halt with a runtime error on Line 13
c. EDX will equal 0 on line 6 
d. The program will halt with a runtime error on Line 11

20. What values will be written to the array when the following code executes?

.data
array DWORD 4 DUP(0)
.code
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main PROC
mov eax,10
mov  esi,0
call proc_1
add  esi,4
add  eax,10
mov  array[esi],eax
INVOKE ExitProcess,0

main ENDP

proc_1 PROC
call proc_2
add  esi,4
add  eax,10
mov  array[esi],eax
ret

proc_1 ENDP

proc_2 PROC
call proc_3
add  esi,4
add  eax,10
mov  array[esi],eax
ret

proc_2 ENDP

proc_3 PROC
mov  array[esi],eax
ret

proc_3 ENDP

5.8.2 Algorithm Workbench
The following exercises can be solved using either 32-bit or 64-bit code.

1. Write a sequence of statements that use only PUSH and POP instructions to exchange the
values in the EAX and EBX registers (or RAX and RBX in 64-bit mode). 

2. Suppose you wanted a subroutine to return to an address that was 3 bytes higher in memory
than the return address currently on the stack. Write a sequence of instructions that would be
inserted just before the subroutine’s RET instruction that accomplish this task.

3. Functions in high-level languages often declare local variables just below the return address
on the stack. Write an instruction that you could put at the beginning of an assembly language
subroutine that would reserve space for two integer doubleword variables. Then, assign the
values 1000h and 2000h to the two local variables.

4. Write a sequence of statements using indexed addressing that copies an element in a double-
word array to the previous position in the same array.

5. Write a sequence of statements that display a subroutine’s return address. Be sure that what-
ever modifications you make to the stack do not prevent the subroutine from returning to its
caller.
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5.9 Programming Exercises
When you write programs to solve the programming exercises, use multiple procedures when
possible. Follow the style and naming conventions used in this book, unless instructed otherwise
by your instructor. Use explanatory comments in your programs at the beginning of each proce-
dure and next to nontrivial statements.

1. Draw Text Colors
Write a program that displays the same string in four different colors, using a loop. Call the Set-
TextColor procedure from the book’s link library. Any colors may be chosen, but you may find
it easiest to change the foreground color.

2. Linking Array Items
Suppose you are given three data items that indicate a starting index in a list, an array of charac-
ters, and an array of link index. You are to write a program that traverses the links and locates the
characters in their correct sequence. For each character you locate, copy it to a new array. Sup-
pose you used the following sample data, and assumed the arrays use zero-based indexes:

start = 1
chars: H A C E B D F G
links: 0 4 5 6 2 3 7 0

Then the values copied (in order) to the output array would be A,B,C,D,E,F,G,H. Declare the
character array as type BYTE, and to make the problem more interesting, declare the links array
type DWORD.

3. Simple Addition (1)
Write a program that clears the screen, locates the cursor near the middle of the screen, prompts
the user for two integers, adds the integers, and displays their sum.

4. Simple Addition (2)
Use the solution program from the preceding exercise as a starting point. Let this new program
repeat the same steps three times, using a loop. Clear the screen after each loop iteration.

5. BetterRandomRange Procedure
The RandomRange procedure from the Irvine32 library generates a pseudorandom integer between
0 and N � 1. Your task is to create an improved version that generates an integer between M and
N�1. Let the caller pass M in EBX and N in EAX. If we call the procedure BetterRandomRange, the
following code is a sample test:

mov  ebx,-300 ; lower bound
mov  eax,100 ; upper bound
call BetterRandomRange

Write a short test program that calls BetterRandomRange from a loop that repeats 50 times.
Display each randomly generated value.

★

★★

★

★★

★
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6. Random Strings
Create a procedure that generates a random string of length L, containing all capital letters.
When calling the procedure, pass the value of L in EAX, and pass a pointer to an array of byte
that will hold the random string. Write a test program that calls your procedure 20 times and dis-
plays the strings in the console window. 

7. Random Screen Locations
Write a program that displays a single character at 100 random screen locations, using a timing
delay of 100 milliseconds. Hint: Use the GetMaxXY procedure to determine the current size of
the console window.

8. Color Matrix
Write a program that displays a single character in all possible combinations of foreground and
background colors (16 � 16 � 256). The colors are numbered from 0 to 15, so you can use a
nested loop to generate all possible combinations.

9. Recursive Procedure
Direct recursion is the term we use when a procedure calls itself. Of course, you never want to
let a procedure keep calling itself forever, because the runtime stack would fill up. Instead, you
must limit the recursion in some way. Write a program that calls a recursive procedure. Inside
this procedure, add 1 to a counter so you can verify the number of times it executes. Run your
program with a debugger, and at the end of the program, check the counter’s value. Put a num-
ber in ECX that specifies the number of times you want to allow the recursion to continue. Using
only the LOOP instruction (and no other conditional statements from later chapters), find a way
for the recursive procedure to call itself a fixed number of times.

10. Fibonacci Generator
Write a procedure that produces N values in the Fibonacci number series and stores them in an
array of doubleword. Input parameters should be a pointer to an array of doubleword, a
counter of the number of values to generate. Write a test program that calls your procedure,
passing N = 47. The first value in the array will be 1, and the last value will be 2,971,215,073.
Use the Visual Studio debugger to open and inspect the array contents.

11. Finding Multiples of K
In a byte array of size N, write a procedure that finds all multiples of K that are less than N. Ini-
tialize the array to all zeros at the beginning of the program, and then whenever a multiple is
found, set the corresponding array element to 1. Your procedure must save and restore any regis-
ters it modifies. Call your procedure twice, with K = 2, and again with K = 3. Let N equal to 50.
Run your program in the debugger and verify that the array values were set correctly. Note: This
procedure can be a useful tool when finding prime integers. An efficient algorithm for finding
prime numbers is known as the Sieve of Eratosthenes. You will be able to implement this algo-
rithm when conditional statements are covered in Chapter 6.

★★

★

★★

★★★

★★★

★★★
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This chapter introduces a major item to your assembly language toolchest, giving your programs
the ability to make decisions. Nearly every program needs this capability. First, we start by
introducing you to the Boolean operations that are the core of all decision statements because
they affect the CPU status flags. Then we show how to use conditional jump and loop instruc-
tions that interpret CPU status flags. Next, we show how to use the tools from this chapter to
implement one of the most fundamental structures in theoretical computer science: the Finite-
State Machine. We finish the chapter by demonstrating MASM's built-in logic structures for
32-bit programming.

6.1 Conditional Branching
A programming language that permits decision making lets you alter the flow of control, using a
technique known as conditional branching. Every IF statement, switch statement, or conditional
loop found in high-level languages has built-in branching logic. Assembly language, as primitive
as it is, provides all the tools you need for decision-making logic. In this chapter, we will see
how the translation works, from high-level conditional statements to low-level implementation
code.

Programs that deal with hardware devices must be able to manipulate individual bits in
numbers. Individual bits must be tested, cleared, and set. Data encryption and compression
also rely on bit manipulation. We will show how to perform these operations in assembly
language.

This chapter should answer some basic questions:

• How can I use the boolean operations introduced in Chapter 1 (AND, OR, NOT)?
• How do I write an IF statement in assembly language?
• How are nested-IF statements translated by compilers into machine language?
• How can I set and clear individual bits in a binary number?
• How can I perform simple binary data encryption?
• How are signed numbers differentiated from unsigned numbers in boolean expressions?

This chapter follows a bottom-up approach, starting with the binary foundations behind pro-
gramming logic. Next, you will see how the CPU compares instruction operands, using the CMP
instruction and the processor status flags. Finally, we put it all together and show how to use
assembly language to implement logic structures characteristic of high-level languages. 

6.2 Boolean and Comparison Instructions
In Chapter 1, we introduced the four basic operations of boolean algebra: AND, OR, XOR,
and NOT. These operations can be carried out at the binary bit level, using assembly language
instructions. These operations are also important at the boolean expression level, in IF state-
ments, for example. First, we will look at the bitwise instructions. The techniques used here
could be used to manipulate control bits for hardware devices, implement communication pro-
tocols, or encrypt data, just to name a few applications. The Intel instruction set contains the
AND, OR, XOR, and NOT instructions, which directly implement boolean operations on
binary bits, shown in Table 6-1. In addition, the TEST instruction is a nondestructive AND
operation.
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6.2.1 The CPU Status Flags
Boolean instructions affect the Zero, Carry, Sign, Overflow, and Parity flags. Here’s a quick
review of their meanings:

• The Zero flag is set when the result of an operation equals zero.
• The Carry flag is set when an operation generates a carry out of the highest bit of the destina-

tion operand.
• The Sign flag is a copy of the high bit of the destination operand, indicating that it is negative

if set and positive if clear. (Zero is assumed to be positive.)
• The Overflow flag is set when an instruction generates a result that is outside the signed range

of the destination operand.
• The Parity flag is set when an instruction generates an even number of 1 bits in the low byte

of the destination operand. 

6.2.2 AND Instruction
The AND instruction performs a boolean (bitwise) AND operation between each pair of match-
ing bits in two operands and places the result in the destination operand:

AND destination,source

The following operand combinations are permitted, although immediate opperands can be no larger
than 32 bits:

AND reg,reg
AND reg,mem
AND reg,imm
AND mem,reg
AND mem,imm

The operands can be 8, 16, 32, or 64 bits, and they must be the same size. For each matching
bit in the two operands, the following rule applies: If both bits equal 1, the result bit is 1; other-
wise, it is 0. The following truth table from Chapter 1 labels the input bits x and y. The third col-
umn shows the value of the expression x ∧ y:

Table 6-1  Selected Boolean Instructions.

Operation Description

AND Boolean AND operation between a source operand and a destination operand.

OR Boolean OR operation between a source operand and a destination operand.

XOR Boolean exclusive-OR operation between a source operand and a destination operand.

NOT Boolean NOT operation on a destination operand.

TEST Implied boolean AND operation between a source and destination operand, setting the
CPU flags appropriately.

x y x ∧ y
0 0 0

0 1 0

1 0 0

1 1 1
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The AND instruction lets you clear 1 or more bits in an operand without affecting other bits.
The technique is called bit masking, much as you might use masking tape when painting a
house to cover areas (such as windows) that should not be painted. Suppose, for example, that
a control byte is about to be copied from the AL register to a hardware device. Further, we
will assume that the device resets itself when bits 0 and 3 are cleared in the control byte.
Assuming that we want to reset the device without modifying any other bits in AL, we can write
the following:

and AL,11110110b ; clear bits 0 and 3, leave others unchanged

For example, suppose AL is initially set to 10101110 binary. After ANDing it with 11110110,
AL equals 10100110:

mov al,10101110b
and al,11110110b ; result in AL = 10100110

Flags The AND instruction always clears the Overflow and Carry flags. It modifies the
Sign, Zero, and Parity flags in a way that is consistent with the value assigned to the destina-
tion operand. For example, suppose the following instruction results in a value of Zero in the
EAX register. In that case, the Zero flag will be set:

and eax,1Fh

Converting Characters to Upper case
The AND instruction provides an easy way to translate a letter from lowercase to uppercase.
If we compare the ASCII codes of capital A and lowercase a, it becomes clear that only bit 5 is
different:

0 1 1 0 0 0 0 1 = 61h ('a')
0 1 0 0 0 0 0 1 = 41h ('A')

The rest of the alphabetic characters have the same relationship. If we AND any character
with 11011111 binary, all bits are unchanged except for bit 5, which is cleared. In the following
example, all characters in an array are converted to uppercase:

.data
array BYTE 50 DUP(?)
.code

mov ecx,LENGTHOF array
mov esi,OFFSET array

L1: and BYTE PTR [esi],11011111b ; clear bit 5
inc esi
loop L1

6.2.3 OR Instruction
The OR instruction performs a boolean OR operation between each pair of matching bits in two
operands and places the result in the destination operand:

OR destination,source
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The OR instruction uses the same operand combinations as the AND instruction:

OR reg,reg
OR reg,mem
OR reg,imm
OR mem,reg
OR mem,imm

The operands can be 8, 16, 32, or 64 bits, and they must be the same size. For each matching
bit in the two operands, the output bit is 1 when at least one of the input bits is 1. The following
truth table (from Chapter 1) describes the boolean expression x ∨ y:

The OR instruction is particularly useful when you need to set 1 or more bits in an operand
without affecting any other bits. Suppose, for example, that your computer is attached to a servo
motor, which is activated by setting bit 2 in its control byte. Assuming that the AL register con-
tains a control byte in which each bit contains some important information, the following code
only sets the bit in position 2:

or AL,00000100b ; set bit 2, leave others unchanged

For example, if AL is initially equal to 11100011 binary and then we OR it with 00000100, the
result equals 11100111:

mov al,11100011b
or al,00000100b ; result in AL = 11100111

Flags The OR instruction always clears the Carry and Overflow flags. It modifies the Sign,
Zero, and Parity flags in a way that is consistent with the value assigned to the destination oper-
and. For example, you can OR a number with itself (or zero) to obtain certain information about
its value:

or al,al

The values of the Zero and Sign flags indicate the following about the contents of AL:

x y x ∨ y

0 0 0

0 1 1

1 0 1

1 1 1

Zero Flag Sign Flag Value in AL Is . . .

Clear Clear Greater than zero

Set Clear Equal to zero

Clear Set Less than zero



194 Chapter 6  •  Conditional Processing

6.2.4 Bit-Mapped Sets
Some applications manipulate sets of items selected from a limited-sized universal set. Exam-
ples might be employees within a company, or environmental readings from a weather monitor-
ing station. In such cases, binary bits can indicate set membership. Rather than holding pointers
or references to objects in a container such as a Java HashSet, an application can use a bit vector
(or bit map) to map the bits in a binary number to an array of objects.

For example, the following binary number uses bit positions numbered from 0 on the right to 31
on the left to indicate that array elements 0, 1, 2, and 31 are members of the set named SetX:

SetX = 10000000 00000000 00000000 00000111

(The bytes have been separated to improve readability.) We can easily check for set membership
by ANDing a particular member’s bit position with a 1:

mov  eax,SetX
and  eax,10000b ; is element[4] a member of SetX?

If the AND instruction in this example clears the Zero flag, we know that element [4] is a
member of SetX.

Set Complement
The complement of a set can be generated using the NOT instruction, which reverses all bits.
Therefore, the complement of the SetX that we introduced is generated in EAX using the
following instructions:

mov eax,SetX
not eax ; complement of SetX

Set Intersection
The AND instruction produces a bit vector that represents the intersection of two sets. The fol-
lowing code generates and stores the intersection of SetX and SetY in EAX:

mov  eax,SetX
and  eax,SetY

This is how the intersection of SetX and SetY is produced:

1000000000000000000000000000111    (SetX)
AND 1000001010100000000011101100011    (SetY)
----------------------------------------------------------

1000000000000000000000000000011    (intersection)

It is hard to imagine any faster way to generate a set intersection. A larger domain would require
more bits than could be held in a single register, making it necessary to use a loop to AND all of
the bits together. 

Set Union
The OR instruction produces a bit map that represents the union of two sets. The following code
generates the union of SetX and SetY in EAX:

mov  eax,SetX
or  eax,SetY
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This is how the union of SetX and SetY is generated by the OR instruction:

 1000000000000000000000000000111    (SetX)
OR  1000001010100000000011101100011    (SetY)
----------------------------------------------------

 1000001010100000000011101100111    (union)

6.2.5 XOR Instruction
The XOR instruction performs a boolean exclusive-OR operation between each pair of matching
bits in two operands and stores the result in the destination operand:

XOR destination,source

The XOR instruction uses the same operand combinations and sizes as the AND and OR
instructions. For each matching bit in the two operands, the following applies: If both bits are the
same (both 0 or both 1), the result is 0; otherwise, the result is 1. The following truth table
describes the boolean expression x ⊕ y:

A bit exclusive-ORed with 0 retains its value, and a bit exclusive-ORed with 1 is toggled
(complemented). XOR reverses itself when applied twice to the same operand. The following
truth table shows that when bit x is exclusive-ORed with bit y twice, it reverts to its original
value:

As you will find out in Section 6.3.4, this “reversible” property of XOR makes it an ideal tool for
a simple form of symmetric encryption. 

Flags The XOR instruction always clears the Overflow and Carry flags. XOR modifies the
Sign, Zero, and Parity flags in a way that is consistent with the value assigned to the destination
operand.

Checking the Parity Flag Parity checking is a function performed on a binary number that
counts the number of 1 bits contained in the number; if the resulting count is even, we say that
the data has even parity; if the count is odd, the data has odd parity. In x86 processors, the Parity

x y x ⊕ y
0 0 0

0 1 1

1 0 1

1 1 0

x y x ⊕ y (x ⊕ y) ⊕ y
0 0 0 0

0 1 1 0

1 0 1 1

1 1 0 1
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flag is set when the lowest byte of the destination operand of a bitwise or arithmetic operation
has even parity. Conversely, when the operand has odd parity, the flag is cleared. An effective
way to check the parity of a number without changing its value is to exclusive-OR the number
with zero:

mov al,10110101b ; 5 bits = odd parity
xor al,0 ; Parity flag clear (odd)
mov al,11001100b ; 4 bits = even parity
xor al,0 ; Parity flag set (even)

Visual Studio uses PE � 1 to indicate even parity, and PE � 0 to indicate odd parity.

16-Bit Parity You can check the parity of a 16-bit integer by performing an exclusive-OR
between the upper and lower bytes:

mov ax,64C1h ; 0110 0100 1100 0001
xor ah,al ; Parity flag set (even)

Imagine the set bits (bits equal to 1) in each register as being members of an 8-bit set. The XOR
instruction zeroes all bits belonging to the intersection of the sets. XOR also forms the union
between the remaining bits. The parity of this union will be the same as the parity of the entire
16-bit integer.

What about 32-bit values? If we number the bytes from B0 through B3, we can calculate the
parity as B0 XOR B1 XOR B2 XOR B3.

6.2.6 NOT Instruction
The NOT instruction toggles (inverts) all bits in an operand. The result is called the one’s com-
plement. The following operand types are permitted:

NOT reg
NOT mem

For example, the one’s complement of F0h is 0Fh:

mov al,11110000b    
not al ; AL = 00001111b

Flags No flags are affected by the NOT instruction.

6.2.7 TEST Instruction
The TEST instruction performs an implied AND operation between each pair of matching bits in
two operands and sets the Sign, Zero, and Parity flags based on the value assigned to the destina-
tion operand. The only difference between TEST and AND is that TEST does not modify the
destination operand. The TEST instruction permits the same operand combinations as the AND
instruction. TEST is particularly valuable for finding out whether individual bits in an operand
are set. 
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Example: Testing Multiple Bits The TEST instruction can check several bits at once. Sup-
pose we want to know whether bit 0 or bit 3 is set in the AL register. We can use the following
instruction to find this out:

test al,00001001b; test bits 0 and 3

(The value 00001001 in this example is called a bit mask.) From the following example data
sets, we can infer that the Zero flag is set only when all tested bits are clear: 

0 0 1 0 0 1 0 1  <- input value
0 0 0 0 1 0 0 1  <- test value
0 0 0 0 0 0 0 1  <- result: ZF = 0

0 0 1 0 0 1 0 0  <- input value
0 0 0 0 1 0 0 1  <- test value
0 0 0 0 0 0 0 0  <- result: ZF = 1

Flags The TEST instruction always clears the Overflow and Carry flags. It modifies the Sign,
Zero, and Parity flags in the same way as the AND instruction.

6.2.8 CMP Instruction
Having examined all of the bitwise instructions, let’s now turn to instructions used in logical
(boolean) expressions. The most common boolean expressions involve some type of compari-
son. The following pseudocode snippets support this idea:

if A > B ...
while X > 0 and X < 200  ...
if check_for_error( N ) = true 

In x86 assembly language we use the CMP instruction to compare integers. Character codes are
also integers, so they work with CMP as well. Floating-point values require specialized compar-
ison instructions, which we cover in Chapter 12.

The CMP (compare) instruction performs an implied subtraction of a source operand from a
destination operand. Neither operand is modified:

CMP destination,source

CMP uses the same operand combinations as the AND instruction.

Flags The CMP instruction changes the Overflow, Sign, Zero, Carry, Auxiliary Carry, and
Parity flags according to the value the destination operand would have had if actual subtraction
had taken place. When two unsigned operands are compared, the Zero and Carry flags indicate
the following relations between operands:

CMP Results ZF CF

Destination < source 0 1

Destination > source 0 0

Destination = source 1 0
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When two signed operands are compared, the Sign, Zero, and Overflow flags indicate the fol-
lowing relations between operands:  

CMP is a valuable tool for creating conditional logic structures. When you follow CMP with a
conditional jump instruction, the result is the assembly language equivalent of an IF statement.

Examples Let’s look at three code fragments showing how flags are affected by the CMP
instruction. When AX equals 5 and is compared to 10, the Carry flag is set because subtracting
10 from 5 requires a borrow:

mov ax,5
cmp ax,10          ; ZF = 0 and CF = 1

Comparing 1000 to 1000 sets the Zero flag because subtracting the source from the destination
produces zero:

mov ax,1000
mov cx,1000
cmp cx,ax          ; ZF = 1 and CF = 0

Comparing 105 to 0 clears both the Zero and Carry flags because subtracting 0 from 105 gener-
ates a positive, nonzero value.

mov si,105
cmp si,0           ; ZF = 0 and CF = 0

6.2.9 Setting and Clearing Individual CPU Flags
How can you easily set or clear the Zero, Sign, Carry, and Overflow flags? There are several
ways, some of which require modifying the destination operand. To set the Zero flag, TEST or
AND an operand with Zero; to clear the Zero flag, OR an operand with 1:

test al,0 ; set Zero flag
and al,0 ; set Zero flag
or al,1 ; clear Zero flag

TEST does not modify the operand, whereas AND does. To set the Sign flag, OR the highest bit
of an operand with 1. To clear the Sign flag, AND the highest bit with 0:

or al,80h ; set Sign flag
and al,7Fh ; clear Sign flag

To set the Carry flag, use the STC instruction; to clear the Carry flag, use CLC:

stc ; set Carry flag
clc ; clear Carry flag

To set the Overflow flag, add two positive values that produce a negative sum. To clear the Over-
flow flag, OR an operand with 0:

CMP Results Flags

Destination < source SF ≠ OF

Destination > source SF = OF

Destination = source ZF = 1
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mov al,7Fh ; AL = +127
inc al ; AL = 80h (-128), OF=1
or eax,0 ; clear Overflow flag

6.2.10 Boolean Instructions in 64-Bit Mode
For the most part, 64-bit instructions work exactly the same in 64-Bit mode as they do in 32-bit
mode. For example, if the source operand is a constant whose size is less than 32 bits and the desti-
nation is a 64-bit register or memory operand, all bits in the destination operand are affected:

.data
allones QWORD 0FFFFFFFFFFFFFFFFh
.code

mov  rax,allones ; RAX = FFFFFFFFFFFFFFFF
and  rax,80h ; RAX = 0000000000000080
mov  rax,allones ; RAX = FFFFFFFFFFFFFFFF
and  rax,8080h ; RAX = 0000000000008080
mov  rax,allones ; RAX = FFFFFFFFFFFFFFFF
and  rax,808080h ; RAX = 0000000000808080

But when the source operand is a 32-bit constant or register, only the lower 32 bits of the des-
tination operand are affected. In the following example, only the lower 32 bits of RAX are
modified:

mov  rax,allones ; RAX = FFFFFFFFFFFFFFFF
and  rax,80808080h ; RAX = FFFFFFFF80808080

The same results are true when the destination operand is a memory operand. Clearly, 32-bit
operands are a special case that you must consider separately from other operand sizes. 

6.2.11 Section Review
1. Write a single instruction using 16-bit operands that clears the high 8 bits of AX and does

not change the low 8 bits.

2. Write a single instruction using 16-bit operands that sets the high 8 bits of AX and does not
change the low 8 bits.

3. Write a single instruction (other than NOT) that reverses all the bits in EAX.

4. Write instructions that set the Zero flag if the 32-bit value in EAX is even and clear the Zero
flag if EAX is odd.

5. Write a single instruction that converts an uppercase character in AL to lowercase but does
not modify AL if it already contains a lowercase letter.

6.3 Conditional Jumps

6.3.1 Conditional Structures
There are no explicit high-level logic structures in the x86 instruction set, but you can implement
them using a combination of comparisons and jumps. Two steps are involved in executing a
conditional statement: First, an operation such as CMP, AND, or SUB modifies the CPU status
flags. Second, a conditional jump instruction tests the flags and causes a branch to a new
address. Let’s look at a couple of examples.
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Example 1 The CMP instruction in the following example compares EAX to Zero. The JZ
(Jump if zero) instruction jumps to label L1 if the Zero flag was set by the CMP instruction:

cmp eax,0
jz L1   ; jump if ZF = 1
.
.

L1:

Example 2 The AND instruction in the following example performs a bitwise AND on the
DL register, affecting the Zero flag. The JNZ (jump if not Zero) instruction jumps if the Zero
flag is clear:

and dl,10110000b
jnz L2   ; jump if ZF = 0
.
.

L2:

6.3.2 Jcond Instruction
A conditional jump instruction branches to a destination label when a status flag condition is
true. Otherwise, if the flag condition is false, the instruction immediately following the condi-
tional jump is executed. The syntax is as follows:

Jcond destination

cond refers to a flag condition identifying the state of one or more flags. The following examples
are based on the Carry and Zero flags: 

CPU status flags are most commonly set by arithmetic, comparison, and boolean instructions.
Conditional jump instructions evaluate the flag states, using them to determine whether or not
jumps should be taken.

Using the CMP Instruction Suppose you want to jump to label L1 when EAX equals 5. In
the next example, if EAX equals 5, the CMP instruction sets the Zero flag; then, the JE instruc-
tion jumps to L1 because the Zero flag is set:

cmp  eax,5
je   L1 ; jump if equal

(The JE instruction always jumps based on the value of the Zero flag.) If EAX were not equal to
5, CMP would clear the Zero flag, and the JE instruction would not jump.

JC Jump if carry (Carry flag set)

JNC Jump if not carry (Carry flag clear)

JZ Jump if zero (Zero flag set)

JNZ Jump if not zero (Zero flag clear)
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In the following example, the JL instruction jumps to label L1 because AX is less than 6:

mov  ax,5
cmp ax,6
jl   L1 ; jump if less

In the following example, the jump is taken because AX is greater than 4:

mov  ax,5
cmp  ax,4
jg   L1 ; jump if greater

6.3.3 Types of Conditional Jump Instructions
The x86 instruction set has a large number of conditional jump instructions. They are able to
compare signed and unsigned integers and perform actions based on the values of individual
CPU flags. The conditional jump instructions can be divided into four groups:

• Jumps based on specific flag values
• Jumps based on equality between operands or the value of (E)CX
• Jumps based on comparisons of unsigned operands
• Jumps based on comparisons of signed operands

Table 6-2 shows a list of jumps based on the Zero, Carry, Overflow, Parity, and Sign flags.

Equality Comparisons
Table 6-3 lists jump instructions based on evaluating equality. In some cases, two operands are
compared; in other cases, a jump is taken based on the value of CX, ECX, or RCX. In the table,
the notations leftOp and rightOp refer to the left (destination) and right (source) operands in a
CMP instruction:

CMP leftOp,rightOp

The operand names reflect the ordering of operands for relational operators in algebra. For
example, in the expression X < Y, X is called leftOp and Y is called rightOp.

Table 6-2  Jumps Based on Specific Flag Values.

Mnemonic Description Flags / Registers

JZ Jump if zero ZF = 1

JNZ Jump if not zero ZF = 0

JC Jump if carry CF = 1

JNC Jump if not carry CF = 0

JO Jump if overflow OF = 1

JNO Jump if not overflow OF = 0

JS Jump if signed SF = 1

JNS Jump if not signed SF = 0

JP Jump if parity (even) PF = 1

JNP Jump if not parity (odd) PF = 0
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Although the JE instruction is equivalent to JZ (jump if Zero) and JNE is equivalent to JNZ
(jump if not Zero), it’s best to select the mnemonic (JE or JZ) that best indicates your intention
to either compare two operands or examine a specific status flag.

Following are code examples that use the JE, JNE, JCXZ, and JECXZ instructions. Examine the
comments carefully to be sure that you understand why the conditional jumps were (or were not) taken.

Example 1:

mov edx,0A523h
cmp edx,0A523h
jne L5 ; jump not taken
je L1 ; jump is taken

Example 2:

mov bx,1234h
sub bx,1234h
jne L5 ; jump not taken
je L1 ; jump is taken

Example 3:

mov cx,0FFFFh
inc cx
jcxz L2 ; jump is taken

Example 4:

xor ecx,ecx
jecxz L2 ; jump is taken

Unsigned Comparisons
Jumps based on comparisons of unsigned numbers are shown in Table 6-4. The operand names
reflect the order of operands, as in the expression (leftOp < rightOp). The jumps in Table 6-4 are
only meaningful when comparing unsigned values. Signed operands use a different set of jumps.

Signed Comparisons
Table 6-5 displays a list of jumps based on signed comparisons. The following instruction
sequence demonstrates the comparison of two signed values:

mov  al,+127 ; hexadecimal value is 7Fh
cmp  al,-128 ; hexadecimal value is 80h
ja   IsAbove ; jump not taken, because 7Fh < 80h
jg   IsGreater ; jump taken, because +127 > -128

Table 6-3  Jumps Based on Equality.

Mnemonic Description

JE Jump if equal (leftOp � rightOp)

JNE Jump if not equal (leftOp � rightOp)

JCXZ Jump if CX � 0

JECXZ Jump if ECX � 0

JRCXZ Jump if RCX � 0 (64-bit mode)
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The JA instruction, which is designed for unsigned comparisons, does not jump because
unsigned 7Fh is smaller than unsigned 80h. The JG instruction, on the other hand, is designed
for signed comparisons—it jumps because +127 is greater than �128.

In the following code examples, examine the comments to be sure you understand why the
jumps were (or were not) taken: 

Example 1

mov edx,-1
cmp edx,0
jnl L5 ; jump not taken (-1 >= 0 is false)
jnle L5 ; jump not taken (-1 > 0 is false)
jl L1 ; jump is taken (-1 < 0 is true)

Example 2

mov bx,+32
cmp bx,-35
jng L5 ; jump not taken (+32 <= -35 is false)
jnge L5 ; jump not taken (+32 < -35 is false)
jge L1 ; jump is taken (+32 >= -35 is true)

Table 6-4  Jumps Based on Unsigned Comparisons.

Mnemonic Description

JA Jump if above (if leftOp � rightOp)

JNBE Jump if not below or equal (same as JA)

JAE Jump if above or equal (if leftOp 	 rightOp)

JNB Jump if not below (same as JAE)

JB Jump if below (if leftOp 
 rightOp)

JNAE Jump if not above or equal (same as JB)

JBE Jump if below or equal (if leftOp � rightOp)

JNA Jump if not above (same as JBE)

Table 6-5  Jumps Based on Signed Comparisons.

Mnemonic Description

JG Jump if greater (if leftOp � rightOp)

JNLE Jump if not less than or equal (same as JG)

JGE Jump if greater than or equal (if leftOp 	 rightOp)

JNL Jump if not less (same as JGE)

JL Jump if less (if leftOp 
 rightOp)

JNGE Jump if not greater than or equal (same as JL)

JLE Jump if less than or equal (if leftOp � rightOp)

JNG Jump if not greater (same as JLE)
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Example 3

mov ecx,0
cmp ecx,0
jg L5 ; jump not taken (0 > 0 is false)
jnl L1 ; jump is taken (0 >= 0 is true)

Example 4

mov ecx,0
cmp ecx,0
jl L5 ; jump not taken (0 < 0 is false)
jng L1 ; jump is taken (0 <= 0 is true)

6.3.4 Conditional Jump Applications

Testing Status Bits One of the things assembly language does best is bit testing. Often, we
do not want to change the values of the bits we’re testing, but we do want to modify the values
of CPU status flags. Conditional jump instructions often use these status flags to determine
whether or not to transfer control to code labels. Suppose, for example, that an 8-bit memory
operand named status contains status information about an external device attached to the
computer. The following instructions jump to a label if bit 5 is set, indicating that the device is
offline:

mov al,status
test al,00100000b ; test bit 5
jnz DeviceOffline

The following statements jump to a label if any of the bits 0, 1, or 4 are set:

mov al,status
test al,00010011b ; test bits 0,1,4
jnz InputDataByte

Jumping to a label if bits 2, 3, and 7 are all set requires both the AND and CMP instructions:

mov al,status
and al,10001100b ; mask bits 2,3,7
cmp al,10001100b ; all bits set?
je ResetMachine ; yes: jump to label

Larger of Two Integers The following code compares the unsigned integers in EAX and
EBX and moves the larger of the two to EDX:

mov  edx,eax ; assume EAX is larger
cmp  eax,ebx ; if EAX is >= EBX
jae  L1 ; jump to L1
mov  edx,ebx ; else move EBX to EDX

L1: ; EDX contains the larger integer

Smallest of Three Integers The following instructions compare the unsigned 16-bit values in 
the variables V1, V2, and V3 and move the smallest of the three to AX:
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.data
V1 WORD ?
V2 WORD ?
V3 WORD ?
.code

mov ax,V1 ; assume V1 is smallest
cmp ax,V2 ; if AX <= V2
jbe L1 ;   jump to L1 
mov ax,V2 ; else move V2 to AX

L1: cmp ax,V3 ; if AX <= V3
jbe L2 ;   jump to L2 
mov ax,V3 ; else move V3 to AX

L2:

Loop until Key Pressed In the following 32-bit code, a loop runs continuously until the user
presses a standard alphanumeric key. The ReadKey method from the Irvine32 library sets the
Zero flag if no key is present in the input buffer:

.data
char BYTE ?
.code
L1: mov  eax,10 ; create 10 ms delay

call Delay
call ReadKey ; check for key
jz   L1 ; repeat if no key
mov  char,AL ; save the character

The foregoing code inserts a 10-millisecond delay in the loop to give MS-Windows time to process
event messages. If you omit the delay, keystrokes may be ignored. 

Application: Sequential Search of an Array
A common programming task is to search for values in an array that meet some criteria. For
example, the following program looks for the first nonzero value in an array of 16-bit integers.
If it finds one, it displays the value; otherwise, it displays a message stating that a nonzero value
was not found:

; Scanning an Array             (ArrayScan.asm)
; Scan an array for the first nonzero value.

INCLUDE Irvine32.inc

.data
intArray  SWORD  0,0,0,0,1,20,35,-12,66,4,0
;intArray SWORD  1,0,0,0 ; alternate test data
;intArray SWORD  0,0,0,0 ; alternate test data
;intArray SWORD  0,0,0,1 ; alternate test data
noneMsg  BYTE "A non-zero value was not found",0

This program contains alternate test data that are currently commented out. Uncomment each of
these lines to test the program with different data configurations.
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.code
main PROC

mov ebx,OFFSET intArray ; point to the array
mov ecx,LENGTHOF intArray ; loop counter

L1: cmp   WORD PTR [ebx],0 ; compare value to zero
jnz   found ; found a value
add   ebx,2 ; point to next
loop  L1 ; continue the loop
jmp   notFound ; none found

found: ; display the value
movsx eax,WORD PTR[ebx] ; sign-extend into EAX
call  WriteInt
jmp   quit

notFound: ; display "not found" message
mov   edx,OFFSET noneMsg
call  WriteString

quit:
call Crlf
exit

main ENDP
END main

Application: Simple String Encryption
The XOR instruction has an interesting property. If an integer X is XORed with Y and the result-
ing value is XORed with Y again, the value produced is X:

This reversible property of XOR provides an easy way to perform a simple form of data encryp-
tion: A plain text message is transformed into an encrypted string called cipher text by XORing
each of its characters with a character from a third string called a key. The intended viewer can
use the key to decrypt the cipher text and produce the original plain text.

Example Program We will demonstrate a simple program that uses symmetric encryption,
a process by which the same key is used for both encryption and decryption. The following steps
occur in order at runtime:

1. The user enters the plain text. 
2. The program uses a single-character key to encrypt the plain text, producing the cipher text,

which is displayed on the screen.
3. The program decrypts the cipher text, producing and displaying the original plain text. 

Here is sample output from the program:

X Y⊗( ) Y⊗( ) X=
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Program Listing Here is a complete program listing:

; Encryption Program                   (Encrypt.asm)

INCLUDE Irvine32.inc
KEY = 239 ; any value between 1-255
BUFMAX = 128 ; maximum buffer size

.data
sPrompt  BYTE "Enter the plain text:",0
sEncrypt BYTE "Cipher text: ",0
sDecrypt BYTE "Decrypted: ",0
buffer   BYTE BUFMAX+1 DUP(0)
bufSize  DWORD ?

.code
main PROC

call InputTheString ; input the plain text
call TranslateBuffer ; encrypt the buffer
mov edx,OFFSET sEncrypt ; display encrypted message
call DisplayMessage
call TranslateBuffer  ; decrypt the buffer
mov edx,OFFSET sDecrypt ; display decrypted message
call DisplayMessage
exit

main ENDP

;-----------------------------------------------------
InputTheString PROC
;
; Prompts user for a plaintext string. Saves the string 
; and its length.
; Receives: nothing
; Returns: nothing
;-----------------------------------------------------

pushad ; save 32-bit registers
mov edx,OFFSET sPrompt ; display a prompt
call WriteString
mov ecx,BUFMAX ; maximum character count
mov edx,OFFSET buffer   ; point to the buffer
call ReadString         ; input the string
mov bufSize,eax        ; save the length
call Crlf
popad
ret

InputTheString ENDP

;-----------------------------------------------------
DisplayMessage PROC
;
; Displays the encrypted or decrypted message.
; Receives: EDX points to the message
; Returns:  nothing
;-----------------------------------------------------
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pushad
call WriteString
mov edx,OFFSET buffer ; display the buffer
call WriteString
call Crlf
call Crlf
popad
ret

DisplayMessage ENDP

;-----------------------------------------------------
TranslateBuffer PROC
;
; Translates the string by exclusive-ORing each
; byte with the encryption key byte.
; Receives: nothing
; Returns: nothing
;-----------------------------------------------------

pushad
mov ecx,bufSize ; loop counter
mov esi,0 ; index 0 in buffer

L1:
xor buffer[esi],KEY ; translate a byte
inc esi ; point to next byte
loop L1
popad
ret

TranslateBuffer ENDP
END main

You should never encrypt important data with a single-character encryption key, because it can
be too easily decoded. Instead, the chapter exercises suggest that you use an encryption key con-
taining multiple characters to encrypt and decrypt the plain text.

6.3.5 Section Review
1. Which jump instructions follow unsigned integer comparisons?

2. Which jump instructions follow signed integer comparisons?

3. Which conditional jump instruction is equivalent to JNAE?

4. Which conditional jump instruction is equivalent to the JNA instruction?

5. Which conditional jump instruction is equivalent to the JNGE instruction?

6. (Yes/No): Will the following code jump to the label named Target?

mov ax,8109h
cmp ax,26h
jg  Target
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6.4 Conditional Loop Instructions

6.4.1 LOOPZ and LOOPE Instructions
The LOOPZ (loop if zero) instruction works just like the LOOP instruction except that it has one
additional condition: the Zero flag must be set in order for control to transfer to the destination
label. The syntax is

LOOPZ destination

The LOOPE (loop if equal) instruction is equivalent to LOOPZ, and they share the same
opcode. They perform the following tasks:

ECX = ECX - 1
if ECX > 0 and ZF = 1, jump to destination

Otherwise, no jump occurs, and control passes to the next instruction. LOOPZ and LOOPE
do not affect any of the status flags. In 32-bit mode, ECX is the loop counter register, and in
64-bit mode, RCX is the counter.

6.4.2 LOOPNZ and LOOPNE Instructions
The LOOPNZ (loop if not zero) instruction is the counterpart of LOOPZ. The loop continues
while the unsigned value of ECX is greater than zero (after being decremented) and the Zero flag
is clear. The syntax is 

LOOPNZ destination

The LOOPNE (loop if not equal) instruction is equivalent to LOOPNZ, and they share the
same opcode. They perform the following tasks:

ECX = ECX - 1
if ECX > 0 and ZF = 0, jump to destination

Otherwise, nothing happens, and control passes to the next instruction. 

Example The following code excerpt (from Loopnz.asm) scans each number in an array until
a nonnegative number is found (when the sign bit is clear). Notice that we push the flags on the
stack before the ADD instruction because ADD will modify the flags. Then the flags are restored
by POPFD just before the LOOPNZ instruction executes:

.data
array  SWORD  -3,-6,-1,-10,10,30,40,4
sentinel SWORD  0
.code

mov  esi,OFFSET array
mov  ecx,LENGTHOF array

L1: test  WORD PTR [esi],8000h ; test sign bit
pushfd ; push flags on stack
add  esi,TYPE array ; move to next position
popfd ; pop flags from stack
loopnz L1 ; continue loop



210 Chapter 6  •  Conditional Processing

jnz  quit ; none found
sub  esi,TYPE array ; ESI points to value

quit:

If a nonnegative value is found, ESI is left pointing at it. If the loop fails to find a positive
number, it stops when ECX equals zero. In that case, the JNZ instruction jumps to label quit,
and ESI points to the sentinel value (0), located in memory immediately following the array.

6.4.3 Section Review
1. (True/False): The LOOPE instruction jumps to a label when (and only when) the Zero flag

is clear.

2. (True/False): In 32-bit mode, the LOOPNZ instruction jumps to a label when ECX is
greater than zero and the Zero flag is clear.

3. (True/False): The destination label of a LOOPZ instruction must be no farther than �128 or
�127 bytes from the instruction immediately following LOOPZ.

4. Modify the LOOPNZ example in Section 6.4.2 so that it scans for the first negative value in
the array. Change the array initializers so they begin with positive values.

5. Challenge: The LOOPNZ example in Section 6.4.2 relies on a sentinel value to handle the possi-
bility that a positive value might not be found. What might happen if you removed the sentinel?

6.5 Conditional Structures
We define a conditional structure to be one or more conditional expressions that trigger a choice
between different logical branches. Each branch causes a different sequence of instructions to
execute. No doubt you have already used conditional structures in a high-level programming
language. But you may not know how language compilers translate conditional structures into
low-level machine code. Let’s find out how that is done. 

6.5.1 Block-Structured IF Statements
An IF structure impli that a boolean expression is followed by two lists of statements; one per-
formed when the expression is true, and another performed when the expression is false: 

if( boolean-expression )
statement-list-1

else
statement-list-2

The else portion of the statement is optional. In assembly language, we code this structure in
steps. First, we evaluate the boolean expression in such a way that one of the CPU status flags is
affected. Second, we construct a series of jumps that transfer control to the two lists of state-
ments, based on the value of the relevant CPU status flag.

Example 1 In the following C++ code, two assignment statements are executed if op1 is
equal to op2:

if( op1 == op2 )
{

X = 1;
Y = 2;

}
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We translate this IF statement into assembly language with a CMP instruction followed by
conditional jumps. Because op1 and op2 are memory operands (variables), one of them must be
moved to a register before executing CMP. The following code implements the IF statement as
efficiently as possible by allowing the code to “fall through” to the two MOV instructions that
we want to execute when the boolean condition is true:

mov eax,op1
cmp eax,op2 ; op1 == op2?
jne L1 ; no: skip next
mov X,1 ; yes: assign X and Y
mov Y,2

L1:

If we implemented the �� operator using JE, the resulting code would be slightly less com-
pact (six instructions rather than five):

mov eax,op1
cmp eax,op2 ; op1 == op2?
je L1 ; yes: jump to L1
jmp L2 ; no: skip assignments

L1: mov X,1 ; assign X and Y
mov Y,2

L2:

Example 2 In the NTFS file storage system, the size of a disk cluster depends on the disk vol-
ume’s overall capacity. In the following pseudocode, we set the cluster size to 4,096 if the
volume size (in the variable named terrabytes) is less than 16 TBytes. Otherwise, we set the
cluster size to 8,192:

clusterSize = 8192;
if terrabytes < 16
  clusterSize = 4096;

Here’s a way to implement the pseudocode in assembly language:

mov clusterSize,8192 ; assume larger cluster
cmp terrabytes, 16 ; smaller than 16 TB?
jae next
mov clusterSize,4096 ; switch to smaller cluster

next:

Example 3 The following pseudocode statement has two branches:

if op1 > op2
call Routine1

else
call Routine2

end if

As you see from the foregoing example, the same conditional structure can be translated into
assembly language in multiple ways. When examples of compiled code are shown in this chapter,
they represent only what a hypothetical compiler might produce.
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In the following assembly language translation of the pseudocode, we assume that op1
and op2 are signed doubleword variables. When comparing variables, one must be moved to a
register:

mov  eax,op1 ; move op1 to a register
cmp  eax,op2 ; op1 > op2?
jg   A1 ; yes: call Routine1
call Routine2 ; no: call Routine2
jmp  A2 ; exit the IF statement

A1: call Routine1
A2:

White Box Testing
Complex conditional statements may have multiple execution paths, making them hard to
debug by inspection (looking at the code). Programmers often implement a technique known as
white box testing, which verifies a subroutine’s inputs and corresponding outputs. White box
testing requires you to have a copy of the source code. You assign a variety of values to the input
variables. For each combination of inputs, you manually trace through the source code and
verify the execution path and outputs produced by the subroutine. Let’s see how this is done in
assembly language by implementing the following nested-IF statement:

if op1 == op2
  if X > Y

call Routine1
  else

call Routine2
  end if
else
  call Routine3
end if

Following is a possible translation to assembly language, with line numbers added for reference.
It reverses the initial condition (op1 �� op2) and immediately jumps to the ELSE portion. All
that is left to translate is the inner IF-ELSE statement:

1: mov eax,op1
2: cmp eax,op2 ; op1 == op2?
3: jne L2 ; no: call Routine3

; process the inner IF-ELSE statement.
4: mov eax,X
5: cmp eax,Y ; X > Y?
6: jg L1 ; yes: call Routine1
7: call Routine2 ; no: call Routine2
8: jmp L3 ; and exit
9: L1: call Routine1 ; call Routine1
10: jmp L3 ; and exit
11: L2: call Routine3
12: L3:
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Table 6-6 shows the results of white box testing of the sample code. In the first four columns,
test values have been assigned to op1, op2, X, and Y. The resulting execution paths are verified
in columns 5 and 6. 

6.5.2 Compound Expressions

Logical AND Operator
Assembly language easily implements compound boolean expressions containing AND oper-
ators. Consider the following pseudocode, in which the values being compared are assumed to
be unsigned integers:

if (al > bl) AND (bl > cl)
X = 1

end if

Short-Circuit Evaluation The following is a straightforward implementation using short-
circuit evaluation, in which the second expression is not evaluated if the first expression is false.
This is the norm for high-level languages:

cmp al,bl ; first expression...
ja L1
jmp next

L1: cmp bl,cl ; second expression...
ja L2
jmp next

L2: mov X,1 ; both true: set X to 1
next:

We can reduce the code to five instructions by changing the initial JA instruction to JBE:

cmp al,bl ; first expression...
jbe next ; quit if false
cmp bl,cl ; second expression
jbe next ; quit if false
mov X,1 ; both are true

next:

The 29% reduction in code size (seven instructions down to five) results from letting the CPU
fall through to the second CMP instruction if the first JBE is not taken.

Table 6-6  Testing the Nested IF Statement.

op1 op2 X Y Line Execution Sequence Calls

10 20 30 40 1, 2, 3, 11, 12 Routine3

10 20 40 30 1, 2, 3, 11, 12 Routine3

10 10 30 40 1, 2, 3, 4, 5, 6, 7, 8, 12 Routine2

10 10 40 30 1, 2, 3, 4, 5, 6, 9, 10, 12 Routine1
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Logical OR Operator
When a compound expression contains subexpressions joined by the OR operator, the overall expres-
sion is true if any of the subexpressions is true. Let’s use the following pseudocode as an example:

if (al > bl) OR (bl > cl)
   X = 1

In the following implementation, the code branches to L1 if the first expression is true; other-
wise, it falls through to the second CMP instruction. The second expression reverses the > oper-
ator and uses JBE instead:

cmp al,bl ; 1: compare AL to BL
ja L1 ; if true, skip second expression
cmp bl,cl ; 2: compare BL to CL
jbe next ; false: skip next statement

L1: mov X,1 ; true: set X = 1
next:

For a given compound expression, there are multiple ways the expression can be imple-
mented in assembly language. 

6.5.3 WHILE Loops
A WHILE loop tests a condition first before performing a block of statements. As long as the
loop condition remains true, the statements are repeated. The following loop is written in C++:

while( val1 < val2 )
{

val1++;
val2--;

}

When implementing this structure in assembly language, it is convenient to reverse the loop condi-
tion and jump to endwhile if a condition becomes true. Assuming that val1 and val2 are variables, we
must copy one of them to a register at the beginning and restore the variable’s value at the end:

mov eax,val1 ; copy variable to EAX
beginwhile:

cmp eax,val2     ; if not (val1 < val2) 
jnl endwhile      ;   exit the loop
inc eax     ; val1++;
dec val2     ; val2--;
jmp beginwhile     ; repeat the loop

endwhile:
mov val1,eax ; save new value for val1

EAX is a proxy (substitute) for val1 inside the loop. References to val1 must be through EAX.
JNL is used, implying that val1 and val2 are signed integers.

Example: IF statement Nested in a Loop
High-level languages are particularly good at representing nested control structures. In the fol-
lowing C++ code, an IF statement is nested inside a WHILE loop. It calculates the sum of all
array elements greater than the value in sample:
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int array[] = {10,60,20,33,72,89,45,65,72,18};
int sample = 50;
int ArraySize = sizeof array / sizeof sample;
int index = 0;
int sum = 0;
while( index < ArraySize )
{

if( array[index] > sample )
{
 sum += array[index];

}
index++;

}

Before coding this loop in assembly language, let’s use the flowchart in Fig. 6-1
to describe the logic. To simplify the translation and speed up execution by reducing the
number of memory accesses, registers have been substituted for variables. EDX � sample,
EAX � sum, ESI � index, and ECX � ArraySize (a constant). Label names have been added
to the shapes.

Assembly Code The easiest way to generate assembly code from a flowchart is to implement
separate code for each flowchart shape. Note the direct correlation between the flowchart labels
and labels used in the following source code (see Flowchart.asm):

.data
sum DWORD 0
sample DWORD 50
array DWORD 10,60,20,33,72,89,45,65,72,18
ArraySize = ($ - Array) / TYPE array

.code
main PROC

mov eax,0 ; sum
mov edx,sample
mov esi,0 ; index
mov ecx,ArraySize

L1: cmp esi,ecx ; if esi < ecx
jl L2
jmp L5

L2: cmp array[esi*4], edx ; if array[esi] > edx
jg L3
jmp L4

L3: add eax,array[esi*4]

L4: inc esi
jmp L1

L5: mov sum,eax

A review question at the end of Section 6.5 will give you a chance to improve this code.
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Figure 6–1 Loop containing IF statement.

6.5.4 Table-Driven Selection
Table-driven selection is a way of using a table lookup to replace a multiway selection structure.
To use it, you must create a table containing lookup values and the offsets of labels or proce-
dures, and then you must use a loop to search the table. This works best when a large number of
comparisons are made. 

For example, the following is part of a table containing single-character lookup values and
addresses of procedures:

eax �� array[esi]

sum � eax

Begin

end

eax � sum
edx � sample
 esi � index
ecx � ArraySize

esi < ecx?

TRUE

TRUE

L1:

L3:

L2:

L5:

L4:

FALSE

FALSEarray[esi] > edx?

inc esi
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.data
CaseTable BYTE   'A' ; lookup value
    DWORD Process_A ; address of procedure
    BYTE  'B'
    DWORD Process_B

(etc.)

Let’s assume Process_A, Process_B, Process_C, and Process_D are located at addresses
120h, 130h, 140h, and 150h, respectively. The table would be arranged in memory as shown in
Fig. 6–2.

Figure 6–2 Table of procedure offsets.

Example Program In the following example program (ProcTable.asm), the user inputs a
character from the keyboard. Using a loop, the character is compared to each entry in a lookup
table. The first match found in the table causes a call to the procedure offset stored immediately
after the lookup value. Each procedure loads EDX with the offset of a different string, which is
displayed during the loop:

; Table of Procedure Offsets              (ProcTable.asm)

; This program contains a table with offsets of procedures.
; It uses the table to execute indirect procedure calls.

INCLUDE Irvine32.inc
.data
CaseTable BYTE 'A' ; lookup value

DWORD   Process_A ; address of procedure
EntrySize = ($ - CaseTable)

BYTE 'B'
           DWORD   Process_B
           BYTE 'C'
           DWORD   Process_C
           BYTE 'D'
           DWORD   Process_D
NumberOfEntries = ($ - CaseTable) / EntrySize
prompt BYTE "Press capital A,B,C,or D: ",0

msgA BYTE "Process_A",0
msgB BYTE "Process_B",0
msgC BYTE "Process_C",0
msgD BYTE "Process_D",0

Define a separate message string for each procedure:

'A' 'B' 'C' 'D'00000120 00000130 00000140 00000150

Address of Process_B

Lookup value
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.code
main PROC

mov edx,OFFSET prompt ; ask user for input
call WriteString
call ReadChar ; read character into AL
mov ebx,OFFSET CaseTable ; point EBX to the table
mov ecx,NumberOfEntries  ; loop counter

L1:
cmp al,[ebx] ; match found?
jne L2 ; no: continue
call NEAR PTR [ebx + 1] ; yes: call the procedure

call WriteString ; display message
call Crlf
jmp L3 ; exit the search

L2:
add ebx,EntrySize ; point to the next entry
loop L1 ; repeat until ECX = 0

L3:
exit

main ENDP

Process_A PROC
mov edx,OFFSET msgA
ret

Process_A ENDP

Process_B PROC
mov edx,OFFSET msgB
ret

Process_B ENDP

Process_C PROC
mov edx,OFFSET msgC
ret

Process_C ENDP

Process_D PROC
mov edx,OFFSET msgD
ret

Process_D ENDP
END main

The table-driven selection method involves some initial overhead, but it can reduce the
amount of code you write. A table can handle a large number of comparisons, and it can be more

This CALL instruction calls the procedure whose address is stored in the memory location refer-
enced by EBX+1. An indirect call such as this requires the NEAR PTR operator.

Each of the following procedures moves a different string offset to EDX:
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easily modified than a long series of compare, jump, and CALL instructions. A table can even be
reconfigured at runtime. 

6.5.5 Section Review
Notes: In all compound expressions, use short-circuit evaluation. Assume that val1 and X are 32-bit 

variables.

1. Implement the following pseudocode in assembly language:

if ebx > ecx
 X = 1

2. Implement the following pseudocode in assembly language:

if edx <= ecx
 X = 1

else
 X = 2

3. In the program from Section 6.5.4, why is it better to let the assembler calculate
NumberOfEntries rather than assigning a constant such as NumberOfEntries � 4?

4. Challenge: Rewrite the code from Section 6.5.3 so it is functionally equivalent, but uses
fewer instructions.

6.6 Application: Finite-State Machines
A finite-state machine (FSM) is a machine or program that changes state based on some input. It
is fairly simple to use a graph to represent an FSM, which contains squares (or circles) called
nodes and lines with arrows between the circles called edges (or arcs).

A simple example is shown in Figure 6-3. Each node represents a program state, and each
edge represents a transition from one state to another. One node is designated as the initial state,
shown in our diagram with an incoming arrow. The remaining states can be labeled with num-
bers or letters. One or more states are designated as terminal states, shown by a thick border
around the square. A terminal state represents a state in which the program might stop without
producing an error. A FSM is a specific instance of a more general type of structure called a
directed graph. The latter is a set of nodes connected by edges having specific directions.

Figure 6–3 Simple finite-state machine.

6.6.1 Validating an Input String
Programs that read input streams often must validate their input by performing a certain amount
of error checking. A programming language compiler, for instance, can use a FSM to scan
source programs and convert words and symbols into tokens, which are usually keywords, arith-
metic operators, and identifiers.

Start A B

C
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When using a FSM to check the validity of an input string, you usually read the input charac-
ter by character. Each character is represented by an edge (transition) in the diagram. A FSM
detects illegal input sequences in one of two ways:

• The next input character does not correspond to any transitions from the current state.
• The end of input is reached and the current state is a nonterminal state.

Character String Example Let’s check the validity of an input string according to the
following two rules: 

• The string must begin with the letter “x” and end with the letter “z.” 
• Between the first and last characters, there can be zero or more letters within the range

{‘a’...‘y’}.

The FSM diagram in Fig. 6-4 describes this syntax. Each transition is identified with a partic-
ular type of input. For example, the transition from state A to state B can only be accomplished
if the letter x is read from the input stream. A transition from state B to itself is accomplished by
the input of any letter of the alphabet except z. A transition from state B to state C occurs only
when the letter z is read from the input stream.

Figure 6–4 FSM for string.

If the end of the input stream is reached while the program is in state A or B, an error condi-
tion results because only state C is marked as a terminal state. The following input strings would
be recognized by this FSM:

xaabcdefgz
xz
xyyqqrrstuvz

6.6.2 Validating a Signed Integer
A FSM for parsing a signed integer is shown in Fig. 6-5. Input consists of an optional leading
sign followed by a sequence of digits. There is no maximum number of digits implied by the
diagram.

Figure 6–5 Signed decimal integer FSM.

Start 'x'

'a'...'y'

'z'

A B

C

Start

Digit

�,�

Digit Digit

A B

C
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Finite-state machines are easily translated into assembly language code. Each state in the
diagram (A, B, C, . . . ) is represented in the program by a label. The following actions are
performed at each label:

1. A call to an input procedure reads the next character from input. 
2. If the state is a terminal state, check to see whether the user has pressed the Enter key to end

the input.
3. One or more compare instructions check for each possible transition leading away from the

state. Each comparison is followed by a conditional jump instruction.

For example, at state A, the following code reads the next input character and checks for a possi-
ble transition to state B:

StateA:
call Getnext       ; read next char into AL
cmp al,'+' ; leading + sign?
je StateB          ; go to State B
cmp al,'-' ; leading - sign?
je StateB          ; go to State B
call IsDigit       ; ZF = 1 if AL contains a digit
jz StateC ; go to State C
call DisplayErrorMsg  ; invalid input found
jmp Quit

Let’s examine this code in more detail. First, it calls Getnext to read the next character from the con-
sole input into the AL register. The code will check for a leading + or – sign. It begins by comparing
the value in AL to a “+” character. If the character matches, a jump is taken to the label named StateB:

StateA:
call Getnext ; read next char into AL
cmp al,'+' ; leading + sign?
je StateB ; go to State B

At this point, we should look again at Fig. 6-5, and see that the transition from state A to state B
can only be made if a + or – character is read from input. Therefore, the code must also check for
the minus sign:

cmp al,'-' ; leading - sign?
je StateB ; go to State B

If a transition to state B is not possible, we can check the AL register for a digit, which would
cause a transition to state C. The call to the IsDigit procedure (from the book’s link library) sets
the Zero flag if AL contains a digit:

call IsDigit ; ZF = 1 if AL contains a digit
jz StateC ; go to State C

Finally, there are no other possible transitions away from state A. If the character in AL has not
been found to be a leading sign or digit, the program calls DisplayErrorMsg (which displays an
error message on the console) and then jumps to the label named Quit: 

call DisplayErrorMsg ; invalid input found
jmp Quit
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The label Quit marks the exit point of the program, at the end of the main procedure:

Quit:
call Crlf
exit

main ENDP

Complete Finite-State Machine Program The following program implements the signed
integer FSM from Fig. 6-5:

; Finite State Machine              (Finite.asm)

INCLUDE Irvine32.inc

ENTER_KEY = 13
.data
InvalidInputMsg BYTE "Invalid input",13,10,0

.code
main PROC

call Clrscr

StateA:
call Getnext       ; read next char into AL
cmp al,'+' ; leading + sign?
je StateB          ; go to State B
cmp al,'-' ; leading - sign?
je StateB          ; go to State B
call IsDigit       ; ZF = 1 if AL contains a digit
jz StateC ; go to State C
call DisplayErrorMsg  ; invalid input found
jmp Quit

StateB:
call Getnext       ; read next char into AL
call IsDigit       ; ZF = 1 if AL contains a digit
jz StateC
call DisplayErrorMsg  ; invalid input found
jmp Quit

StateC:
call Getnext       ; read next char into AL
call IsDigit       ; ZF = 1 if AL contains a digit
jz StateC
cmp al,ENTER_KEY ; Enter key pressed?
je Quit ; yes: quit
call DisplayErrorMsg  ; no: invalid input found
jmp Quit

Quit:
call Crlf
exit

main ENDP

;-----------------------------------------------
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Getnext PROC
;
; Reads a character from standard input.
; Receives: nothing
; Returns: AL contains the character
;-----------------------------------------------

call ReadChar ; input from keyboard
call WriteChar ; echo on screen
ret

Getnext ENDP

;-----------------------------------------------
DisplayErrorMsg PROC
;
; Displays an error message indicating that
; the input stream contains illegal input.
; Receives: nothing. 
; Returns: nothing
;-----------------------------------------------

push edx
mov edx,OFFSET InvalidInputMsg
call WriteString
pop edx
ret

DisplayErrorMsg ENDP
END main

IsDigit Procedure The Finite-State Machine sample program calls the IsDigit procedure,
which belongs to the book’s link library. Let’s look at the source code for IsDigit. It receives the
AL register as input, and the value it returns is the setting of the Zero flag:

;---------------------------------------------------------------------
IsDigit PROC
;
; Determines whether the character in AL is a valid decimal digit.
; Receives: AL = character
; Returns: ZF = 1 if AL contains a valid decimal digit; otherwise, ZF = 0.
;---------------------------------------------------------------------

cmp al,'0'
jb ID1 ; ZF = 0 when jump taken
cmp al,'9'
ja ID1 ; ZF = 0 when jump taken
test ax,0 ; set ZF = 1

ID1: ret
IsDigit ENDP

Before examining the code in IsDigit, we can review the set of hexadecimal ASCII codes for
decimal digits, shown in the following table. Because the values are contiguous, we need only to
check for the starting and ending range values:

Character '0' '1' '2' '3' '4' '5' '6' '7' '8' '9'

ASCII code (hex) 30 31 32 33 34 35 36 37 38 39
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In the IsDigit procedure, the first two instructions compare the character in the AL register to the
ASCII code for the digit 0. If the numeric ASCII code of the character is less than the ASCII
code for 0, the program jumps to the label ID1:

cmp al,'0'
jb ID1 ; ZF = 0 when jump taken

But one may ask, if JB transfers control to the label named ID1, how do we know the state of the
Zero flag? The answer lies in the way CMP works—it carries out an implied subtraction of the
ASCII code for Zero (30h) from the character in the AL register. If the value in AL is smaller,
the Carry flag is set, and the Zero flag is clear. (You may want to step through this code with a
debugger to verify this fact.) The JB instruction is designed to transfer control to a label when
CF = 1 and ZF = 0.

Next, the code in the IsDigit procedure compares AL to the ASCII code for the digit 9. If the
value is greater, the code jumps to the same label:

cmp al,'9'
ja ID1 ; ZF = 0 when jump taken

If the ASCII code for the character in AL is larger than the ASCII code of the digit 9 (39h), the
Carry flag and Zero flag are cleared. That is exactly the flag combination that causes the JA
instruction to transfer control to its target label.

If neither jump is taken (JA or JB), we assume that the character in AL is indeed a digit.
Therefore, we insert an instruction that is guaranteed to set the Zero flag. To test any value with
zero means to perform an implied AND with all zero bits. The result must be zero:

test ax,0 ; set ZF = 1

The JB and JA instructions we looked at earlier in IsDigit jumped to a label that was just beyond
the TEST instruction. So if those jumps are taken, the Zero flag will be clear. Here is the com-
plete procedure one more time:

Isdigit PROC
cmp  al,'0'
jb   ID1 ; ZF = 0 when jump taken
cmp  al,'9'
ja   ID1 ; ZF = 0 when jump taken
test ax,0 ; set ZF = 1

ID1: ret
Isdigit ENDP

In real-time or high-performance applications, programmers often take advantage of hardware
characteristics to fully optimize their code. The IsDigit procedure is an example of this approach
because it uses the flag settings of JB, JA, and TEST to return what is essentially a Boolean result.

6.6.3 Section Review
1. A finite-state machine is a specific application of what type of data structure?

2. In a finite-state machine diagram, what do the nodes represent?

3. In a finite-state machine diagram, what do the edges represent?
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4. In the signed integer finite-state machine (Section 6.6.2), which state is reached when the
input consists of “�5”?

5. In the signed integer finite-state machine (Section 6.6.2), how many digits can occur after a
minus sign?

6. What happens in a finite-state machine when no more input is available and the current state
is a nonterminal state?

7. Would the following simplification of a signed decimal integer finite-state machine work
just as well as the one shown in Section 6.6.2? If not, why not?

6.7 Conditional Control Flow Directives
In 32-bit mode, MASM includes a number of high-level conditional control flow directives
that help to simplify the coding of conditional statements. Unfortunately, they cannot be used in
64-bit mode. Before assembling your code, the assembler performs a preprocessing step. In this
step, it recognizes directives such as .CODE, .DATA, as well as directives that can be used for
conditional control flow. Table 6-7 lists the directives.

Table 6-7  Conditional Control Flow Directives.

Directive Description

.BREAK Generates code to terminate a .WHILE or .REPEAT block

.CONTINUE Generates code to jump to the top of a .WHILE or .REPEAT block

.ELSE Begins block of statements to execute when the .IF condition is false

.ELSEIF condition Generates code that tests condition and executes statements that follow, until an .ENDIF
directive or another .ELSEIF directive is found

.ENDIF Terminates a block of statements following an .IF, .ELSE, or .ELSEIF directive

.ENDW Terminates a block of statements following a .WHILE directive

.IF condition Generates code that executes the block of statements if condition is true.

.REPEAT Generates code that repeats execution of the block of statements until condition becomes
true

.UNTIL condition Generates code that repeats the block of statements between .REPEAT and .UNTIL until
condition becomes true

.UNTILCXZ Generates code that repeats the block of statements between .REPEAT and .UNTILCXZ
until CX equals zero

.WHILE condition Generates code that executes the block of statements between .WHILE and .ENDW as
long as condition is true

Start

Digit
Digit

A B
�,�
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6.7.1 Creating IF Statements
The .IF, .ELSE, .ELSEIF, and .ENDIF directives make it easy for you to code multiway branch-
ing logic. They cause the assembler to generate CMP and conditional jump instructions in the
background, which appear in the output listing file (progname.lst). This is the syntax:

.IF condition1
statements

[.ELSEIF condition2
statements ]

[.ELSE
statements ]

.ENDIF

The square brackets show that .ELSEIF and .ELSE are optional, whereas .IF and .ENDIF are
required. A condition is a boolean expression involving the same operators used in C++ and Java
(such as 
, �, ��, and !�). The expression is evaluated at runtime. The following are exam-
ples of valid conditions, using 32-bit registers and variables:

eax > 10000h
val1 <= 100
val2 == eax
val3 != ebx

The following are examples of compound conditions:

(eax > 0) && (eax > 10000h)
(val1 <= 100) || (val2 <= 100)
(val2 != ebx) && !CARRY?

A complete list of relational and logical operators is shown in Table 6-8.

Table 6-8  Runtime Relational and Logical Operators.

Operator Description

expr1 �� expr2 Returns true when expr1 is equal to expr2.

expr1 !� expr2 Returns true when expr1 is not equal to expr2.

expr1 � expr2 Returns true when expr1 is greater than expr2.

expr1 � expr2 Returns true when expr1 is greater than or equal to expr2.

expr1 
 expr2 Returns true when expr1 is less than expr2.

expr1 
 expr2 Returns true when expr1 is less than or equal to expr2.

! expr Returns true when expr is false.

expr1 && expr2 Performs logical AND between expr1 and expr2.

expr1 || expr2 Performs logical OR between expr1 and expr2.

expr1 & expr2 Performs bitwise AND between expr1 and expr2.

CARRY? Returns true if the Carry flag is set.

OVERFLOW? Returns true if the Overflow flag is set.

PARITY? Returns true if the Parity flag is set.

SIGN? Returns true if the Sign flag is set.

ZERO? Returns true if the Zero flag is set.
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Generating ASM Code When you use high-level directives such as .IF and .ELSE, the
assembler writes code for you. For example, let’s write an .IF directive that compares EAX to
the variable val1:

mov eax,6
.IF eax > val1
  mov result,1
.ENDIF

val1 and result are assumed to be 32-bit unsigned integers. When the assembler reads the fore-
going lines, it expands them into the following assembly language instructions, which you can view
if you run the program in the Visual Studio debugger, right-click, and select Go to Disassembly.

mov eax,6
cmp eax,val1
jbe @C0001 ; jump on unsigned comparison
mov result,1

@C0001:

The label name @C0001 was created by the assembler. This is done in a way that guarantees
that all labels within same procedure are unique.

6.7.2 Signed and Unsigned Comparisons
When you use the .IF directive to compare values, you must be aware of how MASM generates
conditional jumps. If the comparison involves an unsigned variable, an unsigned conditional
jump instruction is inserted in the generated code. This is a repeat of a previous example that
compares EAX to val1, an unsigned doubleword:

.data
val1 DWORD   5
result DWORD ?
.code

mov eax,6
.IF eax > val1
  mov result,1
.ENDIF

The assembler expands this using the JBE (unsigned jump) instruction:

mov eax,6
cmp eax,val1

Before using MASM conditional directives, be sure you thoroughly understand how to implement
conditional branching instructions in pure assembly language. In addition, when a program con-
taining decision directives is assembled, inspect the listing file to make sure the code generated by
MASM is what you intended.

To control whether or not MASM-generated code appears in the source listing file, you can con-
figure the Project properties in Visual Studio. Here’s how: from the Project menu, select Project
Properties, select Microsoft Macro Assembler, select Listing File, and set Enable Assembly Gen-
erated Code Listing to Yes.
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jbe @C0001 ; jump on unsigned comparison
mov result,1

@C0001:

Comparing a Signed Integer If an .IF directive compares a signed variable, however, a
signed conditional jump instruction is inserted into the generated code. For example, val2, is a
signed doubleword:

.data
val2 SDWORD -1
result DWORD ?
.code

mov eax,6
.IF eax > val2
  mov result,1
.ENDIF

Consequently, the assembler generates code using the JLE instruction, a jump based on signed
comparisons:

mov eax,6
cmp eax,val2
jle @C0001 ; jump on signed comparison
mov result,1

@C0001:

Comparing Registers The question we might then ask is, what happens if two registers are
compared? Clearly, the assembler cannot determine whether the values are signed or unsigned:

mov eax,6
mov ebx,val2
.IF eax > ebx
   mov result,1
.ENDIF

The following code is generated, showing that the assembler defaults to an unsigned comparison
(note the use of the JBE instruction):

mov  eax,6
mov  ebx,val2
cmp  eax, ebx
jbe  @C0001
mov  result,1

@C0001:

6.7.3 Compound Expressions
Many compound boolean expressions use the logical OR and AND operators. When using the
.IF directive, the || symbol is the logical OR operator:

.IF expression1 || expression2
statements

.ENDIF
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Similarly, the && symbol is the logical AND operator:

.IF expression1 && expression2
statements

.ENDIF

The logical OR operator will be used in the next program example.

SetCursorPosition Example
The SetCursorPosition procedure, shown in the next example, performs range checking on its
two input parameters, DH and DL (see SetCur.asm). The Y-coordinate (DH) must be between 0
and 24. The X-coordinate (DL) must be between 0 and 79. If either is found to be out of range,
an error message is displayed:

SetCursorPosition PROC
; Sets the cursor position. 
; Receives: DL = X-coordinate, DH = Y-coordinate. 
; Checks the ranges of DL and DH.
; Returns: nothing
;------------------------------------------------
.data
BadXCoordMsg BYTE "X-Coordinate out of range!",0Dh,0Ah,0
BadYCoordMsg BYTE "Y-Coordinate out of range!",0Dh,0Ah,0

.code
.IF (dl < 0) || (dl > 79)

mov  edx,OFFSET BadXCoordMsg
          call WriteString
          jmp  quit

.ENDIF

.IF (dh < 0) || (dh > 24)

mov  edx,OFFSET BadYCoordMsg
          call WriteString
          jmp  quit

.ENDIF

call Gotoxy
quit:
     ret
SetCursorPosition ENDP

The following code is generated by MASM when it preprocesses SetCursorPosition:

.code
; .IF (dl < 0) || (dl > 79)

cmp dl, 000h
jb @C0002
cmp dl, 04Fh
jbe @C0001
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@C0002:      
mov edx,OFFSET BadXCoordMsg

 call WriteString
 jmp  quit

; .ENDIF

@C0001:
; .IF (dh < 0) || (dh > 24)

cmp dh, 000h
jb @C0005
cmp dh, 018h
jbe @C0004

@C0005:      
mov  edx,OFFSET BadYCoordMsg
call WriteString
jmp  quit 

; .ENDIF

@C0004:
call Gotoxy

quit:
ret

College Registration Example
Suppose a college student wants to register for courses. We will use two criteria to determine
whether or not the student can register: The first is the person’s grade average, based on a 0 to
400 scale, where 400 is the highest possible grade. The second is the number of credits the
person wants to take. A multiway branch structure can be used, involving .IF, .ELSEIF, and
.ENDIF. The following shows an example (see Regist.asm):

.data
TRUE = 1
FALSE = 0
gradeAverage  WORD 275 ; test value
credits       WORD 12 ; test value
OkToRegister  BYTE ?
.code

mov OkToRegister,FALSE
.IF gradeAverage > 350
   mov OkToRegister,TRUE
.ELSEIF (gradeAverage > 250) && (credits <= 16)
   mov OkToRegister,TRUE
.ELSEIF (credits <= 12)
   mov OkToRegister,TRUE
.ENDIF

Table 6-9 lists the corresponding code generated by the assembler, which you can view by
looking at the Dissassembly window of the Microsoft Visual Studio debugger. (It has been
cleaned up here a bit to make it easier to read.) MASM-generated code will appear in the source
listing file if you use the /Sg command-line option when assembling programs. The size of a
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defined constants (such as TRUE or FALSE in the current code example) is 32-bits. Therefore,
when a constant is moved to a BYTE address, MASM inserts the BYTE PTR operator. 

6.7.4 Creating Loops with .REPEAT and .WHILE
The .REPEAT and .WHILE directives offer alternatives to writing your own loops with CMP
and conditional jump instructions. They permit the conditional expressions listed earlier in
Table 6-8. The .REPEAT directive executes the loop body before testing the runtime condition
following the .UNTIL directive:

.REPEAT
statements

.UNTIL condition

The .WHILE directive tests the condition before executing the loop:

.WHILE condition
statements

.ENDW

Examples: The following statements display the values 1 through 10 using the .WHILE directive.
The counter register (EAX) is initialized to zero before the loop. Then, in the first statement inside the
loop, EAX is incremented. The .WHILE directive branches out of the loop when EAX equals 10.

mov eax,0
.WHILE eax < 10

inc eax
call WriteDec
call Crlf

.ENDW

Table 6-9  Registration Example, MASM-Generated Code.

mov  byte ptr OkToRegister,FALSE
cmp  word ptr gradeAverage,350
jbe  @C0006
mov  byte ptr OkToRegister,TRUE
jmp  @C0008

@C0006:
cmp  word ptr gradeAverage,250
jbe  @C0009
cmp  word ptr credits,16
ja   @C0009
mov  byte ptr OkToRegister,TRUE
jmp  @C0008

@C0009:
cmp  word ptr credits,12
ja   @C0008
mov  byte ptr OkToRegister,TRUE

@C0008:
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The following statements display the values 1 through 10 using the .REPEAT directive:

mov eax,0
.REPEAT

inc eax
call WriteDec
call Crlf

.UNTIL eax == 10

Example: Loop Containing an IF Statement 
Earlier in this chapter, in Section 6.5.3, we showed how to write assembly language code for an IF
statement nested inside a WHILE loop. Here is the pseudocode:

while( op1 < op2 )
{

op1++;
if( op1 == op3 )
  X = 2;
else
  X = 3;

}

The following is an implementation of the pseudocode using the .WHILE and .IF directives.
Because op1, op2, and op3 are variables, they are moved to registers to avoid having two mem-
ory operands in any one instruction:

.data
X DWORD 0
op1 DWORD 2 ; test data
op2 DWORD 4 ; test data
op3 DWORD 5 ; test data
.code

mov eax,op1
mov ebx,op2
mov ecx,op3
.WHILE eax < ebx
  inc eax
  .IF eax == ecx
     mov X,2
  .ELSE
     mov X,3
  .ENDIF
.ENDW

6.8 Chapter Summary
The AND, OR, XOR, NOT, and TEST instructions are called bitwise instructions because they
work at the bit level. Each bit in a source operand is matched to a bit in the same position of the
destination operand:

• The AND instruction produces 1 when both input bits are 1.
• The OR instruction produces 1 when at least one of the input bits is 1.
• The XOR instruction produces 1 only when the input bits are different.
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• The TEST instruction performs an implied AND operation on the destination operand, setting
the flags appropriately. The destination operand is not changed.

• The NOT instruction reverses all bits in a destination operand.

The CMP instruction compares a destination operand to a source operand. It performs an implied
subtraction of the source from the destination and modifies the CPU status flags accordingly. CMP
is usually followed by a conditional jump instruction that transfers control to a code label.

Four types of conditional jump instructions are shown in this chapter: 

• Table 6-2 contains examples of jumps based on specific flag values, such as JC ( jump carry),
JZ ( jump zero), and JO ( jump overflow).

• Table 6-3 contains examples of jumps based on equality, such as JE ( jump equal), JNE
( jump not equal), and JECXZ ( jump if ECX = 0), and JRCXZ (jump if RCX = 0).

• Table 6-4 contains examples of conditional jumps based on comparisons of unsigned inte-
gers, such as JA ( jump if above), JB ( jump if below), and JAE ( jump if above or equal).

• Table 6-5 contains examples of jumps based on signed comparisons, such as JL ( jump if less)
and JG ( jump if greater).

In 32-bit mode, the LOOPZ (LOOPE) instruction repeats when the Zero flag is set and ECX
is greater than Zero. The LOOPNZ  (LOOPNE) instruction repeats when the Zero flag is clear
and ECX is greater than zero. In 64-bit mode, the RCX register is used by the LOOPZ and
LOOPNZ instructions.

Encryption is a process that encodes data, and decryption is a process that decodes data. The
XOR instruction can be used to perform simple encryption and decryption.

Flowcharts are an effective tool for visually representing program logic. You can easily write
assembly language code, using a flowchart as a model. It is helpful to attach a label to each flow-
chart symbol and use the same label in your assembly source code.

A finite-state machine (FSM) is an effective tool for validating strings containing recogniz-
able characters such as signed integers. It is relatively easy to implement a FSM in assembly
language if each state is represented by a label.

The .IF, .ELSE, .ELSEIF, and .ENDIF directives evaluate runtime expressions and greatly simplify
assembly language coding. They are particularly useful when coding complex compound boolean
expressions. You can also create conditional loops, using the .WHILE and .REPEAT directives.

6.9 Key Terms

6.9.1 Terms

bit-mapped set

bit mask

bit vector

boolean expression

cipher text

compound expression

conditional branching

conditional control flow directives

conditional structure

decryption

directed graph

edge

encryption

finite-state machine (FSM)
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6.9.2 Instructions, Operators, and Directives

AND

.BREAK

CMP

.CONTINUE

.ELSE

.ELSEIF

.ENDIF

.ENDW

.IF

JA

JAE

JB

JBE

JC

JE

JECXZ

JRCXZ

JG

JGE

JL

JLE

JP

JS

JZ

JNA

JNAE

JNB

JNBE

JNC

JNE

JNG

JNGE

JNL

JNP

JNS

JNZ

LOOPE

LOOPNE

LOOPZ

LOOPNZ

NOT

OR

.REPEAT

TEST

.UNTIL

.UNTILCXZ

.WHILE

XOR

initial state

key (encryption)

logical AND operator

logical OR operator

masking (bits)

node

plain text

set complement

set intersection

set union

short-circuit evaluation

symmetric encryption

terminal state

table-driven selection

white box testing

6.10 Review Questions and Exercises

6.10.1 Short Answer 
1. What will be the value of BX after the following instructions execute?

mov  bx,0FFFFh
and  bx,6Bh

2. What will be the value of BX after the following instructions execute?

mov  bx,91BAh
and  bx,92h

3. What will be the value of BX after the following instructions execute?

mov  bx,0649Bh
or   bx,3Ah



6.10   Review Questions and Exercises 235

4. What will be the value of BX after the following instructions execute?

mov  bx,029D6h
xor  bx,8181h

5. What will be the value of EBX after the following instructions execute?

mov  ebx,0AFAF649Bh
or   ebx,3A219604h

6. What will be the value of RBX after the following instructions execute?

mov  rbx,0AFAF649Bh
xor  rbx,0FFFFFFFFh

7. In the following instruction sequence, show the resulting value of AL where indicated, in binary:

mov  al,01101111b
and  al,00101101b ; a.
mov  al,6Dh
and  al,4Ah ; b.
mov  al,00001111b
or   al,61h ; c.
mov  al,94h
xor  al,37h ; d.

8. In the following instruction sequence, show the resulting value of AL where indicated, in
hexadecimal:

mov  al,7Ah
not  al ; a.
mov  al,3Dh
and  al,74h ; b.
mov  al,9Bh
or   al,35h ; c.
mov  al,72h
xor  al,0DCh ; d.

9. In the following instruction sequence, show the values of the Carry, Zero, and Sign flags
where indicated:

mov  al,00001111b
test al,00000010b ; a. CF=   ZF=   SF=
mov  al,00000110b
cmp  al,00000101b ; b. CF=   ZF=   SF=
mov  al,00000101b
cmp  al,00000111b ; c. CF=   ZF=   SF=

10. Which conditional jump instruction executes a branch based on the contents of ECX?

11. How are JA and JNBE affected by the Zero and Carry flags?

12. What will be the final value in EDX after this code executes?

    mov  edx,1
    mov  eax,7FFFh
    cmp  eax,8000h
    jl   L1
    mov  edx,0
L1:
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13. What will be the final value in EDX after this code executes?

    mov  edx,1
    mov  eax,7FFFh
    cmp  eax,8000h
    jb   L1
    mov  edx,0
L1:

14. What will be the final value in EDX after this code executes?

    mov  edx,1
    mov  eax,7FFFh
    cmp  eax,0FFFF8000h
    jl   L2
    mov  edx,0
L2:

15. (True/False): The following code will jump to the label named Target.
mov  eax,-30
cmp  eax,-50
jg   Target

16. (True/False): The following code will jump to the label named Target.
mov  eax,-42
cmp  eax,26
ja   Target

17. What will be the value of RBX after the following instructions execute?

mov  rbx,0FFFFFFFFFFFFFFFFh
and  rbx,80h

18. What will be the value of RBX after the following instructions execute?

mov  rbx,0FFFFFFFFFFFFFFFFh
and  rbx,808080h

19. What will be the value of RBX after the following instructions execute?

mov  rbx,0FFFFFFFFFFFFFFFFh
and  rbx,80808080h

6.10.2 Algorithm Workbench
1. Write a single instruction that converts an ASCII digit in AL to its corresponding binary

value. If AL already contains a binary value (00h to 09h), leave it unchanged.

2. Write instructions that calculate the parity of a 32-bit memory operand. Hint: Use the for-
mula presented earlier in this section: B0 XOR B1 XOR B2 XOR B3.

3. Given two bit-mapped sets named SetX and SetY, write a sequence of instructions that gen-
erate a bit string in EAX that represents members in SetX that are not members of SetY.

4. Write instructions that jump to label L1 when the unsigned integer in DX is less than or
equal to the integer in CX.

5. Write instructions that jump to label L2 when the signed integer in AX is greater than the
integer in CX.
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6. Write instructions that first clear bits 0 and 1 in AL. Then, if the destination operand is equal
to zero, the code should jump to label L3. Otherwise, it should jump to label L4.

7. Implement the following pseudocode in assembly language. Use short-circuit evaluation
and assume that val1 and X are 32-bit variables.

if( val1 > ecx ) AND ( ecx > edx ) 
   X = 1
else
   X = 2;

8. Implement the following pseudocode in assembly language. Use short-circuit evaluation
and assume that X is a 32-bit variable.

if( ebx > ecx ) OR ( ebx > val1 ) 
   X = 1
else
   X = 2

9. Implement the following pseudocode in assembly language. Use short-circuit evaluation
and assume that X is a 32-bit variable.

if( ebx > ecx AND ebx > edx) OR ( edx > eax ) 
   X = 1
else
   X = 2

10. Implement the following pseudocode in assembly language. Use short-circuit evaluation
and assume that A, B, and N are 32-bit signed integers. 

while N > 0
  if N != 3 AND (N < A OR N > B)

  N = N – 2
  else
     N = N – 1
end whle

6.11 Programming Exercises

6.11.1 Suggestions for Testing Your Code
We have a few suggestions on how you can test the code you write for the programming exer-
cises in this chapter, and in future chapters.

• Always step through your program with a debugger the first time you test it. It’s so easy to
forget a small detail, and the debugger let’s you see exactly what’s going on.

• If the specifications call for a signed array, be sure to include some negative values.
• When a range of input values is specified, include test data that falls before, on, and after

these boundaries.
• Create multiple test cases, using arrays of different lengths.
• When you’re writing a program that writes to an array, the Visual Studio debugger is the best

tool for evaluating your program’s correctness. Use the debugger’s Memory window to dis-
play the array, choosing either hexadecimal or decimal representation.
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• Immediately after calling the procedure you’re testing, call it a second time to verify that the
procedure has preserved all registers. Here’s an example:

mov  esi,OFFSET array
mov  ecx,count
call CalcSum  ; returns sum in EAX
call CalcSum  ; call second time to see if registers are preserved

Usually there is a single return value in EAX, which of course, cannot be preserved. For that rea-
son, you usually should not use EAX as an input parameter.

• If you’re planning to pass more than one array to a procedure, make sure you do not refer to
the array by name inside the procedure. Instead, set ESI or EDI to the array’s offset before
calling your procedure. That means you will be using indirect addressing (such as [esi] or
[edi]) inside the procedure.

• If you need to create a variable for use only inside the procedure, you can use the .data direc-
tive before the variable, and then follow it with the .code directive. Here’s an example:

MyCoolProcedure PROC
.data
sum SDWORD ?
.code

mov sum,0
(etc.)

The variable will still be publicly visible, unlike local variables in languages like C++ or Java.
But when you declare it inside a procedure, you’re making it obvious that you do not plan to use
it anywhere else. Of course, you must use a runtime instruction to initialize variables used inside
a procedure, because you will call this procedure more than once. You don’t want it to have any
leftover value the second time the procedure is called.

6.11.2 Exercise  Descriptions

1. Filling an Array
Create a procedure that fills an array of doublewords with N random integers, making sure the
values fall within the range j...k, inclusive. When calling the procedure, pass a pointer to the
array that will hold the data, pass N, and pass the values of j and k. Preserve all register values
between calls to the procedure. Write a test program that calls the procedure twice, using differ-
ent values for j and k. Verify your results using a debugger.

2. Summing Array Elements in a Range
Create a procedure that returns the sum of all array elements falling within the range j...k (inclu-
sive). Write a test program that calls the procedure twice, passing a pointer to a signed double-
word array, the size of the array, and the values of j and k. Return the sum in the EAX register,
and preserve all other register values between calls to the procedure.

3. Test Score Evaluation
Create a procedure named CalcGrade that receives an integer value between 0 and 100, and
returns a single capital letter in the AL register. Preserve all other register values between calls

★★

★

★★
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to the procedure. The letter returned by the procedure should be according to the following
ranges:

Write a test program that generates 10 random integers between 50 and 100, inclusive. Each
time an integer is generated, pass it to the CalcGrade procedure.  You can test your program
using a debugger, or if you prefer to use the book’s library, you can display each integer and its
corresponding letter grade. (The Irvine32 library is required for this solution program because it
uses the RandomRange procedure.)

4. College Registration
Using the College Registration example from Section 6.7.3 as a starting point, do the following:

• Recode the logic using CMP and conditional jump instructions (instead of the .IF and
.ELSEIF directives).

• Perform range checking on the credits value; it cannot be less than 1 or greater than 30. If an
invalid entry is discovered, display an appropriate error message. 

• Prompt the user for the grade average and credits values.
• Display a message that shows the outcome of the evaluation, such as “The student can regis-

ter” or “The student cannot register”.

(The Irvine32 library is required for this solution program.)

5. Boolean Calculator (1)
Create a program that functions as a simple boolean calculator for 32-bit integers. It should dis-
play a menu that asks the user to make a selection from the following list:

1. x AND y
2. x OR y
3. NOT x
4. x XOR y
5. Exit program

When the user makes a choice, call a procedure that displays the name of the operation about to
be performed. You must implement this procedure using the Table-Driven Selection technique,
shown in Section 6.5.4. (You will implement the operations in Exercise 6.) (The Irvine32 library
is required for this solution program.)

6. Boolean Calculator (2)
Continue the solution program from Exercise 5 by implementing the following procedures:

• AND_op: Prompt the user for two hexadecimal integers. AND them together and display the
result in hexadecimal.

★★

★★★
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• OR_op: Prompt the user for two hexadecimal integers. OR them together and display the
result in hexadecimal.

• NOT_op: Prompt the user for a hexadecimal integer. NOT the integer and display the result in
hexadecimal.

• XOR_op: Prompt the user for two hexadecimal integers. Exclusive-OR them together and
display the result in hexadecimal.

(The Irvine32 library is required for this solution program.)

7. Probabilities and Colors
Write a program that randomly chooses among three different colors for displaying text on
the screen. Use a loop to display 20 lines of text, each with a randomly chosen color. The
probabilities for each color are to be as follows: white � 30%, blue � 10%, green � 60%.
Suggestion: Generate a random integer between 0 and 9. If the resulting integer falls in the
range 0 to 2 (inclusive), choose white. If the integer equals 3, choose blue. If the integer falls in
the range 4 to 9 (inclusive), choose green. Test your program by running it ten times, each time
observing whether the distribution of line colors appears to match the required probabilities.
(The Irvine32 library is required for this solution program.)

8. Message Encryption
Revise the encryption program in Section 6.3.4 in the following manner: Create an encryption
key consisting of multiple characters. Use this key to encrypt and decrypt the plaintext by XOR-
ing each character of the key against a corresponding byte in the message. Repeat the key as
many times as necessary until all plain text bytes are translated. Suppose, for example, the key
were equal to “ABXmv#7”. This is how the key would align with the plain text bytes:

9. Validating a PIN
Banks use a Personal Identification Number (PIN) to uniquely identify each customer. Let us
assume that our bank has a specified range of acceptable values for each digit in its customers’
5-digit PINs. The table shown below contains the acceptable ranges, where digits are numbered
from left to right in the PIN. Then we can see that the PIN 52413 is valid.  But the PIN 43534 is
invalid because the first digit is out of range. Similarly, 64535 is invalid because of its last digit.

Digit Number Range

1 5 to 9

2 2 to 5

3 4 to 8

4 1 to 4

5 3 to 6

Plain text (etc.)
Key A

hT
B

i i
X m v

ss
# 7

a
A B

P
X

l
m

a
v

i
#

n
7 A

e
B

x
X

tt
m v # 7 A 8 X m

e em s s a g
v # 7

(The key repeats until it equals the length of the plain text...)
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Your task is to create a procedure named Validate_PIN that receives a pointer to an array of byte
containing a 5-digit PIN. Declare two arrays to hold the minimum and maximum range values,
and use these arrays to validate each digit of the PIN that was passed to the procedure. If any
digit is found to be outside its valid range, immediately return the digit’s position (between
1 and 5) in the EAX register. If the entire PIN is valid, return 0 in EAX. Preserve all other
register values between calls to the procedure. Write a test program that calls Validate_PIN at
least four times, using both valid and invalid byte arrays. By running the program in a debugger,
verify that the return value in EAX after each procedure call is valid. Or, if you prefer to use the
book’s library, you can display "Valid" or "Invalid" on the console after each procedure call.

10. Parity Checking
Data transmission systems and file subsystems often use a form of error detection that relies on
calculating the parity (even or odd) of blocks of data. Your task is to create a procedure that
returns True in the EAX register if the bytes in an array contain even parity, or False if the parity
is odd. In other words, if you count all the bits in the entire array, their count will be even or odd.
Preserve all other register values between calls to the procedure. Write a test program that calls
your procedure twice, each time passing it a pointer to an array and the length of the array. The
procedure’s return value in EAX should be 1 (True) or 0 (False). For test data, create two arrays
containing at least 10 bytes, one having even parity, and another having odd parity. 

Tip:  Earlier in this chapter, we showed how you can repeatedly apply the XOR instruction to a
sequence of byte values to determine their parity. So, this suggests the use of a loop. But be care-
ful, since some machine instructions affect the Parity flag, and others do not. You can find this out
by looking at the individual instructions in Appendix B. The code in your loop that checks the par-
ity will have to carefully save and restore the state of the Parity flag to avoid having it unintention-
ally modified by your code.

★★★★
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7.10 Programming Exercises

This chapter introduces the fundamental binary shift and rotation techniques, playing to one of
the great strengths of assembly language. In fact, bit manipulation is an intrinsic part of com-
puter graphics, data encryption, and hardware manipulation. Instructions that do this are power-
ful tools, and are only partially implemented by high-level languages, and somewhat obscured
by their need to be platform-independent. We show quite a few ways you can apply bit shifting,
including optimized multiplication and division. 
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Arithmetic with arbitrary-length integers is not supported by all high-level languages. But
assembly language instructions make it possible to add and subtract integers of virtually any
size. You will also be exposed to specialized instructions that perform arithmetic on packed dec-
imal integers and integer strings.

7.1 Shift and Rotate Instructions
Along with bitwise instructions introduced in Chapter 6, shift instructions are among the most
characteristic of assembly language. Bit shifting means to move bits right and left inside an operand.
x86 processors provide a particularly rich set of instructions in this area (Table 7-1), all affecting the
Overflow and Carry flags.

7.1.1 Logical Shifts and Arithmetic Shifts
There are two ways to shift an operand’s bits. The first, logical shift, fills the newly created bit posi-
tion with zero. In the following illustration, a byte is logically shifted one position to the right. In
other words, each bit is moved to the next lowest bit position. Note that bit 7 is assigned 0: 

The following illustration shows a single logical right shift on the binary value 11001111, pro-
ducing 01100111. The lowest bit is shifted into the Carry flag: 

Table 7-1  Shift and Rotate Instructions.

SHL Shift left             

SHR Shift right            

SAL Shift arithmetic left  

SAR Shift arithmetic right   

ROL Rotate left            

ROR Rotate right           

RCL Rotate carry left      

RCR Rotate carry right

SHLD Double-precision shift left

SHRD Double-precision shift right

CF

0

(cf)1 1 0 0 1 1 1 1

0 1 1 0 0 1 1 1
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Another type of shift is called an arithmetic shift. The newly created bit position is filled with
a copy of the original number’s sign bit:

Binary 11001111, for example, has a 1 in the sign bit. When shifted arithmetically 1 bit to the
right, it becomes 11100111:

7.1.2 SHL Instruction
The SHL (shift left) instruction performs a logical left shift on the destination operand, filling the
lowest bit with 0. The highest bit is moved to the Carry flag, and the bit that was in the Carry flag
is discarded:

If you shift 11001111 left by 1 bit, it becomes 10011110:

The first operand in SHL is the destination and the second is the shift count:

SHL destination,count

The following lists the types of operands permitted by this instruction:

SHL reg,imm8
SHL mem,imm8
SHL reg,CL
SHL mem,CL

x86 processors permit imm8 to be any integer between 0 and 255. Alternatively, the CL register
can contain a shift count. Formats shown here also apply to the SHR, SAL, SAR, ROR, ROL,
RCR, and RCL instructions. 

Example In the following instructions, BL is shifted once to the left. The highest bit is copied
into the Carry flag and the lowest bit position is assigned zero: 

mov bl,8Fh ; BL = 10001111b 
shl bl,1   ; CF = 1, BL = 00011110b

CF

(cf)1 1 0 0 1 1 1 1

1 1 1 0 0 1 1 1

CF

0

(cf) 1 1 0 0 1 1 1 1

1 0 0 1 1 1 1 0



7.1   Shift and Rotate Instructions 245

When a value is shifted leftward multiple times, the Carry flag contains the last bit to be shifted
out of the most significant bit (MSB). In the following example, bit 7 does not end up in the
Carry flag because it is replaced by bit 6 (a zero):

mov al,10000000b
shl al,2 ; CF = 0, AL = 00000000b

Similarly, when a value is shifted rightward multiple times, the Carry flag contains the last bit to
be shifted out of the least significant bit (LSB).

Bitwise Multiplication Bitwise multiplication is performed when you shift a number’s bits in a
leftward direction (toward the MSB). For example, SHL can perform multiplication by powers of 2.
Shifting any operand left by n bits multiplies the operand by 2n. For example, shifting the integer 5
left by 1 bit yields the product of 5 � 21 � 10:

mov dl,5

shl dl,1

If binary 00001010 (decimal 10) is shifted left by two bits, the result is the same as multiplying
10 by 22:

mov dl,10 ; before: 00001010
shl dl,2 ; after: 00101000

7.1.3 SHR Instruction 
The SHR (shift right) instruction performs a logical right shift on the destination operand,
replacing the highest bit with a 0. The lowest bit is copied into the Carry flag, and the bit that
was previously in the Carry flag is lost:

SHR uses the same instruction formats as SHL. In the following example, the 0 from the low-
est bit in AL is copied into the Carry flag, and the highest bit in AL is filled with a zero: 

mov al,0D0h ; AL = 11010000b
shr al,1 ; AL = 01101000b, CF = 0

In a multiple shift operation, the last bit to be shifted out of position 0 (the LSB) ends up in the
Carry flag:

mov al,00000010b
shr al,2 ; AL = 00000000b, CF = 1

Bitwise Division Bitwise division is accomplished when you shift a number’s bits in a right-
ward direction (toward the LSB). Shifting an unsigned integer right by n bits divides the operand
by 2n. In the following statements, we divide 32 by 21, producing 16:

mov dl,32

shr dl,1

0  0  0  0  0  1  0  1 � 5Before:

0  0  0  0  1  0  1  0 � 10After:

CF

0

0  0  1  0  0  0  0  0 � 32Before:

0  0  0  1  0  0  0  0 � 16After:
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In the following example, 64 is divided by 23:

mov al,01000000b ; AL = 64
shr al,3         ; divide by 8, AL = 00001000b

Division of signed numbers by shifting is accomplished using the SAR instruction because it
preserves the number’s sign bit.

7.1.4 SAL and SAR Instructions
The SAL (shift arithmetic left) instruction works the same as the SHL instruction. For each shift count,
SAL shifts each bit in the destination operand to the next highest bit position. The lowest bit is assigned
0. The highest bit is moved to the Carry flag, and the bit that was in the Carry flag is discarded:

If you shift binary 11001111 to the left by one bit, it becomes 10011110:

The SAR (shift arithmetic right) instruction performs a right arithmetic shift on its destination
operand:

The operands for SAL and SAR are identical to those for SHL and SHR. The shift may be
repeated, based on the counter in the second operand:

SAR destination,count

The following example shows how SAR duplicates the sign bit. AL is negative before and
after it is shifted to the right: 

mov al,0F0h ; AL = 11110000b (-16)
sar al,1    ; AL = 11111000b (-8), CF = 0

Signed Division You can divide a signed operand by a power of 2, using the SAR instruction.
In the following example, –128 is divided by 23. The quotient is –16:

mov dl,-128 ; DL = 10000000b
sar dl,3 ; DL = 11110000b

Sign-Extend AX into EAX Suppose AX contains a signed integer and you want to extend its
sign into EAX. First shift EAX 16 bits to the left, then shift it arithmetically 16 bits to the right:

mov ax,-128 ; EAX = ????FF80h
shl eax,16 ; EAX = FF800000h
sar eax,16 ; EAX = FFFFFF80h

CF

0

(cf) 1 1 0 0 1 1 1 1

1 0 0 1 1 1 1 0

CF
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7.1.5 ROL Instruction
Bitwise rotation occurs when you move the bits in a circular fashion. In some versions, the bit
leaving one end of the number is immediately copied into the other end. Another type of rotation
uses the Carry flag as an intermediate point for shifted bits. 

The ROL (rotate left) instruction shifts each bit to the left. The highest bit is copied into the
Carry flag and the lowest bit position. The instruction format is the same as for SHL:

Bit rotation does not lose bits. A bit rotated off one end of a number appears again at the other
end. Note in the following example how the high bit is copied into both the Carry flag and bit
position 0:

mov al,40h            ; AL = 01000000b
rol al,1              ; AL = 10000000b, CF = 0
rol al,1              ; AL = 00000001b, CF = 1
rol al,1              ; AL = 00000010b, CF = 0

Multiple Rotations When using a rotation count greater than 1, the Carry flag contains the last
bit rotated out of the MSB position:

mov al,00100000b
rol al,3 ; CF = 1, AL = 00000001b

Exchanging Groups of Bits You can use ROL to exchange the upper (bits 4–7) and lower
(bits 0–3) halves of a byte. For example, 26h rotated four bits in either direction becomes 62h:

mov al,26h
rol al,4  ; AL = 62h

When rotating a multibyte integer by four bits, the effect is to rotate each hexadecimal digit one
position to the right or left. Here, for example, we repeatedly rotate 6A4Bh left four bits, eventu-
ally ending up with the original value:

mov ax,6A4Bh
rol ax,4 ; AX = A4B6h
rol ax,4 ; AX = 4B6Ah
rol ax,4 ; AX = B6A4h
rol ax,4 ; AX = 6A4Bh

7.1.6 ROR Instruction
The ROR (rotate right) instruction shifts each bit to the right and copies the lowest bit
into the Carry flag and the highest bit position. The instruction format is the same as for
SHL:

CF

CF
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In the following examples, note how the lowest bit is copied into both the Carry flag and the
highest bit position of the result:

mov al,01h ; AL = 00000001b
ror al,1   ; AL = 10000000b, CF = 1
ror al,1   ; AL = 01000000b, CF = 0

Multiple Rotations When using a rotation count greater than 1, the Carry flag contains the last
bit rotated out of the LSB position:

mov al,00000100b
ror al,3 ; AL = 10000000b, CF = 1

7.1.7 RCL and RCR Instructions
The RCL (rotate carry left) instruction shifts each bit to the left, copies the Carry flag to the
LSB, and copies the MSB into the Carry flag:

If we imagine the Carry flag as an extra bit added to the high end of the operand, RCL looks like
a rotate left operation. In the following example, the CLC instruction clears the Carry flag. The
first RCL instruction moves the high bit of BL into the Carry flag and shifts the other bits left.
The second RCL instruction moves the Carry flag into the lowest bit position and shifts the other
bits left:

clc  ; CF = 0
mov bl,88h ; CF,BL = 0 10001000b 
rcl bl,1   ; CF,BL = 1 00010000b
rcl bl,1   ; CF,BL = 0 00100001b

Recover a Bit from the Carry Flag RCL can recover a bit that was previously shifted into
the Carry flag. The following example checks the lowest bit of testval by shifting its lowest bit
into the Carry flag. If the lowest bit of testval is 1, a jump is taken; if the lowest bit is 0, RCL
restores the number to its original value:

.data
testval BYTE  01101010b
.code
shr testval,1 ; shift LSB into Carry flag
jc exit      ; exit if Carry flag set
rcl testval,1 ; else restore the number

RCR Instruction The RCR (rotate carry right) instruction shifts each bit to the right, copies
the Carry flag into the MSB, and copies the LSB into the Carry flag:

CF

CF
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As in the case of RCL, it helps to visualize the integer in this figure as a 9-bit value, with the
Carry flag to the right of the LSB. 

The following code example uses STC to set the Carry flag; then, it performs a rotate carry
right operation on the AH register:

stc  ; CF = 1
mov ah,10h ; AH, CF = 00010000 1
rcr ah,1   ; AH, CF = 10001000 0

7.1.8 Signed Overflow
The Overflow flag is set if the act of shifting or rotating a signed integer by one bit position gener-
ates a value outside the signed integer range of the destination operand. To put it another way,
the number’s sign is reversed. In the following example, a positive integer (�127) stored in an
8-bit register becomes negative (�2) when rotated left:

mov al,+127 ; AL = 01111111b
rol al,1 ; OF = 1, AL = 11111110b

Similarly, when –128 is shifted one position to the right, the Overflow flag is set. The result in
AL (+64) has the opposite sign:

mov al,-128 ; AL = 10000000b
shr al,1 ; OF = 1, AL = 01000000b

The value of the Overflow flag is undefined when the shift or rotation count is greater than 1.

7.1.9 SHLD/SHRD Instructions
The SHLD (shift left double)  instruction shifts a destination operand a given number of bits to the left.
The bit positions opened up by the shift are filled by the most significant bits of the source operand.
The source operand is not affected, but the Sign, Zero, Auxiliary, Parity, and Carry flags are affected:

SHLD dest, source, count

The following illustration shows the execution of SHLD with a shift count of 1. The highest
bit of the source operand is copied into the lowest bit of the destination operand. All the destina-
tion operand bits are shifted left:

The SHRD (shift right double) instruction shifts a destination operand a given number of bits to the
right. The bit positions opened up by the shift are filled by the least significant bits of the source operand:

SHRD dest, source, count

1 0 0 1 1 1 0 11 1 0 0 0 0 01

SourceDestination

11 1 0 0 0 0 0

Destination

CF
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The following illustration shows the execution of SHRD with a shift count of 1:

The following instruction formats apply to both SHLD and SHRD. The destination operand
can be a register or memory operand, and the source operand must be a register. The count oper-
and can be the CL register or an 8-bit immediate operand:

SHLD reg16,reg16,CL/imm8
SHLD mem16,reg16,CL/imm8
SHLD reg32,reg32,CL/imm8
SHLD mem32,reg32,CL/imm8

Example 1 The following statements shift wval to the left 4 bits and insert the high 4 bits of
AX into the low 4 bit positions of wval:

.data
wval WORD 9BA6h
.code
mov ax,0AC36h
shld wval,ax,4 ; wval = BA6Ah

The data movement is shown in the following figure:

Example 2 In the following example, AX is shifted to the right 4 bits, and the low 4 bits of
DX are shifted into the high 4 positions of AX:

mov ax,234Bh    
mov dx,7654h
shrd ax,dx,4

0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1

Source Destination

1 1 1 0 0 0 0 0

Destination

CF

9BA6 AC36

wval AX

BA6A AC36

7654 234B

7654 4234

DX AX
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SHLD and SHRD can be used to manipulate bit-mapped images, when groups of bits must be
shifted left and right to reposition images on the screen. Another potential application is data
encryption, in which the encryption algorithm involves the shifting of bits. Finally, the two instruc-
tions can be used when performing fast multiplication and division with very long integers.

The following code example demonstrates SHRD by shifting an array of doublewords to the
right by 4 bits:

.data
array DWORD 648B2165h,8C943A29h,6DFA4B86h,91F76C04h,8BAF9857h

.code
mov  bl,4 ; shift count
mov  esi,OFFSET array ; offset of the array
mov  ecx,(LENGTHOF array) – 1 ; number of array elements

L1: push ecx ; save loop counter
mov  eax,[esi + TYPE DWORD]
mov  cl,bl ; shift count
shrd [esi],eax,cl ; shift EAX into high bits of

[ESI]
add  esi,TYPE DWORD ; point to next doubleword pair
pop  ecx ; restore loop counter
loop L1

shr DWORD PTR [esi],COUNT ; shift the last doubleword

7.1.10 Section Review
1. Which instruction shifts each bit in an operand to the left and copies the highest bit into both

the Carry flag and the lowest bit position? 

2. Which instruction shifts each bit to the right, copies the lowest bit into the Carry flag, and
copies the Carry flag into the highest bit position?

3. Which instruction performs the following operation (CF = Carry flag)?

Before:  CF,AL = 1 11010101
After:   CF,AL = 1 10101011

4. What happens to the Carry flag when the SHR AX,1 instruction is executed? 

5. Challenge: Write a series of instructions that shift the lowest bit of AX into the highest bit
of BX without using the SHRD instruction. Next, perform the same operation using SHRD.

6. Challenge: One way to calculate the parity of a 32-bit number in EAX is to use a loop that
shifts each bit into the Carry flag and accumulates a count of the number of times the Carry
flag was set. Write a code that does this, and set the Parity flag accordingly.

7.2 Shift and Rotate Applications
When a program needs to move bits from one part of an integer to another, assembly language is a
great tool for the job. Sometimes, we move a subset of a number’s bits to position 0 to make it eas-
ier to isolate the value of the bits. In this section, we show a few common bit shift and rotate appli-
cations that are easy to implement. More applications will be found in the chapter exercises.
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7.2.1 Shifting Multiple Doublewords
You can shift an extended-precision integer that has been divided into an array of bytes, words,
or doublewords. Before doing this, you must know how the array elements are stored. A com-
mon way to store the integer is called little-endian order. It works like this: Place the low-order
byte at the array’s starting address. Then, working your way up from that byte to the high-order
byte, store each in the next sequential memory location. Instead of storing the array as a series
of bytes, you could store it as a series of words or doublewords. If you did so, the individual
bytes would still be in little-endian order, because x86 machines store words and doublewords in
little-endian order.

The following steps show how to shift an array of bytes 1 bit to the right:

Step 1: Shift the highest byte at [ESI+2] to the right, automatically copying its lowest bit into the
Carry flag.

Step 2: Rotate the value at [ESI+1] to the right, filling the highest bit with the value of the Carry
flag, and shifting the lowest bit into the Carry flag:

Step 3: Rotate the value at [ESI] to the right, filling the highest bit with the value of the Carry
flag, and shifting the lowest bit into the Carry flag:

After Step 3 is complete, all bits have been shifted 1 position to the right:

01001100

[esi�2]

Step 1: 1

CF

10011001

[esi�2]

10011001

[esi�1]

10011001

[esi]

Starting values:

01001100

[esi�2]

Step 2: 10011001

[esi�1]

1

CF CF

11001100

[esi�1]CF

1

CF

Step 3: 01001100

[esi�2]

10011001

[esi]

1

CF CF

11001100

[esi]CF

1

CF

11001100

[esi�1]

01001100

[esi�2]

11001100

[esi�1]

11001100

[esi]
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The following code excerpt from the Multishift.asm program implements the steps we just outlined:

.data
ArraySize = 3
array BYTE ArraySize DUP(99h) ; 1001 pattern in each nybble
.code
main PROC

mov esi,0
shr array[esi+2],1 ; high byte
rcr array[esi+1],1 ; middle byte, include Carry flag
rcr array[esi],1 ; low byte, include Carry flag

Although our current example only shifts 3 bytes, the example could easily be modified to shift
an array of words or doublewords. Using a loop, you could shift an array of arbitrary size.

7.2.2 Binary Multiplication
Sometimes programmers squeeze every performance advantage they can into integer multiplica-
tion by using bit shifting rather than the MUL instruction. The SHL instruction performs
unsigned multiplication when the multiplier is a power of 2. Shifting an unsigned integer n bits
to the left multiplies it by 2n. Any other multiplier can be expressed as the sum of powers of 2.
For example, to multiply unsigned EAX by 36, we can write 36 as 25 + 22 and use the distribu-
tive property of multiplication:

EAX * 36 = EAX * (25 + 22)
= EAX * (32 + 4)
= (EAX * 32) + (EAX * 4)

The following figure shows the multiplication 123 * 36, producing 4428, the product:

It is interesting to note that bits 2 and 5 are set in the multiplier (36), and the integers 2 and 5 are
also the required shift counters. Using this information, the following code snippet multiplies
123 by 36, using SHL and ADD instructions:

mov eax,123
mov ebx,eax
shl eax,5 ; multiply by 25

shl ebx,2 ; multiply by 22

add eax,ebx ; add the products

As a chapter programming exercise, you will be asked to generalize this example and create a
procedure that multiplies any two 32-bit unsigned integers using shifting and addition.

0 1 1 1 1 0 1 1

0 0 1 0 0 1 0 0 36

123

0 1 1 1 1 0 1 1 123 SHL 2

0 1 1 1 1 0 1 1 123 SHL 5

0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 4428

�

�
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7.2.3 Displaying Binary Bits
A common programming task is converting a binary integer to an ASCII binary string, allowing
the latter to be displayed. The SHL instruction is useful in this regard because it copies the high-
est bit of an operand into the Carry flag each time the operand is shifted left. The following
BinToAsc procedure is a simple implementation:

;---------------------------------------------------------
BinToAsc PROC
;
; Converts 32-bit binary integer to ASCII binary.
; Receives: EAX = binary integer, ESI points to buffer
; Returns: buffer filled with ASCII binary digits
;---------------------------------------------------------

push ecx
push esi

mov ecx,32 ; number of bits in EAX

L1: shl eax,1 ; shift high bit into Carry flag
mov BYTE PTR [esi],'0' ; choose 0 as default digit
jnc L2 ; if no Carry, jump to L2
mov BYTE PTR [esi],'1' ; else move 1 to buffer

L2: inc esi ; next buffer position
loop L1 ; shift another bit to left

pop esi
pop ecx
ret

BinToAsc ENDP

7.2.4 Extracting File Date Fields
When storage space is at a premium, system-level software often packs multiple data fields into
a single integer. To uncover this data, applications often need to extract sequences of bits called
bit strings. For example, in real-address mode, MS-DOS function 57h returns the date stamp of
a file in DX. (The date stamp shows the date on which the file was last modified.) Bits 0 through
4 represent a day number between 1 and 31, bits 5 through 8 are the month number, and bits 9
through 15 hold the year number. If a file was last modified on March 10, 1999, the file’s date
stamp would appear as follows in the DX register (the year number is relative to 1980):

To extract a single bit string, shift its bits into the lowest part of a register and clear the irrele-
vant bit positions. The following code example extracts the day number field of a date stamp
integer by making a copy of DL and masking off bits not belonging to the field:

DH DL

Year Month Day

9-15 5-8 0-4

Field:

Bit numbers:

01 000 10 1 10 1 010 10
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mov al,dl        ; make a copy of DL
and al,00011111b ; clear bits 5-7
mov day,al       ; save in day

To extract the month number field, we shift bits 5 through 8 into the low part of AL before
masking off all other bits. AL is then copied into a variable:

mov ax,dx        ; make a copy of DX
shr ax,5 ; shift right 5 bits
and al,00001111b ; clear bits 4-7
mov month,al     ; save in month

The year number (bits 9 through 15) field is completely within the DH register. We copy it to AL
and shift right by 1 bit:

mov al,dh        ; make a copy of DH
shr al,1         ; shift right one position
mov ah,0         ; clear AH to zeros
add ax,1980      ; year is relative to 1980
mov year,ax      ; save in year

7.2.5 Section Review
1. Write assembly language instructions that calculate EAX * 24 using binary multiplication.

2. Write assembly language instructions that calculate EAX * 21 using binary multiplication.
Hint: 21 � 24 � 22 � 20.

3. What change would you make to the BinToAsc procedure in Section 7.2.3 in order to dis-
play the binary bits in reverse order?

4. The time stamp field of a file directory entry uses bits 0 through 4 for the seconds, bits 5
through 10 for the minutes, and bits 11 through 15 for the hours. Write instructions that
extract the minutes and copy the value to a byte variable named bMinutes.

7.3 Multiplication and Division Instructions
In 32-bit mode, integer multiplication can be performed as a 32-bit, 16-bit, or 8-bit operation.
In 64-bit mode, you can also use 64-bit operands. The MUL and IMUL instructions perform
unsigned and signed integer multiplication, respectively. The DIV instruction performs unsigned
integer division, and IDIV performs signed integer division. 

7.3.1 MUL Instruction
In 32-bit mode, the MUL (unsigned multiply) instruction comes in three versions: The first
version multiplies an 8-bit operand by the AL register. The second version multiplies a 16-bit
operand by the AX register, and the third version multiplies a 32-bit operand by the EAX
register. The multiplier and multiplicand must always be the same size, and the product is
twice their size. The three formats accept register and memory operands, but not immediate
operands:

MUL reg/mem8
MUL reg/mem16
MUL reg/mem32
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The single operand in the MUL instruction is the multiplier. Table 7-2 shows the default mul-
tiplicand and product, depending on the size of the multiplier. Because the destination operand is
twice the size of the multiplicand and multiplier, overflow cannot occur. MUL sets the Carry and
Overflow flags if the upper half of the product is not equal to zero. The Carry flag is ordinarily
used for unsigned arithmetic, so we’ll focus on it here. When AX is multiplied by a 16-bit oper-
and, for example, the product is stored in the combined DX and AX registers. That is, the high
16 bits of the product are stored in DX, and the low 16 bits are stored in AX. The Carry flag is set
if DX is not equal to zero, which lets us know that the product will not fit into the lower half of
the implied destination operand.

MUL Examples
The following statements multiply AL by BL, storing the product in AX. The Carry flag is clear
(CF = 0) because AH (the upper half of the product) equals zero:

mov al,5h
mov bl,10h
mul bl          ; AX = 0050h, CF = 0

The following diagram illustrates the movement between registers:

The following statements multiply the 16-bit value 2000h by 0100h. The Carry flag is set
because the upper part of the product (located in DX) is not equal to zero:

.data
val1  WORD  2000h
val2  WORD  0100h
.code
mov ax,val1 ; AX = 2000h
mul val2 ; DX:AX = 00200000h, CF = 1

Table 7-2  MUL Operands.

Multiplicand Multiplier Product

AL reg/mem8 AX

AX reg/mem16 DX:AX

EAX reg/mem32 EDX:EAX

A good reason for checking the Carry flag after executing MUL is to know whether the upper half
of the product can safely be ignored. 

05 10�

AL BL

0050

AX

0

CF

2000 0100�

AX BX

0020

DX

0000

AX

1

CF
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The following statements multiply 12345h by 1000h, producing a 64-bit product in the com-
bined EDX and EAX registers. The Carry flag is clear because the upper half of the product in
EDX equals zero:

mov eax,12345h
mov ebx,1000h
mul ebx ; EDX:EAX = 0000000012345000h, CF = 0

The following diagram illustrates the movement between registers:

Using MUL in 64-Bit Mode
In 64-bit mode, you can use 64-bit operands with the MUL instruction. A 64-bit register
or memory operand is multiplied against RDX, producing a 128-bit product in RDX:RAX.
In the following example, each bit in RAX is shifted one position to the left when RAX is
multiplied by 2. The highest bit of RAX spills over into the RDX register, which equals
0000000000000001 hexadecimal:

mov rax,0FFFF0000FFFF0000h
mov rbx,2
mul rbx               ; RDX:RAX = 0000000000000001FFFE0001FFFE0000

In the next example, we multiply RAX by a 64-bit memory operand. The value is being multi-
plied by 16, so each hexadecimal digit is shifted one position to the left (a 4-bit shift is the same
as multiplying by 16).

.data
multiplier QWORD 10h
.code
mov rax,0AABBBBCCCCDDDDh
mul multiplier       ; RDX:RAX = 00000000000000000AABBBBCCCCDDDD0h

7.3.2 IMUL Instruction
The IMUL (signed multiply) instruction performs signed integer multiplication. Unlike the
MUL instruction, IMUL preserves the sign of the product. It does this by sign extending the
highest bit of the lower half of the product into the upper bits of the product. The x86 instruction
set supports three formats for the IMUL instruction: one operand, two operands, and three oper-
ands. In the one-operand format, the multiplier and multiplicand are the same size and the prod-
uct is twice their size.

Single-Operand Formats The one-operand formats store the product in AX, DX:AX, or
EDX:EAX:

IMUL reg/mem8 ; AX = AL * reg/mem8
IMUL reg/mem16 ; DX:AX = AX * reg/mem16
IMUL reg/mem32 ; EDX:EAX = EAX * reg/mem32

00012345 �

EAX

00001000

EBX

00000000

EDX

12345000

EAX

0

CF
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As in the case of MUL, the storage size of the product makes overflow impossible. Also, the
Carry and Overflow flags are set if the upper half of the product is not a sign extension of
the lower half. You can use this information to decide whether to ignore the upper half of the
product.

Two-Operand Formats (32-Bit Mode) The two-operand version of the IMUL instruction in
32-bit mode stores the product in the first operand, which must be a register. The second operand
(the multiplier) can be a register, a memory operand, or an immediate value. Following are the
16-bit formats:

IMUL reg16,reg/mem16
IMUL reg16,imm8
IMUL reg16,imm16

Following are the 32-bit operand types showing that the multiplier can be a 32-bit register, a
32-bit memory operand, or an immediate value (8 or 32 bits):

IMUL reg32,reg/mem32
IMUL reg32,imm8
IMUL reg32,imm32

The two-operand formats truncate the product to the length of the destination. If significant dig-
its are lost, the Overflow and Carry flags are set. Be sure to check one of these flags after per-
forming an IMUL operation with two operands. 

Three-Operand Formats The three-operand formats in 32-bit mode store the product in the
first operand. The second operand can be a 16-bit register or memory operand, which is multi-
plied by the third operand, an 8- or 16-bit immediate value:

IMUL reg16,reg/mem16,imm8
IMUL reg16,reg/mem16,imm16

A 32-bit register or memory operand can be multiplied by an 8- or 32-bit immediate value:

IMUL reg32,reg/mem32,imm8
IMUL reg32,reg/mem32,imm32

If significant digits are lost when IMUL executes, the Overflow and Carry flags are set. Be sure
to check one of these flags after performing an IMUL operation with three operands.

Using IMUL in 64-Bit Mode
In 64-bit mode, you can use 64-bit operands with the MUL instruction. In the two-operand
format, a 64-bit register or memory operand is multiplied against RDX, producing a 128-bit
sign-extended product in RDX:RAX. In the next example, RBX is multiplied by RAX, produc-
ing a 128-bit product of �16.

mov  rax,-4
mov  rbx,4
imul rb           ; RDX = 0FFFFFFFFFFFFFFFFh, RAX = -16

In other words, decimal �16 is represented as FFFFFFFFFFF0 hexadecimal in RAX, and RDX
just contains an extension of RAX’s high-order bit, also known as its sign bit.
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The three-operand format is also available in 64-bit mode. In the next example, we multiply
the multiplicand (�16) by 4, producing �64 in the RAX register:

.data
multiplicand QWORD -16
.code
imul rax, multiplicand, 4           ; RAX = FFFFFFFFFFFFFFC0 (-64)

Unsigned Multiplication The two-operand and three-operand IMUL formats may also be
used for unsigned multiplication because the lower half of the product is the same for signed and
unsigned numbers. There is a small disadvantage to doing so: The Carry and Overflow flags will
not indicate whether the upper half of the product equals zero.

IMUL Examples
The following instructions multiply 48 by 4, producing �192 in AX. Although the product is
correct, AH is not a sign extension of AL, so the Overflow flag is set:

mov   al,48
mov   bl,4
imul  bl  ; AX = 00C0h, OF = 1

The following instructions multiply �4 by 4, producing �16 in AX. AH is a sign extension of
AL, so the Overflow flag is clear:

mov   al,-4
mov   bl,4
imul  bl  ; AX = FFF0h, OF = 0

The following instructions multiply 48 by 4, producing �192 in DX:AX. DX is a sign extension of
AX, so the Overflow flag is clear:

mov   ax,48
mov   bx,4
imul  bx      ; DX:AX = 000000C0h, OF = 0

The following instructions perform 32-bit signed multiplication (4,823,424 * �423), produc-
ing �2,040,308,352 in EDX:EAX. The Overflow flag is clear because EDX is a sign extension
of EAX:

mov   eax,+4823424
mov   ebx,-423
imul  ebx ; EDX:EAX = FFFFFFFF86635D80h, OF = 0

The following instructions demonstrate two-operand formats:

.data
word1  SWORD 4
dword1 SDWORD 4
.code
mov ax,-16 ; AX = -16
mov bx,2 ; BX = 2
imul bx,ax ; BX = -32
imul bx,2 ; BX = -64
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imul bx,word1 ; BX = -256
mov eax,-16 ; EAX = -16
mov ebx,2 ; EBX = 2
imul ebx,eax ; EBX = -32
imul ebx,2 ; EBX = -64
imul ebx,dword1 ; EBX = -256

The two-operand and three-operand IMUL instructions use a destination operand that is the
same size as the multiplier. Therefore, it is possible for signed overflow to occur. Always check
the Overflow flag after executing these types of IMUL instructions. The following two-operand
instructions demonstrate signed overflow because �64,000 cannot fit within the 16-bit destina-
tion operand:

mov ax,-32000
imul ax,2 ; OF = 1

The following instructions demonstrate three-operand formats, including an example of signed
overflow:

.data
word1 SWORD 4
dword1 SDWORD 4
.code
imul bx,word1,-16 ; BX = word1 * -16
imul ebx,dword1,-16 ; EBX = dword1 * -16
imul ebx,dword1,-2000000000 ; signed overflow!

7.3.3 Measuring Program Execution Times
Programmers often find it useful to compare the performance of one code implementation to
another by measuring their performance times. The Microsoft Windows API provides the neces-
sary tools to do this, which we have made even more accessible with the GetMseconds proce-
dure in the Irvine32 library. The procedure gets the number of system milliseconds that have
elapsed since midnight. In the following code example, GetMseconds is called first, so we can
record the system starting time. Then we call the procedure whose execution time we wish to
measure (FirstProcedureToTest). Finally, GetMseconds is called a second time, and the differ-
ence between the current milliseconds value and the starting time is calculated:

.data
startTime DWORD ?
procTime1 DWORD ?
procTime2 DWORD ?
.code
call GetMseconds ; get start time
mov  startTime,eax
.
call FirstProcedureToTest
.
call GetMseconds ; get stop time
sub  eax,startTime ; calculate the elapsed time
mov  procTime1,eax ; save the elapsed time
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There is, of course, a small amount of execution time used up by calling GetMseconds twice.
But this overhead is insignificant when we measure the ratio of performance times between one
code implementation and another. Here, we call the other procedure we wish to test, and save its
execution time (procTime2):

call GetMseconds ; get start time
mov  startTime,eax
.
call SecondProcedureToTest
.
call GetMseconds ; get stop time
sub  eax,startTime ; calculate the elapsed time
mov  procTime2,eax ; save the elapsed time

Now, the ratio of procTime1 to procTime2 indicates the relative performance of the two procedures.

Comparing MUL and IMUL to Bit Shifting
In older x86 processors, there was a significant difference in performance between multiplica-
tion by bit shifting versus multiplication using the MUL and IMUL instructions. We can use the
GetMseconds procedure to compare the execution time of the two types of multiplication. The
following two procedures perform multiplication repeatedly using a LOOP_COUNT constant to
determine the amount of repetition:

mult_by_shifting PROC
;
; Multiplies EAX by 36 using SHL, LOOP_COUNT times.
;

mov  ecx,LOOP_COUNT
L1: push eax ; save original EAX

mov  ebx,eax
shl  eax,5
shl  ebx,2
add  eax,ebx
pop  eax ; restore EAX
loop L1
ret

mult_by_shifting ENDP

mult_by_MUL PROC
;
; Multiplies EAX by 36 using MUL, LOOP_COUNT times.
;

mov  ecx,LOOP_COUNT
L1: push eax ; save original EAX

mov  ebx,36
mul  ebx
pop  eax ; restore EAX
loop L1
ret

mult_by_MUL ENDP



262 Chapter 7  •  Integer Arithmetic

The following code calls mult_by_shifting and displays the timing results. See the Compare-
Mult.asm program from the book’s Chapter 7 examples for the complete implementation:

.data
LOOP_COUNT = 0FFFFFFFFh
.data
intval DWORD 5
startTime DWORD ?
.code
call GetMseconds ; get start time
mov startTime,eax
mov eax,intval ; multiply now
call mult_by_shifting
call GetMseconds ; get stop time
sub eax,startTime
call WriteDec ; display elapsed time

After calling mult_by_MUL in the same manner, the resulting timings on a legacy 4-GHz Pen-
tium 4 showed that the SHL approach executed in 6.078 seconds and the MUL approach executed
in 20.718 seconds. In other words, using MUL instruction was 241 percent slower. However,
when running the same program on a more recent processor, the timings of both function calls
were exactly the same. This example shows that Intel has managed to greatly optimize the MUL
and IMUL instructions in recent processors.

7.3.4 DIV Instruction
In 32-bit mode, the DIV (unsigned divide) instruction performs 8-bit, 16-bit, and 32-bit
unsigned integer division. The single register or memory operand is the divisor. The formats are 

DIV reg/mem8
DIV reg/mem16
DIV reg/mem32

The following table shows the relationship between the dividend, divisor, quotient, and remainder:

In 64-bit mode, the DIV instruction uses RDX:RAX as the dividend, and it permits the divisor to
be a 64-bit register or memory operand. The quotient is stored in RAX, and the remainder in RDX.

DIV Examples
The following instructions perform 8-bit unsigned division (83h/2), producing a quotient of 41h
and a remainder of 1:

mov ax,0083h  ; dividend
mov bl,2 ; divisor
div bl     ; AL = 41h,  AH = 01h

Dividend Divisor Quotient Remainder

AX reg/mem8 AL AH

DX:AX reg/mem16 AX DX

EDX:EAX reg/mem32 EAX EDX
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The following diagram illustrates the movement between registers:

The following instructions perform 16-bit unsigned division (8003h/100h), producing a
quotient of 80h and a remainder of 3. DX contains the high part of the dividend, so it must be
cleared before the DIV instruction executes: 

mov dx,0     ; clear dividend, high
mov ax,8003h ; dividend, low
mov cx,100h  ; divisor
div cx       ; AX = 0080h,  DX = 0003h

The following diagram illustrates the movement between registers:

The following instructions perform 32-bit unsigned division using a memory operand as the divisor:

.data
dividend QWORD 0000000800300020h
divisor  DWORD 00000100h
.code
mov edx,DWORD PTR dividend + 4 ; high doubleword
mov eax,DWORD PTR dividend ; low doubleword
div divisor ; EAX = 08003000h, EDX = 00000020h

The following diagram illustrates the movement between registers:

The following 64-bit division produces the quotient (0108000000003330h) in RAX and the
remainder (0000000000000020h) in RDX:

.data
dividend_hi  QWORD 0000000000000108h
dividend_lo  QWORD 0000000033300020h
divisor      QWORD 0000000000010000h
.code
mov  rdx, dividend_hi
mov  rax, dividend_lo
div  divisor                 ; RAX = 0108000000003330
                             ; RDX = 0000000000000020

0083 02

AX BL

41

AL

Quotient Remainder

01

AH

0000 0100

DX

8003

AX CX

0080

AX

Quotient Remainder

0003

DX

00000008

EDX

00300020

EAX

00000100

Divisor

08003000

EAX

00000020

EDX

Quotient Remainder
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Notice how each hexadecimal digit in the dividend was shifted 4 positions to the right,
because it was divided by 64. (Division by 16 would have moved each digit only one position
to the right.)

7.3.5 Signed Integer Division
Signed integer division is nearly identical to unsigned division, with one important difference:
The dividend must be sign-extended before the division takes place. Sign extension is the term
used for copying the highest bit of a number into all of the upper bits of its enclosing variable or
register. To show why this is necessary, let’s try leaving it out. The following code uses MOV to
assign �101 to AX, which is the lower half of EAX:

.data
wordVal SWORD -101    ; 009Bh
.code
mov  eax,0            ; EAX = 00000000h
mov  ax,wordVal       ; EAX = 0000009Bh  (+155)
mov  bx,2             ; EBX is the divisor
idiv bx               ; divide EAX by BX (signed operation)

Unfortunately, the 009Bh in EAX is not really equal to �101. It is equal to +155, so the quotient
produced by the division is +77, which is not what we wanted. Instead, the correct way to set up
the problem is to use the CWD instruction (convert word to doubleword), which sign-extends
AX into EAX before performing the division:

.data
wordVal SWORD -101    ; 009Bh
.code
mov  eax,0            ; EAX = 00000000h
mov  ax,wordVal       ; EAX = 0000009Bh  (+155)
cwd                   ; EAX = FFFFFF9Bh  (-101)
mov  bx,2             ; EBX is the divisor
idiv bx               ; divide EAX by BX

We introduced the concept of sign extension in Chapter 4 along with the MOVSX instruction.
The x86 instruction set includes several instructions for sign extension. First, we will look at
these instructions, and then we will apply them to the signed integer division instruction,
IDIV.

Sign Extension Instructions (CBW, CWD, CDQ)
Intel provides three sign extension instructions: CBW, CWD, and CDQ. The CBW instruction
(convert byte to word) extends the sign bit of AL into AH, preserving the number’s sign. In the next
example, 9Bh (in AL) and FF9Bh (in AX) both equal −101 decimal:

.data
byteVal SBYTE -101 ; 9Bh
.code
mov al,byteVal ; AL = 9Bh
cbw ; AX = FF9Bh
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The CWD (convert word to doubleword) instruction extends the sign bit of AX into DX:

.data
wordVal SWORD -101 ; FF9Bh
.code
mov ax,wordVal ; AX = FF9Bh
cwd ; DX:AX = FFFFFF9Bh

The CDQ (convert doubleword to quadword) instruction extends the sign bit of EAX into EDX:

.data
dwordVal SDWORD -101 ; FFFFFF9Bh
.code
mov eax,dwordVal
cdq ; EDX:EAX = FFFFFFFFFFFFFF9Bh

The IDIV Instruction
The IDIV (signed divide) instruction performs signed integer division, using the same operands
as DIV. Before executing 8-bit division, the dividend (AX) must be completely sign-extended.
The remainder always has the same sign as the dividend.

Example 1 The following instructions divide �48 by 5. After IDIV executes, the quotient in
AL is �9 and the remainder in AH is �3:

.data
byteVal SBYTE -48 ; D0 hexadecimal
.code
mov  al,byteVal ; lower half of dividend
cbw ; extend AL into AH
mov  bl,+5 ; divisor
idiv bl ; AL = -9, AH = -3

The following illustration shows how AL is sign-extended into AX by the CBW instruction:

To understand why sign extension of the dividend is necessary, let’s repeat the previous example
without using sign extension. The following code initializes AH to zero so it has a known value,
and then divides without using CBW to prepare the dividend:

.data
byteVal SBYTE -48 ; D0 hexadecimal
.code
mov  ah,0 ; upper half of dividend
mov  al,byteVal ; lower half of dividend
mov  bl,+5 ; divisor
idiv bl ; AL = 41, AH = 3

1 1 0 1 0 0 0 0

1 1 0 1 0 0 0 0

AL � �48 decimal

AX � �48 decimal1 1 1 1 1 1 1 1

(Copy 8 bits)
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Before the division, AX = 00D0h (208 decimal). IDIV divides this by 5, producing a quotient of
41 decimal, and a remainder of 3. That is certainly not the correct answer.

Example 2 16-Bit division requires AX to be sign-extended into DX. The next example
divides �5000 by 256:

.data
wordVal SWORD -5000
.code
mov ax,wordVal ; dividend, low
cwd             ; extend AX into DX
mov bx,+256 ; divisor
idiv bx ; quotient AX = -19, rem DX = -136

Example 3 32-Bit division requires EAX to be sign-extended into EDX. The next example
divides 50,000 by �256:

.data
dwordVal SDWORD +50000
.code
mov eax,dwordVal ; dividend, low
cdq ; extend EAX into EDX
mov ebx,-256 ; divisor
idiv ebx     ; quotient EAX = -195, rem EDX = +80

Divide Overflow
If a division operand produces a quotient that will not fit into the destination operand, a divide
overflow condition results. This causes a processor exception and halts the current program. The fol-
lowing instructions, for example, generate a divide overflow because the quotient (100h) is too
large for the 8-bit AL destination register:

mov ax,1000h
mov bl,10h
div bl ; AL cannot hold 100h

When this code executes, Fig. 7-1 shows the resulting error dialog produced by Visual Studio. A
similar dialog window appears when you execute code that attempts to divide by zero.

Here’s a suggestion: use a 32-bit divisor and 64-bit dividend to reduce the probability of a
divide overflow condition. In the following code, the divisor is EBX, and the dividend is placed
in the 64-bit combined EDX and EAX registers:

mov eax,1000h
cdq
mov ebx,10h
div ebx ; EAX = 00000100h

All arithmetic status flag values are undefined after executing DIV and IDIV.
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Figure 7–1 Divide overflow error example.

To prevent division by zero, test the divisor before dividing:

mov ax,dividend
mov bl,divisor
cmp bl,0 ; check the divisor
je NoDivideZero ; zero? display error
div bl ; not zero: continue
.
.
NoDivideZero: ;(display "Attempt to divide by zero")

7.3.6 Implementing Arithmetic Expressions
Chapter 4 showed how to implement arithmetic expressions using addition and subtraction. We
can now include multiplication and division. Implementing arithmetic expressions at first seems
to be an activity best left for compiler writers, but there is much to be gained by hands-on study.
You can learn how compilers optimize code. Also, you can implement better error checking than
a typical compiler by checking the size of the product following multiplication operations. Most
high-level language compilers ignore the upper 32 bits of the product when multiplying two 32-
bit operands. In assembly language, however, you can use the Carry and Overflow flags to tell
you when the product does not fit into 32 bits. The use of these flags was explained in
Sections 7.4.1 and 7.4.2.

Example 1 Implement the following C++ statement in assembly language, using unsigned
32-bit integers:

var4 = (var1 + var2) * var3;

Tip: There are two easy ways to view assembly code generated by a C++ compiler: While debugging
in Visual Studio, right-click in the debug window and select Go to Disassembly. Alternatively, to gen-
erate a listing file, select Properties from the Project menu. Under Configuration Properties, select
Microsoft Macro Assembler. Then select Listing File. In the dialog window, set Generate
Preprocessed Source Listing to Yes, and set List All Available Information to Yes.
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This is a straightforward problem because we can work from left to right (addition, then multi-
plication). After the second instruction, EAX contains the sum of var1 and var2. In the third
instruction, EAX is multiplied by var3 and the product is stored in EAX:

mov eax,var1
add eax,var2
mul var3 ; EAX = EAX * var3
jc tooBig ; unsigned overflow?
mov var4,eax
jmp next

tooBig: ; display error message

If the MUL instruction generates a product larger than 32 bits, the JC instruction jumps to a label
that handles the error.

Example 2 Implement the following C++ statement, using unsigned 32-bit integers:

var4 = (var1 * 5) / (var2 - 3);

In this example, there are two subexpressions within parentheses. The left side can be assigned
to EDX:EAX, so it is not necessary to check for overflow. The right side is assigned to EBX, and
the final division completes the expression:

mov eax,var1 ; left side
mov ebx,5
mul ebx ; EDX:EAX = product
mov ebx,var2 ; right side
sub ebx,3
div ebx ; final division
mov var4,eax

Example 3 Implement the following C++ statement, using signed 32-bit integers:

var4 = (var1 * -5) / (-var2 % var3);

This example is a little trickier than the previous ones. We can begin with the expression on the
right side and store its value in EBX. Because the operands are signed, it is important to sign-
extend the dividend into EDX and use the IDIV instruction:

mov eax,var2 ; begin right side
neg eax
cdq ; sign-extend dividend
idiv var3 ; EDX = remainder
mov ebx,edx ; EBX = right side

Next, we calculate the expression on the left side, storing the product in EDX:EAX:

mov eax,-5 ; begin left side
imul var1 ; EDX:EAX = left side

Finally, the left side (EDX:EAX) is divided by the right side (EBX):

idiv ebx ; final division
mov var4,eax ; quotient
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7.3.7 Section Review
1. Explain why overflow cannot occur when the MUL and one-operand IMUL instructions

execute.

2. How is the one-operand IMUL instruction different from MUL in the way it generates a
multiplication product?

3. What has to happen in order for the one-operand IMUL to set the Carry and Overflow flags?

4. When EBX is the operand in a DIV instruction, which register holds the quotient?

5. When BX is the operand in a DIV instruction, which register holds the quotient?

6. When BL is the operand in a MUL instruction, which registers hold the product?

7. Show an example of sign extension before calling the IDIV instruction with a 16-bit operand.

7.4 Extended Addition and Subtraction
Extended precision addition and subtraction is the technique of adding and subtracting numbers
having an almost unlimited size. In C++, for example, no standard operator permits you to add
two 1024-bit integers. But in assembly language, the ADC (add with carry) and SBB (subtract
with borrow) instructions are well suited to this type of operation.

7.4.1 ADC Instruction 
The ADC (add with carry) instruction adds both a source operand and the contents of the Carry
flag to a destination operand. The instruction formats are the same as for the ADD instruction,
and the operands must be the same size:

ADC reg,reg
ADC mem,reg
ADC reg,mem
ADC mem,imm
ADC reg,imm

For example, the following instructions add two 8-bit integers (FFh + FFh), producing a 16-bit
sum in DL:AL, which is 01FEh:

mov dl,0
mov al,0FFh
add al,0FFh ; AL = FEh
adc dl,0 ; DL/AL = 01FEh

The following illustration shows the movement of data during the two addition steps. First,
FFh is added to AL, producing FEh in the AL register and setting the Carry flag. Next, both 0
and the contents of the Carry flag are added to the DL register:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

AL

1 1 1 1 1 1 1 1

Carry
flag

0 0 0 0 0 0 0 0

AL

DL

1

ADD AL,0FFh

ADC DL,0 0 0 0 0 0 0 0 0 ��

�

0 0 0 0 0 0 0 1

DL
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Similarly, the following instructions add two 32-bit integers (FFFFFFFFh + FFFFFFFFh), pro-
ducing a 64-bit sum in EDX:EAX: 00000001FFFFFFFEh:

mov  edx,0
mov  eax,0FFFFFFFFh
add  eax,0FFFFFFFFh
adc  edx,0

7.4.2 Extended Addition Example
Next, we would like to demonstrate a procedure named Extended_Add that adds two extended
integers of the same size. Using a loop, it works its way through the two extended integers as if
they were parallel arrays. As it adds each matching pair of values in the arrays, it includes the
value of the carry from the addition that was performed during the previous iteration of the loop.
Our implementation assumes that the integers are stored as arrays of bytes, but the example
could easily be modified to add arrays of doublewords.

The procedure receives two pointers in ESI and EDI that point to the integers to be added.
The EBX register points to a buffer in which the bytes of the sum will be stored, with the precon-
dition that this buffer must be one byte longer than the two integers. Also, the procedure receives
the length of the longest integer in ECX. The numbers must be stored in little-endian order, with
the lowest order byte at each array’s starting offset. Here’s the code, with line numbers added so
we can discuss it in detail:

 1:    ;--------------------------------------------------------
 2:    Extended_Add PROC
 3:    ;
 4:    ; Calculates the sum of two extended integers stored
 5:    ; as arrays of bytes.
 6:    ; Receives: ESI and EDI point to the two integers,
 7:    ;      EBX points to a variable that will hold the sum,
 8:    ;      and ECX indicates the number of bytes to be added.
 9:    ; Storage for the sum must be one byte longer than the
10:    ;      input operands.
11:    ; Returns: nothing
12:    ;--------------------------------------------------------
13:        pushad
14:        clc ; clear the Carry flag
15:
16:    L1: mov   al,[esi] ; get the first integer
17:        adc   al,[edi] ; add the second integer
18:        pushfd ; save the Carry flag
19:        mov   [ebx],al ; store partial sum
20:        add   esi,1 ; advance all three pointers
21:        add   edi,1
22:        add   ebx,1
23:        popfd ; restore the Carry flag
24:        loop  L1 ; repeat the loop
25:
26:        mov   byte ptr [ebx],0 ; clear high byte of sum
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27:        adc   byte ptr [ebx],0 ; add any leftover carry
28:        popad
29:        ret
30:    Extended_Add ENDP

When lines 16 and 17 add the first two low-order bytes, the addition might set the Carry flag.
Therefore, it’s important to save the Carry flag by pushing it on the stack on line 18, because we
will need it when the loop repeats. Line 19 saves the first byte of the sum, and lines 20–22 advance
all  three pointers (for the two operands and the sum array). Line 23 restores the Carry flag, and
line 24 continues the loop back to line 16. (The LOOP instruction never modifies the CPU status
flags.) As the loop repeats, line 17 adds the next pair of bytes, and includes the value of the Carry
flag. So if a Carry had been generated during the first pass through the loop, that Carry would be
included during the second pass through the loop. The loop continues this way until all bytes have
been added. Then, finally lines 26 and 27 look for any Carry that was generated when the two high-
est bytes of the operand were added, and adds this Carry to the extra byte in the sum operand.

The following sample code calls Extended_Add, passing it two 8-byte integers. We are care-
ful to allocate an extra byte for the sum:

.data
op1 BYTE 34h,12h,98h,74h,06h,0A4h,0B2h,0A2h
op2 BYTE 02h,45h,23h,00h,00h,87h,10h,80h
sum BYTE 9 dup(0)

.code
main PROC

mov esi,OFFSET op1 ; first operand
mov edi,OFFSET op2 ; second operand
mov ebx,OFFSET sum ; sum operand
mov ecx,LENGTHOF op1   ; number of bytes
call Extended_Add

; Display the sum.

mov   esi,OFFSET sum
mov   ecx,LENGTHOF sum
call  Display_Sum
call  Crlf

The following output is produced by the program. The addition produces a carry:

0122C32B0674BB5736

The Display_Sum procedure (from the same program) displays the sum in its proper order,
starting with the high-order byte, and working its way down to the low-order byte:

Display_Sum PROC
pushad
; point to the last array element
add  esi,ecx
sub  esi,TYPE BYTE
mov  ebx,TYPE BYTE
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L1: mov  al,[esi] ; get an array byte
call WriteHexB ; display it
sub  esi,TYPE BYTE ; point to previous byte
loop L1

popad
ret

Display_Sum ENDP

7.4.3 SBB Instruction
The SBB (subtract with borrow) instruction subtracts both a source operand and the value of
the Carry flag from a destination operand. The possible operands are the same as for the
ADC instruction. The following example code carries out 64-bit subtraction with 32-bit
operands. It sets EDX:EAX to 0000000700000001h and subtracts 2 from this value. The
lower 32 bits are subtracted first, setting the Carry flag. Then the upper 32 bits are sub-
tracted, including the Carry flag:

mov  edx,7 ; upper half
mov  eax,1 ; lower half
sub  eax,2 ; subtract 2
sbb  edx,0 ; subtract upper half

Figure 7-2 demonstrates the movement of data during the two subtraction steps. First, the value
2 is subtracted from EAX, producing FFFFFFFFh in EAX. The Carry flag is set because a bor-
row is required when subtracting a larger number from a smaller one. Next the SBB instruction
subtracts both 0 and the contents of the Carry flag from EDX.

Figure 7–2 Subtracting from a 64-bit integer using SBB.

7.4.4 Section Review
1. Describe the ADC instruction.

2. Describe the SBB instruction.

FFFFFFFF00000002

Carry
flag

�

� � 1

SUB EAX,2

SBB EDX,0 00000000

00000007

EDX

00000001

EAX

Before:

After:

00000001

EAX EAX

00000007

EDX

00000006

EDX

00000006

EDX

FFFFFFFF

EAX
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3. What will be the values of EDX:EAX after the following instructions execute?

mov edx,10h
mov eax,0A0000000h
add eax,20000000h
adc edx,0

4. What will be the values of EDX:EAX after the following instructions execute?

mov edx,100h
mov eax,80000000h
sub eax,90000000h
sbb edx,0

5. What will be the contents of DX after the following instructions execute (STC sets the
Carry flag)?

mov dx,5
stc ; set Carry flag
mov ax,10h
adc dx,ax

7.5 ASCII and Unpacked Decimal Arithmetic
(The instructions discussed in Section 7.5 apply only to programming in 32-bit mode.) The inte-
ger arithmetic shown so far in this book has dealt only with binary values. The CPU calculates in
binary, but is also able to perform arithmetic on ASCII decimal strings. The latter can be
conveniently entered by the user and displayed in the console window, without requiring them to
be converted to binary. Suppose a program is to input two numbers from the user and add them
together. The following is a sample of the output, in which the user has entered 3402 and 1256:

Enter first number:   3402
Enter second number:  1256
The sum is:           4658

We have two options when calculating and displaying the sum:

1. Convert both operands to binary, add the binary values, and convert the sum from binary to
ASCII digit strings.

2. Add the digit strings directly by successively adding each pair of ASCII digits (2 � 6, 0 � 5,
4 � 2, and 3 � 1). The sum is an ASCII digit string, so it can be directly displayed on the
screen.

The second option requires the use of specialized instructions that adjust the sum after adding
each pair of ASCII digits. Four instructions that deal with ASCII addition, subtraction, multipli-
cation, and division are as follows:

AAA (ASCII adjust after addition)

AAS (ASCII adjust after subtraction)

AAM (ASCII adjust after multiplication)

AAD (ASCII adjust before division)



274 Chapter 7  •  Integer Arithmetic

ASCII Decimal and Unpacked Decimal The high 4 bits of an unpacked decimal integer are
always zeros, whereas the same bits in an ASCII decimal number are equal to 0011b. In any
case, both types of integers store one digit per byte. The following example shows how 3402
would be stored in both formats:

Although ASCII arithmetic executes more slowly than binary arithmetic, it has two distinct
advantages:

• Conversion from string format before performing arithmetic is not necessary. 
• Using an assumed decimal point permits operations on real numbers without danger of the

roundoff errors that occur with floating-point numbers.

ASCII addition and subtraction permit operands to be in ASCII format or unpacked decimal for-
mat. Only unpacked decimal numbers can be used for multiplication and division.

7.5.1 AAA Instruction
In 32-bit Mode, the AAA (ASCII adjust after addition) instruction adjusts the binary result of an
ADD or ADC instruction. Assuming that AL contains a binary value produced by adding two
ASCII digits, AAA converts AL to two unpacked decimal digits and stores them in AH and AL.
Once in unpacked format, AH and AL can easily be converted to ASCII by ORing them with 30h.

The following example shows how to add the ASCII digits 8 and 2 correctly, using the AAA
instruction. You must clear AH to zero before performing the addition or it will influence the
result returned by AAA. The last instruction converts AH and AL to ASCII digits:

mov ah,0
mov al,'8' ; AX = 0038h
add al,'2' ; AX = 006Ah
aaa              ; AX = 0100h (ASCII adjust result)
or ax,3030h    ; AX = 3130h = '10' (convert to ASCII)

Multibyte Addition Using AAA
Let’s look at a procedure that adds ASCII decimal values with implied decimal points. The
implementation is a bit more complex than one would imagine because the carry from each digit
addition must be propagated to the next highest position. In the following pseudocode, the name
acc refers to an 8-bit accumulator register:

esi (index) = length of first_number - 1
edi (index) = length of first_number
ecx = length of first_number
set carry value to 0
Loop

acc = first_number[esi]
add previous carry to acc
save carry in carry1
acc += second_number[esi]

33 34 30 32ASCII format: Unpacked: 03 04 00 02

(All values are in hexadecimal)
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OR the carry with carry1
sum[edi] = acc
dec edi

Until ecx == 0
Store last carry digit in sum

The carry digit must always be converted to ASCII. When you add the carry digit to the first
operand, you must adjust the result with AAA. Here is the listing:

; ASCII Addition                      (ASCII_add.asm)

; Perform ASCII arithmetic on strings having 
; an implied fixed decimal point.

INCLUDE Irvine32.inc

DECIMAL_OFFSET = 5    ; offset from right of string
.data
decimal_one BYTE "100123456789765" ; 1001234567.89765
decimal_two BYTE "900402076502015" ; 9004020765.02015
sum BYTE (SIZEOF decimal_one + 1) DUP(0),0

.code
main PROC
; Start at the last digit position.

mov esi,SIZEOF decimal_one - 1
mov edi,SIZEOF decimal_one
mov ecx,SIZEOF decimal_one
mov bh,0 ; set carry value to zero

L1: mov ah,0 ; clear AH before addition
mov al,decimal_one[esi] ; get the first digit
add al,bh ; add the previous carry
aaa ; adjust the sum (AH = carry)
mov bh,ah ; save the carry in carry1
or bh,30h ; convert it to ASCII
add al,decimal_two[esi] ; add the second digit
aaa ; adjust the sum (AH = carry) 
or bh,ah ; OR the carry with carry1
or bh,30h ; convert it to ASCII
or al,30h ; convert AL back to ASCII
mov sum[edi],al ; save it in the sum
dec esi ; back up one digit
dec edi
loop L1
mov sum[edi],bh ; save last carry digit

; Display the sum as a string.
mov edx,OFFSET sum
call WriteString
call Crlf

exit
main ENDP
END main
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Here is the program’s output, showing the sum without a decimal point:

7.5.2 AAS Instruction 
In 32-bit Mode, the AAS (ASCII adjust after subtraction) instruction follows a SUB or SBB
instruction that has subtracted one unpacked decimal value from another and stored the result in
AL. It makes the result in AL consistent with ASCII digit representation. Adjustment is neces-
sary only when the subtraction generates a negative result. For example, the following state-
ments subtract ASCII 9 from 8:

.data
val1 BYTE '8'
val2 BYTE '9'
.code
mov ah,0
mov al,val1    ; AX = 0038h
sub al,val2    ; AX = 00FFh
aas             ; AX = FF09h
pushf           ; save the Carry flag
or al,30h ; AX = FF39h
popf        ; restore the Carry flag

After the SUB instruction, AX equals 00FFh. The AAS instruction converts AL to 09h and sub-
tracts 1 from AH, setting it to FFh and setting the Carry flag.

7.5.3 AAM Instruction
In 32-bit Mode, the AAM (ASCII adjust after multiplication) instruction converts the binary
product produced by MUL to unpacked decimal. The multiplication can only use unpacked dec-
imals. In the following example, we multiply 5 by 6 and adjust the result in AX. After adjust-
ment, AX = 0300h, the unpacked decimal representation of 30: 

.data
AscVal BYTE 05h,06h
.code
mov bl,ascVal ; first operand
mov al,[ascVal+1] ; second operand
mul bl             ; AX = 001Eh
aam                 ; AX = 0300h 

7.5.4 AAD Instruction 
In 32-Bit Mode, the AAD (ASCII adjust before division) instruction converts an unpacked deci-
mal dividend in AX to binary in preparation for executing the DIV instruction. The following
example converts unpacked 0307h to binary, then divides it by 5. DIV produces a quotient of
07h in AL and a remainder of 02h in AH: 

.data
quotient  BYTE ?
remainder BYTE ?
.code

1000525533291780
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mov ax,0307h      ; dividend
aad                ; AX = 0025h
mov bl,5          ; divisor
div bl            ; AX = 0207h
mov quotient,al
mov remainder,ah

7.5.5 Section Review
1. Write a single instruction that converts a two-digit unpacked decimal integer in AX to

ASCII decimal.

2. Write a single instruction that converts a two-digit ASCII decimal integer in AX to
unpacked decimal format.

3. Write a two-instruction sequence that converts a two-digit ASCII decimal number in AX to
binary.

4. Write a single instruction that converts an unsigned binary integer in AX to unpacked
decimal.

7.6 Packed Decimal Arithmetic
(The instructions discussed in Section 7.6 apply only to programming in 32-bit mode.) Packed
decimal integers store two decimal digits per byte. Each digit is represented by 4 bits. If there is
an odd number of digits, the highest nybble is filled with a zero. Storage sizes may vary:

bcd1 QWORD 2345673928737285h ; 2,345,673,928,737,285 decimal
bcd2 DWORD 12345678h ; 12,345,678 decimal
bcd3 DWORD 08723654h ; 8,723,654 decimal
bcd4 WORD 9345h ; 9,345 decimal
bcd5 WORD 0237h ; 237 decimal
bcd6 BYTE 34h ; 34 decimal

Packed decimal storage has at least two strengths:

• The numbers can have almost any number of significant digits. This makes it possible to per-
form calculations with a great deal of accuracy. 

• Conversion of packed decimal numbers to ASCII (and vice versa) is relatively simple.

Two instructions, DAA (decimal adjust after addition) and DAS (decimal adjust after subtrac-
tion), adjust the result of an addition or subtraction operation on packed decimals. Unfortu-
nately, no such instructions exist for multiplication and division. In those cases, the number must
be unpacked, multiplied or divided, and repacked. 

7.6.1 DAA Instruction
In 32-bit Mode, the DAA (decimal adjust after addition) instruction converts a binary sum pro-
duced by ADD or ADC in AL to packed decimal format. For example, the following instructions
add packed decimals 35 and 48. The binary sum (7Dh) is adjusted to 83h, the packed decimal
sum of 35 and 48.

mov al,35h
add al,48h ; AL = 7Dh
daa ; AL = 83h (adjusted result)
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The internal logic of DAA is documented in the Intel Instruction Set Reference Manual.

Example The following program adds two 16-bit packed decimal integers and stores the sum
in a packed doubleword. Addition requires the sum variable to contain space for one more digit
than the operands:

; Packed Decimal Example (AddPacked.asm)

; Demonstrate packed decimal addition.
INCLUDE Irvine32.inc

.data
packed_1 WORD 4536h
packed_2 WORD 7207h
sum DWORD ?

.code
main PROC
; Initialize sum and index.

mov sum,0
mov esi,0

; Add low bytes.
mov al,BYTE PTR packed_1[esi]
add al,BYTE PTR packed_2[esi]
daa
mov BYTE PTR sum[esi],al

; Add high bytes, include carry.
inc esi
mov al,BYTE PTR packed_1[esi]
adc al,BYTE PTR packed_2[esi]
daa
mov BYTE PTR sum[esi],al

; Add final carry, if any.
inc esi
mov al,0
adc al,0
mov BYTE PTR sum[esi],al

; Display the sum in hexadecimal.
mov eax,sum
call WriteHex
call Crlf
exit

main ENDP
END main

Needless to say, the program contains repetitive code that suggests using a loop. One of the
chapter exercises will ask you to create a procedure that adds packed decimal integers of
any size.



7.7   Chapter Summary 279

7.6.2 DAS Instruction
In 32-bit Mode, the DAS (decimal adjust after subtraction) instruction converts the binary result
of a SUB or SBB instruction in AL to packed decimal format. For example, the following state-
ments subtract packed decimal 48 from 85 and adjust the result: 

mov bl,48h
mov al,85h
sub al,bl ; AL = 3Dh
das ; AL = 37h  (adjusted result)

The internal logic of DAS is documented in the Intel Instruction Set Reference Manual.

7.6.3 Section Review
1. Under what circumstances does DAA instruction set the Carry flag? Give an example.

2. Under what circumstances does DAS instruction set the Carry flag? Give an example.

3. When adding two packed decimal integers of length n bytes, how many storage bytes must
be reserved for the sum?

7.7 Chapter Summary
Along with the bitwise instructions from the preceding chapter, shift instructions are among the
most characteristic of assembly language. To shift a number means to move its bits right or left.

The SHL (shift left) instruction shifts each bit in a destination operand to the left, filling the
lowest bit with 0. One of the best uses of SHL is for performing high-speed multiplication by
powers of 2. Shifting any operand left by n bits multiplies the operand by 2n. The SHR (shift right)
instruction shifts each bit to the right, replacing the highest bit with a 0. Shifting any operand right by
n bits divides the operand by 2n.

SAL (shift arithmetic left) and SAR (shift arithmetic right) are shift instructions specifically
designed for shifting signed numbers. 

The ROL (rotate left) instruction shifts each bit to the left and copies the highest bit to both
the Carry flag and the lowest bit position. The ROR (rotate right) instruction shifts each bit to the
right and copies the lowest bit to both the Carry flag and the highest bit position.

The RCL (rotate carry left) instruction shifts each bit to the left and copies the highest bit into
the Carry flag, which is first copied into the lowest bit of the result. The RCR (rotate carry right)
instruction shifts each bit to the right and copies the lowest bit into the Carry flag. The Carry flag
is copied into the highest bit of the result.

The SHLD (shift left double) and SHRD (shift right double) instructions, available on x86
processors, are particularly effective for shifting bits in large integers.

In 32-bit mode, the MUL instruction multiplies an 8-, 16-, or 32-bit operand by AL, AX, or
EAX. In 64-bit mode, a value can also be multiplied by the RAX register. The IMUL instruction
performs signed integer multiplication. It has three formats: single operand, double operand, and
three operand. 
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In 32-bit mode, the DIV instruction performs 8-bit, 16-bit, and 32-bit division on unsigned
integers. In 64-bit mode, you can also perform 64-bit division. The IDIV instruction performs
signed integer division, using the same operands as the DIV instruction.

The CBW (convert byte to word) instruction extends the sign bit of AL into the AH register. The
CDQ (convert doubleword to quadword) instruction extends the sign bit of EAX into the EDX register.
The CWD (convert word to doubleword) instruction extends the sign bit of AX into the DX register.

Extended addition and subtraction refers to adding and subtracting integers of arbitrary size.
The ADC and SBB instructions can be used to implement such addition and subtraction. The
ADC (add with carry) instruction adds both a source operand and the contents of the Carry flag
to a destination operand. The SBB (subtract with borrow) instruction subtracts both a source
operand and the value of the Carry flag from a destination operand. 

ASCII decimal integers store one digit per byte, encoded as an ASCII digit. The AAA (ASCII
adjust after addition) instruction converts the binary result of an ADD or ADC instruction to ASCII
decimal. The AAS (ASCII adjust after subtraction) instruction converts the binary result of a SUB
or SBB instruction to ASCII decimal. All of these instructions are available only in 32-bit mode.

Unpacked decimal integers store one decimal digit per byte, as a binary value. The AAM
(ASCII adjust after multiplication) instruction converts the binary product of a MUL instruction
to unpacked decimal. The AAD (ASCII adjust before division) instruction converts an unpacked
decimal dividend to binary in preparation for the DIV instruction. All of these instructions are
available only in 32-bit mode.

Packed decimal integers store two decimal digits per byte. The DAA (decimal adjust after addi-
tion) instruction converts the binary result of an ADD or ADC instruction to packed decimal. The
DAS (decimal adjust after subtraction) instruction converts the binary result of a SUB or SBB
instruction to packed decimal. All of these instructions are available only in 32-bit mode.

7.8 Key Terms

7.8.1 Terms

arithmetic shift

binary multiplication

bit rotation

bit shifting

bit strings

bitwise division

bitwise multiplication

bitwise rotation

divide overflow

little-endian order

logical shift

sign extension

signed division

signed multiplication

signed overflow

unsigned multiplication

7.8.2 Instructions, Operators, and Directives

AAA

AAD

AAM

AAS

ADC

CBQ

CBW

DAA

DAS
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7.9 Review Questions and Exercises

7.9.1 Short Answer
1. In the following code sequence, show the value of AL after each shift or rotate instruction

has executed:
mov al,0D4h
shr al,1 ; a.
mov al,0D4h
sar al,1 ; b.
mov al,0D4h
sar al,4 ; c.
mov al,0D4h
rol al,1 ; d.

2. In the following code sequence, show the value of AL after each shift or rotate instruction
has executed:

mov al,0D4h
ror al,3 ; a.
mov al,0D4h
rol al,7 ; b.
stc
mov al,0D4h
rcl al,1 ; c.
stc
mov al,0D4h
rcr al,3 ; d.

3. What will be the contents of AX and DX after the following operation?

mov dx,0
mov ax,222h
mov cx,100h
mul cx

4. What will be the contents of AX after the following operation?

mov ax,63h
mov bl,10h
div bl

5. What will be the contents of EAX and EDX after the following operation?

mov eax,123400h
mov edx,0
mov ebx,10h
div ebx

DIV

IDIV

IMUL

MUL

RCL

RCR

ROL

ROR

SAL

SAR

SBB

SHL

SHLD

SHR

SHRD
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6. What will be the contents of AX and DX after the following operation?

mov ax,4000h
mov dx,500h
mov bx,10h
div bx

7. What will be the contents of BX after the following instructions execute?

mov bx,5
stc
mov ax,60h
adc bx,ax

8. Describe the output when the following code executes in 64-bit mode:

.data
dividend_hi  QWORD 00000108h
dividend_lo  QWORD 33300020h
divisor      QWORD 00000100h
.code
mov  rdx,dividend_hi
mov  rax,dividend_lo
div  divisor

9. The following program is supposed to subtract val2 from val1. Find and correct all logic
errors (CLC clears the Carry flag):

.data
val1   QWORD 20403004362047A1h
val2   QWORD 055210304A2630B2h
result QWORD 0

.code
mov  cx,8 ; loop counter
mov  esi,val1 ; set index to start
mov  edi,val2
clc ; clear Carry flag

top:
mov  al,BYTE PTR[esi] ; get first number
sbb  al,BYTE PTR[edi] ; subtract second
mov  BYTE PTR[esi],al ; store the result
dec  esi
dec  edi
loop top

10. What will be the hexadecimal contents of RAX after the following instructions execute in
64-bit mode?

.data
multiplicand QWORD 0001020304050000h
.code
imul rax,multiplicand, 4

7.9.2 Algorithm Workbench
1. Write a sequence of shift instructions that cause AX to be sign-extended into EAX. In other words,

the sign bit of AX is copied into the upper 16 bits of EAX. Do not use the CWD instruction.
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2. Suppose the instruction set contained no rotate instructions. Show how you would use
SHR and a conditional jump instruction to rotate the contents of the AL register 1 bit to
the right.

3. Write a logical shift instruction that multiplies the contents of EAX by 16.

4. Write a logical shift instruction that divides EBX by 4.

5. Write a single rotate instruction that exchanges the high and low halves of the DL register.

6. Write a single SHLD instruction that shifts the highest bit of the AX register into the lowest
bit position of DX and shifts DX one bit to the left.

7. Write a sequence of instructions that shift three memory bytes to the right by 1 bit position.
Use the following test data:

byteArray BYTE 81h,20h,33h

8. Write a sequence of instructions that shift three memory words to the left by 1 bit position.
Use the following test data:

wordArray WORD 810Dh, 0C064h,93ABh

9. Write instructions that multiply �5 by 3 and store the result in a 16-bit variable val1.

10. Write instructions that divide �276 by 10 and store the result in a 16-bit variable val1.

11. Implement the following C++ expression in assembly language, using 32-bit unsigned
operands:

val1 = (val2 * val3) / (val4 - 3)

12. Implement the following C++ expression in assembly language, using 32-bit signed
operands:

val1 = (val2 / val3) * (val1 + val2)

13. Write a procedure that displays an unsigned 8-bit binary value in decimal format. Pass the
binary value in AL. The input range is limited to 0 to 99, decimal. The only procedure you
can call from the book’s link library is WriteChar. The procedure should contain approxi-
mately eight instructions. Here is a sample call:

mov  al,65            ; range limit: 0 to 99 
call showDecimal8

14. Challenge: Suppose AX contains 0072h and the Auxiliary Carry flag is set as a result of
adding two unknown ASCII decimal digits. Use the Intel 64 and IA-32 Instruction Set Ref-
erence to determine what output the AAA instruction would produce. Explain your answer.

15. Challenge: Using only SUB, MOV, and AND instructions, show how to calculate x = n mod y,
assuming that you are given the values of n and y. You can assume that n is any 32-bit
unsigned integer, and y is a power of 2.

16. Challenge: Using only SAR, ADD, and XOR instructions (but no conditional jumps), write
code that calculates the absolute value of the signed integer in the EAX register. Hints: A
number can be negated by adding �1 to it and then forming its one’s complement. Also, if
you XOR an integer with all 1s, its 1s are reversed. On the other hand, if you XOR an inte-
ger with all zeros, the integer is unchanged.
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7.10 Programming Exercises

1. Display ASCII Decimal
Write a procedure named WriteScaled that outputs a decimal ASCII number with an implied dec-
imal point. Suppose the following number were defined as follows, where DECIMAL_OFFSET
indicates that the decimal point must be inserted five positions from the right side of the number:

DECIMAL_OFFSET = 5
.data
decimal_one BYTE "100123456789765"

WriteScaled would display the number like this:

1001234567.89765

When calling WriteScaled, pass the number’s offset in EDX, the number length in ECX, and the
decimal offset in EBX. Write a test program that passes three numbers of different sizes to the
WriteScaled procedure.

2. Extended Subtraction Procedure
Create a procedure named Extended_Sub that subtracts two binary integers of arbitrary size.
The storage size of the two integers must be the same, and their size must be a multiple of 32
bits. Write a test program that passes several pairs of integers, each at least 10 bytes long.

3. Packed Decimal Conversion
Write a procedure named PackedToAsc that converts a 4-byte packed decimal integer to a string
of ASCII decimal digits. Pass the packed integer and the address of a buffer holding the ASCII
digits to the procedure. Write a short test program that passes at least 5 packed decimal integers
to your procedure.

4. Encryption Using Rotate Operations
Write a procedure that performs simple encryption by rotating each plaintext byte a varying
number of positions in different directions. For example, in the following array that represents
the encryption key, a negative value indicates a rotation to the left and a positive value indicates
a rotation to the right. The integer in each position indicates the magnitude of the rotation:

key BYTE -2, 4, 1, 0, -3, 5, 2, -4, -4, 6

Your procedure should loop through a plaintext message and align the key to the first 10 bytes of
the message. Rotate each plaintext byte by the amount indicated by its matching key array value.
Then, align the key to the next 10 bytes of the message and repeat the process. Write a program
that tests your encryption procedure by calling it twice, with different data sets.

5. Prime Numbers
Write a program that generates all prime numbers between 2 and 1000, using the Sieve of Era-
tosthenes method. You can find many articles that describe the method for finding primes in this
manner on the Internet. Display all the prime values.

★

★

★★

★★

★★★
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6. Greatest Common Divisor (GCD)
The greatest common divisor (GCD) of two integers is the largest integer that will evenly divide
both integers. The GCD algorithm involves integer division in a loop, described by the following
pseudocode:

int GCD(int x, int y)
{

x = abs(x)  // absolute value
y = abs(y)
do {

int n = x % y
x = y
y = n

} while (y > 0)
return x

}

Implement this function in assembly language and write a test program that calls the function
several times, passing it different values. Display all results on the screen.

7. Bitwise Multiplication
Write a procedure named BitwiseMultiply that multiplies any unsigned 32-bit integer by
EAX, using only shifting and addition. Pass the integer to the procedure in the EBX register,
and return the product in the EAX register. Write a short test program that calls the procedure
and displays the product. (We will assume that the product is never larger than 32 bits.) This is
a fairly challenging program to write. One possible approach is to use a loop to shift the mul-
tiplier to the right, keeping track of the number of shifts that occur before the Carry flag is set.
The resulting shift count can then be applied to the SHL instruction, using the multiplicand as
the destination operand. Then, the same process must be repeated until you find the last 1 bit
in the multiplier.

8. Add Packed Integers
Extend the AddPacked procedure from Section 7.6.1 so that it adds two packed decimal inte-
gers of arbitrary size (both lengths must be the same). Write a test program that passes
AddPacked several pairs of integers: 4-byte, 8-byte, and 16-byte. We suggest that you use the
following registers to pass information to the procedure:

ESI - pointer to the first number
EDI - pointer to the second number
EDX - pointer to the sum
ECX - number of bytes to add

★★★

★★★

★★★
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8.1 Introduction
This chapter introduces the underlying structure of subroutine calls, focusing on the runtime
stack. The information in this chapter is valuable to C and C++ programmers, who frequently
must inspect the contents of the runtime stack when debugging low-level routines that function
at the operating system or device driver level.

Most modern languages push arguments on the stack before calling subroutines. The subrou-
tines, in turn, usually store their local variables on the stack. The details you learn in this chapter
are relevant to your studies of languages like C++ and Java. We will show how arguments are
passed by value and by reference, how local variables are created and destroyed, and how recur-
sion is implemented. At the end of the chapter, we will explain the different memory models and
language specifiers used by MASM. Parameters can be passed both in registers and on the
stack. This is the case in 64-bit mode, where Microsoft established the Microsoft x64 calling
convention.

Programming languages use different terms to refer to subroutines. In C and C++, for exam-
ple, subroutines are called functions. In Java, subroutines are called methods. In MASM, subrou-
tines are called procedures. Our purpose in this chapter is to show low-level implementations of
typical subroutine calls as they might appear in C and C++. At the beginning of this chapter,
when referring to general principles, we will use the general term subroutine. When referring to
specific assembly language code examples, we will frequently use the term procedure when
referring to a subroutine.

Values passed to a subroutine by a calling program are called arguments. When the values are
received by the called subroutine, they are called parameters.

8.2 Stack Frames

8.2.1 Stack Parameters
In earlier chapters, our subroutines received register parameters. This is true in the Irvine32 library,
for example. In this chapter, we will show how subroutines can receive parameters on the runtime
stack. In 32-bit mode, stack parameters are always used by Windows API functions. In 64-bit mode,
however, Windows functions receive a combination of register parameters and stack parameters.

A stack frame (or activation record) is the area of the stack set aside for passed arguments,
subroutine return address, local variables, and saved registers. The stack frame is created by the
following sequential steps:

1. Passed arguments, if any, are pushed on the stack.
2. The subroutine is called, causing the subroutine return address to be pushed on the stack.
3. As the subroutine begins to execute, EBP is pushed on the stack.
4. EBP is set equal to ESP. From this point on, EBP acts as a base reference for all of the sub-

routine parameters.
5. If there are local variables, ESP is decremented to reserve space for the variables on the stack.
6. If any registers need to be saved, they are pushed on the stack.

8.2      Stack Frames 287
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The structure of a stack frame is directly affected by a program’s memory model and its choice
of argument passing convention.

There’s a good reason to learn about passing arguments on the stack; nearly all high-level
languages use them. If you want to call functions in the 32-bit Windows Application Pro-
grammer Interface (API), for example, you must pass arguments on the stack. On the other
hand, 64-bit programs use a different parameter passing convention, which we will discuss in
Chapter 11.

8.2.2 Disadvantages of Register Parameters
For a number of years, Microsoft has included a parameter passing convention in 32-bit pro-
grams named fastcall. As the name implies, there is some runtime efficiency to be had by simply
placing parameters in registers before calling a subroutine. The alternative, which involves push-
ing parameters on the stack, executes more slowly. The registers used for parameters typically
include EAX, EBX, ECX, and EDX, and less commonly, EDI and ESI. Unfortunately, these
same registers are used to hold data values such as loop counters and operands in calculations.
Therefore, any registers used as parameters must first be pushed on the stack before procedure
calls, assigned the values of procedure arguments, and later restored to their original values after
the procedure returns. For example, this is the case when calling DumpMem from the Irvine32
library:

push  ebx ; save register values
push  ecx
push  esi
mov   esi,OFFSET array ; starting OFFSET
mov   ecx,LENGTHOF array ; size, in units
mov   ebx,TYPE array ; doubleword format
call  DumpMem ; display memory
pop   esi ; restore register values
pop   ecx
pop   ebx

Not only do all the extra pushes and pops create code clutter, they tend to eliminate the very per-
formance advantage we hoped to gain by avoiding register parameters! Also, programmers have
to be very careful that each register’s PUSH is matched by its appropriate POP, even when there
exist multiple execution pathways through the code. In the following code, for example, if EAX
equals 1 on line 8, the procedure will not return to its caller on line 17 because three register val-
ues were left on the runtime stack.

 1: push  ebx ; save register values
 2: push  ecx
 3: push  esi
 4: mov   esi,OFFSET array ; starting OFFSET
 5: mov   ecx,LENGTHOF array ; size, in units
 6: mov   ebx,TYPE array ; doubleword format
 7: call  DumpMem ; display memory
 8: cmp eax,1 ; error flag set?



8.2   Stack Frames 289

 9: je error_exit ; exit with flag set
10:
11: pop   esi ; restore register values
12: pop   ecx
13: pop   ebx
14: ret
15: error_exit:
16: mov edx,offset error_msg
17: ret

You may agree that a bug such as this is not easy to spot unless you spend a considerable amount
of time staring at the code.

Stack parameters offer a flexible approach that does not require register parameters. Just
before a subroutine call, the arguments are pushed on the stack. For example, if DumpMem
used stack parameters, we would call it using the following code:

push TYPE array
push LENGTHOF array
push OFFSET array
call DumpMem

Two general types of arguments are pushed on the stack during subroutine calls:

• Value arguments (values of variables and constants)
• Reference arguments (addresses of variables)

Passing by Value When an argument is passed by value, a copy of the value is pushed on the
stack. Suppose we call a subroutine named AddTwo, passing it two 32-bit integers:

.data
val1 DWORD 5
val2 DWORD 6
.code
push val2
push val1
call AddTwo

Following is a picture of the stack just prior to the CALL instruction:

An equivalent function call written in C++ would be

int sum = AddTwo( val1, val2 );

Observe that the arguments are pushed on the stack in reverse order, which is the norm for the C
and C++ languages.

(val2)

(val1) ESP5

6
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Passing by Reference An argument passed by reference consists of the address (offset) of
an object. The following statements call Swap, passing the two arguments by reference:

push OFFSET val2
push OFFSET val1
call Swap

Following is a picture of the stack just prior to the call to Swap:

The equivalent function call in C/C++ would pass the addresses of the val1 and val2 arguments:

Swap( &val1, &val2 );

Passing Arrays High-level languages always pass arrays to subroutines by reference. That is,
they push the address of an array on the stack. The subroutine can then get the address from the
stack and use it to access the array. It’s easy to see why one would not want to pass an array by
value, because doing so would require each array element to be pushed on the stack separately.
Such an operation would be very slow, and it would use up precious stack space. The following
statements do it the right way by passing the offset of array to a subroutine named ArrayFill:

.data
array DWORD 50 DUP(?)
.code
push OFFSET array
call ArrayFill

8.2.3 Accessing Stack Parameters
High-level languages have various ways of initializing and accessing parameters during function
calls. We will use the C and C++ languages as an example. They begin with a prologue consisting
of statements that save the EBP register and point EBP to the top of the stack. Optionally, they may
push certain registers on the stack whose values will be restored when the function returns. The
end of the function consists of an epilogue in which the EBP register is restored and the RET
instruction returns to the caller.

AddTwo Example The following AddTwo function, written in C, receives two integers
passed by value and returns their sum:

int AddTwo( int x, int y )
{

return x + y;
}

Let’s create an equivalent implementation in assembly language. In its prologue, AddTwo
pushes EBP on the stack to preserve its existing value:

AddTwo PROC
push ebp

ESP

offset (val2)

offset (val1)
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Next, EBP is set to the same value as ESP, so EBP can be the base pointer for AddTwo’s stack frame:

AddTwo PROC
push ebp
mov ebp,esp

After the two instructions execute, the following figure shows the contents of the stack frame.
A function call such as AddTwo(5, 6) would cause the second parameter to be pushed on the
stack, followed by the first parameter:

AddTwo could push additional registers on the stack without altering the offsets of the stack
parameters from EBP. ESP would change value, but EBP would not. 

Base-Offset Addressing We will use base-offset addressing to access stack parameters. EBP
is the base register and the offset is a constant. 32-bit values are usually returned in EAX. The
following implementation of AddTwo adds the parameters and returns their sum in EAX: 

AddTwo PROC
push ebp
mov ebp,esp ; base of stack frame
mov eax,[ebp + 12]   ; second parameter
add eax,[ebp + 8] ; first parameter
pop ebp
ret

AddTwo ENDP

Explicit Stack Parameters
When stack parameters are referenced with expressions such as [ebp + 8], we call them explicit
stack parameters. The reason for this term is that the assembly code explicitly states the offset of
the parameter as a constant value. Some programmers define symbolic constants to represent the
explicit stack parameters, to make their code easier to read:

y_param EQU [ebp + 12]
x_param EQU [ebp + 8]

AddTwo PROC
push ebp
mov ebp,esp
mov eax,y_param
add eax,x_param
pop ebp
ret

AddTwo ENDP

[EBP � 12]

[EBP � 8]

[EBP � 4]

6

5

return address

EBP EBP, ESP
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Cleaning Up the Stack
There must be a way for parameters to be removed from the stack when a subroutine returns.
Otherwise, a memory leak would result, and the stack would become corrupted. For example,
suppose the following statements in main call AddTwo:

push 6
push 5
call AddTwo

Assuming that AddTwo leaves the two parameters on the stack, the following illustration shows
the stack after returning from the call:

Inside main, we might try to ignore the problem and hope that the program terminates normally.
But if we were to call AddTwo from a loop, the stack could overflow. Each call uses 12 bytes of
stack space—4 bytes for each parameter, plus 4 bytes for the CALL instruction’s return address.
A more serious problem could result if we called Example1 from main, which in turn calls
AddTwo:

main PROC
call Example1
exit

main ENDP

Example1 PROC
push 6
push 5
call AddTwo
ret ; stack is corrupted!

Example1 ENDP

When the RET instruction in Example1 is about to execute, ESP points to the integer 5 rather
than the return address that would take it back to main:

The RET instruction loads the value 5 into the instruction pointer and attempts to transfer
control to memory address 5. Assuming that this address is outside the program’s code
boundary, the processor issues a runtime exception, which tells the OS to terminate the
program.

ESP

6

5

return address

6

5 ESP
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8.2.4 32-Bit Calling Conventions
In this section, we present the two most commonly used calling conventions for 32-bit program-
ming in a Windows environment. First, the C calling convention was established by the C pro-
gramming language, the language used to create both Unix and Windows. The STDCALL
calling convention describes the protocol for calling Windows API functions. Both are impor-
tant, since you may find yourself calling assembly functions from C and C++ programs, and
your assembly language programs will also likely call numerous Windows API functions. 

The C Calling Convention The C calling convention is used by the C and C++ program-
ming languages. Subroutine parameters are pushed on the stack in reverse order, so a C program
making a function call such as this will first push B on the stack, and then push A:

AddTwo( A, B )

The C calling convention solves the problem of cleaning up the runtime stack in a simple way:
When a program calls a subroutine, it follows the CALL instruction with a statement that adds a
value to the stack pointer (ESP) equal to the combined sizes of the subroutine parameters. Here
is an example in which two arguments (5 and 6) are pushed on the stack before executing a
CALL instruction:

Example1 PROC
push 6
push 5
call AddTwo
add  esp,8 ; remove arguments from the stack
ret

Example1 ENDP

Therefore, programs written in C/C++ always remove arguments from the stack in the calling
program after a subroutine has returned.

STDCALL Calling Convention Another common way to remove parameters from the stack
is to use a convention named STDCALL. In the following AddTwo procedure, we supply an
integer parameter to the RET instruction, which in turn adds 8 to ESP after returning to the call-
ing procedure. The integer must equal the number of bytes of stack space consumed by the pro-
cedure’s parameters:

AddTwo PROC
push ebp
mov ebp,esp ; base of stack frame
mov eax,[ebp + 12]   ; second parameter
add eax,[ebp + 8] ; first parameter
pop ebp
ret 8 ; clean up the stack

AddTwo ENDP

It should be pointed out that STDCALL, like C, pushes arguments onto the stack in reverse
order. By having a parameter in the RET instruction, STDCALL reduces the amount of code
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generated for subroutine calls (by one instruction) and ensures that calling programs will
never forget to clean up the stack. The C calling convention, on the other hand, permits
subroutines to declare a variable number of parameters. The caller can decide how many argu-
ments it will pass. An example is the printf function from the C programming language,
whose number of arguments depends on the number of format specifiers in the initial string
argument:

int x = 5;
float y = 3.2;
char z = 'Z';
printf("Printing values: %d, %f, %c", x, y, z);

A C compiler pushes arguments on the stack in reverse order, followed by a count argument
indicating the number of actual arguments. The function gets the argument count and
accesses the arguments one by one. The function implementation has no convenient way of
encoding a constant in the RET instruction to clean up the stack, so the responsibility is left
to the caller.

The Irvine32 library uses the STDCALL calling convention when calling 32-bit Windows
API functions. The Irvine64 library uses the x64 calling convention.

Saving and Restoring Registers
Subroutines often save the current contents of registers on the stack before modifying them.
This is a good practice, because the original values can be restored just before the subroutine
returns. Ideally, the registers in question should be pushed on the stack just after setting EBP
to ESP, and just before reserving space for local variables. This helps us to avoid changing off-
sets of existing stack parameters. For example, assume that the following MySub procedure
has one stack parameter. It pushes ECX and EDX after setting EBP to the base of the stack
frame and loads the stack parameter into EAX:

MySub PROC
push ebp ; save base pointer
mov ebp,esp ; base of stack frame
push ecx
push edx ; save EDX
mov eax,[ebp+8] ; get the stack parameter
.
.
pop edx ; restore saved registers
pop ecx
pop ebp ; restore base pointer
ret ; clean up the stack

MySub ENDP

From this point forward, we assume STDCALL is used in all procedure examples, unless explic-
itly stated otherwise.
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After it is initialized, EBP’s contents remain fixed throughout the procedure. Pushing ECX and
EDX does not affect the displacement from EBP of parameters already on the stack because the
stack grows below EBP (see Fig. 8-1).

Figure 8–1 Stack frame for the MySub procedure.

8.2.5 Local Variables
In high-level languages, variables created, used, and destroyed within a single subroutine are called
local variables. Local variables are created on the runtime stack, usually below the base pointer
(EBP). Although they cannot be assigned default values at assembly time, they can be initialized
at runtime. We can create local variables in assembly language by using the same techniques as
C and C++.

Example The following C++ function declares local variables X and Y:

void MySub()
{

int X = 10;
int Y = 20;

}

If this code were compiled into machine language, we would see how local variables are allo-
cated. Each stack entry defaults to 32 bits, so each variable’s storage size is rounded upward to a
multiple of 4. A total of 8 bytes is reserved for the two local variables:

The following disassembly (shown by a debugger) of the MySub function shows how a C++
program creates local variables, assigns values, and removes the variables from the stack. It uses
the C calling convention:

MySub PROC
push ebp
mov ebp,esp
sub esp,8 ; create locals

Variable Bytes Stack Offset
X 4 EBP � 4

Y 4 EBP � 8

[EBP � 8]

[EBP � 4]

EBP

ESP

(parameter)

return address

EBP

ECX

EDX
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mov DWORD PTR [ebp�4],10 ; X
mov DWORD PTR [ebp�8],20 ; Y
mov esp,ebp ; remove locals from stack
pop ebp
ret

MySub ENDP

Figure 8-2 shows the function’s stack frame after the local variables are initialized. 

Figure 8–2 Stack frame after creating local variables.

Before finishing, the function resets the stack pointer by assigning it the value of EBP. The
effect is to release the local variables from the stack:

mov esp,ebp ; remove locals from stack

If this step is omitted, the POP EBP instruction would set EBP to 20 and the RET instruction
would branch to memory location 10, causing the program to halt with a processor exception.
Such is the case in the following version of MySub:

MySub PROC
push ebp
mov ebp,esp
sub esp,8 ; create locals
mov DWORD PTR [ebp�4],10 ; X
mov DWORD PTR [ebp�8],20 ; Y
pop ebp
ret ; return to invalid address!

MySub ENDP

Local Variable Symbols In the interest of making programs easier to read, you can define a
symbol for each local variable’s offset and use the symbol in your code:

X_local EQU DWORD PTR [ebp�4]
Y_local EQU DWORD PTR [ebp�8]

MySub PROC
push ebp
mov ebp,esp
sub esp,8 ; reserve space for locals
mov X_local,10 ; X
mov Y_local,20 ; Y
mov esp,ebp ; remove locals from stack
pop ebp
ret

MySub ENDP

[EBP � 4]

[EBP � 8]

EBP

ESP

return address

EBP

20 (Y)

10 (X)
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8.2.6 Reference Parameters
Reference parameters are usually accessed by procedures using base-offset addressing (from
EBP). Because each reference parameter is a pointer, it is usually loaded into a register for use as
an indirect operand. Suppose, for example, that a pointer to an array is located at stack address
[ebp�12]. The following statement copies the pointer into ESI:

mov esi,[ebp+12] ; points to the array

ArrayFill Example The ArrayFill procedure, which we are about to show, fills an array with a
pseudorandom sequence of 16-bit integers. It receives two arguments: a pointer to the array and
the array length. The first is passed by reference and the second is passed by value. Here is a
sample call:

.data
count = 100
array WORD count DUP(?)

.code
push OFFSET array
push count
call ArrayFill

Inside ArrayFill, the following prologue code initializes the stack frame pointer (EBP):

ArrayFill PROC
push ebp
mov ebp,esp

Now the stack frame contains the array offset, count, return address, and saved EBP:

ArrayFill saves the general-purpose registers, retrieves the parameters, and fills the array:

ArrayFill PROC
push ebp
mov ebp,esp
pushad ; save registers
mov esi,[ebp+12] ; offset of array
mov ecx,[ebp+8] ; array length
cmp ecx,0 ; ECX == 0?
je L2 ; yes: skip over loop

L1:
mov eax,10000h ; get random 0 � FFFFh
call RandomRange ; from the link library
mov [esi],ax ; insert value in array

[EBP � 12]

[EBP � 8]

EBP, ESP

offset (array)

return address

EBP

count
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add esi,TYPE WORD ; move to next element
loop L1

L2: popad ; restore registers
pop ebp
ret 8 ; clean up the stack

ArrayFill ENDP

8.2.7 LEA Instruction
The LEA instruction returns the address of an indirect operand. Because indirect operands con-
tain one or more registers, their offsets are calculated at runtime. To show how LEA can be used,
let’s look at the following C++ program, which declares a local array of char and references
myString when assigning values:

void makeArray( ) 
{

char myString[30];
for( int i = 0; i 
 30; i++ )

myString[i] = '*';
}

The equivalent code in assembly language allocates space for myString on the stack and assigns
the address to ESI, an indirect operand. Although the array is only 30 bytes, ESP is decremented
by 32 to keep it aligned on a doubleword boundary. Note how LEA is used to assign the array’s
address to ESI:

makeArray PROC
push ebp
mov ebp,esp
sub esp,32 ; myString is at EBP�30
lea esi,[ebp–30] ; load address of myString
mov ecx,30 ; loop counter

L1: mov BYTE PTR [esi],'*' ; fill one position
inc esi ; move to next
loop L1 ; continue until ECX = 0
add esp,32 ; remove the array (restore ESP)
pop ebp
ret

makeArray ENDP

It is not possible to use OFFSET to get the address of a stack parameter because OFFSET only
works with addresses known at compile time. The following statement would not assemble:

mov esi,OFFSET [ebp�30] ; error

8.2.8 ENTER and LEAVE Instructions
The ENTER instruction automatically creates a stack frame for a called procedure. It reserves
stack space for local variables and saves EBP on the stack. Specifically, it performs three actions:

• Pushes EBP on the stack (push ebp)
• Sets EBP to the base of the stack frame (mov ebp, esp)
• Reserves space for local variables (sub esp,numbytes)
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ENTER has two operands: The first is a constant specifying the number of bytes of stack space
to reserve for local variables and the second specifies the lexical nesting level of the procedure.

ENTER numbytes, nestinglevel

Both operands are immediate values. Numbytes is always rounded up to a multiple of 4 to keep
ESP on a doubleword boundary. Nestinglevel determines the number of stack frame pointers
copied into the current stack frame from the stack frame of the calling procedure. In our pro-
grams, nestinglevel is always zero. The Intel manuals explain how the ENTER instruction sup-
ports nesting levels in block-structured languages.

Example 1 The following example declares a procedure with no local variables:

MySub PROC
   enter 0,0

It is equivalent to the following instructions:

MySub PROC
push ebp
mov ebp,esp

Example 2 The ENTER instruction reserves 8 bytes of stack space for local variables:

MySub PROC
enter 8,0

It is equivalent to the following instructions:

MySub PROC
push ebp
mov ebp,esp
sub esp,8

Figure 8-3 shows the stack before and after ENTER has executed.

Figure 8–3 Stack frame before and after ENTER has executed.

LEAVE Instruction The LEAVE instruction terminates the stack frame for a procedure. It
reverses the action of a previous ENTER instruction by restoring ESP and EBP to the values

If you use the ENTER instruction, it is strongly advised that you also use the LEAVE instruction at
the end of the same procedure. Otherwise, the stack space you create for local variables might not
be released. This would cause the RET instruction to pop the wrong return address off the stack.

Before After executing ENTER 8, 0

ESP

ESP

EBPEBP

????

????
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they were assigned when the procedure was called. Using the MySub procedure example again,
we can write the following:

MySub PROC
     enter 8,0
     .
     .
     leave
     ret
MySub ENDP

The following equivalent set of instructions reserves and discards 8 bytes of space for local
variables:

MySub PROC
push ebp
mov ebp,esp
sub esp,8

    .
    .

mov esp,ebp
pop ebp

    ret
MySub ENDP

8.2.9 LOCAL Directive
We can guess that Microsoft created the LOCAL directive as a high-level substitute for the
ENTER instruction. LOCAL declares one or more local variables by name, assigning them size
attributes. (ENTER, on the other hand, only reserves a single unnamed block of stack space for
local variables.) If used, LOCAL must appear on the line immediately following the PROC
directive. Its syntax is

LOCAL varlist

varlist is a list of variable definitions, separated by commas, optionally spanning multiple lines.
Each variable definition takes the following form:

label:type

The label may be any valid identifier, and type can either be a standard type (WORD, DWORD,
etc.) or a user-defined type. (Structures and other user-defined types are described in Chapter 10.) 

Examples The MySub procedure contains a local variable named var1 of type BYTE:

MySub PROC
LOCAL var1:BYTE

The BubbleSort procedure contains a doubleword local variable named temp and a variable
named SwapFlag of type BYTE:

BubbleSort PROC
LOCAL temp:DWORD, SwapFlag:BYTE
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The Merge procedure contains a PTR WORD local variable named pArray, which is a
pointer to a 16-bit integer:

Merge PROC
LOCAL pArray:PTR WORD

The local variable TempArray is an array of 10 doublewords. Note the use of brackets to
show the array size:

LOCAL TempArray[10]:DWORD

MASM Code Generation
It’s a good idea to look at the code generated by MASM when the LOCAL directive is used. The
following Example1 procedure has a single doubleword local variable:

Example1 PROC
LOCAL temp:DWORD

mov eax,temp
ret

Example1 ENDP

MASM generates the following code for Example1, showing how ESP is decremented by 4 to
leave space for the doubleword variable:

push ebp  
mov ebp,esp 
add esp,0FFFFFFFCh ; add �4 to ESP
mov eax,[ebp�4]
leave
ret

Here is a diagram of Example1’s stack frame:

8.2.10 The Microsoft x64 Calling Convention
Microsoft follows a consistent scheme for passing parameters and calling subroutines in 64-bit
programs, known as the Microsoft x64 calling convention. This convention is used by C and C++
compilers, as well as by the Windows API library. The only time you need to use this calling
convention is when you either call a Windows function, or you call a function written in C or
C++. Here are the characteristics and requirements of this calling convention:

1. The CALL instruction subtracts 8 from the RSP (stack pointer) register, since addresses are
64 bits long.

2. The first four parameters passed to a subroutine are placed in the RCX, RDX, R8, and R9,
registers, in that order. So if only one parameter is passed, it will be placed in RCX. If there

[EBP � 4]

EBP

ESP

return address

EBP

temp
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is a second parameter, it will be placed in RDX, and so on. Additional parameters are
pushed on the stack, in left-to-right order. 

3. Parameters less than 64 bits long are not zero extended, so the upper bits have indeterminate
values.

4. If the return value is an integer whose size is less than or equal to 64 bits, it must be
returned in the RAX register.

5. It is the caller’s responsibility to allocate at least 32 bytes of shadow space on the runtime
stack, so called subroutines can optionally save the register parameters in this area. 

6. When calling a subroutine, the stack pointer (RSP) must be aligned on a 16-byte boundary.
The CALL instruction pushes an 8-byte return address on the stack, so the calling program
must subtract 8 from the stack pointer, in addition to the 32 it subtracts for the register
parameters.

7. It is the calling program’s responsibility to remove all parameters and shadow space from
the runtime stack after the called subroutine has finished.

8. A return value larger than 64 bits is placed on the runtime stack, and RCX points to its
location.

9. The RAX, RCX, RDX, R8, R9, R10, and R11 registers are often altered by subroutines, so
if the calling program wants them preserved, it will push them on the stack before the sub-
routine call, and pop them off the stack afterwards.

10. The values of the RBX, RBP, RDI, RSI, R12, R14, R14, and R15 registers must be preserved
by subroutines.

8.2.11 Section Review
1. (True/False): A subroutine’s stack frame always contains the caller’s return address and the

subroutine’s local variables.

2. (True/False): Arrays are passed by reference to avoid copying them onto the stack.

3. (True/False): A subroutine’s prologue code always pushes EBP on the stack.

4. (True/False): Local variables are created by adding a positive value to the stack pointer.

5. (True/False): In 32-bit mode, the last argument to be pushed on the stack in a subroutine call
is stored at location EBP + 8.

6. (True/False): Passing by reference means that an argument’s address is stored on the run-
time stack.

7. What are the two common types of stack parameters? 

8.3 Recursion
A recursive subroutine is one that calls itself, either directly or indirectly. Recursion, the practice
of calling recursive subroutines, can be a powerful tool when working with data structures that
have repeating patterns. Examples are linked lists and various types of connected graphs where a
program must retrace its path. 

Endless Recursion The most obvious type of recursion occurs when a subroutine calls itself.
The following program, for example, has a procedure named Endless that calls itself repeatedly
without ever stopping:



8.3   Recursion 303

; Endless Recursion               (Endless.asm)

INCLUDE Irvine32.inc
.data
endlessStr BYTE "This recursion never stops",0
.code
main PROC

call Endless
exit

main ENDP

Endless PROC
mov edx,OFFSET endlessStr
call WriteString
call Endless
ret ; never executes

Endless ENDP
END main

Of course, this example doesn’t have any practical value. Each time the procedure calls itself, it
uses up 4 bytes of stack space when the CALL instruction pushes the return address. The RET
instruction is never executed, and the program halts when the stack overflows.

8.3.1 Recursively Calculating a Sum
Useful recursive subroutines always contain a terminating condition. When the terminating
condition becomes true, the stack unwinds when the program executes all pending RET
instructions. To illustrate, let’s consider the recursive procedure named CalcSum, which sums
the integers 1 to n, where n is an input parameter passed in ECX. CalcSum returns the sum in
EAX:

; Sum of Integers            (RecursiveSum.asm)

INCLUDE Irvine32.inc
.code
main PROC

mov ecx,5 ; count = 5
mov eax,0 ; holds the sum
call CalcSum ; calculate sum

L1: call WriteDec ; display EAX
call Crlf ; new line
exit

main ENDP

;----------------------------------------------------
CalcSum PROC
; Calculates the sum of a list of integers
; Receives: ECX = count
; Returns: EAX = sum
;----------------------------------------------------

cmp ecx,0 ; check counter value
jz L2 ; quit if zero
add eax,ecx ; otherwise, add to sum
dec ecx ; decrement counter
call CalcSum ; recursive call
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L2: ret
CalcSum ENDP
end Main

The first two lines of CalcSum check the counter and exit the procedure when ECX � 0. The
code bypasses further recursive calls. When the RET instruction is reached for the first time, it
returns to the previous call to CalcSum, which returns to its previous call, and so on. Table 8-1
shows the return addresses (as labels) pushed on the stack by the CALL instruction, along with
the concurrent values of ECX (counter) and EAX (sum).

Even a simple recursive procedure makes ample use of the stack. At the very minimum, four
bytes of stack space are used up each time a procedure call takes place because the return
address must be saved on the stack.

8.3.2 Calculating a Factorial
Recursive subroutines often store temporary data in stack parameters. When the recursive calls
unwind, the data saved on the stack can be useful. The next example we will look at calculates
the factorial of an integer n. The factorial algorithm calculates n!, where n is an unsigned inte-
ger. The first time the factorial function is called, the parameter n is the starting number, shown
here programmed in C/C++/Java syntax:

int function factorial(int n)
{
     if(n == 0) 
       return 1;
     else
       return n * factorial(n�1);
}

Given any number n, we assume we can calculate the factorial of n � 1. If so, we can con-
tinue to reduce n until it equals zero. By definition, 0! equals 1. In the process of backing up to
the original expression n!, we accumulate the product of each multiplication. For example, to
calculate 5!, the recursive algorithm descends along the left column of Fig. 8-4 and backs up
along the right column.

Table 8-1  Stack Frame and Registers (CalcSum).

Pushed on Stack Value in ECX Value in EAX

L1 5 0

L2 4 5

L2 3 9

L2 2 12

L2 1 14

L2 0 15
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Figure 8–4 Recursive calls to the factorial function.

Example Program The following assembly language program contains a procedure named
Factorial that uses recursion to calculate a factorial. We pass n (an unsigned integer between 0
and 12) on the stack to the Factorial procedure, and a value is returned in EAX. Because EAX is
a 32-bit register, the largest factorial it can hold is 12! (479,001,600). 

; Calculating a Factorial (Fact.asm)

INCLUDE Irvine32.inc
.code
main PROC

push 5 ; calc 5!
call Factorial ; calculate factorial (EAX)
call WriteDec ; display it
call Crlf
exit

main ENDP

;----------------------------------------------------
Factorial PROC
; Calculates a factorial.
; Receives: [ebp+8] = n, the number to calculate
; Returns: eax = the factorial of n
;----------------------------------------------------

push ebp
mov ebp,esp
mov eax,[ebp+8] ; get n
cmp eax,0 ; n � 0?
ja L1 ; yes: continue
mov eax,1 ; no: return 1 as the value of 0!
jmp L2 ; and return to the caller

5! � 5 * 4!

4! � 4 * 3!

3! � 3 * 2!

2! � 2 * 1!

1! � 1 * 0!

0! � 1

(Base case)

Recursive calls

1 * 1 � 1

2 * 1 � 2

3 * 2 � 6

4 * 6 � 24

5 * 24 � 120

1 � 1

Backing up
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L1: dec eax
push eax ; Factorial(n�1)
call Factorial

; Instructions from this point on execute when each 
; recursive call returns.

ReturnFact:
mov ebx,[ebp+8]   ; get n
mul ebx          ; EDX:EAX = EAX * EBX

L2: pop ebp ; return EAX
ret 4 ; clean up stack

Factorial ENDP
END main

Let’s examine the Factorial procedure more closely by tracking a call to it with an initial value
of N = 3. As documented in its specifications, Factorial assigns its return value to the EAX
register:

push 3
call Factorial ; EAX = 3!

The Factorial procedure receives one stack parameter, N, which is the starting value that deter-
mines which factorial to calculate. The calling program’s return address is automatically pushed
on the stack by the CALL instruction. The first thing Factorial does is to push EBP on the stack,
to save the base pointer to the calling program’s stack:

Factorial PROC
push ebp

Next, it must set EBP to the beginning of the current stack frame:

mov ebp,esp

Now that EBP and ESP both point to the top of the stack, the runtime stack contains the follow-
ing stack frame. It contains the parameter N, the caller’s return address, and the saved value of
EBP:

The same diagram shows that in order to retrieve the value of N from the stack and load it into
EAX, the code must add 8 to the value of EBP, using base-offset addressing:

mov eax,[ebp+8] ; get n

Next, the code checks the base case, the condition that stops the recursion. If N (currently in
EAX) equals zero, the function returns 1, defined as 0!

ESP, EBP

N � 3

(Ret Addr)

(EBP)

[EBP � 8]
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cmp eax,0 ; is n > 0?
ja L1 ; yes: continue
mov eax,1 ; no: return 1 as the value of 0!
jmp L2 ; and return to the caller

(We will examine the code at label L2 later.) Since the value in EAX is currently equal to 3, Fac-
torial will call itself recursively. First, it subtracts 1 from N and pushes the new value on the
stack. This value is the parameter that is passed with the new call to Factorial:

L1: dec eax
push eax ; Factorial(n - 1)
call Factorial

Execution now transfers to the first line of Factorial, with a new value of N:

Factorial PROC
push ebp
mov ebp,esp

The runtime stack now holds a second stack frame, with N equal to 2:

The value of N, which is now 2, is loaded into EAX and compared to zero.

mov eax,[ebp+8] ; N = 2 at this point
cmp eax,0 ; compare N to zero
ja L1 ; still greater than zero
mov eax,1 ; not executed
jmp L2 ; not executed

It is greater than zero, so execution continues at label L1.

Tip: You may have observed that the previous value of EAX, assigned during the first call to
Factorial, was just overwritten by a new value. This illustrates an important point: when mak-
ing recursive calls to a procedure, you should take careful note of which registers are modified.
If you need to save any of these register values, push them on the stack before making the
recursive call, and then pop them back off the stack after returning from the call. Fortunately, in
the Factorial procedure it is not necessary to save the contents of EAX across recursive proce-
dure calls.

ESP, EBP

N � 3

(Ret Addr)

(EBP)

N � 2

(Ret Addr)

(EBP)

[EBP � 8]
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At L1, we are about to use a recursive procedure call to get the factorial of N – 1. The code
subtracts 1 from EAX, pushes it on the stack, and calls Factorial:

L1: dec eax ; N = 1
push eax ; Factorial(1)
call Factorial

Now, entering Factorial a third time, three stack frames are active:

The Factorial procedure compares N to 0, and on finding that N is greater than zero, calls Facto-
rial one more time with N = 0. The runtime stack now contains its fourth stack frame as it enters
the Factorial procedure for the last time:

N � 3

(Ret Addr)

(EBP)

N � 2

(Ret Addr)

(EBP)

ESP, EBP

N � 1

(Ret Addr)

(EBP)

[EBP � 8]

N � 3

(Ret Addr)

(EBP)

N � 2

(Ret Addr)

(EBP)

ESP, EBP

N � 1

(Ret Addr)

[EBP � 8]

(EBP)

N � 0

(Ret Addr)

(EBP)
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When Factorial is called with N = 0, things get interesting. The following statements cause a
branch to label L2. The value 1 is assigned to EAX because 0! = 1, and EAX must be assigned
Factorial’s return value:

mov eax,[ebp+8] ; EAX = 0 
cmp eax,0 ; is n > 0?
ja L1 ; yes: continue
mov eax,1 ; no: return 1 as the value of 0!
jmp L2 ; and return to the caller

The following statements at label L2 cause Factorial to return to where it was last called:

L2: pop ebp ; return EAX
ret 4 ; clean up stack

At this point, the following figure shows that the most recent frame is no longer in the runtime
stack, and EAX contains 1 (the factorial of Zero):

The following lines are the return point from the call to Factorial. They take the current
value of N (stored on the stack at EBP + 8), multiply it against EAX (the value returned
by the call to Factorial). The product in EAX is now the return value of this iteration of
Factorial:

ReturnFact:
mov ebx,[ebp+8] ; get n
mul ebx ; EAX = EAX * EBX

L2: pop ebp ; return EAX
ret 4 ; clean up stack

Factorial ENDP

N � 3

(Ret Addr)

(EBP)

N � 2

(Ret Addr)

(EBP)

ESP, EBP

N � 1

(Ret Addr)

(EAX � 1)

(EBP)

[EBP � 8]
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(The upper half of the product in EDX is all zeros, and is ignored.) Therefore, the first time the fore-
going lines are reached, EAX is assigned the product of the expression 1 � 1. As the RET statement
executes, another frame is removed from the stack:

Again, the statements following the CALL instruction execute, multiplying N (which now
equals 2) by the value in EAX (equal to 1):

ReturnFact:
mov ebx,[ebp+8] ; get n
mul ebx ; EDX:EAX = EAX * EBX

L2: pop ebp ; return EAX
ret 4 ; clean up stack

Factorial ENDP

With EAX now equal to 2, the RET statement removes another frame from the stack:

Finally, the statements following the CALL instruction execute one last time, multiplying N
(equal to 3) by the value in EAX (equal to 2):

ReturnFact:
mov ebx,[ebp+8] ; get n
mul ebx ; EDX:EAX = EAX * EBX

L2: pop ebp ; return EAX
ret 4 ; clean up stack

Factorial ENDP

The return value in EAX, 6, is the computed value of 3 factorial. This was the calculation we
sought when first calling Factorial. The last stack frame disappears when the RET statement
executes.

ESP, EBP

N � 3

(Ret Addr)

(EBP)

N � 2

(Ret Addr)

(EBP)

[EBP � 8]

(EAX � 1)

ESP, EBP

N � 3

(Ret Addr)

(EBP)

[EBP � 8]

(EAX � 2)
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8.3.3 Section Review
1. (True/False): Given the same task to accomplish, a recursive subroutine usually uses less

memory than a nonrecursive one.

2. In the Factorial function, what condition terminates the recursion?

3. Which instructions in the assembly language Factorial procedure execute after each recur-
sive call has finished?

4. What would happen to the Factorial program’s output if you tried to calculate 13!?

5. Challenge: How many bytes of stack space would be used by the Factorial procedure when
calculating 5!?

8.4 INVOKE, ADDR, PROC, and PROTO
In 32-bit mode, the INVOKE, PROC, and PROTO directives provide powerful tools for defining
and calling procedures. Along with these directives, the ADDR operator is an essential tool for
defining procedure parameters. In many ways, these directives approach the convenience offered
by high-level programming languages. From a pedagogical point of view, their use is controver-
sial because they mask the underlying structure of the runtime stack. Before using them, you
would be wise to develop a detailed understanding of the low-level mechanics involved in sub-
routine calls. 

There is a situation in which using advanced procedure directives leads to better program-
ming—when your program executes procedure calls across module boundaries. In such
cases, the PROTO directive helps the assembler to validate procedure calls by checking argu-
ment lists against procedure declarations. This feature encourages advanced assembly lan-
guage programmers to take advantage of the convenience offered by advanced MASM
directives. 

8.4.1 INVOKE Directive
The INVOKE directive, only available in 32-bit mode, pushes arguments on the stack (in the
order specified by the MODEL directive’s language specifier) and calls a procedure. INVOKE is
a convenient replacement for the CALL instruction because it lets you pass multiple arguments
using a single line of code. Here is the general syntax:

INVOKE procedureName [, argumentList]

ArgumentList is an optional comma-delimited list of arguments passed to the procedure. Using the
CALL instruction, for example, we could call a procedure named DumpArray after executing sev-
eral PUSH instructions:

push TYPE array
push LENGTHOF array
push OFFSET array
call DumpArray

The equivalent statement using INVOKE is reduced to a single line in which the arguments are
listed in reverse order (assuming STDCALL is in effect):

INVOKE DumpArray, OFFSET array, LENGTHOF array, TYPE array



312 Chapter 8  •  Advanced Procedures

INVOKE permits almost any number of arguments, and individual arguments can appear on
separate source code lines. The following INVOKE statement includes helpful comments:

INVOKE DumpArray, ; displays an array
OFFSET array, ; points to the array
LENGTHOF array, ; the array length
TYPE array ; array component size

Argument types are listed in Table 8-2.

EAX, EDX Overwritten If you pass arguments smaller than 32 bits to a procedure, INVOKE
frequently causes the assembler to overwrite EAX and EDX when it widens the arguments before
pushing them on the stack. You can avoid this behavior by always passing 32-bit arguments to
INVOKE, or you can save and restore EAX and EDX before and after the procedure call.

8.4.2 ADDR Operator
The ADDR operator, also available in 32-bit mode, can be used to pass a pointer argument when
calling a procedure using INVOKE. The following INVOKE statement, for example, passes the
address of myArray to the FillArray procedure:

INVOKE FillArray, ADDR myArray

The argument passed to ADDR must be an assembly time constant. The following is an error:

INVOKE mySub, ADDR [ebp+12] ; error

The ADDR operator can only be used in conjunction with INVOKE. The following is an error:

mov esi, ADDR myArray ; error

Example The following INVOKE directive calls Swap, passing it the addresses of the first
two elements in an array of doublewords:

.data
Array DWORD 20 DUP(?)
.code
...
INVOKE Swap, 

ADDR Array,
ADDR [Array+4]

Table 8-2  Argument types used with INVOKE.

Type Examples

Immediate value 10, 3000h, OFFSET mylist, TYPE array

Integer expression (10 * 20), COUNT

Variable myList, array, myWord, myDword

Address expression [myList�2], [ebx � esi]

Register eax, bl, edi

ADDR name ADDR myList

OFFSET name OFFSET myList
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Here is the corresponding code generated by the assembler, assuming STDCALL is in
effect:

push OFFSET Array+4
push OFFSET Array
call Swap

8.4.3 PROC Directive

Syntax of the PROC Directive
In 32-bit mode, the PROC directive has the following basic syntax:

label PROC [attributes] [USES reglist], parameter_list

Label is a user-defined label following the rules for identifiers explained in Chapter 3. Attributes
refers to any of the following: 

[distance] [langtype] [visibility] [prologuearg]

Table 8-3 describes each of the attributes.

Parameter Lists
The PROC directive permits you to declare a procedure with a comma-separated list of named
parameters. Your implementation code can refer to the parameters by name rather than by calculated
stack offsets such as [ebp�8]:

label PROC [attributes] [USES reglist],
parameter_1,
parameter_2,
.
.
parameter_n

The comma following PROC can be omitted if the parameter list appears on the same line:

label PROC [attributes], parameter_1, parameter_2, ..., parameter_n

Table 8-3  Attributes field in the PROC directive.

Attribute Description

distance NEAR or FAR. Indicates the type of RET instruction (RET or RETF) generated
by the assembler. 

langtype Specifies the calling convention (parameter passing convention) such as C, PASCAL,
or STDCALL. Overrides the language specified in the .MODEL directive.

visibility Indicates the procedure’s visibility to other modules. Choices are PRIVATE, PUBLIC
(default), and EXPORT. If the visibility is EXPORT, the linker places the proce-
dure’s name in the export table for segmented executables. EXPORT also enables
PUBLIC visibility. 

prologuearg Specifies arguments affecting generation of prologue and epilogue code.
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A single parameter has the following syntax:

paramName:type

ParamName is an arbitrary name you assign to the parameter. Its scope is limited to the current proce-
dure (called local scope). The same parameter name can be used in more than one procedure, but it
cannot be the name of a global variable or code label. Type can be one of the following: BYTE,
SBYTE, WORD, SWORD, DWORD, SDWORD, FWORD, QWORD, or TBYTE. It can also be a
qualified type, which may be a pointer to an existing type. Following are examples of qualified types:

Though it is possible to add NEAR and FAR attributes to these expressions, they are relevant
only in more specialized applications. Qualified types can also be created using the TYPEDEF
and STRUCT directives, which we explain in Chapter 10. 

Example 1 The AddTwo procedure receives two doubleword values and returns their sum in
EAX:

AddTwo PROC,
val1:DWORD,
val2:DWORD
mov eax,val1
add eax,val2
ret

AddTwo ENDP

The assembly language generated by MASM when assembling AddTwo shows how the parame-
ter names are translated into offsets from EBP. A constant operand is appended to the RET
instruction because STDCALL is in effect:

AddTwo PROC
push ebp
mov ebp, esp
mov eax,dword ptr [ebp+8] 
add eax,dword ptr [ebp+0Ch] 
leave
ret 8

AddTwo ENDP

Note: It would be just as correct to substitute the ENTER 0,0 instruction in place of the follow-
ing statements in the AddTwo procedure:

push ebp
mov ebp,esp

PTR BYTE PTR SBYTE

PTR WORD PTR SWORD

PTR DWORD PTR SDWORD

PTR QWORD PTR TBYTE

Tip: To view details of MASM-generated procedure code, open your program with a debugger and
view the Disassembly window.
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Example 2 The FillArray procedure receives a pointer to an array of bytes:

FillArray PROC, 
pArray:PTR BYTE
. . .

FillArray ENDP

Example 3 The Swap procedure receives two pointers to doublewords:

Swap PROC, 
pValX:PTR DWORD, 
pValY:PTR DWORD
. . .

Swap ENDP

Example 4 The Read_File procedure receives a byte pointer named pBuffer. It has a local
doubleword variable named fileHandle, and it saves two registers on the stack (EAX and EBX):

Read_File PROC USES eax ebx,
pBuffer:PTR BYTE
LOCAL fileHandle:DWORD

mov esi,pBuffer
mov fileHandle,eax
.
.
ret

Read_File ENDP

The MASM-generated code for Read_File shows how space is reserved on the stack for the
local variable (fileHandle) before pushing EAX and EBX (specified in the USES clause):

Read_File PROC
push ebp  
mov ebp,esp 
add esp,0FFFFFFFCh ; create fileHandle
push eax ; save EAX
push ebx ; save EBX
mov esi,dword ptr [ebp+8] ; pBuffer
mov dword ptr [ebp�4],eax ; fileHandle
pop ebx  
pop eax  
leave
ret 4 

Read_File ENDP

Note: Although Microsoft chose not to do so, another way to begin the generated code for
Read_File would have been this:

Read_File PROC
enter 4,0
push eax
(etc.)
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The ENTER instruction saves EBP, sets it to the value of the stack pointer, and reserves space
for the local variable.

RET Instruction Modified by PROC When PROC is used with one or more parameters
and STDCALL is the default protocol, MASM generates the following entry and exit code,
assuming PROC has n parameters:

push ebp
mov ebp,esp
.
.
leave
ret (n*4)

The constant appearing in the RET instruction is the number of parameters multiplied by 4
(because each parameter is a doubleword). The STDCALL convention is the default when you
INCLUDE Irvine32.inc, and it is the calling convention used for all Windows API function
calls.

Specifying the Parameter Passing Protocol
A program might call Irvine32 library procedures and in turn contain procedures that can be
called from C++ programs. To provide this flexibility, the attributes field of the PROC directive lets
you specify the language convention for passing parameters. It overrides the default language
convention specified in the .MODEL directive. The following example declares a procedure with
the C calling convention:

Example1 PROC C,
parm1:DWORD, parm2:DWORD

If we execute Example1 using INVOKE, the assembler generates code consistent with the C
calling convention. Similarly, if we declare Example1 using STDCALL, INVOKE generates
consistent with that language convention:

Example1 PROC STDCALL,
parm1:DWORD, parm2:DWORD

8.4.4 PROTO Directive
In 64-bit mode, we use the PROTO directive to identify a procedure that is external to the pro-
gram, as in the following example:

ExitProcess PROTO
.code
mov   ecx,0
call  ExitProcess

In 32-bit mode, however, PROTO is a good deal more powerful because it can include a list of
procedure parameters. We say that the PROTO directive creates a prototype for an existing pro-
cedure. A prototype declares a procedure’s name and parameter list. It allows you to call a proce-
dure before defining it and to verify that the number and types of arguments match the procedure
definition.
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MASM requires a prototype for each procedure called by INVOKE. PROTO must appear
first before INVOKE. In other words, the standard ordering of these directives is

MySub PROTO ; procedure prototype
.

INVOKE MySub ; procedure call
.

MySub PROC ; procedure implementation
.
.

MySub ENDP

An alternative scenario is possible: The procedure implementation can appear in the program
prior to the location of the INVOKE statement for that procedure. In that case, PROC acts as its
own prototype:

MySub PROC ; procedure definition
.
.

MySub ENDP
.

INVOKE MySub ; procedure call

Assuming you have already written a particular procedure, you can easily create its prototype
by copying the PROC statement and making the following changes:

• Change the word PROC to PROTO.
• Remove the USES operator if any, along with its register list.

For example, suppose we have already created the ArraySum procedure:

ArraySum PROC USES esi ecx,
ptrArray:PTR DWORD, ; points to the array
szArray:DWORD ; array size
; (remaining lines omitted...)

ArraySum ENDP

This is a matching PROTO declaration:

ArraySum PROTO,
ptrArray:PTR DWORD, ; points to the array
szArray:DWORD ; array size

The PROTO directive lets you override the default parameter passing protocol in the
.MODEL directive. It must be consistent with the procedure’s PROC declaration:

Example1 PROTO C,
parm1:DWORD, parm2:DWORD

Assembly Time Argument Checking
The PROTO directive helps the assembler compare a list of arguments in a procedure call to the
procedure’s definition. The error checking is not as precise as you would find in languages like C and
C++. Instead, MASM checks for the correct number of parameters, and to a limited extent, matches
argument types to parameter types. Suppose, for example, the prototype for Sub1 is declared thus:

Sub1 PROTO, p1:BYTE, p2:WORD, p3:PTR BYTE
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We will define the following variables:

.data
byte_1 BYTE  10h
word_1 WORD  2000h
word_2 WORD  3000h
dword_1 DWORD 12345678h

The following is a valid call to Sub1:

INVOKE Sub1, byte_1, word_1, ADDR byte_1

The code generated by MASM for this INVOKE shows arguments pushed on the stack in reverse
order:

push 404000h ; ptr to byte_1
sub esp,2 ; pad stack with 2 bytes
push word ptr ds:[00404001h] ; value of word_1
mov al,byte ptr ds:[00404000h] ; value of byte_1
push eax  
call 00401071 

EAX is overwritten, and the sub esp,2 instruction pads the subsequent stack entry to 32 bits. 

Errors Detected by MASM If an argument exceeds the size of a declared parameter, MASM
generates an error:

INVOKE Sub1, word_1, word_2, ADDR byte_1 ; arg 1 error

MASM generates errors if we invoke Sub1 using too few or too many arguments:

INVOKE Sub1, byte_1, word_2 ; error: too few arguments
INVOKE Sub1, byte_1, ; error: too many arguments

word_2, ADDR byte_1, word_2

Errors Not Detected by MASM If an argument’s type is smaller than a declared parameter,
MASM does not detect an error:

INVOKE Sub1, byte_1, byte_1, ADDR byte_1

Instead, MASM expands the smaller argument to the size of the declared parameter. In the fol-
lowing code generated by our INVOKE example, the second argument (byte_1) is expanded into
EAX before pushing it on the stack:

push 404000h ; addr of byte_1
mov al,byte ptr ds:[00404000h] ; value of byte_1
movzx eax,al ; expand into EAX
push eax  ; push on stack
mov al,byte ptr ds:[00404000h] ; value of byte_1
push eax  ; push on stack
call 00401071 ; call Sub1



8.4   INVOKE, ADDR, PROC, and PROTO 319

If a doubleword is passed when a pointer was expected, no error is detected. This type of error
usually leads to a runtime error when the subroutine tries to use the stack parameter as a pointer:

INVOKE Sub1, byte_1, word_2, dword_1 ; no error detected

ArraySum Example
Let’s revisit the ArraySum procedure from Chapter 5, which calculates the sum of an array of
doublewords. Originally, we passed arguments in registers; now we can use the PROC directive
to declare stack parameters:

ArraySum PROC USES esi ecx, 
ptrArray:PTR DWORD, ; points to the array
szArray:DWORD ; array size

mov esi,ptrArray ; address of the array
mov ecx,szArray ; size of the array
mov eax,0 ; set the sum to zero
cmp ecx,0 ; length = zero?
je L2 ; yes: quit

L1: add eax,[esi] ; add each integer to sum
add esi,4 ; point to next integer
loop L1 ; repeat for array size

L2: ret ; sum is in EAX
ArraySum ENDP

The INVOKE statement calls ArraySum, passing the address of an array and the number of
elements in the array:

.data
array DWORD 10000h,20000h,30000h,40000h,50000h
theSum DWORD  ?
.code
main PROC

INVOKE ArraySum,
  ADDR array, ; address of the array
  LENGTHOF array ; number of elements
mov theSum,eax ; store the sum

8.4.5 Parameter Classifications
Procedure parameters are usually classified according to the direction of data transfer between
the calling program and the called procedure: 

• Input: An input parameter is data passed by a calling program to a procedure. The called pro-
cedure is not expected to modify the corresponding parameter variable, and even if it does,
the modification is confined to the procedure itself. 

• Output: An output parameter is created when a calling program passes the address of a
variable to a procedure. The procedure uses the address to locate and assign data to the
variable. The Win32 Console Library, for example, has a function named ReadConsole that
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reads a string of characters from the keyboard. The calling program passes a pointer to a
string buffer, into which ReadConsole stores text typed by the user:

.data
buffer BYTE 80 DUP(?)
inputHandle DWORD ?
.code
INVOKE ReadConsole, inputHandle, ADDR buffer, 

(etc.)

• Input–Output: An input–output parameter is identical to an output parameter, with one
exception: The called procedure expects the variable referenced by the parameter to contain
some data. The procedure is also expected to modify the variable via the pointer.

8.4.6 Example: Exchanging Two Integers
The following program exchanges the contents of two 32-bit integers. The Swap procedure has two
input–output parameters named pValX and pValY, which contain the addresses of data to be exchanged:

; Swap Procedure Example                 (Swap.asm)

INCLUDE Irvine32.inc
Swap PROTO, pValX:PTR DWORD, pValY:PTR DWORD

.data
Array DWORD 10000h,20000h

.code
main PROC

; Display the array before the exchange:
mov esi,OFFSET Array
mov ecx,2 ; count = 2
mov ebx,TYPE Array
call DumpMem ; dump the array values

INVOKE Swap, ADDR Array, ADDR [Array+4]

; Display the array after the exchange:
call DumpMem
exit

main ENDP

;-------------------------------------------------------
Swap PROC USES eax esi edi,

pValX:PTR DWORD, ; pointer to first integer
pValY:PTR DWORD ; pointer to second integer

;
; Exchange the values of two 32-bit integers
; Returns: nothing
;-------------------------------------------------------

mov esi,pValX ; get pointers
mov edi,pValY
mov eax,[esi] ; get first integer
xchg eax,[edi] ; exchange with second
mov [esi],eax ; replace first integer
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ret ; PROC generates RET 8 here
Swap ENDP
END main

The two parameters in the Swap procedure, pValX and pValY, are input–output parameters.
Their existing values are input to the procedure, and their new values are also output from the
procedure. Because we’re using PROC with parameters, the assembler changes the RET instruc-
tion at the end of Swap to RET 8 (assuming STDCALL is the calling convention).

8.4.7 Debugging Tips
In this section, we call attention to a few common errors encountered when passing arguments to
procedures in assembly language. We hope you never make these mistakes.

Argument Size Mismatch
Array addresses are based on the sizes of their elements. To address the second element of a
doubleword array, for example, one adds 4 to the array’s starting address. Suppose we call Swap
from Section 8.4.6, passing pointers to the first two elements of DoubleArray. If we incorrectly
calculate the address of the second element as DoubleArray � 1, the resulting hexadecimal
values in DoubleArray after calling Swap are incorrect:

.data
DoubleArray DWORD 10000h,20000h
.code
INVOKE Swap, ADDR [DoubleArray + 0], ADDR [DoubleArray + 1]

Passing the Wrong Type of Pointer
When using INVOKE, remember that the assembler does not validate the type of pointer you
pass to a procedure. For example, the Swap procedure from Section 8.4.6 expects to receive two
doubleword pointers. Suppose we inadvertently pass it pointers to bytes:

.data
ByteArray BYTE 10h,20h,30h,40h,50h,60h,70h,80h
.code
INVOKE Swap, ADDR [ByteArray + 0], ADDR [ByteArray + 1]

The program will assemble and run, but when ESI and EDI are dereferenced, 32-bit values are
exchanged. 

Passing Immediate Values
If a procedure has a reference parameter, do not pass it an immediate argument. Consider the
following procedure, which has a single reference parameter:

Sub2 PROC, dataPtr:PTR WORD
mov esi,dataPtr ; get the address
mov WORD PTR [esi],0 ; dereference, assign zero
ret

Sub2 ENDP
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The following INVOKE statement assembles but causes a runtime error. The Sub2 procedure
receives 1000h as a pointer value and dereferences memory location 1000h:

INVOKE Sub2, 1000h

The example is likely to cause a general protection fault, because memory location 1000h is not
likely to be within the program’s data segment. 

8.4.8 WriteStackFrame Procedure
The Irvine32 library contains a useful procedure named WriteStackFrame that displays the
contents of the current procedure’s stack frame. It shows the procedure’s stack parameters,
return address, local variables, and saved registers. It was generously provided by Professor
James Brink of Pacific Lutheran University. Here is the prototype:

WriteStackFrame PROTO,
numParam:DWORD, ; number of passed parameters
numLocalVal: DWORD, ; number of DWordLocal variables
numSavedReg: DWORD ; number of saved registers

Here’s an excerpt from a program that demonstrates WriteStackFrame:

main PROC
mov eax, 0EAEAEAEAh
mov ebx, 0EBEBEBEBh
INVOKE myProc, 1111h, 2222h ; pass two integer arguments
exit

main ENDP

myProc PROC USES eax ebx,
x: DWORD, y: DWORD
LOCAL a:DWORD, b:DWORD

PARAMS = 2
LOCALS = 2
SAVED_REGS = 2
mov a,0AAAAh
mov b,0BBBBh
INVOKE WriteStackFrame, PARAMS, LOCALS, SAVED_REGS

The following sample output was produced by the call:

Stack Frame

00002222 ebp+12 (parameter)
00001111 ebp+8 (parameter)
00401083 ebp+4 (return address)
0012FFF0 ebp+0 (saved ebp) <--- ebp
0000AAAA ebp-4 (local variable)
0000BBBB ebp-8 (local variable)
EAEAEAEA ebp-12 (saved register)
EBEBEBEB ebp-16 (saved register) <--- esp
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A second procedure, named WriteStackFrameName, has an additional parameter that holds
the name of the procedure owning the stack frame:

WriteStackFrameName PROTO,
numParam:DWORD, ; number of passed parameters
numLocalVal:DWORD, ; number of DWORD local variables
numSavedReg:DWORD, ; number of saved registers
procName:PTR BYTE ; null-terminated string

You can find the source code for the Irvine32 library in the \Examples\Lib32 directory of our
book’s install directory (usually C:\Irvine). Look for the file named Irvine32.asm.

8.4.9 Section Review
1. (True/False): The CALL instruction cannot include procedure arguments.

2. (True/False): The INVOKE directive can include up to a maximum of three arguments.

3. (True/False): The INVOKE directive can only pass memory operands, but not register values.

4. (True/False): The PROC directive can contain a USES operator, but the PROTO directive cannot.

8.5 Creating Multimodule Programs
Large source files are hard to manage and slow to assemble. You could break a single file into
multiple include files, but a modification to any source file would still require a complete assem-
bly of all the files. A better approach is to divide up a program into modules (assembled units).
Each module is assembled independently, so a change to one module’s source code only requires
reassembling the single module. The linker combines all assembled modules (OBJ files) into a sin-
gle executable file rather quickly. Linking large numbers of object modules requires far less time
than assembling the same number of source code files. 

There are two general approches to creating multimodule programs: The first is the tradi-
tional one, using the EXTERN directive, which is more or less portable across different x86
assemblers. The second approach is to use Microsoft’s advanced INVOKE and PROTO direc-
tives, which simplify procedure calls and hide some low-level details. We will demonstrate both
approaches and let you decide which you want to use.

8.5.1 Hiding and Exporting Procedure Names
By default, MASM makes all procedures public, permitting them to be called from any other
module in the same program. You can override this behavior using the PRIVATE qualifier:

mySub PROC PRIVATE

By making procedures private, you use the principle of encapsulation to hide procedures inside mod-
ules and avoid potential name clashes when procedures in different modules have the same names. 

OPTION PROC:PRIVATE Directive Another way to hide procedures inside a source module
is to place the OPTION PROC:PRIVATE directive at the top of the file. All procedures become pri-
vate by default. Then, you use the PUBLIC directive to identify any procedures you want to export:

OPTION PROC:PRIVATE
PUBLIC mySub
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The PUBLIC directive takes a comma-delimited list of names:

PUBLIC sub1, sub2, sub3

Alternatively, you can designate individual procedures as public:

mySub PROC PUBLIC
.
mySub ENDP

If you use OPTION PROC:PRIVATE in your program’s startup module, be sure to designate
your startup procedure (usually main) as PUBLIC, or the operating system’s loader will not be
able to find it. For example,

main PROC PUBLIC

8.5.2 Calling External Procedures
The EXTERN directive, used when calling a procedure outside the current module, identifies the
procedure’s name and stack frame size. The following program example calls sub1, located in an
external module:

INCLUDE Irvine32.inc
EXTERN sub1@0:PROC
.code
main PROC

call sub1@0
exit

main ENDP
END main

When the assembler discovers a missing procedure in a source file (identified by a CALL
instruction), its default behavior is to issue an error message. Instead, EXTERN tells the assem-
bler to create a blank address for the procedure. The linker resolves the missing address when it
creates the program’s executable file. 

The @n suffix at the end of a procedure name identifies the total stack space used by declared
parameters (see the extended PROC directive in Section 8.4). If you’re using the basic PROC
directive with no declared parameters, the suffix on each procedure name in EXTERN will be
@0. If you declare a procedure using the extended PROC directive, add 4 bytes for every param-
eter. Suppose we declare AddTwo with two doubleword parameters:

AddTwo PROC, 
val1:DWORD,
val2:DWORD
. . .

AddTwo ENDP

The corresponding EXTERN directive is EXTERN AddTwo@8:PROC. Alternatively, you can
use the PROTO directive in place of EXTERN:
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AddTwo PROTO, 
val1:DWORD,
val2:DWORD

8.5.3 Using Variables and Symbols across Module Boundaries

Exporting Variables and Symbols
Variables and symbols are, by default, private to their enclosing modules. You can use the PUBLIC
directive to export specific names, as in the following example:

PUBLIC count, SYM1
SYM1 = 10
.data
count DWORD 0

Accessing External Variables and Symbols
You can use the EXTERN directive to access variables and symbols defined in external modules:

EXTERN name : type

For symbols (defined with EQU and =), type should be ABS. For variables, type can be a data-
definition attribute such as BYTE, WORD, DWORD, and SDWORD, including PTR. Here are
examples:

EXTERN one:WORD, two:SDWORD, three:PTR BYTE, four:ABS

Using an INCLUDE File with EXTERNDEF
MASM has a useful directive named EXTERNDEF that takes the place of both PUBLIC and
EXTERN. It can be placed in a text file and copied into each program module using the
INCLUDE directive. For example, let’s define a file named vars.inc containing the following
declaration:

; vars.inc
EXTERNDEF count:DWORD, SYM1:ABS

Next, we create a source file named sub1.asm containing count and SYM1, an INCLUDE state-
ment that copies vars.inc into the compile stream.

; sub1.asm
.386
.model flat,STDCALL
INCLUDE vars.inc
SYM1 = 10
.data
count DWORD 0
END

Because this is not the program startup module, we omit a program entry point label in the END
directive, and we do not need to declare a runtime stack. 
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Next, we create a startup module named main.asm that includes vars.inc and makes refer-
ences to count and SYM1:

; main.asm
.386
.model flat,stdcall
.stack 4096
ExitProcess proto, dwExitCode:dword
INCLUDE vars.inc
.code
main PROC

mov count,2000h
mov eax,SYM1
INVOKE ExitProcess,0

main ENDP
END main

8.5.4 Example: ArraySum Program
The ArraySum program, first presented in Chapter 5, is an easy program to separate into mod-
ules. For a quick review of the program’s design, let’s review the structure chart (Fig. 8-5).
Shaded rectangles refer to procedures in the book’s link library. The main procedure calls
PromptForIntegers, which in turn calls WriteString and ReadInt. It’s usually easiest to keep
track of the various files in a multimodule program by creating a separate disk directory for the
files. That’s what we did for the ArraySum program, to be shown in the next section.

Figure 8–5 Structure chart, ArraySum program.

8.5.5 Creating the Modules Using Extern
We will show two versions of the multimodule ArraySum program. This section will use the tra-
ditional EXTERN directive to reference functions in separate modules. Later, in Section 8.5.6,
we will implement the same program using the advanced capabilities of INVOKE, PROTO, and
PROC. 

ArraySum
Program (main)

Clrscr PromptForIntegers ArraySum DisplaySum

WriteString ReadInt

DisplaySum

WriteIntWriteString WriteInt
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PromptForIntegers _ prompt.asm contains the source code file for the PromptForIntegers
procedure. It displays prompts asking the user to enter three integers, inputs the values by calling
ReadInt, and inserts them in an array:

; Prompt For Integers      (_ prompt.asm)

INCLUDE Irvine32.inc
.code
;----------------------------------------------------
PromptForIntegers PROC

; Prompts the user for an array of integers and fills
; the array with the user's input.
; Receives:
; ptrPrompt:PTR BYTE ; prompt string
; ptrArray:PTR DWORD ; pointer to array
; arraySize:DWORD ; size of the array
; Returns:  nothing
;-----------------------------------------------------
arraySize EQU [ebp+16]
ptrArray EQU [ebp+12]
ptrPrompt EQU [ebp+8]

enter 0,0
pushad ; save all registers

mov ecx,arraySize
cmp ecx,0 ; array size 
= 0?
jle L2 ; yes: quit
mov edx,ptrPrompt ; address of the prompt
mov esi,ptrArray

L1: call WriteString ; display string
call ReadInt ; read integer into EAX
call Crlf ; go to next output line
mov [esi],eax ; store in array
add esi,4 ; next integer
loop L1

L2: popad ; restore all registers
leave
ret 12 ; restore the stack

PromptForIntegers ENDP
END

ArraySum The _arraysum.asm module contains the ArraySum procedure, which calculates
the sum of the array elements and returns a result in EAX:

; ArraySum Procedure (_arrysum.asm)

INCLUDE Irvine32.inc
.code
;-----------------------------------------------------
ArraySum PROC
;
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; Calculates the sum of an array of 32-bit integers.
; Receives:
; ptrArray ; pointer to array
; arraySize ; size of array (DWORD)
; Returns:  EAX = sum
;-----------------------------------------------------
ptrArray EQU [ebp+8]
arraySize EQU [ebp+12]

enter 0,0
push ecx ; don't push EAX
push esi

mov eax,0 ; set the sum to zero
mov esi,ptrArray
mov ecx,arraySize
cmp ecx,0 ; array size 
= 0?
jle L2 ; yes: quit

L1: add eax,[esi] ; add each integer to sum
add esi,4 ; point to next integer
loop L1 ; repeat for array size

L2: pop esi
pop ecx ; return sum in EAX
leave
ret 8 ; restore the stack

ArraySum ENDP
END

DisplaySum The _display.asm module contains the DisplaySum procedure, which displays a
label, followed by the array sum:

; DisplaySum Procedure (_display.asm)

INCLUDE Irvine32.inc
.code
;-----------------------------------------------------
DisplaySum PROC
; Displays the sum on the console.
; Receives:
; ptrPrompt ; offset of prompt string
; theSum ; the array sum (DWORD)
; Returns: nothing
;-----------------------------------------------------

theSum EQU [ebp+12]
ptrPrompt EQU [ebp+8]

enter 0,0
push eax
push edx

mov edx,ptrPrompt ; pointer to prompt
call WriteString
mov eax,theSum
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call WriteInt ; display EAX
call Crlf

pop edx
pop eax
leave
ret 8 ; restore the stack

DisplaySum ENDP
END

Startup Module The Sum_main.asm module contains the startup procedure (main). It con-
tains EXTERN directives for the three external procedures. To make the source code more user-
friendly, the EQU directive redefines the procedure names:

ArraySum EQU ArraySum@0
PromptForIntegers EQU PromptForIntegers@0
DisplaySum EQU DisplaySum@0

Just before each procedure call, a comment describes the parameter order. This program uses the
STDCALL parameter passing convention:

; Integer Summation Program (Sum_main.asm)

; Multimodule example:
; This program inputs multiple integers from the user,
; stores them in an array, calculates the sum of the
; array, and displays the sum.

INCLUDE Irvine32.inc

EXTERN PromptForIntegers@0:PROC
EXTERN ArraySum@0:PROC, DisplaySum@0:PROC

; Redefine external symbols for convenience
ArraySum EQU ArraySum@0
PromptForIntegers EQU PromptForIntegers@0
DisplaySum EQU DisplaySum@0

; modify Count to change the size of the array:
Count = 3

.data
prompt1 BYTE "Enter a signed integer: ",0
prompt2 BYTE "The sum of the integers is: ",0
array   DWORD  Count DUP(?)
sum     DWORD  ?

.code
main PROC

call Clrscr

; PromptForIntegers( addr prompt1, addr array, Count )
push Count
push OFFSET array
push OFFSET prompt1
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call PromptForIntegers

; sum = ArraySum( addr array, Count )
push Count
push OFFSET array
call ArraySum
mov sum,eax

; DisplaySum( addr prompt2, sum )
push sum
push OFFSET prompt2
call DisplaySum

call Crlf
exit

main ENDP
END main

The source files for this program are stored in the example programs directory in a folder named
ch08\ModSum32_traditional.

Next, we will see how this program would change if it were built using Microsoft’s INVOKE
and PROTO directives.

8.5.6 Creating the Modules Using INVOKE and PROTO
In 32-bit mode, multimodule programs may be created using Microsoft’s advanced INVOKE,
PROTO, and extended PROC directives (Section 8.4). Their primary advantage over the more
traditional use of CALL and EXTERN is their ability to match up argument lists passed by
INVOKE to corresponding parameter lists declared by PROC. 

Let’s recreate the ArraySum program, using the INVOKE, PROTO, and advanced PROC
directives. A good first step is to create an include file containing a PROTO directive for each
external procedure. Each module will include this file (using the INCLUDE directive) without
incurring any code size or runtime overhead. If a module does not call a particular procedure, the
corresponding PROTO directive is ignored by the assembler. The source code for this program is
located in the \ch08\ModSum32_advanced folder.

The sum.inc Include File Here is the sum.inc include file for our program:

; (sum.inc)
INCLUDE Irvine32.inc

PromptForIntegers PROTO,
ptrPrompt:PTR BYTE, ; prompt string
ptrArray:PTR DWORD, ; points to the array
arraySize:DWORD ; size of the array

ArraySum PROTO,
ptrArray:PTR DWORD, ; points to the array
arraySize:DWORD ; size of the array

DisplaySum PROTO,
ptrPrompt:PTR BYTE, ; prompt string
theSum:DWORD ; sum of the array
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The _ prompt Module The _ prompt.asm file uses the PROC directive to declare parameters
for the PromptForIntegers procedure. It uses an INCLUDE to copy sum.inc into this file:

; Prompt For Integers      (_ prompt.asm)

INCLUDE sum.inc ; get procedure prototypes
.code
;-----------------------------------------------------
PromptForIntegers PROC,
  ptrPrompt:PTR BYTE, ; prompt string
  ptrArray:PTR DWORD, ; pointer to array
  arraySize:DWORD ; size of the array
;
; Prompts the user for an array of integers and fills
; the array with the user's input.
; Returns:  nothing
;-----------------------------------------------------

pushad ; save all registers

mov  ecx,arraySize
cmp  ecx,0 ; array size 
= 0?
jle  L2 ; yes: quit
mov  edx,ptrPrompt ; address of the prompt
mov  esi,ptrArray

L1: call WriteString ; display string
call ReadInt ; read integer into EAX
call Crlf ; go to next output line
mov  [esi],eax ; store in array
add  esi,4 ; next integer
loop L1

L2: popad ; restore all registers
ret

PromptForIntegers ENDP
END

Compared to the previous version of PromptForIntegers, the statements enter 0, 0 and leave are
now missing because they will be generated by MASM when it encounters the PROC directive
with declared parameters. Also, the RET instruction needs no constant parameter (PROC takes
care of that).

The _arraysum Module Next, the _arrysum.asm file contains the ArraySum procedure:

; ArraySum Procedure                 (_arrysum.asm)

INCLUDE sum.inc
.code
;-----------------------------------------------------
ArraySum PROC,

ptrArray:PTR DWORD, ; pointer to array
arraySize:DWORD ; size of array

;
; Calculates the sum of an array of 32-bit integers.
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; Returns:  EAX = sum
;-----------------------------------------------------

push ecx ; don't push EAX
push esi

mov  eax,0 ; set the sum to zero
mov  esi,ptrArray
mov  ecx,arraySize
cmp  ecx,0 ; array size 
= 0?
jle  L2 ; yes: quit

L1: add  eax,[esi] ; add each integer to sum
add  esi,4 ; point to next integer
loop L1 ; repeat for array size

L2: pop  esi
pop  ecx ; return sum in EAX
ret

ArraySum ENDP
END

The _display Module The _display.asm file contains the DisplaySum procedure:

; DisplaySum Procedure (_display.asm)

INCLUDE Sum.inc
.code
;-----------------------------------------------------
DisplaySum PROC,

ptrPrompt:PTR BYTE, ; prompt string
theSum:DWORD ; the array sum

;
; Displays the sum on the console.
; Returns:  nothing
;-----------------------------------------------------

push eax
push edx

mov edx,ptrPrompt ; pointer to prompt
call WriteString
mov eax,theSum
call WriteInt ; display EAX
call Crlf

pop edx
pop eax
ret

DisplaySum ENDP
END

The Sum_main Module The Sum_main.asm (startup module) contains main and calls
each of the other procedures. It uses INCLUDE to copy in the procedure prototypes from
sum.inc:
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; Integer Summation Program (Sum_main.asm)

INCLUDE sum.inc
Count = 3
.data
prompt1 BYTE "Enter a signed integer: ",0
prompt2 BYTE "The sum of the integers is: ",0
array   DWORD  Count DUP(?)
sum     DWORD  ?

.code
main PROC

call Clrscr

INVOKE PromptForIntegers, ADDR prompt1, ADDR array, Count
INVOKE ArraySum, ADDR array, Count
mov  sum,eax
INVOKE DisplaySum, ADDR prompt2, sum

call Crlf
exit

main ENDP
END main

Summary We have shown two ways of creating multimodule programs—first, using the more
conventional EXTERN directive, and second, using the advanced capabilities of INVOKE,
PROTO, and PROC, in 32-bit mode. The latter directives simplify many details and are opti-
mized for calling Windows API functions. They also hide a number of details, so you may prefer
to use explicit stack parameters along with CALL and EXTERN.

8.5.7 Section Review
1. (True/False): Linking OBJ modules is much faster than assembling ASM source files.

2. (True/False): Separating a large program into short modules makes a program more difficult
to maintain.

3. (True/False): In a multimodule program, an END statement with a label occurs only once,
in the startup module.

4. (True/False): PROTO directives use up memory, so you must be careful not to include a
PROTO directive for a procedure unless the procedure is actually called.

8.6 Advanced Use of Parameters (Optional Topic)
In this section, we explore some of the less commonly encountered situations when passing
parameters on the runtime stack, in 32-bit mode. If you were to examine code created by C and
C++ compilers, for example, you would see examples of techniques shown here. 

8.6.1 Stack Affected by the USES Operator
The USES operator, introduced in Chapter 5, lists the names of registers to save at the beginning
of a procedure and restore at the procedure’s end. The assembler automatically generates appro-
priate PUSH and POP instructions for each named register. But there’s something you have to
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know: The USES operator should not be used when declaring procedures that access their stack
parameters using constant offsets such as [ebp + 8]. Let’s look at an example that shows why.
The following MySub1 procedure employs the USES operator to save and restore ECX and
EDX:

MySub1 PROC USES ecx edx
ret

MySub1 ENDP

The following code is generated by MASM when it assembles MySub1:

push ecx
push edx
pop  edx
pop  ecx
ret

Suppose we combine USES with a stack parameter, as does the following MySub2 procedure.
Its parameter is expected to be located on the stack at EBP+8:

MySub2 PROC USES ecx edx
push ebp ; save base pointer
mov  ebp,esp ; base of stack frame
mov  eax,[ebp+8] ; get the stack parameter
pop  ebp ; restore base pointer
ret  4 ; clean up the stack

MySub2 ENDP

Here is the corresponding code generated by MASM for MySub2:

push ecx
push edx
push ebp
mov  ebp,esp
mov  eax,dword ptr [ebp+8] ; wrong location!
pop  ebp
pop  edx
pop  ecx
ret 4

An error results because the assembler inserted the PUSH instructions for ECX and EDX
at the beginning of the procedure, altering the offset of the stack parameter. Figure 8-6
shows how the stack parameter must now be referenced as [EBP+16]. USES modifies the
stack before saving EBP, which corrupts the standard prologue code commonly used for
subroutines.

Tip: Earlier in this chapter, we saw that the PROC directive has a high-level syntax for declaring
stack parameters. In that context, the USES operator causes no problems.
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Figure 8–6 Stack frame of the MySub2 procedure.

8.6.2 Passing 8-Bit and 16-Bit Arguments on the Stack
When passing stack arguments to procedures in 32-bit mode, it’s best to push 32-bit operands.
Though you can push 16-bit operands on the stack, doing so prevents ESP from being aligned on
a doubleword boundary. A page fault may occur and runtime performance may be degraded. You
should expand them to 32 bits before pushing them on the stack. The following Uppercase pro-
cedure receives a character  argument and returns its uppercase equivalent in AL:

Uppercase PROC
push ebp
mov  ebp,esp
mov  al,[esp+8] ; AL = character
cmp  al,'a' ; less than 'a'?
jb   L1 ; yes: do nothing
cmp  al,'z' ; greater than 'z'?
ja   L1 ; yes: do nothing
sub  al,32 ; no: convert it

L1:
pop ebp
ret  4 ; clean up the stack

Uppercase ENDP

If we pass a character literal to Uppercase, the PUSH instruction automatically expands the
character to 32 bits:

push 'x'
call Uppercase

Passing a character variable requires more care because the PUSH instruction does not permit
8-bit operands:

.data
charVal BYTE 'x'
.code
push charVal ; syntax error!
call Uppercase

[EBP � 16]

EBP, ESP

(parameter)

return address

ECX

EBP

EDX
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Instead, we use MOVZX to expand the character into EAX:

movzx eax,charVal ; move with extension
push  eax
call  Uppercase

16-Bit Argument Example
Suppose we want to pass two 16-bit integers to the AddTwo procedure shown earlier. The proce-
dure expects 32-bit values, so the following call would cause an error:

.data
word1 WORD 1234h
word2 WORD 4111h
.code
push word1
push word2
call AddTwo ; error!

Instead, we can zero-extend each argument before pushing it on the stack. The following code
correctly calls AddTwo:

movzx eax,word1
push  eax
movzx eax,word2
push  eax
call  AddTwo ; sum is in EAX

8.6.3 Passing 64-Bit Arguments
In 32-bit mode, when passing 64-bit integer arguments to subroutines on the stack, push the
high-order doubleword of the argument first, followed by the low-order doubleword. Doing so
places the integer into the stack in little-endian order (low-order byte at the lowest address). The
subroutine can easily retrieve these values, as is done in the following WriteHex64 procedure,
which displays a 64-bit integer in hexadecimal:

WriteHex64 PROC
push  ebp
mov   ebp,esp
mov   eax,[ebp+12] ; high doubleword
call  WriteHex
mov   eax,[ebp+8] ; low doubleword
call  WriteHex
pop   ebp
ret   8

WriteHex64 ENDP

The following sample call to WriteHex64 pushes the upper half of longVal, followed by the
lower half:

The caller of a procedure must ensure the arguments it passes are consistent with the parameters
expected by the procedure. In the case of stack parameters, the order and size of the parameters are
important!
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.data
longVal QWORD 1234567800ABCDEFh
.code
push  DWORD PTR longVal + 4 ; high doubleword
push  DWORD PTR longVal ; low doubleword
call  WriteHex64

Figure 8-7 shows a picture of the stack frame inside WriteHex64 just after EBP was pushed on
the stack and ESP was copied to EBP.

Figure 8–7 Stack frame after pushing EBP.

8.6.4 Non-Doubleword Local Variables
The LOCAL directive has interesting behavior when you declare local variables of differing
sizes. Each is allocated space according to its size: An 8-bit variable is assigned to the next avail-
able byte, a 16-bit variable is assigned to the next even address (word-aligned), and a 32-bit vari-
able is allocated the next doubleword aligned boundary. Let’s look at a few examples. First, the
Example1 procedure contains a local variable named var1 of type BYTE:

Example1 PROC
LOCAL var1:byte
mov  al,var1 ; [EBP - 1]
ret

Example1 ENDP

Because stack offsets default to 32 bits in 32-bit mode, one might expect var1 to be located at
EBP – 4. Instead, as shown in Fig. 8-8, MASM decrements ESP by 4 and places var1 at EBP – 1,
leaving the three bytes below it unused (marked by the letters nu, which indicate not used). In
the figure, each block represents a single byte.

Figure 8–8 Creating space for local variables (Example1 Procedure).

[EBP � 12]

[EBP � 8]

[EBP � 4]

12345678

00ABCDEF

return address

EBP EBP, ESP

EBP

[EBP � 4]

[EBP � 1]

EBP

ESP

var 1

nu

nu

nu
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The Example2 procedure contains a doubleword followed by a byte:

Example2 PROC
local temp:dword, SwapFlag:BYTE
.
.
ret

Example2 ENDP

The following code is generated by the assembler for Example2. The ADD instruction adds 8 to
ESP, creating an opening in the stack between ESP and EBP for the two local variables:

push ebp
mov  ebp,esp
add  esp,0FFFFFFF8h ; add -8 to ESP
mov  eax,[ebp-4] ; temp
mov  bl,[ebp-5] ; SwapFlag
leave
ret

Although SwapFlag is only a byte variable, ESP is rounded downward to the next doubleword
stack location. A detailed view of the stack, shown as individual bytes in Fig. 8-9, shows the
exact location of SwapFlag and the unused space below it (labeled nu). In the figure, each block
equals a single byte.

Figure 8–9 Creating space in Example 2 for local variables.

If you plan to create arrays larger than a few hundred bytes as local variables, be sure to
reserve adequate space for the runtime stack, using the STACK directive. In the Irvine32 library,
for example, we reserve 4096 bytes of stack space:

.stack 4096

EBP

[EBP � 8]

[EBP � 5]

EBP

ESP

SwapFlag

temp

[EBP � 4]

nu

nu

nu
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If procedure calls are nested, the runtime stack must be large enough to hold the sum of all local
variables active at any point in the program’s execution. In the following code, for example,
Sub1 calls Sub2, and Sub2 calls Sub3. Each has a local array variable:

Sub1 PROC
local array1[50]:dword ; 200 bytes
callSub2
.
.
ret
Sub1 ENDP

Sub2 PROC
local array2[80]:word ; 160 bytes
callSub3
.
.
ret
Sub2 ENDP

Sub3 PROC
local array3[300]:dword ; 1200 bytes
.
.
ret
Sub3 ENDP

When the program enters Sub3, the runtime stack holds local variables from Sub1, Sub2, and
Sub3. The stack will require 1,560 bytes to hold the local variables, plus the two procedure
return addresses (8 bytes), plus any registers that might have been pushed on the stack within the
procedures. If a procedure is called recursively, the stack space it uses will be approximately the
size of its local variables and parameters multiplied by the estimated depth of the recursion. 

8.7 Java Bytecodes (Optional Topic)

8.7.1 Java Virtual Machine
The Java Virtual Machine (JVM) is the software that executes compiled Java bytecodes. It is an
important part of the Java Platform, which encompasses programs, specifications, libraries, and
data structures working together. Java bytecodes is the name given to the machine language
inside compiled Java programs.

While this book teaches native assembly language on x86 processors, it is also instructive to
learn how other machine architectures work. The JVM is the foremost example of a stack-based
machine. Rather than using registers to hold operands (as the x86 does), the JVM uses a stack
for data movement, arithmetic, comparison, and branching operations.

The compiled programs executed by a JVM contain Java bytecodes. Every Java source pro-
gram must be compiled into Java bytecodes (in the form of a .class file) before it can execute.
The same program containing Java bytecodes will execute on any computer system that has Java
runtime software installed.
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A Java source file named Account.java, for example, is compiled into a file named
Account.class. Inside this class file is a stream of bytecodes for each method in the class. The
JVM might optionally use a technique called just-in-time compilation to compile the class byte-
codes into the computer’s native machine language.

An executing Java method has its own stack frame containing local variables, the operand
stack, input parameters, a return address, and a return value. The operand area of the stack is
actually at the top of the stack, so values pushed there are available as arithmetic and logical
operands, as well as arguments passed to class methods.

Before local variables can be used in instructions that involve arithmetic or comparison, they
must be pushed onto the operand area of the stack frame. From this point forward, we will refer
to this area as the operand stack.

In Java bytecodes, each instruction contains a 1-byte opcode, followed by zero or more oper-
ands. When displayed by a Java disassembler utility, the opcodes have names, such as iload,
istore, imul, and goto. Each stack entry is 4 bytes (32 bits).

Viewing Disassembled Bytecodes
The Java Development Kit (JDK) contains a utility named javap.exe that displays the byte codes
in a java .class file. We call this a disassembly of the file. The command-line syntax is:

javap –c classname

For example, if your class file were named Account.class, the appropriate javap command line would be

javap –c Account

You can find the javap.exe utility in the \bin folder of your installed Java Development Kit.

8.7.2 Instruction Set

Primitive Data Types
There are seven primitive data types recognized by the JVM, shown in Table 8-4. All signed
integers are in two’s complement format, just like x86 integers. But they are stored in big-endian
order, with the high-order byte at the starting address of each integer (x86 integers are stored in
little-endian order). The IEEE real formats are described in Chapter 12.

Table 8-4  Java Primitive Data Types.

Data Type Bytes Format

char 2 Unicode character

byte 1 signed integer

short 2 signed integer

int 4 signed integer

long 8 signed integer

float 4 IEEE single-precision real

double 8 IEEE double-precision real
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Comparison Instructions
Comparison instructions pop two operands off the top of the operand stack, compare them, and
push the result of the comparison back on the stack. Let’s assume the operands are pushed in the
following order:

The following table shows the value pushed on the stack after comparing op1 and op2:

The dcmp instruction compares doubles, and fcmp compares float values.

Branching Instructions
Branching instructions can be categorized as either conditional branches or unconditional
branches. Examples of unconditional branches in Java bytecode are goto and jsr.

The goto instruction unconditionally branches to a label:

goto label

The jsr instruction calls a subroutine identified by a label. Its syntax is:

jsr label

A conditional branch instruction usually inspects the value that it pops from the top of the oper-
and stack. Then, based on the value, the instruction decides whether or not to branch to a given
label. For example, the ifle instruction branches to a label if the popped value is less than or
equal to zero. Its syntax is:

ifle label

Similarly, the ifgt instruction branches to a label if the popped value is greater than zero. Its syn-
tax is:

ifgt label

8.7.3 Java Disassembly Examples
In order to help you understand how Java bytecodes work, we will present a series of short code
examples written in Java. In the examples that follow, please be aware that details in the byte-
code listings may vary slightly between different releases of Java.

Example: Adding Two Integers
The following Java source code lines add two integers and place their sum in a third variable:

int A = 3;
int B = 2;
int sum = 0;
sum = A + B;

op2 (top of stack)

op1

Results of Comparing 
op1 and op2

Value Pushed on the 
Operand Stack

op1 > op2 1

op1 = op2 0

op1 < op2 �1
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Following is a disassembly of the Java code:

0: iconst_3
1: istore_0
2: iconst_2
3: istore_1
4: iconst_0
5: istore_2
6: iload_0
7: iload_1
8: iadd
9: istore_2

Each numbered line represents the byte offset of a Java bytecode instruction. In the current
example, we can tell that each instruction is only one byte long because the instruction offsets
are numbered consecutively.

Although bytecode disassemblies usually do not contain comments, we will add our own. Local
variables have their own reserved area on the runtime stack. There is another stack called the operand
stack that is used by instructions when performing arithmetic and moving of data. To avoid confusion
between these two stacks, we will refer to variable locations with index values 0, 1, 2, and so on.

Now we will analyze the bytecodes in detail. The first two instructions push a constant value
onto the operand stack and pop the same value into the local variable at location 0:

0: iconst_3 // push constant (3) onto operand stack
1: istore_0 // pop into local variable 0

The next four lines push two more constants on the operand stack and pop them into local vari-
ables at locations 1 and 2:

2: iconst_2 // push constant (2) onto stack
3: istore_1 // pop into local variable 1
4: iconst_0 // push constant (0) onto stack
5: istore_2 // pop into local variable 2

Having seen the Java source code from which this bytecode was generated, it is now clear that
the following table shows the location indexes of the three variables:

Next, in order to perform addition, the two operands must be pushed on the operand stack. The
iload_0 instruction pushes the variable A onto the stack. The iload_1 instruction does the same
for the variable B:

6: iload_0 // push A onto the stack
7: iload_1 // push B onto the stack

Location
Index

Variable 
Name

0 A

1 B

2 sum
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The operand stack now contains two values:

We are not concerned with actual machine representation in these examples, so the runtime stack
is shown as growing in the upward direction. The uppermost value in each stack diagram is the
top of stack.

The iadd instruction adds the two values at the top of the stack and pushes the sum back on
the stack:

8: iadd

The operand stack contains the sum of A and B:

The istore_2 instruction pops the stack into location 2, which is the variable named sum:

9: istore_2

The operand stack is now empty.

Example: Adding Two Doubles
The following Java snippet adds two variables of type double and saves them in a sum. It per-
forms the same operations as our Adding Two Integers example, so we will focus on the differ-
ences between processing integers and doubles:

double A = 3.1;
double B = 2;
double sum = A + B;

Following are the disassembled bytecodes for our example. The comments shown at the right
were inserted by the javap utility program:

0: ldc2_w #20; // double 3.1d
3: dstore_0
4: ldc2_w #22; // double 2.0d
7: dstore_2
8: dload_0
9: dload_2
10: dadd
11: dstore_4   

We will discuss this code in steps. The ldc2_w instruction at offset 0 pushes a floating-point con-
stant (3.1) from the constant pool onto the operand stack. The ldc2 instruction always includes a
2-byte index into the constant pool area:

0: ldc2_w #20; // double 3.1d

2 (B) Top of stack

3 (A)

5 (A + B)
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The dstore instruction at offset 3 pops a double from the operand stack into the local variable at
location 0. The instruction’s starting offset (3) reflects the number of bytes used by the first
instruction (opcode, plus 2-byte index):

3: dstore_0 // save in A

The next two instructions at offsets 4 and 7 follow suit, initializing the variable B:

4: ldc2_w #22; // double 2.0d
7: dstore_2 // save in B

The dload_0 and dload_2 instructions push the local variables onto the stack. The indexes
refer to 64-bit locations (two variable stack entries) because the doubleword values are 8 bytes
long:

8: dload_0
9: dload_2

The next instruction (dadd) adds the two double values at the top of the stack and pushes their
sum back onto the stack:

10: dadd

The final dstore_4 instruction pops the stack into the local variable at location 4:

11: dstore_4

8.7.4 Example: Conditional Branch
An important part of understanding Java bytecodes relates to how the JVM handles conditional
branching. Comparison operations always pop the top two items off the stack, compare them,
and push an integer result value back onto the stack. Conditional branching instructions, which
often follow comparison operations, use the integer value at the top of the stack to decide
whether or not to branch to a target label. For example, the following Java code contains a sim-
ple IF statement that assigns one of two values to a boolean variable:

double A = 3.0;
boolean result = false;

if( A > 2.0 )
result = false;

else
result = true;

Following is the corresponding disassembly of the Java code:

0: ldc2_w #26; // double 3.0d
3: dstore_0 // pop into A
4: iconst_0 // false = 0
5: istore_2 // store in result
6: dload_0
7: ldc2_w #22; // double 2.0d
10: dcmpl
11: ifle 19 // if A <= 2.0, goto 19
14: iconst_0 // false
15: istore_2 // result = false
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16: goto 21 // skip next two statements
19: iconst_1 // true
20: istore_2 // result = true 

The first two instructions copy 3.0 from the constant pool onto the runtime stack, and then pop it
from the stack into the variable A:

0: ldc2_w #26; // double 3.0d
3: dstore_0 // pop into A

The next two instructions copy the boolean value false (equal to 0) from the constant area onto
the stack, and then pop it into the variable named result:

4: iconst_0 // false = 0
5: istore_2 // store in result

The value of A (location 0) is pushed onto the operand stack, followed by the value 2.0:

6: dload_0 // push A onto the stack
7: ldc2_w #22; // double 2.0d

The operand stack now contains two values:

The dcmpl instruction pops two doubles from the stack and compares them. Since the value at
the top of the stack (2.0) is less than the value just below it (3.0), the integer 1 is pushed on the
stack.

10: dcmpl

The ifle instruction branches to a given offset if the value it pops from the stack is less than or
equal to zero:

11: ifle 19 // if stack.pop() <= 0 goto 19

Here, we should recall that our starting Java source code example assigned a value of false if
A > 2.0:

if( A > 2.0 )
result = false;

else
result = true;

The Java bytecode turns this IF statement around by jumping to offset 19 if A ≤ 2.0. At offset 19,
result is assigned the value true. Meanwhile, if the branch to offset 19 is not taken, result is
assigned the value false by the next few instructions:

14: iconst_0 // false
15: istore_2 // result = false
16: goto 21 // skip next two statements

The goto instruction at offset 16 skips over the next two lines, which are responsible for assign-
ing true to result:

19: iconst_1 // true
20: istore_2 // result = true

2.0

3.0 (A)
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Conclusion
The Java Virtual Machine has a markedly different instruction set than that of the x86 processor
family. Its stack-oriented approach to calculations, comparisons, and branching contrasts
sharply to the constant use of registers and memory operands in x86 instructions. While the
symbolic disassembly of bytecodes is not as easy to read as x86 assembly language, bytecodes
are fairly easy for the compiler to generate. Each operation is atomic, meaning that it performs
just one operation. In cases where a just-in-time compiler is used by a JVM, the Java bytecodes
are translated into native machine language just before execution. In this respect, Java bytecodes
have a great deal in common with machine languages based on the Reduced Instruction Set
(RISC) model. 

8.8 Chapter Summary
There are two basic types of procedure parameters: register parameters and stack parameters.
The Irvine32 and Irvine64 libraries use register parameters, which are optimized for program
execution speed. Register parameters tend to create code clutter in calling programs. Stack
parameters are the alternative. The procedure arguments must be pushed on the stack by a call-
ing program. 

A stack frame (or activation record) is the area of the stack set aside for a procedure’s return
address, passed parameters, local variables, and saved registers. The stack frame is created when
the running program begins to execute a procedure. 

When a copy of a procedure argument is pushed on the stack, it is passed by value. When an
argument’s address is pushed on the stack, it is passed by reference; the procedure can modify
the variable via its address. Arrays should be passed by reference, to avoid having to push all
array elements on the stack.

Procedure parameters can be accessed using indirect addressing with the EBP register.
Expressions such as [ebp�8] give you a high level of control over stack parameter addressing.
The LEA instruction returns the offset of any type of indirect operand. LEA is ideally suited for
use with stack parameters.

The ENTER instruction completes the stack frame by saving EBP on the stack and reserving
space for local variables. The LEAVE instruction terminates the stack frame for a procedure by
reversing the action of a preceding ENTER instruction. 

A recursive subroutine is one that calls itself, either directly or indirectly. Recursion, the
practice of calling recursive subroutines, can be a powerful tool when working with data struc-
tures that have repeating patterns.

The LOCAL directive declares one or more local variables inside a procedure. It must be
placed on the line immediately following a PROC directive. Local variables have distinct advan-
tages over global variables:

• Access to the name and contents of a local variable can be restricted to its containing proce-
dure. Local variables help when debugging programs because only a limited number of pro-
gram statements are capable of modifying the local variables.
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• A local variable’s lifetime is limited to the execution scope of its enclosing procedure. Local
variables make efficient use of memory because the same storage space can be used for other
variables.

• The same variable name may be used in more than one procedure without causing a naming
clash.

• Local variables can be used in recursive procedures to store values on the stack. If global
variables were used instead, their values would be overwritten each time the procedure called
itself.

The INVOKE directive (32-bit mode only) is a more powerful replacement for the CALL
instruction that lets you pass multiple arguments. The ADDR operator can be used to pass a
pointer when calling a procedure with the INVOKE directive. 

The PROC directive declares a procedure name with a list of named parameters. The PROTO
directive creates a prototype for an existing procedure. A prototype declares a procedure’s name
and parameter list. 

An application program of any size is difficult to manage when all of its source code is in the
same file. It is more convenient to break the program up into multiple source code files (called
modules), making each file easy to view and edit. 

Java Bytecodes Java bytecodes is the name given to the machine language inside compiled
Java programs. The Java Virtual Machine (JVM) is the software that executes compiled Java
bytecodes. In Java bytecodes, each instruction contains a 1-byte opcode, followed by zero or
more operands. The JVM uses a stack-oriented model for performing arithmetic, data move-
ment, comparison, and branching. The Java Development Kit (JDK) contains a utility named
javap.exe that displays a disassembly of the byte codes in a java .class file.

8.9 Key Terms

8.9.1 Terms

activation record

argument

calling convention

effective address

epilogue

explicit stack parameters

Java bytecodes

Java Development Kit (JDK)

Java Virtual Machine (JVM)

just-in-time compilation

local variables

memory model

Microisoft x64 calling convention

operand stack

parameter

passing by reference

passing by value

procedure prototype

prologue

recursion

recursive subroutine

stack frame

STDCALL calling convention

reference parameter

stack parameter

subroutine
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8.10 Review Questions and Exercises

8.10.1 Short Answer 
1. Which statements belong in a procedure’s epilogue when the procedure has stack parame-

ters and local variables?

2. When a C function returns a 32-bit integer, where is the return value stored?

3. How does a program using the STDCALL calling convention clean up the stack after a pro-
cedure call?

4. How is the LEA instruction more powerful than the OFFSET operator?

5. In the C++ example shown in Section 8.2.3, how much stack space is used by a variable of
type int?

6. What advantages might the C calling convention have over the STDCALL calling
convention?

7. (True/False): When using the PROC directive, all parameters must be listed on the same
line.

8. (True/False): If you pass a variable containing the offset of an array of bytes to a procedure
that expects a pointer to an array of words, the assembler will flag this as an error.

9. (True/False): If you pass an immediate value to a procedure that expects a reference param-
eter, you can generate a general-protection fault.

8.10.2 Algorithm Workbench
1. Here is a calling sequence for a procedure named AddThree that adds three doublewords

(assume that the STDCALL calling convention is used):

push 10h
push 20h
push 30h
call AddThree

Draw a picture of the procedure’s stack frame immediately after EBP has been pushed on
the runtime stack.

2. Create a procedure named AddThree that receives three integer parameters and calculates
and returns their sum in the EAX register.

3. Declare a local variable named pArray that is a pointer to an array of doublewords.

4. Declare a local variable named buffer that is an array of 20 bytes.

ADDR

ENTER

INVOKE

LEA

LEAVE

LOCAL

PROC

PROTO

RET

USES

8.9.2 Instructions, Operators, and Directives
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5. Declare a local variable named pwArray that points to a 16-bit unsigned integer.

6. Declare a local variable named myByte that holds an 8-bit signed integer.

7. Declare a local variable named myArray that is an array of 20 doublewords.

8. Create a procedure named SetColor that receives two stack parameters: forecolor and back-
color, and calls the SetTextColor procedure from the Irvine32 library. 

9. Create a procedure named WriteColorChar that receives three stack parameters: char,
forecolor, and backcolor. It displays a single character, using the color attributes specified in
forecolor and backcolor.

10. Write a procedure named DumpMemory that encapsulates the DumpMem procedure in the
Irvine32 library. Use declared parameters and the USES directive. The following is an
example of how it should be called: INVOKE DumpMemory, OFFSET array, LENGTHOF
array, TYPE array.

11. Declare a procedure named MultArray that receives two pointers to arrays of doublewords,
and a third parameter indicating the number of array elements.  Also, create a PROTO dec-
laration for this procedure.

8.11 Programming Exercises

1. FindLargest Procedure
Create a procedure named FindLargest that receives two parameters: a pointer to a signed
doubleword array, and a count of the array’s length. The procedure must return the value of
the largest array member in EAX. Use the PROC directive with a parameter list when declar-
ing the procedure. Preserve all registers (except EAX) that are modified by the procedure.
Write a test program that calls FindLargest and passes three different arrays of different
lengths. Be sure to include negative values in your arrays. Create a PROTO declaration for
FindLargest.

2. Chess Board
Write a program that draws an 8 � 8 chess board, with alternating gray and white squares. You
can use the SetTextColor and Gotoxy procedures from the Irvine32 library. Avoid the use of glo-
bal variables, and use declared parameters in all procedures. Use short procedures that are
focused on a single task.

3. Chess Board with Alternating Colors
This exercise extends Exercise 2. Every 500 milliseconds, change the color of the colored
squares and redisplay the board. Continue until you have shown the board 16 times, using all
possible 4-bit background colors. (The white squares remain white throughout.)

4. FindThrees Procedure
Create a procedure named FindThrees that returns 1 if an array has three consecutive values of
3 somewhere in the array. Otherwise, return 0. The procedure’s input parameter list contains a
pointer to the array and the array’s size. Use the PROC directive with a parameter list when
declaring the procedure. Preserve all registers (except EAX) that are modified by the procedure.
Write a test program that calls FindThrees several times with different arrays. 

★★

★

★

★★★
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5. DifferentInputs Procedure
Write a procedure named DifferentInputs that returns EAX = 1 if the values of its three input
parameters are all different; otherwise, return with EAX = 0. Use the PROC directive with a
parameter list when declaring the procedure. Create a PROTO declaration for your procedure,
and call it five times from a test program that passes different inputs.

6. Exchanging Integers
Create an array of randomly ordered integers. Using the Swap procedure from Section 8.4.6 as a
tool, write a loop that exchanges each consecutive pair of integers in the array.

7. Greatest Common Divisor
Write a recursive implementation of Euclid’s algorithm for finding the greatest common divisor
(GCD) of two integers. Descriptions of this algorithm are available in algebra books and on the
Web. Write a test program that calls your GCD procedure five times, using the following pairs of
integers: (5,20), (24,18), (11,7), (432,226), (26,13). After each procedure call, display the GCD.

8. Counting Matching Elements
Write a procedure named CountMatches that receives points to two arrays of signed double-
words, and a third parameter that indicates the length of the two arrays. For each element xi in
the first array, if the corresponding yi in the second array is equal, increment a count. At the end,
return a count of the number of matching array elements in EAX. Write a test program that calls
your procedure and passes pointers to two different pairs of arrays. Use the INVOKE statement
to call your procedure and pass stack parameters. Create a PROTO declaration for Count-
Matches. Save and restore any registers (other than EAX) changed by your procedure.

9. Counting Nearly Matching Elements
Write a procedure named CountNearMatches that receives pointers to two arrays of signed dou-
blewords, a parameter that indicates the length of the two arrays, and a parameter that indicates the
maximum allowed difference (called diff) between any two matching elements. For each element
xi in the first array, if the difference between it and the corresponding yi in the second array is less
than or equal to diff, increment a count. At the end, return a count of the number of nearly match-
ing array elements in EAX. Write a test program that calls CountNearMatches and passes pointers
to two different pairs of arrays. Use the INVOKE statement to call your procedure and pass stack
parameters. Create a PROTO declaration for CountMatches. Save and restore any registers (other
than EAX) changed by your procedure.

10. Show Procedure Parameters
Write a procedure named ShowParams that displays the address and hexadecimal value of the
32-bit parameters on the runtime stack of the procedure that called it. The parameters are to be
displayed in order from the lowest address to the highest. Input to the procedure will be a single
integer that indicates the number of parameters to display. For example, suppose the following
statement in main calls MySample, passing three arguments:

INVOKE MySample, 1234h, 5000h, 6543h

★★★★

★★

★★

★★

★★

★★★



8.11   Programming Exercises 351

Next, inside MySample, you should be able to call ShowParams, passing the number of param-
eters you want to display:

MySample PROC first:DWORD, second:DWORD, third:DWORD
paramCount = 3
call ShowParams, paramCount

ShowParams should display output in the following format:

Stack parameters:
---------------------------
Address 0012FF80 = 00001234
Address 0012FF84 = 00005000
Address 0012FF88 = 00006543
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9.1 Introduction
If you learn to efficiently process strings and arrays, you can master the most common area of
code optimization. Studies have shown that most programs spend 90% of their running time exe-
cuting 10% of their code. No doubt the 10% occurs frequently in loops, and loops are required
when processing strings and arrays. In this chapter, we will show techniques for string and array
processing, with the goal of writing efficient code.
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We will begin with the optimized string primitive instructions designed for moving, comparing,
loading, and storing blocks of data. Next, we will introduce several string-handling procedures in
the Irvine32 and Irvine64 libraries. Their implementations are fairly similar to the code you might
see in an implementation of the standard C string library. The third part of the chapter shows how
to manipulate two-dimensional arrays, using advanced indirect addressing modes: base-index and
base-index-displacement. Simple indirect addressing was introduced in Section 4.4.

Section 9.5, Searching and Sorting Integer Arrays, is the most interesting. You will see how
easy it is to implement two common elementary array processing algorithms in computer science:
bubble sort and binary search. It’s a great idea to study these algorithms in Java or C++, as well as
assembly language. 

9.2 String Primitive Instructions
The x86 instruction set has five groups of instructions for processing arrays of bytes, words, and
doublewords. Although they are called string primitives, they are not limited to character arrays.
In 32-bit mode, each instruction in Table 9-1 implicitly uses ESI, EDI, or both registers to
address memory. References to the accumulator imply the use of AL, AX, or EAX, depending
on the instruction data size. String primitives execute efficiently because they automatically
repeat and increment array indexes.

Using a Repeat Prefix By itself, a string primitive instruction processes only a single mem-
ory value or pair of values. If you add a repeat prefix, the instruction repeats, using ECX as
a counter. The repeat prefix permits you to process an entire array using a single instruction.
The following repeat prefixes are used:

Example: Copy a String In the following example, MOVSB moves 10 bytes from string1 to
string2. The repeat prefix first tests ECX > 0 before executing the MOVSB instruction. If ECX = 0,

Table 9-1  String Primitive Instructions.

Instruction Description

MOVSB, MOVSW, 
MOVSD

Move string data: Copy data from memory addressed by ESI to memory addressed
by EDI.

CMPSB, CMPSW, CMPSD Compare strings: Compare the contents of two memory locations addressed by ESI
and EDI.

SCASB, SCASW, SCASD Scan string: Compare the accumulator (AL, AX, or EAX) to the contents of memory
addressed by EDI.

STOSB, STOSW, STOSD Store string data: Store the accumulator contents into memory addressed by EDI.

LODSB, LODSW, LODSD Load accumulator from string: Load memory addressed by ESI into the accumulator.

REP Repeat while ECX > 0

REPZ, REPE Repeat while the Zero flag is set and ECX > 0

REPNZ, REPNE Repeat while the Zero flag is clear and ECX > 0 
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the instruction is ignored and control passes to the next line in the program. If ECX > 0, ECX is
decremented and the instruction repeats:

cld ; clear direction flag
mov esi,OFFSET string1  ; ESI points to source
mov edi,OFFSET string2  ; EDI points to target
mov ecx,10              ; set counter to 10
rep movsb              ; move 10 bytes

ESI and EDI are automatically incremented when MOVSB repeats. This behavior is controlled
by the CPU’s Direction flag.

Direction Flag String primitive instructions increment or decrement ESI and EDI based on
the state of the Direction flag (see Table 9-2). The Direction flag can be explicitly modified using
the CLD and STD instructions: 

CLD ; clear Direction flag (forward direction)
STD ; set Direction flag (reverse direction)

Forgetting to set the Direction flag before a string primitive instruction can be a major headache,
since the ESI and EDI registers may not increment or decrement as intended.

9.2.1 MOVSB, MOVSW, and MOVSD
The MOVSB, MOVSW, and MOVSD instructions copy data from the memory location pointed
to by ESI to the memory location pointed to by EDI. The two registers are either incremented or
decremented automatically (based on the value of the Direction flag):

You can use a repeat prefix with MOVSB, MOVSW, and MOVSD. The Direction flag deter-
mines whether ESI and EDI will be incremented or decremented. The size of the increment/
decrement is shown in the following table:

Table 9-2  Direction Flag Usage in String Primitive Instructions.

Value of the 
Direction Flag

Effect on ESI 
and EDI

Address 
Sequence

Clear Incremented Low-high

Set Decremented High-low

MOVSB Move (copy) bytes

MOVSW Move (copy) words

MOVSD Move (copy) doublewords

Instruction Value Added or Subtracted from ESI and EDI

MOVSB 1

MOVSW 2

MOVSD 4
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Example: Copy Doubleword Array Suppose we want to copy 20 doubleword integers from
source to target. After the array is copied, ESI and EDI point one position (4 bytes) beyond the end
of each array: 

.data
source DWORD 20 DUP(0FFFFFFFFh)
target DWORD 20 DUP(?)
.code
cld ; direction = forward
mov ecx,LENGTHOF source ; set REP counter
mov esi,OFFSET source ; ESI points to source
mov edi,OFFSET target ; EDI points to target
rep movsd ; copy doublewords

9.2.2 CMPSB, CMPSW, and CMPSD
The CMPSB, CMPSW, and CMPSD instructions each compare a memory operand pointed to by
ESI to a memory operand pointed to by EDI:

You can use a repeat prefix with CMPSB, CMPSW, and CMPSD. The Direction flag determines the 
incrementing or decrementing of ESI and EDI. 

Example: Comparing Doublewords Suppose you want to compare a pair of doublewords
using CMPSD. In the following example, source has a smaller value than target, so the JA
instruction will not jump to label L1.

.data
source DWORD 1234h
target DWORD 5678h
.code
mov esi,OFFSET source
mov edi,OFFSET target
cmpsd ; compare doublewords
ja L1 ; jump if source > target

To compare multiple doublewords, clear the Direction flag (forward direction), initialize ECX as
a counter, and use a repeat prefix with CMPSD:

mov esi,OFFSET source
mov edi,OFFSET target
cld ; direction = forward
mov ecx,LENGTHOF source ; repetition counter
repe cmpsd ; repeat while equal

The REPE prefix repeats the comparison, incrementing ESI and EDI automatically until ECX
equals zero or a pair of doublewords is found to be different.

CMPSB Compare bytes

CMPSW Compare words

CMPSD Compare doublewords



356 Chapter 9  •  Strings and Arrays

9.2.3 SCASB, SCASW, and SCASD
The SCASB, SCASW, and SCASD instructions compare a value in AL/AX/EAX to a byte, word,
or doubleword, respectively, addressed by EDI. The instructions are useful when looking for a
single value in a string or array. Combined with the REPE (or REPZ) prefix, the string or array is
scanned while ECX > 0 and the value in AL/AX/EAX matches each subsequent value in memory.
The REPNE prefix scans until either AL/AX/EAX matches a value in memory or ECX = 0. 

Scan for a Matching Character In the following example we search the string alpha, look-
ing for the letter F. If the letter is found, EDI points one position beyond the matching character.
If the letter is not found, JNZ exits:

.data
alpha BYTE "ABCDEFGH",0
.code
mov edi,OFFSET alpha ; EDI points to the string
mov al,'F'  ; search for the letter F
mov ecx,LENGTHOF alpha ; set the search count
cld                     ; direction = forward
repne scasb            ; repeat while not equal
jnz quit             ; quit if letter not found
dec edi ; found: back up EDI

JNZ was added after the loop to test for the possibility that the loop stopped because ECX = 0
and the character in AL was not found.

9.2.4 STOSB, STOSW, and STOSD
The STOSB, STOSW, and STOSD instructions store the contents of AL/AX/EAX, respectively,
in memory at the offset pointed to by EDI. EDI is incremented or decremented based on the state
of the Direction flag. When used with the REP prefix, these instructions are useful for filling all
elements of a string or array with a single value. For example, the following code initializes each
byte in string1 to 0FFh:

.data
Count = 100
string1 BYTE Count DUP(?)
.code
mov al,0FFh    ; value to be stored
mov edi,OFFSET string1  ; EDI points to target
mov ecx,Count ; character count
cld ; direction = forward
rep stosb  ; fill with contents of AL

9.2.5 LODSB, LODSW, and LODSD
The LODSB, LODSW, and LODSD instructions load a byte or word from memory at ESI into
AL/AX/EAX, respectively. ESI is incremented or decremented based on the state of the Direc-
tion flag. The REP prefix is rarely used with LODS because each new value loaded into the
accumulator overwrites its previous contents. Instead, LODS is used to load a single value. In
the next example, LODSB substitutes for the following two instructions (assuming the Direction
flag is clear):
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mov al,[esi] ; move byte into AL
inc esi ; point to next byte

Array Multiplication Example The following program multiplies each element of a double-
word array by a constant value. LODSD and STOSD work together:

; Multiply an Array                    (Mult.asm)

; This program multiplies each element of an array
; of 32-bit integers by a constant value.

INCLUDE Irvine32.inc
.data
array DWORD 1,2,3,4,5,6,7,8,9,10 ; test data
multiplier DWORD 10 ; test data

.code
main PROC

cld ; direction = forward
mov esi,OFFSET array  ; source index
mov edi,esi ; destination index
mov ecx,LENGTHOF array ; loop counter

L1: lodsd                   ; load [ESI] into EAX
mul multiplier ; multiply by a value
stosd                   ; store EAX into [EDI]
loop L1

exit
main ENDP
END main

9.2.6 Section Review
1. In reference to string primitives, which 32-bit register is known as the accumulator?

2. Which instruction compares a 32-bit integer in the accumulator to the contents of memory,
pointed to by EDI?

3. Which index register is used by the STOSD instruction?

4. Which instruction copies data from the memory location addressed by ESI into AX?

5. What does the REPZ prefix do for a CMPSB instruction?

9.3 Selected String Procedures
In this section, we will demonstrate several procedures from the Irvine32 library that manipulate
null-terminated strings. The procedures are clearly similar to functions in the standard C library:

; Copy a source string to a target string.
Str_copy PROTO,
 source:PTR BYTE,
 target:PTR BYTE

; Return the length of a string (excluding the null byte) in EAX.
Str_length PROTO,

pString:PTR BYTE
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; Compare string1 to string2. Set the Zero and
; Carry flags in the same way as the CMP instruction.
Str_compare PROTO,

string1:PTR BYTE,
string2:PTR BYTE

; Trim a given trailing character from a string.
; The second argument is the character to trim.
Str_trim PROTO,

pString:PTR BYTE,
char:BYTE

; Convert a string to upper case.
Str_ucase PROTO,

pString:PTR BYTE

9.3.1 Str_compare Procedure
The Str_compare procedure compares two strings. The calling format is

INVOKE Str_compare, ADDR string1, ADDR string2

It compares the strings in forward order, starting at the first byte. The comparison is case sensi-
tive because ASCII codes are different for uppercase and lowercase letters. The procedure does
not return a value, but the Carry and Zero flags can be interpreted as shown in Table 9-3, using
the string1 and string2 arguments.

See Section 6.2.8 for an explanation of how CMP sets the Carry and Zero flags. The following is
a listing of the Str_compare procedure. See the Compare.asm program for a demonstration:

;-----------------------------------------------------------
Str_compare PROC USES eax edx esi edi,

string1:PTR BYTE,
string2:PTR BYTE

;
; Compares two strings.
; Returns nothing, but the Zero and Carry flags are affected
; exactly as they would be by the CMP instruction.
;-----------------------------------------------------------

mov esi,string1
mov edi,string2

Table 9-3  Flags Affected by the Str_compare Procedure.

Relation Carry Flag Zero Flag Branch If True

string1 
 string2 1 0 JB

string1 � string2 0 1 JE

string1 � string2 0 0 JA
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L1: mov al,[esi]
mov dl,[edi]
cmp al,0    ; end of string1?
jne L2      ; no
cmp dl,0    ; yes: end of string2?
jne L2      ; no
jmp L3      ; yes, exit with ZF = 1

L2: inc esi      ; point to next
inc edi
cmp al,dl   ; characters equal?
je L1      ; yes: continue loop

                 ; no: exit with flags set
L3: ret
Str_compare ENDP

We could have used the CMPSB instruction when implementing Str_compare, but it would have
required knowing the length of the longer string. Two calls to the Str_length procedure would
be required. In this particular case, it is easier to check for the null terminators in both strings
within the same loop. CMPSB is most effective when dealing with large strings or arrays of
known length.

9.3.2 Str_length Procedure
The Str_length procedure returns the length of a string in the EAX register. When you call it,
pass the string’s offset. For example:

INVOKE Str_length, ADDR myString

Here is the procedure implementation:

Str_length PROC USES edi,
pString:PTR BYTE ; pointer to string
mov edi,pString
mov eax,0     ; character count

L1: cmp BYTE PTR[edi],0 ; end of string?
je  L2 ; yes: quit
inc edi ; no: point to next
inc eax ; add 1 to count
jmp L1

L2: ret
Str_length ENDP

See the Length.asm program for a demonstration of this procedure.

9.3.3 Str_copy Procedure
The Str_copy procedure copies a null-terminated string from a source location to a target loca-
tion. Before calling this procedure, you must make sure the target operand is large enough to hold
the copied string. The syntax for calling Str_copy is

INVOKE Str_copy, ADDR source, ADDR target
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No values are returned by the procedure. Here is the implementation:

;--------------------------------------------------------
Str_copy PROC USES eax ecx esi edi,
 source:PTR BYTE, ; source string
 target:PTR BYTE ; target string
;
; Copies a string from source to target.
; Requires: the target string must contain enough
;           space to hold a copy of the source string.
;--------------------------------------------------------

INVOKE Str_length,source ; EAX = length source
mov ecx,eax ; REP count
inc ecx         ; add 1 for null byte
mov esi,source
mov edi,target
cld ; direction = forward
rep movsb      ; copy the string
ret

Str_copy ENDP

See the CopyStr.asm program for a demonstration of this procedure.

9.3.4 Str_trim Procedure
The Str_trim procedure removes all occurrences of a selected trailing character from a null-
terminated string. The syntax for calling it is

INVOKE Str_trim, ADDR string, char_to_trim

The logic for this procedure is interesting because you have to check a number of possible cases
(shown here with # as the trailing character):

1. The string is empty.
2. The string contains other characters followed by one or more trailing characters, as in “Hello##”.
3. The string contains only one character, the trailing character, as in “#”.
4. The string contains no trailing character, as in “Hello” or “H”.
5. The string contains one or more trailing characters followed by one or more nontrailing char-

acters, as in “#H” or “###Hello”.

You can use Str_trim to remove all spaces (or any other repeated character) from the end of a
string. The easiest way to truncate characters from a string is to insert a null byte just after the
characters you want to retain. Any characters after the null byte become insignificant. 

Table 9-4 lists some useful test cases. For each case, assuming that the # character is to be
trimmed from the string, the expected output is shown. 

Let’s look at some code that tests the Str_trim procedure. The INVOKE statement passes the
address of a string to Str_trim:

.data
string_1 BYTE "Hello##",0
.code
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INVOKE Str_trim,ADDR string_1,'#'
INVOKE ShowString,ADDR string_1

The ShowString procedure, not shown here, displays the trimmed string with brackets on either
side. Here’s an example of its output:

[Hello]

For more examples, see Trim.asm in the Chapter 9 examples. The implementation of
Str_trim, shown below, inserts a null byte just after the last character we want to keep in the
string. Any characters following the null byte are universally ignored by string processing
functions.

;------------------------------------------------------------
; Str_trim
; Remove all occurrences of a given delimiter
; character from the end of a string.
; Returns: nothing
;------------------------------------------------------------
Str_trim PROC USES eax ecx edi,

pString:PTR BYTE, ; points to string
char: BYTE ; character to remove

mov  edi,pString ; prepare to call Str_length
INVOKE Str_length,edi ; returns the length in EAX
cmp  eax,0 ; is the length equal to zero?
je   L3 ; yes: exit now
mov  ecx,eax ; no: ECX = string length
dec  eax 
add  edi,eax ; point to last character

L1: mov  al,[edi] ; get a character
    cmp  al,char ; is it the delimiter?
    jne  L2 ; no: insert null byte
    dec  edi ; yes: keep backing up

loop L1 ; until beginning reached

L2:  mov  BYTE PTR [edi+1],0 ; insert a null byte
L3:  ret
Stmr_trim ENDP

Table 9-4  Testing the Str_trim Procedure with a # Delimiter Character.

Input String Expected Modified String

"Hello##" "Hello"

"#" ""  (empty string)

"Hello" "Hello"

"H" "H"

"#H" "#H"
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Detailed Description
Let us carefully examine Str_trim. The algorithm starts at the end of the string and scans back-
wards, looking for the first nondelimiter character. When it finds one, a null byte is inserted into
the string just after the character position:

ecx = length(str) 
if length(str) > 0 then

edi = length – 1
 do while ecx > 0

if str[edi] ≠ delimiter then
str[edi+1] = null
break

  else
     edi = edi – 1

end if
ecx = ecx – 1

end do

Next, let’s look at the code implementation, line by line. First, pString contains the address of
the string to be trimmed. We need to know the length of the string, and the Str_length procedure
receives its input in the EDI register:

mov  edi,pString ; prepare to call Str_length
INVOKE Str_length,edi ; returns the length in EAX

The Str_length procedure returns the length of the string in the EAX register, so the following
lines compare it to zero and skip the rest of the code if the string is empty:

cmp  eax,0 ; is the length equal to zero?
je   L3 ; yes: exit now

From this point forward, we assume that the string is not empty. ECX will be the loop
counter, so it is assigned a copy of the string length. Then, since we want EDI to point to
the last character in the string, EAX (containing the string length) is decreased by 1 and
added to EDI:

mov  ecx,eax ; no: ECX = string length
dec  eax
add  edi,eax ; point to last character

With EDI now pointing at the last character in the string, we copy the character into the AL reg-
ister and compare it to the delimiter character:

L1: mov  al,[edi] ; get a character
    cmp  al,char ; is it the delimiter?

If the character is not the delimiter, we exit the loop, knowing that a null byte will be inserted at
label L2:

jne  L2 ; no: insert null byte

Otherwise, if the delimiter character is found, the loop continues to search backward through the
string. This is done by moving EDI backward one position, and repeating the loop:



9.3   Selected String Procedures 363

dec  edi ; yes: keep backing up
loop L1 ; until beginning reached

If the entire string is filled with only delimiter characters, the loop will count down to zero and
execution will continue on the next line after the loop. This is, of course, the code at label L2,
which inserts a null byte in the string:

L2: mov  BYTE PTR [edi+1],0       ; insert a null byte

If control arrives at this point because the loop counted down to zero, EDI points one position prior
to the beginning of the string. That is why the expression [edi+1] points to the first string position.

Execution reaches label L2 in two different ways: either by finding a nontrim character in the
string, or by running the loop down to zero. Label L2 is followed by a RET instruction at label
L3 that ends the procedure:

L3:  ret
Str_trim ENDP

9.3.5 Str_ucase Procedure
The Str_ucase procedure converts a string to all uppercase characters. It returns no value. When
you call it, pass the offset of a string:

INVOKE Str_ucase, ADDR myString

Here is the procedure implementation:

;-------------------------------------------------------
; Str_ucase
; Converts a null-terminated string to uppercase.
; Returns: nothing
;-------------------------------------------------------
Str_ucase PROC USES eax esi, 
pString:PTR BYTE

mov esi,pString
L1:

mov al,[esi] ; get char
cmp al,0 ; end of string?
je L3 ; yes: quit
cmp al,'a' ; below "a"?
jb L2
cmp al,'z' ; above "z"?
ja L2
and BYTE PTR [esi],11011111b ; convert the char

L2: inc esi ; next char
jmp L1

L3: ret
Str_ucase ENDP

(See the Ucase.asm program for a demonstration of this procedure.)
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9.3.6 String Library Demo Program
The following 32-bit program (StringDemo.asm) shows examples of calling the Str_trim,
Str_ucase, Str_compare, and Str_length procedures from the Irvine32 library:

; String Library Demo (StringDemo.asm)

; This program demonstrates the string-handling procedures in 
; the book's link library.

INCLUDE Irvine32.inc

.data
string_1 BYTE "abcde////",0
string_2 BYTE "ABCDE",0
msg0     BYTE "string_1 in upper case: ",0
msg1     BYTE "string_1 and string_2 are equal",0
msg2     BYTE "string_1 is less than string_2",0
msg3     BYTE "string_2 is less than string_1",0
msg4     BYTE "Length of string_2 is ",0
msg5     BYTE "string_1 after trimming: ",0

.code
main PROC

call trim_string
call upper_case
call compare_strings
call print_length

exit
main ENDP

trim_string PROC
; Remove trailing characters from string_1.

INVOKE Str_trim, ADDR string_1, '/'
mov edx,OFFSET msg5
call WriteString
mov edx,OFFSET string_1
call WriteString
call Crlf

ret
trim_string ENDP

upper_case PROC
; Convert string_1 to upper case.

mov edx,OFFSET msg0
call WriteString
INVOKE Str_ucase, ADDR string_1
mov edx,OFFSET string_1
call WriteString
call Crlf
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ret
upper_case ENDP

compare_strings PROC
; Compare string_1 to string_2.

INVOKE Str_compare, ADDR string_1, ADDR string_2
.IF ZERO?
mov edx,OFFSET msg1
.ELSEIF CARRY?
mov edx,OFFSET msg2     ; string 1 is less than...
.ELSE
mov edx,OFFSET msg3 ; string 2 is less than...
.ENDIF
call WriteString
call Crlf

ret
compare_strings  ENDP

print_length PROC
; Display the length of string_2.

mov edx,OFFSET msg4
call WriteString
INVOKE Str_length, ADDR string_2
call WriteDec
call Crlf

ret
print_length ENDP
END main

Trailing characters are removed from string_1 by the call to Str_trim. The string is converted
to upper case by calling the Str_ucase procedure. 

Program Output Here is the String Library Demo program’s output:

9.3.7 String Procedures in the Irvine64 Library
In this section, we will show how to convert a few of the more important string-handling proce-
dures from the Irvine32 library to 64-bit mode. The changes are very simple—stack parameters
are eliminated, and all 32-bit registers are replaced by 64-bit registers. Table 9-5 lists the string
procedures, with descriptions of their inputs and outputs.

string_1 after trimming: abcde
string_1 in upper case: ABCDE
string1 and string2 are equal
Length of string_2 is 5
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Table 9-5  String Procedures in the Irvine64 Library.

In the Str_compare procedure, RSI and RDI are the logical choices for input parameters, since
they are used by the string comparison loop. Using these register parameters lets us avoid copy-
ing input parameters into these registers at the beginning of the procedure:

; -------------------------------------------------
; Str_compare
; Compares two strings
; Receives: RSI points to the source string
; RDI points to the target string
; Returns: Sets ZF if the strings are equal
; Sets CF if source < target
; -------------------------------------------------
Str_compare PROC USES rax rdx rsi rdi

L1: mov  al,[rsi]
    mov  dl,[rdi]
    cmp  al,0 ; end of string1?
    jne  L2 ; no
    cmp  dl,0 ; yes: end of string2?
    jne  L2 ; no
    jmp  L3 ; yes, exit with ZF = 1

L2: inc  rsi ; point to next
    inc  rdi
    cmp  al,dl ; chars equal?
    je   L1 ; yes: continue loop

; no: exit with flags set
L3: ret
Str_compare ENDP

Notice that the PROC directive includes the USES keyword to list all registers that must be
pushed on the stack at the beginning of the procedure, and popped off the stack just before the
procedure returns. 

The Str_copy procedure receives its string pointers in RSI and RDI:

;------------------------------------------------------
; Str_copy

Str_compare Compares two strings

Input parameters: RSI points to the source string, RDI points to the target string

Return values:   Carry flag = 1 if source < target, Zero flag = 1 if source = target, 
and Carry flag = 0 and Zero flag = 0 if source > target.

Str_copy Copies a source string to a location indicated by a target pointer.

Input parameters: RSI points to the source string, RDI points to the location where 
the copied string will be stored.

Str_length Returns the length of a null-terminated string

Input parameter: RCX points to the string
Return value: RAX contains the string’s length
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; Copies a string
; Receives: RSI points to the source string
; RDI points to the target string
; Returns: nothing
;------------------------------------------------------
Str_copy PROC USES rax rcx rsi rdi

    mov  rcx,rsi     ; get length of source string
    call Str_length     ; returns length in RAX

    mov  rcx,rax     ; loop counter
    inc  rcx     ; add 1 for null byte
    cld     ; direction = up
    rep  movsb     ; copy the string
    ret

  Str_copy ENDP

The Str_length procedure receives a string pointer in RCX and loops through the string until a
null byte is found. It returns the string length in RAX:

;-------------------------------------------------------
; Str_length
; Gets the length of a string
; Receives: RCX points to the string
; Returns: length of string in RAX
;-------------------------------------------------------
Str_length PROC USES rdi

mov  rdi,rcx ; get pointer
mov  eax,0 ; character count

L1:
cmp  BYTE PTR [rdi],0 ; end of string?
je   L2 ; yes: quit
inc  rdi ; no: point to next
inc  rax ; add 1 to count
jmp  L1

L2: ret ; return count in RAX
Str_length ENDP

A simple test program The following test program calls the 64-bit Str_length, Str_copy, and
Str_compare procedures. Although we did not write statements to display the strings, it is a good
idea to run this program in the Visual Studio debugger so you can examine the memory window,
registers, and flags.

; Testing the Irvine64 string procedures (StringLib64Test.asm)

Str_compare proto
Str_length proto
Str_copy proto
ExitProcess proto

.data
source BYTE "AABCDEFGAABCDFG",0 ; size = 15
target BYTE 20 dup(0)
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.code
main PROC

mov   rcx,offset source
call  Str_length ; returns length in RAX

mov   rsi,offset source
mov   rdi,offset target
call  str_copy

; We just copied the string, so they should be equal.

call  str_compare ; ZF = 1, strings are equal

; Change the first character of the target string, and
; compare them again.

mov   target,'B'
call  str_compare ; CF = 1, source < target

mov   ecx,0
call  ExitProcess

main ENDP

9.3.8 Section Review
1. (True/False): The Str_compare procedure stops when the null terminator of the longer string

is reached.

2. (True/False): The 32-bit Str_compare procedure does not need to use ESI and EDI to
access memory.

3. (True/False): The 32-bit Str_length procedure uses SCASB to find the null terminator at
the end of the string.

4. (True/False): The Str_copy procedure prevents a string from being copied into too small a
memory area.

9.4 Two-Dimensional Arrays

9.4.1 Ordering of Rows and Columns
From an assembly language programmer’s perspective, a two-dimensional array is a high-level
abstraction of a one-dimensional array. High-level languages select one of two methods of arrang-
ing the rows and columns in memory: row-major order and column-major order, as shown in
Fig. 9-1. When row-major order (most common) is used, the first row appears at the beginning of
the memory block. The last element in the first row is followed in memory by the first element of
the second row. When column-major order is used, the elements in the first column appear at the
beginning of the memory block. The last element in the first column is followed in memory by the
first element of the second column. 

If you implement a two-dimensional array in assembly language, you can choose either order-
ing method. In this chapter, we will use row-major order. If you write assembly language subrou-
tines for a high-level language, you will follow the ordering specified in their documentation.
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The x86 instruction set includes two operand types, base-index and base-index-displacement,
both suited to array applications. We will examine both and show examples of how they can be
used effectively.

Figure 9–1 Row-major and column-major ordering.

9.4.2 Base-Index Operands
A base-index operand adds the values of two registers (called base and index), producing an off-
set address:

[base + index]

The square brackets are required. In 32-bit mode, any 32-bit general-purpose registers may
be used as base and index registers. (Usually, we avoid using EBP except when addressing the
stack.) The following are examples of various combinations of base and index operands in 32-bit
mode:

.data
array WORD 1000h,2000h,3000h
.code
mov ebx,OFFSET array
mov esi,2
mov ax,[ebx+esi] ; AX = 2000h

mov edi,OFFSET array
mov ecx,4
mov ax,[edi+ecx] ; AX = 3000h

mov ebp,OFFSET array
mov esi,0
mov ax,[ebp+esi] ; AX = 1000h

10 60 B0 20 70 C0 30 80 D0 40 90 E0 50 A0 F0

10 20 40 50

10 20 30 40 50

60 70 80 90 A0

B0 C0 D0 E0 F0

60 70 80 90 A0 B0 C0 D0 E0 F0

Column-major order

Row-major order

Logical arrangement:

30



370 Chapter 9  •  Strings and Arrays

Two-Dimensional Array When accessing a two-dimensional array in row-major order, the
row offset is held in the base register and the column offset is in the index register. The following
table, for example, has three rows and five columns:

tableB  BYTE   10h,  20h,  30h,  40h,  50h
Rowsize = ($ - tableB)
        BYTE   60h,  70h,  80h,  90h, 0A0h
        BYTE  0B0h, 0C0h, 0D0h, 0E0h, 0F0h

The table is in row-major order and the constant Rowsize is calculated by the assembler as
the number of bytes in each table row. Suppose we want to locate a particular entry in the table
using row and column coordinates. Assuming that the coordinates are zero based, the entry at
row 1, column 2 contains 80h. We set EBX to the table’s offset, add (Rowsize * row_index) to
calculate the row offset, and set ESI to the column index:

row_index = 1
column_index = 2

mov ebx,OFFSET tableB ; table offset
add ebx,RowSize * row_index ; row offset
mov esi,column_index
mov al,[ebx + esi] ; AL = 80h

Suppose the array is located at offset 0150h. Then the effective address represented by EBX �
ESI is 0157h. Figure 9-2 shows how adding EBX and ESI produces the offset of the byte at tableB [1,
2]. If the effective address points outside the program’s data region, a runtime error occurs.

Figure 9–2 Addressing an array with a base-index operand.

Calculating a Row Sum
Base index addressing simplifies many tasks associated with two-dimensional arrays. We might,
for example, want to sum the elements in a row belonging to an integer matrix. The following
32-bit calc_row_sum procedure (see RowSum.asm) calculates the sum of a selected row in a
matrix of 8-bit integers:

;-----------------------------------------------------------
; calc_row_sum
; Calculates the sum of a row in a byte matrix.
; Receives: EBX = table offset, EAX = row index,
; ECX = row size, in bytes.
; Returns: EAX holds the sum.
;-----------------------------------------------------------
calc_row_sum PROC USES ebx ecx edx esi

mul ecx ; row index * row size
add ebx,eax ; row offset
mov eax,0 ; accumulator
mov esi,0 ; column index

0150 0155

10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

[ebx�esi]

0157

[ebx]



9.4   Two-Dimensional Arrays 371

L1: movzx edx,BYTE PTR[ebx + esi] ; get a byte
add eax,edx ; add to accumulator
inc esi ; next byte in row
loop L1

ret
calc_row_sum ENDP

BYTE PTR was needed to clarify the operand size in the MOVZX instruction.

Scale Factors
If you’re writing code for an array of WORD, multiply the index operand by a scale factor of 2.
The following example locates the value at row 1, column 2:

tableW  WORD   10h,  20h,  30h,  40h,  50h
RowsizeW = ($ - tableW)
        WORD   60h,  70h,  80h,  90h, 0A0h
        WORD  0B0h, 0C0h, 0D0h, 0E0h, 0F0h
.code
row_index = 1
column_index = 2
mov ebx,OFFSET tableW ; table offset
add ebx,RowSizeW * row_index ; row offset
mov esi,column_index
mov ax,[ebx + esi*TYPE tableW] ; AX = 0080h

The scale factor used in this example (TYPE tableW) is equal to 2. Similarly, you must use a
scale factor of 4 if the array contains doublewords:

tableD DWORD 10h, 20h, ...etc.
.code
mov eax,[ebx + esi*TYPE tableD]

9.4.3 Base-Index-Displacement Operands
A base-index-displacement operand combines a displacement, a base register, an index register,
and an optional scale factor to produce an effective address. Here are the formats:

[base + index + displacement]
displacement[base + index]

Displacement can be the name of a variable or a constant expression. In 32-bit mode, any
general-purpose 32-bit registers may be used for the base and index. Base-index-displacement
operands are well suited to processing two-dimensional arrays. The displacement can be an
array name, the base operand can hold the row offset, and the index operand can hold the col-
umn offset.

Doubleword Array Example The following two-dimensional array holds three rows of five
doublewords:

tableD DWORD   10h,  20h,  30h,  40h,  50h
Rowsize = ($ - tableD)
       DWORD   60h,  70h,  80h,  90h,  0A0h
       DWORD  0B0h, 0C0h, 0D0h, 0E0h,  0F0h
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Rowsize is equal to 20 (14h). Assuming that the coordinates are zero based, the entry at row 1,
column 2 contains 80h. To access this entry, we set EBX to the row index and ESI to the column
index:

mov ebx,Rowsize ; row index
mov esi,2 ; column index
mov eax,tableD[ebx + esi*TYPE tableD]

Suppose tableD begins at offset 0150h. Figure 9-3 shows the positions of EBX and ESI relative
to the array. Offsets are in hexadecimal.

Figure 9–3 Base-index-displacement example.

9.4.4 Base-Index Operands in 64-Bit Mode
In 64-bit mode, operands that use register indexes must use 64-bit registers. You can use both
base-index operands and base-index-displacement operands. 

Following is a short program that uses a procedure named get_tableVal to locate a value
in a two-dimensional table of 64-bit integers. If you compare it to the 32-bit code in the pre-
vious section, notice that ESI has been changed to RSI, and EAX and EBX are now RAX and
RBX.

; Two-dimensional arrays in 64-bit mode (TwoDimArrays.asm)

Crlf proto
WriteInt64 proto
ExitProcess proto

.data
table QWORD 1,2,3,4,5
RowSize = ($ - table)

QWORD 6,7,8,9,10
QWORD 11,12,13,14,15

.code
main PROC
; base-index-displacement operands

mov rax,1 ; row index (zero-based)
mov rsi,4 ; column index (zero based)
call get_tableVal ; returns the value in RAX
call WriteInt64 ; and display it
call Crlf

mov   ecx,0 ; end program
call  ExitProcess

main ENDP

0150 0164

10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0

table[ebx�esi * 4]

016C

table[ebx]table

Rowsize � 0014h
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;---------------------------------------------------
; get_tableVal
; Returns the array value at a given row and column
; in a two-dimensional array of quadwords.
; Receives: RAX = row number, RSI = column number
; Returns:  value in RAX
;---------------------------------------------------
get_tableVal PROC USES rbx

mov rbx,RowSize
mul rbx ; product(low) = RAX
mov rax,table[rax + rsi*TYPE table]
ret

get_tableVal ENDP
end

9.4.5 Section Review
1. In 32-bit mode, which registers can be used in a base-index operand?

2. Suppose a two-dimensional array of doublewords has three logical rows and four logical
columns. If ESI is used as the row index, what value is added to ESI to move from one row
to the next?

3. In 32-bit mode, should you use EBP to address an array?

9.5 Searching and Sorting Integer Arrays
A great deal of time and energy has been expended by computer scientists in finding better ways to
search and sort massive data sets. It has been proven that choosing the best algorithm for a particu-
lar application is far more useful than buying a faster computer. Most students study searching and
sorting using high-level languages such as C++ and Java. Assembly language lends a different per-
spective to the study of algorithms by letting you see low-level implementation details.

Searching and sorting gives you a chance to try out the addressing modes introduced in this
chapter. In particular, base-indexed addressing turns out to be useful because you can point one
register (such as EBX) to the base of an array and use another register (such as ESI) to index into
any other array location.

9.5.1 Bubble Sort
A bubble sort compares pairs of array values, beginning in positions 0 and 1. If the compared
values are in reverse order, they are exchanged. Figure 9-4 shows the progress of one pass through
an integer array. 

After one pass, the array is still not sorted, but the largest value is now in the highest index
position. The outer loop starts another pass through the array. After n � 1 passes, the array is
guaranteed to be sorted.

The bubble sort works well for small arrays, but it becomes tremendously inefficient for
larger ones. When computer scientists measure the relative efficiency of an algorithm, they often
use what is known as “big-O” notation that describes how the average running time increases
in relation to increases in the number of items to be processed. The bubble sort is known as an
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Figure 9–4 First pass through an array (bubble sort).

O(n2) algorithm, meaning that its running time increases quadratically in relation to the number
of array elements (n). Suppose, for example, that it takes 0.1 second to sort 1000 elements. As
the number of elements increases by a factor of 10, the time required to sort the array increases
by a factor of 102 (100). The following table shows sort times for various array sizes, assuming
that 1000 array elements can be sorted in 0.1 second:

A bubble sort would not be effective for an array of 1 million integers because it would take
too long to finish! But it would be efficient enough to process a few hundred integers. 

Pseudocode It’s useful to create a simplified version of the bubble sort, using pseudocode
that is similar to assembly language. We will use N to represent the size of the array, cx1 to rep-
resent the outer loop counter, and cx2 to represent the inner loop counter:

cx1 = N - 1
while( cx1 > 0 )
{
esi = addr(array)
cx2 = cx1

  while( cx2 > 0 )
  {
    if( array[esi] > array[esi+4] )
      exchange( array[esi], array[esi+4] )
    add esi,4
    dec cx2
  }
  dec cx1
}

Array Size Time (seconds)

1,000 0.1

10,000 10.0

100,000 1000

1,000,000 100,000 (27.78 hours)
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(Shaded values have been exchanged)
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Mechanical concerns, such as saving and restoring the outer loop counter, have purposely been
left out. Note that the inner loop count (cx2) is based on the current value of the outer loop count
(cx1), which in turn decreases with each pass through the array.

Assembly Language From pseudocode, we can easily generate a matching implementation in
assembly language, placing it in a procedure with parameters and local variables:

;-------------------------------------------------------
; BubbleSort
; Sort an array of 32-bit signed integers in ascending
; order, using the bubble sort algorithm.
; Receives: pointer to array, array size
; Returns: nothing
;-------------------------------------------------------
BubbleSort PROC USES eax ecx esi,

pArray:PTR DWORD, ; pointer to array
Count:DWORD ; array size

mov ecx,Count
dec ecx ; decrement count by 1

L1: push ecx ; save outer loop count
mov esi,pArray ; point to first value

L2: mov eax,[esi] ; get array value
cmp [esi+4],eax ; compare a pair of values
jg L3 ; if [ESI] <= [ESI+4], no exchange
xchg eax,[esi+4] ; exchange the pair
mov [esi],eax

L3: add esi,4 ; move both pointers forward
loop L2 ; inner loop

pop ecx ; retrieve outer loop count
loop L1 ; else repeat outer loop

L4: ret
BubbleSort ENDP

9.5.2 Binary Search
Array searches are some of the most common operations in everyday programming. For a small
array (1000 elements or less), it’s easy to do a sequential search, where you start at the begin-
ning of the array and examine each element in sequence until a matching one is found. For any
array of n elements, a sequential search requires an average of n/2 comparisons. If a small array
is searched, the execution time is minimal. On the other hand, searching an array of 1 million
elements can require a more significant amount of processing time.

The binary search algorithm is particularly effective when searching for a single item in a
large array. It has one important precondition: The array elements must be arranged in ascend-
ing or descending order. The following algorithm assumes the elements are in ascending
order:

Before beginning the search, ask the user to enter an integer, which we will call searchVal.
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1. The range of the array to be searched is indicated by the subscripts named first and last. If
first � last, exit the search, indicating failure to find a match.

2. Calculate the midpoint of the array between array subscripts first and last.
3. Compare searchVal to the integer at the midpoint of the array: 

• If the values are equal, return from the procedure with the midpoint in EAX. This return
value indicates that a match has been found in the array. 

• On the other hand, if searchVal is larger than the number at the midpoint, reset first to one
position higher than the midpoint. 

• Or, if searchVal is smaller than the number at the midpoint, reset last to one position below
the midpoint.

4. Return to Step 1.

The binary search algorithm is spectacularly efficient because it uses a divide and conquer strat-
egy. The range of values is divided in half with each iteration of the loop. In general, it is
described as an O(log n) algorithm, meaning that as the number of array elements increases by a
factor of n, the average search time increases by only a factor of log2 n. To help you get a feel for
how efficient the binary search is, Table 9-6 lists the maximum number of comparisons that
would be required to perform both a sequential search and a binary search on arrays of several
sample sizes. These numbers represent a worst-case scenario—in actual practice, matching val-
ues might be found after fewer comparisons.

Table 9-6  Maximum Comparisons for Sequential and Binary Search.

Following is a C++ implementation of a binary search function designed to work with an array
of signed integers:

int BinSearch( int values[], const int searchVal, int count )
{
  int first = 0;
  int last = count - 1;

while( first <= last )
  {
    int mid = (last + first) / 2;
    if( values[mid] < searchVal )
      first = mid + 1;
    else if( values[mid] > searchVal )
      last = mid - 1;
    else

Array Size Sequential Search Binary Search

64 64 6

1,024 1,024 10

65,536 65,536 17

1,048,576 1,048,576 21

4,294, 967,296 4,294, 967,296 33
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      return mid;       // success
  }
  return -1;            // not found
}

The following listing shows an assembly language implementation of the sample C++ code:

;--------------------------------------------------------------
; BinarySearch
; Searches an array of signed integers for a single value.
; Receives: Pointer to array, array size, search value.
; Returns: If a match is found, EAX = the array position of the
; matching element; otherwise, EAX = -1.
;--------------------------------------------------------------
BinarySearch PROC USES ebx edx esi edi,

pArray:PTR DWORD, ; pointer to array
Count:DWORD, ; array size
searchVal:DWORD ; search value
LOCAL first:DWORD, ; first position
last:DWORD, ; last position
mid:DWORD ; midpoint

mov first,0 ; first = 0
mov eax,Count ; last = (count - 1)
dec eax
mov last,eax
mov edi,searchVal ; EDI = searchVal
mov ebx,pArray ; EBX points to the array

L1: ; while first <= last
mov eax,first
cmp eax,last
jg L5 ; exit search

; mid = (last + first) / 2
mov eax,last
add eax,first
shr eax,1
mov mid,eax

; EDX = values[mid]
mov esi,mid
shl esi,2 ; scale mid value by 4
mov edx,[ebx+esi] ; EDX = values[mid]

; if ( EDX < searchval(EDI) )
cmp edx,edi
jge L2

; first = mid + 1
mov eax,mid
inc eax
mov first,eax
jmp L4
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; else if( EDX > searchVal(EDI) )
L2: cmp edx,edi ; optional

jle L3
; last = mid - 1

mov eax,mid
dec eax
mov last,eax
jmp L4

; else return mid
L3: mov eax,mid ; value found

jmp L9 ; return (mid)

L4: jmp L1 ; continue the loop

L5: mov eax,-1 ; search failed
L9: ret
BinarySearch ENDP

Test Program
To demonstrate the bubble sort and binary search functions presented in this chapter, let’s write a
short test program that performs the following steps, in sequence: 

• Fills an array with random integers
• Displays the array
• Sorts the array using a bubble sort
• Redisplays the array
• Asks the user to enter an integer
• Performs a binary search for the user’s integer (in the array)
• Displays the results of the binary search

The individual procedures have been placed in separate source files to make it easier to locate
and edit source code. Table 9-7 lists each module and its contents. Most professionally written
programs are divided into separate code modules.

The procedures in all modules except BinarySearchTest.asm are written in such a way that it
would be easy to use them in other programs without making any modifications. This is highly

Table 9-7  Modules in the Bubble Sort/Binary Search Program.

Module Contents

Binary-
SearchTest.asm

Main module: Contains the main, ShowResults, and AskForSearchVal procedures. Contains
the program entry point and manages the overall sequence of tasks.

BubbleSort.asm BubbleSort procedure: Performs a bubble sort on a 32-bit signed integer array.

BinarySearch.asm BinarySearch procedure: Performs a binary search on a 32-bit signed integer array.

FillArray.asm FillArray procedure: Fills a 32-bit signed integer array with a range of random values.

PrintArray.asm PrintArray procedure: Writes the contents of a 32-bit signed integer array to standard
output.
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desirable because we might save time in the future by reusing existing code. The same approach is
used in the Irvine32 library. Following is an include file (BinarySearch.inc) containing prototypes
of the procedures called from the main module:

; BinarySearch.inc - prototypes for procedures used in
; the BubbleSort / BinarySearch program.

; Searches for an integer in an array of 32-bit signed
; integers.
BinarySearch PROTO,

pArray:PTR DWORD, ; pointer to array
Count:DWORD, ; array size
searchVal:DWORD ; search value

; Fills an array with 32-bit signed random integers
FillArray PROTO,

pArray:PTR DWORD, ; pointer to array
Count:DWORD, ; number of elements
LowerRange:SDWORD, ; lower limit of random values
UpperRange:SDWORD ; upper limit of random values

; Writes a 32-bit signed integer array to standard output
PrintArray PROTO,

pArray:PTR DWORD,
Count:DWORD

; Sorts the array in ascending order
BubbleSort PROTO,

pArray:PTR DWORD,
Count:DWORD

Following is a listing of BinarySearchTest.asm, the main module:

; Bubble Sort and Binary Search BinarySearchTest.asm)

; Bubble sort an array of signed integers, and perform
; a binary search.
; Main module, calls BinarySearch, BubbleSort, FillArray
; and PrintArray

INCLUDE Irvine32.inc
INCLUDE BinarySearch.inc ; procedure prototypes

LOWVAL = -5000 ; minimum value
HIGHVAL = +5000 ; maximum value
ARRAY_SIZE = 50 ; size of the array

.data
array DWORD ARRAY_SIZE DUP(?)

.code
main PROC

call Randomize

; Fill an array with random signed integers
INVOKE FillArray, ADDR array, ARRAY_SIZE, LOWVAL, HIGHVAL
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; Display the array
INVOKE PrintArray, ADDR array, ARRAY_SIZE
call WaitMsg

; Perform a bubble sort and redisplay the array
INVOKE BubbleSort, ADDR array, ARRAY_SIZE
INVOKE PrintArray, ADDR array, ARRAY_SIZE

; Demonstrate a binary search
call AskForSearchVal ; returned in EAX
INVOKE BinarySearch,
  ADDR array, ARRAY_SIZE, eax
call ShowResults

exit
main ENDP

;--------------------------------------------------------
AskForSearchVal PROC
;
; Prompt the user for a signed integer.
; Receives: nothing
; Returns: EAX = value input by user
;--------------------------------------------------------

.data
prompt BYTE "Enter a signed decimal integer "
       BYTE "in the range of -5000 to +5000 "
       BYTE "to find in the array: ",0
.code

call Crlf
mov edx,OFFSET prompt
call WriteString
call ReadInt
ret

AskForSearchVal ENDP

;--------------------------------------------------------
ShowResults PROC
;
; Display the resulting value from the binary search.
; Receives: EAX = position number to be displayed
; Returns: nothing
;--------------------------------------------------------

.data
msg1 BYTE "The value was not found.",0
msg2 BYTE "The value was found at position ",0
.code
.IF eax == -1

mov edx,OFFSET msg1
call WriteString

.ELSE
mov edx,OFFSET msg2
call WriteString
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call WriteDec
.ENDIF

call Crlf
call Crlf
ret

ShowResults ENDP
END main

PrintArray Following is a listing of the module containing the PrintArray procedure:

; PrintArray Procedure (PrintArray.asm)

INCLUDE Irvine32.inc

.code
;-----------------------------------------------------------
PrintArray PROC USES eax ecx edx esi,

pArray:PTR DWORD, ; pointer to array
Count:DWORD ; number of elements

;
; Writes an array of 32-bit signed decimal integers to
; standard output, separated by commas
; Receives: pointer to array, array size
; Returns: nothing
;-----------------------------------------------------------
.data
comma BYTE ", ",0
.code

mov esi,pArray
mov ecx,Count
cld ; direction = forward

L1: lodsd ; load [ESI] into EAX
call WriteInt ; send to output
mov edx,OFFSET comma
call Writestring ; display comma
loop L1

call Crlf
ret

PrintArray ENDP
END

FillArray Following is a listing of the module containing the FillArray procedure:

; FillArray Procedure                 (FillArray.asm)

INCLUDE Irvine32.inc

.code
;------------------------------------------------------------
FillArray PROC USES eax edi ecx edx,

pArray:PTR DWORD, ; pointer to array
Count:DWORD, ; number of elements
LowerRange:SDWORD, ; lower range
UpperRange:SDWORD ; upper range
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;
; Fills an array with a random sequence of 32-bit signed
; integers between LowerRange and (UpperRange - 1).
; Returns: nothing
;-----------------------------------------------------------

mov edi,pArray ; EDI points to the array
mov ecx,Count ; loop counter
mov edx,UpperRange
sub edx,LowerRange ; EDX = absolute range (0..n)
cld ; clear direction flag

L1: mov eax,edx ; get absolute range
call RandomRange
add eax,LowerRange ; bias the result
stosd ; store EAX into [edi]
loop L1

ret
FillArray ENDP
END

9.5.3 Section Review
1. If an array were already in sequential order, how many times would the outer loop of the

BubbleSort procedure in Section 9.5.1 execute?

2. In the BubbleSort procedure, how many times does the inner loop execute on the first pass
through the array?

3. In the BubbleSort procedure, does the inner loop always execute the same number of times?

4. If it were found (through testing) that an array of 500 integers could be sorted in 0.5 sec-
onds, how many seconds would it take to bubble sort an array of 5000 integers?

9.6 Java Bytecodes: String Processing (Optional Topic)
In Chapter 8, we introduced Java bytecodes and showed how you can disassemble java .class files
into a readable bytecode format. In this section, we show how Java handles strings and methods
that work on strings.

Example: Finding a Substring
The following Java code defines a string variable containing an employee ID and last name.
Then, it calls the substring method to place the account number in a second string variable:

String empInfo = "10034Smith";
String id = empInfo.substring(0,5);

The following bytecodes are displayed when this Java code is disassembled:

0: ldc #32; // String 10034Smith
2: astore_0
3: aload_0
4: iconst_0
5: iconst_5



9.7   Chapter Summary 383

6: invokevirtual #34; // Method java/lang/String.substring
9: astore_1

Now we will study the code in steps, adding our own comments. The ldc instruction loads a ref-
erence to a string literal from the constant pool onto the operand stack. Then, the astore_0
instruction pops the string reference from the runtime stack and stores it in the local variable
named empInfo, at index 0 in the local variables area:

0: ldc #32; // load literal string: 10034Smith
2: astore_0 // store into empInfo (index 0)

Next, the aload_0 instruction pushes a reference to empinfo onto the operand stack:

3: aload_0 // load empinfo onto the stack

Next, before calling the substring method, its two arguments (0 and 5) must be pushed onto the
operand stack. This is accomplished by the iconst_0 and iconst_5 instructions:

4: iconst_0
5: iconst_5

The invokevirtual instruction invokes the substring method, which has a reference ID number of 34:

6: invokevirtual #34; // Method java/lang/String.substring

The substring method pops the arguments off the stack, and creates a new string and pushes
the string’s reference on the operand stack. The following astore_1 instruction stores this
string into index position 1 in the local variables area. This is where the variable named id is
located:

9: astore_1

9.7 Chapter Summary
String primitive instructions are optimized for high-speed memory access. They are

• MOVS: Move string data
• CMPS: Compare strings
• SCAS: Scan string
• STOS: Store string data
• LODS: Load accumulator from string

Each string primitive instruction has a suffix of B, W, or D when manipulating bytes, words, and
doublewords, respectively.

The repeat prefix REP repeats a string primitive instruction with automatic incrementing or
decrementing of index registers. For example, when REPNE is used with SCASB, it scans mem-
ory bytes until a value in memory pointed to by EDI matches the contents of the AL register. The
Direction flag determines whether the index register is incremented or decremented during each
iteration of a string primitive instruction.

Strings and arrays are practically the same. Traditionally, a string consisted of an array of sin-
gle-byte ASCII values, but now strings can contain 16-bit Unicode characters. The only impor-
tant difference between a string and an array is that a string is usually terminated by a single null
byte (containing zero).



384 Chapter 9  •  Strings and Arrays

Array manipulation is computationally intensive because it usually involves a looping algo-
rithm. Most programs spend 80 to 90 percent of their running time executing small fraction of
their code. As a result, you can speed up your software by reducing the number and complexity
of instructions inside loops. Assembly language is a great tool for code optimization because
you can control every detail. You might optimize a block of code, for example, by substituting
registers for memory variables. Or you might use one of the string-processing instructions
shown in this chapter rather than MOV and CMP instructions.

Several useful string-processing procedures were introduced in this chapter: The Str_copy
procedure copies one string to another. Str_length returns the length of a string. Str_compare
compares two strings. Str_trim removes a selected character from the end of a string. Str_ucase
converts a string to uppercase letters.

Base-index operands assist in manipulating two-dimensional arrays (tables). You can set a
base register to the address of a table row, and point an index register to the offset of a column
within the selected row. In 32-bit mode, any general-purpose 32-bit registers can be used as base
and index registers. Base-index-displacement operands are similar to base-index operands,
except that they also include the name of the array:

[ebx + esi] ; base-index
array[ebx + esi] ; base-index-displacement

We presented assembly language implementations of a bubble sort and a binary search. A bubble
sort orders the elements of an array in ascending or descending order. It is effective for arrays hav-
ing no more than a few hundred elements, but inefficient for larger arrays. A binary search permits
rapid searching for a single value in an ordered array. It is easy to implement in assembly language.

9.8 Key Terms and Instructions
base-index operands

base-index-displacement operands

CMPSB, CMPSW, CMPSD

column-major order

Direction flag

Java bytecodes

LODSB, LODSW, LODSD

MOVSB, MOVSD, MOVSW

REP, REPE, REPNE, REPNZ, REPZ

repeat prefix

row-major order

SCASB, SCASD, SCASW

STOSB, STOSW, STOSD

string primitives

9.9 Review Questions and Exercises

9.9.1 Short Answer
1. Which Direction flag setting causes index registers to move backward through memory

when executing string primitives?

2. When a repeat prefix is used with STOSW, what value is added to or subtracted from the
index register?

3. In what way is the CMPS instruction ambiguous?
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4. When the Direction flag is clear and SCASB has found a matching character, where does
EDI point?

5. When scanning an array for the first occurrence of a particular character, which repeat pre-
fix would be best?

6. What Direction flag setting is used in the Str_trim procedure from Section 9.3?

7. Why does the Str_trim procedure from Section 9.3 use the JNE instruction?

8. What happens in the Str_ucase procedure from Section 9.3 if the target string contains a
digit?

9. If the Str_length procedure from Section 9.3 used SCASB, which repeat prefix would be
most appropriate?

10. If the Str_length procedure from Section 9.3 used SCASB, how would it calculate and
return the string length?

11. What is the maximum number of comparisons needed by the binary search algorithm when
an array contains 1,024 elements?

12. In the FillArray procedure from the Binary Search example in Section 9.5, why must the
Direction flag be cleared by the CLD instruction?

13. In the BinarySearch procedure from Section 9.5, why could the statement at label L2 be
removed without affecting the outcome?

14. In the BinarySearch procedure from Section 9.5, how might the statement at label L4 be
eliminated?

9.9.2 Algorithm Workbench
1. Show an example of a base-index operand in 32-bit mode.

2. Show an example of a base-index-displacement operand in 32-bit mode.

3. Suppose a two-dimensional array of doublewords has three logical rows and four logical
columns. Write an expression using ESI and EDI that addresses the third column in the sec-
ond row. (Numbering for rows and columns starts at zero.)

4. Write instructions using CMPSW that compare two arrays of 16-bit values named sourcew
and targetw.

5. Write instructions that use SCASW to scan for the 16-bit value 0100h in an array named
wordArray, and copy the offset of the matching member into the EAX register.

6. Write a sequence of instructions that use the Str_compare procedure to determine the larger
of two input strings and write it to the console window.

7. Show how to call the Str_trim procedure and remove all trailing "@" characters from a
string.

8. Show how to modify the Str_ucase procedure from the Irvine32 library so it changes all
characters to lower case. 

9. Create a 64-bit version of the Str_trim procedure.

10. Show an example of a base-index operand in 64-bit mode.
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11. Assuming that EBX contains a row index into a two-dimensional array of 32-bit integers
named myArray and EDI contains the index of a column, write a single statement that
moves the content of the given array element into the EAX register.

12. Assuming that RBX contains a row index into a two-dimensional array of 64-bit integers
named myArray and RDI contains the index of a column, write a single statement that
moves the content of the given array element into the RAX register.

9.10 Programming Exercises
The following exercises can be done in either 32-bit mode or 64-bit mode. Each string-handling
procedure assumes the use of null-terminated strings. Even when not explicitly requested, write
a short driver program for each exercise solution that tests your new procedure. 

1. Improved Str_copy Procedure
The Str_copy procedure shown in this chapter does not limit the number of characters to be cop-
ied. Create a new version (named Str_copyN) that receives an additional input parameter indi-
cating the maximum number of characters to be copied.

2. Str_concat Procedure
Write a procedure named Str_concat that concatenates a source string to the end of a target
string. Sufficient space must exist in the target string to accommodate the new characters. Pass
pointers to the source and target strings. Here is a sample call:

.data
targetStr BYTE "ABCDE",10 DUP(0)
sourceStr BYTE "FGH",0
.code
INVOKE Str_concat, ADDR targetStr, ADDR sourceStr

3. Str_remove Procedure
Write a procedure named Str_remove that removes n characters from a string. Pass a pointer to
the position in the string where the characters are to be removed. Pass an integer specifying the
number of characters to remove. The following code, for example, shows how to remove “xxxx”
from target:

.data
target BYTE "abcxxxxdefghijklmop",0
.code
INVOKE Str_remove, ADDR [target+3], 4

4. Str_find Procedure
Write a procedure named Str_find that searches for the first matching occurrence of a source string
inside a target string and returns the matching position. The input parameters should be a pointer to
the source string and a pointer to the target string. If a match is found, the procedure sets the Zero
flag and EAX points to the matching position in the target string. Otherwise, the Zero flag is clear
and EAX is undefined. The following code, for example, searches for “ABC” and returns with EAX
pointing to the “A” in the target string:

★

★★

★★

★★★
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.data
target BYTE "123ABC342432",0
source BYTE "ABC",0
pos    DWORD ?
.code
INVOKE Str_find, ADDR source, ADDR target
jnz notFound
mov pos,eax ; store the position value

5. Str_nextWord Procedure
Write a procedure called Str_nextWord that scans a string for the first occurrence of a certain
delimiter character and replaces the delimiter with a null byte. There are two input parameters: a
pointer to the string and the delimiter character. After the call, if the delimiter was found, the Zero
flag is set and EAX contains the offset of the next character beyond the delimiter. Otherwise, the
Zero flag is clear and EAX is undefined. The following example code passes the address of target
and a comma as the delimiter:

.data
target BYTE "Johnson,Calvin",0
.code
INVOKE Str_nextWord, ADDR target, ','
jnz notFound

In Figure 9-5, after calling Str_nextWord, EAX points to the character following the position
where the comma was found (and replaced). 

Figure 9–5 Str_nextWord example.

6. Constructing a Frequency Table
Write a procedure named Get_frequencies that constructs a character frequency table. Input to
the procedure should be a pointer to a string and a pointer to an array of 256 doublewords initial-
ized to all zeros. Each array position is indexed by its corresponding ASCII code. When the pro-
cedure returns, each entry in the array contains a count of how many times the corresponding
character occurred in the string. For example,

.data
target BYTE "AAEBDCFBBC",0
freqTable DWORD 256 DUP(0)
.code
INVOKE Get_frequencies, ADDR target, ADDR freqTable

J o h n s o n * C a l v i n *

Null bytes

EAX

★★

★★
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Figure 9-6 shows a picture of the string and entries 41 (hexadecimal) through 4B in the fre-
quency table. Position 41 contains the value 2 because the letter A (ASCII code 41h) occurred
twice in the string. Similar counts are shown for other characters. Frequency tables are useful in
data compression and other applications involving character processing. The Huffman encoding
algorithm, for example, stores the most frequently occurring characters in fewer bits than other
characters that occur less often.

Figure 9–6 Sample character frequency table.

7. Sieve of Eratosthenes
The Sieve of Eratosthenes, invented by the Greek mathematician of the same name, provides a
quick way to find all prime numbers within a given range. The algorithm involves creating an array
of bytes in which positions are “marked” by inserting 1s in the following manner: Beginning with
position 2 (which is a prime number), insert a 1 in each array position that is a multiple of 2. Then
do the same thing for multiples of 3, the next prime number. Find the next prime number after 3,
which is 5, and mark all positions that are multiples of 5. Proceed in this manner until all multiples
of primes have been found. The remaining positions of the array that are unmarked indicate which
numbers are prime. For this program, create a 65,000-element array and display all primes
between 2 and 65,000. Declare the array in an uninitialized data segment (see Section 3.4.11) and
use STOSB to fill it with zeros. 

8. Bubble Sort
Add a variable to the BubbleSort procedure in Section 9.5.1 that is set to 1 whenever a pair of
values is exchanged within the inner loop. Use this variable to exit the sort before its normal
completion if you discover that no exchanges took place during a complete pass through the
array. (This variable is commonly known as an exchange flag.)

9. Binary Search
Rewrite the binary search procedure shown in this chapter by using registers for mid, first, and
last. Add comments to clarify the registers’ usage.

10. Letter Matrix
Create a procedure that generates a four-by-four matrix of randomly chosen capital letters.
When choosing the letters, there must be a 50% probability that the chosen letter is a vowel.
Write a test program with a loop that calls your procedure five times and displays each matrix in
the console window. Following is sample output for the first three matrices:

D W A L
S I V W
U I O L
L A I I

3 2 1 1 1 0 02

41 42

Frequency table:

Target string:

ASCII code:

43 44 45 46 47 48

41

A A E B D C F B B C

41 45 42 44 43 46 42 42 43

0

0

0 0

49 4A

0

4B etc.Index:

★★★

★

★★

★★★
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K X S V
N U U O
O R Q O
A U U T

P O A Z
A E A U
G K A E
I A G D

11. Letter Matrix/Sets with Vowels
Use the letter matrix generated in the previous programming exercise as a starting point for this
program. Generate a single random four-by-four letter matrix in which each letter has a 50% prob-
ability of being a vowel. Traverse each matrix row, column, and diagonal, generating sets of letters.
Display only four-letter sets containing exactly two vowels. Suppose, for example, the following
matrix was generated:

P O A Z
A E A U
G K A E
I A G D

Then the four-letter sets displayed by the program would be POAZ, GKAE, IAGD, PAGI,
ZUED, PEAD, and ZAKI. The order of letters within each set is unimportant.

12. Calculating the Sum of an Array Row
Write a procedure named calc_row_sum that calculates the sum of a single row in a two-dimensional
array of bytes, words, or doublewords. The procedure should have the following stack parame-
ters: array offset, row size, array type, row index. It must return the sum in EAX. Use explicit
stack parameters, not INVOKE or extended PROC. Write a program that tests your procedure
with arrays of byte, word, and doubleword. Prompt the user for the row index, and display the
sum of the selected row.

13. Trimming Leading Characters
Create a variant of the Str_trim procedure that lets the caller remove all instances of a leading
character from a string. For example, if you were to call it with a pointer to the string “###ABC”
and pass it the # character, the resulting string would be “ABC.”

14. Trimming a Set of Characters
Create a variant of the Str_trim procedure that lets the caller remove all instances of a set of
characters from the end of a string. For example, if you were to call it with a pointer to the string
“ABC#$&” and pass it a pointer to an array of filter characters containing “%#!;$&*”, the result-
ing string would be “ABC”.

★★★★

★★★★

★★★

★★★
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10.8 Programming Exercises

10.1 Structures
A structure is a template or pattern given to a logically related group of variables. The variables
in a structure are called fields. Program statements can access the structure as a single entity, or
they can access individual fields. Structures often contain fields of different types. A union also
groups together multiple identifiers, but the identifiers overlap the same area in memory. Unions
will be covered in Section 10.1.7.
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Structures provide an easy way to cluster data and pass it from one procedure to another.
Suppose input parameters for a procedure consisted of 20 different units of data relating to a disk
drive. Calling such a procedure would be error-prone, since one might mix up the order
of arguments, or pass the incorrect number of arguments. Instead, you could place all of the input
data in a structure and pass the address of the structure to the procedure. Minimal stack space
would be used (one address), and the called procedure could modify the contents of the structure.

Structures in assembly language are essentially the same as structures in C and C++. With a
small effort at translation, you can take any structure from the MS-Windows API library and
make it work in assembly language. Most debuggers can display individual structure fields.

COORD Structure The COORD structure defined in the Windows API identifies X and Y
screen coordinates. The field X has an offset of zero relative to the beginning of the structure,
and the field Y’s offset is 2:

COORD STRUCT
  X WORD ? ; offset 00
  Y WORD ? ; offset 02
COORD ENDS

Using a structure involves three sequential steps:

1. Define the structure.
2. Declare one or more variables of the structure type, called structure variables.
3. Write runtime instructions that access the structure fields.

10.1.1 Defining Structures
A structure is defined using the STRUCT and ENDS directives. Inside the structure, fields are
defined using the same syntax as for ordinary variables. Structures can contain virtually any
number of fields:

name STRUCT
field-declarations

name ENDS

Field Initializers When structure fields have initializers, the values are assigned when struc-
ture variables are created. You can use various types of field initializers:

• Undefined: The ? operator leaves the field contents undefined.
• String literals: Character strings enclosed in quotation marks.
• Integers: Integer constants and integer expressions.
• Arrays: The DUP operator can initialize array elements.

The following Employee structure describes employee information, with fields such as ID
number, last name, years of service, and an array of salary history values. The following defini-
tion must appear prior to the declaration of Employee variables:

Employee STRUCT
IdNum    BYTE "000000000"
LastName BYTE 30 DUP(0)
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Years    WORD 0
SalaryHistory DWORD 0,0,0,0

Employee ENDS

This is a linear representation of the structure’s memory layout:

Aligning Structure Fields
For best memory I/O performance, structure members should be aligned to addresses match-
ing their data types. Otherwise, the CPU will require more time to access the members. For
example, a doubleword member should be aligned on a doubleword boundary. Table 10-1
lists the alignments used by the Microsoft C and C++ compilers and by Win32 API functions.
In assembly language, the ALIGN directive sets the address alignment of the next field or
variable:

ALIGN datatype

The following, for example, aligns myVar to a doubleword boundary:

.data
ALIGN DWORD
myVar DWORD ?

Let’s correctly define the Employee structure, using ALIGN to put Years on a WORD bound-
ary and SalaryHistory on a DWORD boundary. Field sizes appear as comments.

Employee STRUCT
IdNum    BYTE "000000000" ;  9
LastName BYTE 30 DUP(0) ; 30
ALIGN    WORD ;  1 byte added
Years    WORD 0 ;  2
ALIGN    DWORD ;  2 bytes added
SalaryHistory DWORD 0,0,0,0 ; 16

Employee ENDS ; 60 total

Table 10-1  Alignment of Structure Members.

Member Type Alignment

BYTE, SBYTE Align on 8-bit (byte) boundary

WORD, SWORD Align on 16-bit (word) boundary

DWORD, SDWORD Align on 32-bit (doubleword) boundary

QWORD Align on 64-bit (quadword) boundary

REAL4 Align on 32-bit (doubleword) boundary

REAL8 Align on 64-bit (quadword) boundary

structure Largest alignment requirement of any member

union Alignment requirement of the first member

"000000000" (null) 0 0 0 0

SalaryHistoryLastNameIdNum

0

Years
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10.1.2 Declaring Structure Variables
Structure variables can be declared and optionally initialized with specific values. This is the
syntax, in which structureType has already been defined using the STRUCT directive:

identifier structureType < initializer-list >

The identifier follows the same rules as other variable names in MASM. The initializer-list is
optional, but if used, is a comma-separated list of assembly-time constants that match the data
types of specific structure fields:

initializer [, initializer] . . .

Empty angle brackets < > cause the structure to contain the default field values from the struc-
ture definition. Alternatively, you can insert new values in selected fields. The values are inserted
into the structure fields in order from left to right, matching the order of the fields in the structure
declaration. Examples of both approaches are shown here, using the COORD and Employee
structures:

.data
point1 COORD <5,10> ; X = 5, Y = 10
point2 COORD <20> ; X = 20, Y = ?
point3 COORD <> ; X = ?, Y = ?
worker Employee <> ; (default initializers)

It is possible to override only selected field initializers. The following declaration over-
rides only the IdNum field of the Employee structure, assigning the remaining fields default
values:

person1 Employee <"555223333">

An alternative notational form uses curly braces {. . .} rather than angle brackets:

person2 Employee {"555223333"}

When the initializer for a string field is shorter than the field, the remaining positions are
padded with spaces. A null byte is not automatically inserted at the end of a string field. You can
skip over structure fields by inserting commas as place markers. For example, the following
statement skips the IdNum field and initializes the LastName field:

person3 Employee <,"dJones">

For an array field, use the DUP operator to initialize some or all of the array elements. If the ini-
tializer is shorter than the field, the remaining positions are filled with zeros. In the following, we
initialize the first two SalaryHistory values and set the rest to zero:

person4 Employee <,,,2 DUP(20000)>

Array of Structures Use the DUP operator to create an array of structures. In the following,
the X and Y fields of each element in AllPoints are initialized to zeros:

NumPoints = 3
AllPoints COORD NumPoints DUP(<0,0>)
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Aligning Structure Variables
For best processor performance, align structure variables on memory boundaries equal to the
largest structure member. The Employee structure contains DWORD fields, so the following
definition uses that alignment:

.data
ALIGN DWORD
person Employee <>

10.1.3 Referencing Structure Variables
References to structure variables and structure names can be made using the TYPE and SIZEOF
operators. For example, let’s return to the Employee structure we saw earlier:

Employee STRUCT
IdNum    BYTE "000000000" ; 9
LastName BYTE 30 DUP(0) ; 30
ALIGN    WORD ; 1 byte added
Years    WORD 0 ; 2
ALIGN    DWORD ; 2 bytes added
SalaryHistory DWORD 0,0,0,0 ; 16

Employee ENDS ; 60 total

Given the data definition

.data
worker Employee <>

each of the following expressions returns the same value:

TYPE Employee ; 60
SIZEOF Employee ; 60
SIZEOF worker ; 60

References to Members
References to named structure members require a structure variable as a qualifier. The following
constant expressions can be generated at assembly time, using the Employee structure:

TYPE Employee.SalaryHistory ; 4
LENGTHOF Employee.SalaryHistory ; 4
SIZEOF Employee.SalaryHistory ; 16
TYPE Employee.Years ; 2

The following are runtime references to worker, an Employee:

.data
worker Employee <>
.code
mov dx,worker.Years

The TYPE operator (Section 4.4) returns the number of bytes used by the identifier’s storage type
(BYTE, WORD, DWORD, etc.) The LENGTHOF operator returns a count of the number of ele-
ments in an array. The SIZEOF operator multiplies LENGTHOF by TYPE.
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mov worker.SalaryHistory,20000 ; first salary
mov [worker.SalaryHistory+4],30000 ; second salary

Using the OFFSET Operator You can use the OFFSET operator to obtain the address of a
field within a structure variable:

mov edx,OFFSET worker.LastName

Indirect and Indexed Operands
Indirect operands permit the use of a register (such as ESI) to address structure members. Indi-
rect addressing provides flexibility, particularly when passing a structure address to a procedure
or when using an array of structures. The PTR operator is required when referencing indirect
operands:

mov esi,OFFSET worker
mov ax,(Employee PTR [esi]).Years

The following statement does not assemble because Years by itself does not identify the struc-
ture it belongs to:

mov ax,[esi].Years ; invalid

Indexed Operands We can use indexed operands to access arrays of structures. Suppose
department is an array of five Employee objects. The following statements access the Years
field of the employee in index position 1:

.data
department Employee 5 DUP(<>)
.code
mov esi,TYPE Employee ; index = 1
mov department[esi].Years, 4

Looping through an Array A loop can be used with indirect or indexed addressing to manipu-
late an array of structures. The following program (AllPoints.asm) assigns coordinates to the
AllPoints array:

; Loop Through Array (AllPoints.asm)

INCLUDE Irvine32.inc
NumPoints = 3
.data
ALIGN WORD
AllPoints COORD NumPoints DUP(<0,0>)

.code
main PROC

mov edi,0 ; array index
mov ecx,NumPoints ; loop counter
mov ax,1 ; starting X, Y values

L1: mov (COORD PTR AllPoints[edi]).X,ax
mov (COORD PTR AllPoints[edi]).Y,ax
add edi,TYPE COORD
inc ax
loop L1
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exit
main ENDP
END main

Performance of Aligned Structure Members
We have asserted that the processor can more efficiently access properly aligned structure mem-
bers. How much impact do misaligned fields have on performance? Let’s perform a simple test,
using the two versions of the Employee structure presented in this chapter. We will rename the
first version so both structures may be used in the same program:

EmployeeBad STRUCT
IdNum    BYTE "000000000"
LastName BYTE 30 DUP(0)
Years    WORD 0
SalaryHistory DWORD 0,0,0,0

EmployeeBad ENDS

Employee STRUCT
IdNum    BYTE "000000000"
LastName BYTE 30 DUP(0)
ALIGN    WORD
Years    WORD 0
ALIGN    DWORD
SalaryHistory DWORD 0,0,0,0

Employee ENDS

The following code gets the system time, executes a loop that accesses structure fields, and
calculates the elapsed time. The variable emp can be declared as an Employee or EmployeeBad
object:

.data
ALIGN DWORD
startTime DWORD ? ; align startTime
emp Employee <> ; or: emp EmployeeBad <>
.code

call GetMSeconds ; get starting time
mov startTime,eax

mov ecx,0FFFFFFFFh ; loop counter
L1: mov emp.Years,5

mov emp.SalaryHistory,35000
loop L1

call GetMSeconds ; get starting time
sub eax,startTime
call WriteDec ; display elapsed time

In our simple test program (Struct1.asm), the execution time using the properly aligned
Employee structure was 6141 milliseconds. The execution time when using the EmployeeBad
structure was 6203 milliseconds. The timing difference was small (62 milliseconds), perhaps
because the processor’s internal memory cache minimized the alignment problems.
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10.1.4 Example: Displaying the System Time
MS-Windows provides console functions that set the screen cursor position and get the sys-
tem time. To use these functions, create instances of two predefined structures—COORD and
SYSTEMTIME:

COORD STRUCT
X WORD ?
Y WORD ?

COORD ENDS

SYSTEMTIME STRUCT
    wYear WORD ?
    wMonth WORD ?
    wDayOfWeek WORD ?
    wDay WORD ?
    wHour WORD ?
    wMinute WORD ?
    wSecond WORD ?
    wMilliseconds WORD ?
SYSTEMTIME ENDS

Both structures are defined in SmallWin.inc, a file located in the assembler’s INCLUDE direc-
tory and referenced by Irvine32.inc. To get the system time (adjusted for your local time zone),
call the MS-Windows GetLocalTime function and pass it the address of a SYSTEMTIME
structure:

.data
sysTime SYSTEMTIME <>
.code
INVOKE GetLocalTime, ADDR sysTime

Next, we retrieve the appropriate values from the SYSTEMTIME structure:

movzx eax,sysTime.wYear
call WriteDec

When a Win32 program produces screen output, it calls the MS-Windows GetStdHandle
function to retrieve the standard console output handle (an integer):

.data
consoleHandle DWORD ? 
.code
INVOKE GetStdHandle, STD_OUTPUT_HANDLE
mov consoleHandle,eax

(The constant STD_OUTPUT_HANDLE is defined in SmallWin.inc.)

The SmallWin.inc file, located in the book’s installed software folder, contains structure defini-
tions and function prototypes adapted from the Microsoft Windows header files for C and C++
programmers. It represents a small subset of the possible functions that can be called by appli-
cation programs.
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To set the cursor position, call the MS-Windows SetConsoleCursorPosition function, passing it
the console output handle and a COORD structure variable containing X, Y character coordinates:

.data
XYPos COORD <10,5>
.code
INVOKE SetConsoleCursorPosition, consoleHandle, XYPos

Program Listing The following program (ShowTime.asm) retrieves the system time and dis-
plays it at a selected screen location. It runs only in protected mode:

; Structures                     (ShowTime.ASM)

INCLUDE Irvine32.inc
.data
sysTime SYSTEMTIME <>
XYPos COORD <10,5>
consoleHandle DWORD ? 
colonStr BYTE ":",0

.code
main PROC
; Get the standard output handle for the Win32 Console.

INVOKE GetStdHandle, STD_OUTPUT_HANDLE
mov consoleHandle,eax

; Set the cursor position and get the system time.
INVOKE SetConsoleCursorPosition, consoleHandle, XYPos
INVOKE GetLocalTime, ADDR sysTime

; Display the system time (hh:mm:ss).
movzx eax,sysTime.wHour ; hours
call WriteDec
mov edx,OFFSET colonStr ; ":"
call WriteString
movzx eax,sysTime.wMinute ; minutes
call WriteDec
call WriteString
movzx eax,sysTime.wSecond ; seconds
call WriteDec
call Crlf
call WaitMsg ; "Press any key..."
exit

main ENDP
END main

The following definitions were used by this program from SmallWin.inc (automatically
included by Irvine32.inc):

STD_OUTPUT_HANDLE EQU -11

SYSTEMTIME STRUCT ...

COORD STRUCT ...
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GetStdHandle PROTO,
nStdHandle:DWORD

GetLocalTime PROTO,
lpSystemTime:PTR SYSTEMTIME

SetConsoleCursorPosition PROTO,
nStdHandle:DWORD,
coords:COORD

Following is a sample program output, taken at 12:16 p.m.:

10.1.5 Structures Containing Structures
Structures can contain instances of other structures. For example, a Rectangle can be defined in
terms of its upper-left and lower-right corners, both COORD structures:

Rectangle STRUCT
UpperLeft COORD <>
LowerRight COORD <>

Rectangle ENDS

Rectangle variables can be declared without overrides or by overriding individual COORD
fields. Alternative notational forms are shown:

rect1 Rectangle < >
rect2 Rectangle { }
rect3 Rectangle { {10,10}, {50,20} }
rect4 Rectangle < <10,10>, <50,20> >

The following is a direct reference to a structure field:

mov rect1.UpperLeft.X, 10

You can access a structure field using an indirect operand. The following example moves 10 to
the Y coordinate of the upper-left corner of the structure pointed to by ESI:

mov esi,OFFSET rect1
mov (Rectangle PTR [esi]).UpperLeft.Y, 10

The OFFSET operator can return pointers to individual structure fields, including nested fields:

mov edi,OFFSET rect2.LowerRight
mov (COORD PTR [edi]).X, 50
mov edi,OFFSET rect2.LowerRight.X
mov WORD PTR [edi], 50

10.1.6 Example: Drunkard’s Walk
At this point, it might be helpful for you to see a short application that uses a structure. We will
create a version of the “Drunkard’s Walk” exercise, in which the program simulates the path
taken by a not-too-sober professor on his or her way home from a Computer Science holiday

12:16:35

Press any key to continue...
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party. Using a random number generator, you can choose a direction for each step the professor
takes. Suppose the professor begins at the center of an imaginary grid in which each square rep-
resents a step in a north, south, east, or west direction. They follow a random path through the
grid (Fig. 10-1).

Our program will use a COORD structure to keep track of each step along the path taken by
this person. The steps are stored in an array of COORD objects:

WalkMax = 50
DrunkardWalk STRUCT

path COORD WalkMax DUP(<0,0>)
pathsUsed WORD 0

DrunkardWalk ENDS

Figure 10–1 Drunkard’s walk, example path.

Walkmax is a constant that determines the total number of steps taken by the professor in the
simulation. The pathsUsed field indicates, when the program loop ends, how many steps were
taken. As the professor takes each step, his or her position is stored in a COORD object and
inserted in the next available position in the path array. The program displays the coordinates on
the screen. Here is the complete program listing, designed to run in 32-bit mode:

; Drunkard's Walk (Walk.asm)

; Drunkard's walk program. The professor starts at 
; coordinates 25, 25 and wanders around the immediate area.

INCLUDE Irvine32.inc
WalkMax = 50
StartX = 25
StartY = 25

DrunkardWalk STRUCT
path COORD WalkMax DUP(<0,0>)
pathsUsed WORD 0
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DrunkardWalk ENDS

DisplayPosition PROTO currX:WORD, currY:WORD

.data
aWalk DrunkardWalk <>

.code
main PROC

mov esi,OFFSET aWalk
call TakeDrunkenWalk
exit

main ENDP

;-------------------------------------------------------
TakeDrunkenWalk PROC

LOCAL currX:WORD, currY:WORD
;
; Takes a walk in random directions (north, south, east,
; west).
; Receives: ESI points to a DrunkardWalk structure
; Returns:  the structure is initialized with random values
;-------------------------------------------------------

pushad

; Use the OFFSET operator to obtain the address of the
; path, the array of COORD objects, and copy it to EDI.

mov edi,esi
add edi,OFFSET DrunkardWalk.path
mov ecx,WalkMax ; loop counter
mov currX,StartX ; current X-location
mov currY,StartY ; current Y-location

Again:
; Insert current location in array.
mov ax,currX
mov (COORD PTR [edi]).X,ax
mov ax,currY
mov (COORD PTR [edi]).Y,ax

INVOKE DisplayPosition, currX, currY

mov eax,4 ; choose a direction (0-3)
call RandomRange

.IF eax == 0 ; North
  dec currY
.ELSEIF eax == 1 ; South
  inc currY
.ELSEIF eax == 2 ; West
  dec currX
.ELSE ; East (EAX = 3)
  inc currX
.ENDIF

add edi,TYPE COORD ; point to next COORD
loop Again
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Finish:
mov (DrunkardWalk PTR [esi]).pathsUsed, WalkMax
popad
ret

TakeDrunkenWalk ENDP

;-------------------------------------------------------
DisplayPosition PROC currX:WORD, currY:WORD
; Display the current X and Y positions.
;-------------------------------------------------------
.data
commaStr BYTE ",",0
.code

pushad
movzx eax,currX ; current X position
call WriteDec
mov edx,OFFSET commaStr ; "," string
call WriteString
movzx eax,currY ; current Y position
call WriteDec
call Crlf
popad
ret

DisplayPosition ENDP
END main

TakeDrunkenWalk Procedure Let’s take a closer look at the TakeDrunkenWalk proce-
dure. It receives a pointer (ESI) to a DrunkardWalk structure. Using the OFFSET operator, it
calculates the offset of the path array and copies it to EDI:

mov edi,esi
add edi,OFFSET DrunkardWalk.path

The initial X and Y positions (StartX and StartY) of the professor are set to 25, at the center of
an imaginary 50-by-50 grid. The loop counter is initialized:

mov ecx, WalkMax ; loop counter
mov currX,StartX ; current X-location
mov currY,StartY ; current Y-location

At the beginning of the loop, the first entry in the path array is initialized:

Again:
; Insert current location in array.
mov ax,currX
mov (COORD PTR [edi]).X,ax
mov ax,currY
mov (COORD PTR [edi]).Y,ax

At the end of the walk, a counter is inserted into the pathsUsed field, indicating how many steps
were taken:
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Finish:
mov (DrunkardWalk PTR [esi]).pathsUsed, WalkMax

In the current version of the program, pathsUsed is always equal to WalkMax, but that could
change if we checked for hazards such as lakes and buildings. Then the loop would terminate
before WalMax was reached.

10.1.7 Declaring and Using Unions
Whereas each field in a structure has an offset relative to the first byte of the structure, all
the fields in a union start at the same offset. The storage size of a union is equal to the length
of its longest field. When not part of a structure, a union is declared using the UNION
and ENDS directives:

unionname UNION
union-fields

unionname ENDS

If the union is nested inside a structure, the syntax is slightly different:

structname STRUCT
structure-fields
UNION unionname

union-fields
ENDS

structname ENDS

The field declarations in a union follow the same rules as for structures, except that each field
can have only a single initializer. For example, the Integer union has three different size
attributes for the same data and initializes all fields to zero:

Integer UNION
D DWORD 0
W WORD 0
B BYTE 0

Integer ENDS

Be Consistent Initializers, if used, should have identical values. Suppose Integer were
declared with different initializers:

Integer UNION
D DWORD 1
W WORD  5
B BYTE  8

Integer ENDS

Also, suppose we declared an Integer variable named myInt using default initializers:

.data
myInt Integer <>

As a result, values of myInt.D, myInt.W, and myInt.B would all equal 1. The declared initializ-
ers for fields W and B would be ignored by the assembler.



404 Chapter 10  •  Structures and Macros

Structure Containing a Union You can nest a union inside a structure by using the union
name in a declaration, as we have done here for the FileID field inside the FileInfo structure,

FileInfo STRUCT
FileID Integer <>
FileName BYTE 64 DUP(?)

FileInfo ENDS

or you can declare a union directly inside the structure, as we have done here for the FileID
field:

FileInfo STRUCT
  UNION FileID

  D DWORD ?
  W WORD ?
  B BYTE ?

  ENDS
  FileName BYTE 64 DUP(?)
FileInfo ENDS

Declaring and Using Union Variables A union variable is declared and initialized in much
the same way as a structure variable, with one important difference: No more than one initializer
is permitted. The following are examples of Integer-type variables:

val1 Integer <12345678h>
val2 Integer <100h>
val3 Integer <>

To use a union variable in an executable instruction, you must supply the name of one of the
variant fields. In the following example, we assign register values to Integer union fields. Note
the flexibility we have in being able to use different operand sizes:

mov val3.B, al
mov val3.W, ax
mov val3.D, eax

Unions can also contain structures. The following INPUT_RECORD structure is used by
some MS-Windows console input functions. It contains a union named Event, which selects
among several predefined structure types. The EventType field indicates which type of record
appears in the union. Each structure has a different layout and size, but only one is used at a
time:

INPUT_RECORD STRUCT
EventType WORD ?
ALIGN DWORD
UNION Event
KEY_EVENT_RECORD <>
MOUSE_EVENT_RECORD <>
WINDOW_BUFFER_SIZE_RECORD <>
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MENU_EVENT_RECORD <>
FOCUS_EVENT_RECORD <>

ENDS
INPUT_RECORD ENDS

The Win32 API often includes the word RECORD when naming structures. This is the defini-
tion of a KEY_EVENT_RECORD structure:

KEY_EVENT_RECORD STRUCT
bKeyDown          DWORD ?
wRepeatCount      WORD  ?
wVirtualKeyCode   WORD  ?
wVirtualScanCode  WORD  ?
UNION uChar
  UnicodeChar     WORD  ?
  AsciiChar       BYTE  ?
ENDS
dwControlKeyState DWORD ?

KEY_EVENT_RECORD ENDS

The remaining STRUCT definitions from INPUT_RECORD can be found in the SmallWin.inc file. 

10.1.8 Section Review
Questions 1–9 refer to this structure:

MyStruct STRUCT
field1 WORD ?
field2 DWORD 20 DUP(?)

MyStruct ENDS

1. Declare a MyStruct variable with default values.

2. Declare a MyStruct variable that initializes the first field to zero.

3. Declare a MyStruct variable and initialize the second field to an array containing all zeros.

4. Declare a variable as an array of 20 MyStruct objects.

5. Using the MyStruct array from the preceding exercise, move field1 of the first array ele-
ment to AX.

6. Using the MyStruct array from the preceding exercise, use ESI to index to the third array
element and move AX to field1. Hint: Use the PTR operator.

7. What value does the expression TYPE MyStruct return?

8. What value does the expression SIZEOF MyStruct return?

9. Write an expression that returns the number of bytes in field2 of MyStruct.

10.2 Macros

10.2.1 Overview
A macro procedure is a named block of assembly language statements. Once defined, it can be
invoked (called) as many times in a program as you wish. When you invoke a macro procedure,
a copy of its code is inserted directly into the program at the location where it was invoked. This
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type of automatic code insertion is also known as inline expansion. It is customary to refer to
calling a macro procedure, although technically there is no CALL instruction involved.

Placement Macro definitions usually appear at the beginning of a program’s source code, or
they are placed in a separate file and copied into a program by an INCLUDE directive. Macros
are expanded during the assembler’s preprocessing step. In this step, the preprocessor reads a
macro definition and scans the remaining source code in the program. At every point where the
macro is invoked, the assembler inserts a copy of the macro’s source code into the program. A
macro definition must be found by the assembler before it can assemble any invocations of the
macro. If a program defines a macro but never calls it, the macro code does not appear in the
compiled program.

In the following example, a macro named PrintX calls the WriteChar procedure from the
Irvine32 library. This definition would normally be placed just before the data segment:

PrintX MACRO
mov al,'X'
call WriteChar

ENDM

Next, in the code segment, we call the macro:

.code
PrintX

When the preprocessor scans this program and discovers the call to PrintX, it replaces the
macro invocation with the following statements:

mov  al,'X'
call WriteChar

Text substitution has taken place. Although the macro is somewhat inflexible, we will soon show
how to pass arguments to macros, making them far more useful.

10.2.2 Defining Macros
A macro is defined using the MACRO and ENDM directives. The syntax is

macroname MACRO parameter-1, parameter-2...
statement-list

ENDM

There is no fixed rule regarding indentation, but we recommend that you indent statements
between macroname and ENDM. You might also want to prefix macro names with the letter m,
creating recognizable names such as mPutChar, mWriteString, and mGotoxy. The statements
between the MACRO and ENDM directives are not assembled until the macro is invoked. There
can be any number of parameters in the macro definition, separated by commas. 

Tip: The term macro procedure is used in the Microsoft Assembler manual to identify macros that
do not return a value. There are also macro functions that return a value. Among programmers, the
word macro is usually understood to mean the same thing as macro procedure. From this point on,
we will use the shorter form.
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Parameters Macro parameters are named placeholders for text arguments passed to the
caller. The arguments may in fact be integers, variable names, or other values, but the preproces-
sor treats them as text. Parameters contain no type information, so the preprocessor does not
check argument types to see whether they are correct. If a type mismatch occurs, it is caught by
the assembler after the macro has been expanded.

mPutchar Example The following mPutchar macro receives a single input parameter
named char and displays it on the console by calling WriteChar from the book’s link library:

mPutchar MACRO char
push eax
mov al,char
call WriteChar
pop eax

ENDM

10.2.3 Invoking Macros
A macro is invoked by inserting its name in the program, possibly followed by macro argu-
ments. The syntax for invoking a macro is

macroname argument-1, argument-2, ...

Macroname must be the name of a macro defined prior to this point in the source code. Each
argument is a text value that replaces a parameter in the macro. The order of arguments must
correspond to the order of parameters, but the number of arguments does not have to match the
number of parameters. If too many arguments are passed, the assembler issues a warning. If too
few arguments are passed to a macro, the unfilled parameters are left blank. 

Invoking mPutchar In the previous section, we defined the mPutChar macro. When invok-
ing mPutchar, we can pass any character or ASCII code. The following statement invokes
mPutchar and passes it the letter A:

mPutchar 'A'

The assembler’s preprocessor expands the statement into the following code, shown in the list-
ing file:

1 push eax
1 mov al,'A'
1 call WriteChar
1 pop eax

The 1 in the left column indicates the macro expansion level, which increases when you call other
macros from within a macro. The following loop displays the first 20 letters of the alphabet:

mov al,'A'
mov ecx,20

L1:
mPutchar al ; macro call
inc al
loop L1        
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Our loop is expanded by the preprocessor into the following code (visible in the source listing
file). The macro invocation is shown just before its expansion:

mov  al,'A'
mov  ecx,20

L1:
mPutchar al ; invoke the macro

1 push eax
1 mov  al,al
1 call WriteChar
1 pop  eax

inc  al
loop L1

Debugging Macros
Debugging a program that uses macros can be a special challenge. After assembling a program,
check its listing file (extension.LST) to make sure each macro is expanded the way you
intended. Next, start the program in the Visual Studio debugger, right click the debugging win-
dow, and select Go to Disassembly from the popup menu. Each macro call is followed by the
code generated by the macro. Here is an example:

mWriteAt 15,10,"Hi there"
push edx  
mov dh,0Ah 
mov dl,0Fh 
call _Gotoxy@0 (401551h) 
pop edx  
push edx  
mov edx,offset ??0000 (405004h) 
call _WriteString@0 (401D64h) 
pop edx 

The function names begin with underscore (_) because the Irvine32 library uses the STDCALL
calling convention.

10.2.4 Additional Macro Features

Required Parameters
Using the REQ qualifier, you can specify that a macro parameter is required. If the macro is
invoked without an argument to match the required parameter, the assembler displays an error
message. If a macro has multiple required parameters, each one must include the REQ qualifier.
In the following mPutchar macro, the char parameter is required:

mPutchar MACRO char:REQ
push eax

Tip: In general, macros execute more quickly than procedures because procedures have the extra
overhead of CALL and RET instructions. There is, however, one disadvantage to using macros:
repeated use of large macros tends to increase a program’s size because each macro invocation
inserts a new copy of the macro’s code into the program.
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mov al,char
call WriteChar
pop eax

ENDM

Macro Comments
Ordinary comment lines appearing in a macro definition appear each time the macro is
expanded. If you want to omit comments from macro expansions, preface them with a double
semicolon (;;). Here is an example: 

mPutchar MACRO char:REQ
push eax ;; reminder: char must contain 8 bits
mov al,char
call WriteChar
pop eax

ENDM

ECHO Directive
The ECHO directive writes a string to standard output as the program is assembled. In the following
version of mPutchar, the message “Expanding the mPutchar macro” is displayed during assembly:

mPutchar MACRO char:REQ
ECHO Expanding the mPutchar macro
push eax
mov al,char
call WriteChar
pop eax

ENDM

LOCAL Directive
Macro definitions often contain labels and self-reference those labels in their code. The follow-
ing makeString macro, for example, declares a variable named string and initializes it with a
character array:

makeString MACRO text
.data
string BYTE text,0

ENDM

Tip: Visual Studio 2012’s console window does not capture output from the ECHO directive
unless you configure it to generate verbose output when building your program. To do this, select
Options from the Tools menu, select Projects and Solutions, select Build and Run, and select
Detailed from the MSBuild project build output verbosity dropdown list. Alternatively, you can
open a command prompt and assemble the program. First, execute this command, adjusting the
path for your current version of Visual Studio:

"C:\Program Files\Microsoft Visual Studio 11.0\VC\bin\vcvars32"

Next, enter this command, where filename.asm is your source code filename:

ml.exe /c /I "c:\Irvine" filename.asm
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Suppose we invoke the macro twice:

makeString "Hello"
makeString "Goodbye"

An error results because the assembler does not allow two labels to have the same name:

makeString "Hello"
1 .data
1 string BYTE "Hello",0

makeString "Goodbye"
1 .data
1 string BYTE "Goodbye",0 ; error!

Using LOCAL To avoid problems caused by label redefinitions, you can apply the LOCAL
directive to labels inside a macro definition. When a label is marked LOCAL, the preprocessor
converts the label’s name to a unique identifier each time the macro is expanded. Here’s a new
version of makeString that uses LOCAL:

makeString MACRO text
LOCAL string
.data
string BYTE text,0

ENDM

If we invoke the macro twice as before, the code generated by the preprocessor replaces each
occurrence of string with a unique identifier:

makeString "Hello"
1 .data
1 ??0000 BYTE "Hello",0

makeString "Goodbye"
1 .data
1 ??0001 BYTE "Goodbye",0

The label names produced by the assembler take the form ??nnnn, where nnnn is a unique inte-
ger. The LOCAL directive should also be used for code labels in macros.

Macros Containing Code and Data
Macros often contain both code and data. The following mWrite macro, for example, displays a
literal string on the console:

mWrite MACRO text
LOCAL string ;; local label
.data
string BYTE text,0 ;; define the string
.code
push edx
mov edx,OFFSET string
call WriteString
pop edx

ENDM
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The following statements invoke the macro twice, passing it different string literals:

mWrite "Please enter your first name"
mWrite "Please enter your last name"

The expansion of the two statements by the assembler shows that each string is assigned a
unique label, and the MOV instructions are adjusted accordingly:

mWrite "Please enter your first name"
1 .data
1 ??0000 BYTE "Please enter your first name",0
1 .code
1 push edx
1 mov  edx,OFFSET ??0000
1 call WriteString
1 pop  edx

mWrite "Please enter your last name"
1 .data
1 ??0001 BYTE "Please enter your last name",0
1 .code
1 push edx
1 mov  edx,OFFSET ??0001
1 call WriteString
1 pop  edx

Nested Macros
A macro invoked from another macro is called a nested macro. When the assembler’s preproces-
sor encounters a call to a nested macro, it expands the macro in place. Parameters passed to an
enclosing macro are passed directly to its nested macros.

mWriteln Example The following mWriteln macro writes a string literal to the console and
appends an end of line. It invokes the mWrite macro and calls the Crlf procedure:

mWriteln MACRO text
mWrite text
call  Crlf

ENDM

The text parameter is passed directly to mWrite. Suppose the following statement invokes mWriteln:

mWriteln "My Sample Macro Program"

In the resulting code expansion, the nesting level (2) next to the statements indicates a nested
macro has been invoked:

mWriteln "My Sample Macro Program"
2 .data
2 ??0002 BYTE "My Sample Macro Program",0

Tip: Use a modular approach when creating macros. Keep them short and simple so they can be
combined into more complex macros. Doing this helps to reduce the amount of duplicate code in
your programs. 
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2 .code
2 push edx
2 mov  edx,OFFSET ??0002
2 call WriteString
2 pop  edx
1 call Crlf

10.2.5 Using the Book’s Macro Library (32-Bit Mode Only)
The sample programs supplied with this book include a small but useful 32-bit library, which
you can enable simply by adding the following line to your programs just after the INCLUDE you
already have:

INCLUDE Macros.inc

Some of the macros are wrappers around existing procedures in the Irvine32 library, making it
easier to pass parameters. Other macros provide new functionality. Table 10-2 describes each
macro in detail. The example code can be found in MacroTest.asm.

mDumpMem
The mDumpMem macro displays a block of memory in the console window. Pass it a constant,
register, or variable containing the offset of the memory you want displayed. The second argu-
ment should be the number of memory components to be displayed, and the third argument is
the size of each memory component. (The macro invokes the DumpMem library procedure,
assigning the three arguments to ESI, ECX, and EBX, respectively. ) Let’s assume the following
data definition:

.data
array DWORD 1000h,2000h,3000h,4000h

The following statement displays the array using its default attributes:

mDumpMem OFFSET array, LENGTHOF array, TYPE array

Table 10-2  Macros in the Macros.inc Library.

Macro Name Parameters Description

mDump varName, useLabel Displays a variable, using its name and default attributes.

mDumpMem address, itemCount, 
componentSize

Displays a range of memory.

mGotoxy X, Y Sets the cursor position in the console window buffer.

mReadString varName Reads a string from the keyboard.

mShow itsName, format Displays a variable or register in various formats.

mShowRegister regName, regValue Displays a 32-bit register’s name and contents in hexadecimal.

mWrite text Writes a string literal to the console window.

mWriteSpace count Writes one or more spaces to the console window.

mWriteString buffer Writes a string variable’s contents to the console window.
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Output:

Dump of offset 00405004
-------------------------------
00001000  00002000  00003000  00004000

The following displays the same array as a byte sequence:

mDumpMem OFFSET array, SIZEOF array, TYPE BYTE

Output:

Dump of offset 00405004
-------------------------------
00 10 00 00 00 20 00 00 00 30 00 00 00 40 00 00

The following code pushes three values on the stack, sets the values of EBX, ECX, and ESI, and
uses mDumpMem to display the stack:

mov eax,0AAAAAAAAh
push eax
mov eax,0BBBBBBBBh
push eax
mov eax,0CCCCCCCCh
push eax
mov ebx,1
mov ecx,2
mov esi,3
mDumpMem esp, 8, TYPE DWORD

The resulting stack dump shows the macro has pushed EBX, ECX, and ESI on the stack. Fol-
lowing those values are the three integers we pushed on the stack before invoking mDumpMem:

Dump of offset 0012FFAC
-------------------------------
00000003  00000002  00000001  CCCCCCCC  BBBBBBBB  AAAAAAAA  7C816D4F
0000001A

Implementation Here is the macro’s code listing:

mDumpMem MACRO address:REQ, itemCount:REQ, componentSize:REQ
;
; Displays a dump of memory, using the DumpMem procedure.
; Receives: memory offset, count of the number of items
; to display, and the size of each memory component.
; Avoid passing EBX, ECX, and ESI as arguments.
;------------------------------------------------------

push ebx
push ecx
push esi
mov esi,address
mov ecx,itemCount
mov ebx,componentSize
call DumpMem
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pop esi
pop ecx
pop ebx

ENDM

mDump
The mDump macro displays the address and contents of a variable in hexadecimal. Pass it the
name of a variable and (optionally) a character indicating that a label should be displayed next to
the variable. The display format automatically matches the variable’s size attribute (BYTE,
WORD, or DWORD). The following example shows two calls to mDump:

.data
diskSize DWORD 12345h
.code
mDump diskSize ; no label
mDump diskSize,Y ; show label

The following output is produced when the code executes:

Dump of offset 00405000
-------------------------------
00012345

Variable name: diskSize
Dump of offset 00405000
-------------------------------
00012345

Implementation Here is a listing of the mDump macro, which in turn calls mDumpMem. It
uses a new directive named IFNB (if not blank) to find out if the caller has passed an argument
into the second parameter (see Section 10.3):

;----------------------------------------------------
mDump MACRO varName:REQ, useLabel
;
; Displays a variable, using its known attributes.
; Receives: varName, the name of a variable.
;    If useLabel is nonblank, the name of the
;    variable is displayed.
;----------------------------------------------------

call Crlf
IFNB <useLabel>
  mWrite "Variable name: &varName"
ENDIF
mDumpMem OFFSET varName, LENGTHOF varName, TYPE varName

ENDM

The & in &varName is a substitution operator, which permits the varName parameter’s value
to be inserted into the string literal. See Section 10.3.7 for more details.

mGotoxy
The mGotoxy macro locates the cursor at a specific column and row location in the console win-
dow’s buffer. You can pass it 8-bit immediate values, memory operands, and register values:
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mGotoxy  10,20 ; immediate values
mGotoxy  row,col ; memory operands
mGotoxy  ch,cl ; register values

Implementation Here is a source listing of the macro:

;------------------------------------------------------
mGotoxy MACRO X:REQ, Y:REQ
;
; Sets the cursor position in the console window.
; Receives: X and Y coordinates (type BYTE). Avoid 
; passing DH and DL as arguments.
;------------------------------------------------------

push edx
mov dh,Y
mov dl,X
call Gotoxy
pop edx

ENDM

Avoiding Register Conflicts When macro arguments are registers, they can sometimes con-
flict with registers used internally by macros. If we call mGotoxy using DH and DL, for exam-
ple, it does not generate correct code. To see why, let’s inspect the expanded code after such
parameters have been substituted:

1 push edx
2 mov dh,dl ;; row
3 mov dl,dh ;; column
4 call Gotoxy
5 pop edx

Assuming that DL is passed as the Y value and DH is the X value, line 2 replaces DH before we
have a chance to copy the column value to DL on line 3.

mReadString
The mReadString macro inputs a string from the keyboard and stores the string in a buffer. Inter-
nally, it encapsulates a call to the ReadString library procedure. Pass it the name of the buffer:

.data
firstName BYTE 30 DUP(?)
.code
mReadString firstName

Here is the macro’s source code:

;------------------------------------------------------
mReadString MACRO varName:REQ
;
; Reads from standard input into a buffer. 
; Receives: the name of the buffer. Avoid passing

Tip: Whenever possible, macro definitions should contain comments that specify which registers
cannot be used as arguments.
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; ECX and EDX as arguments.
;------------------------------------------------------

push ecx
push edx
mov edx,OFFSET varName
mov ecx,SIZEOF varName
call ReadString
pop edx
pop ecx

ENDM

mShow
The mShow macro displays any register or variable’s name and contents in a caller-selected
format. Pass it the name of the register, followed by an optional sequence of letters identi-
fying the desired format. Use the following codes: H � hexadecimal, D � unsigned deci-
mal, I � signed decimal, B � binary, and N � append a newline. Multiple output formats
can be combined, and multiple newlines can be specified. The default format is “HIN.”
mShow is a useful debugging aid, and is used extensively by the DumpRegs library proce-
dure. You can use mShow as a debugging tool, to display the values of important registers
or variables. 

Example The following statements display the AX register in hexadecimal, signed decimal,
unsigned decimal, and binary:

mov ax,4096
mShow AX        ; default options: HIN
mShow AX,DBN     ; unsigned decimal, binary, newline

Here is the output:

Example The following statements display AX, BX, CX, and DX in unsigned decimal, on the
same output line:

; Insert some test values and show four registers:
mov ax,1
mov bx,2
mov cx,3
mov dx,4
mShow AX,D
mShow BX,D
mShow CX,D
mShow DX,DN

Here is the corresponding output:

AX = 1d    BX = 2d    CX = 3d    DX = 4d

Example The following call to mShow displays the contents of mydword in unsigned deci-
mal, followed by a newline:

AX � 1000h �4096d
AX � 4096d  0001 0000 0000 0000b
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.data
mydword DWORD ?
.code
mShow mydword,DN

Implementation The implementation of mShow is too long to include here, but may be found
in the Macros.inc file from the book’s installation folder (C:\Irvine). When writing mShow, we
were careful to show the current register values before they were modified by statements inside
the macro itself. 

mShowRegister
The mShowRegister macro displays the name and contents of a single 32-bit register in
hexadecimal. Pass it the register’s name as you want it displayed, followed by the register itself.
The following macro invocation specifies the displayed name as EBX:

mShowRegister EBX, ebx

The following output is produced:

EBX=7FFD9000

The following invocation uses angle brackets around the label because it contains an embedded
space:

mShowRegister <Stack Pointer>, esp

The following output is produced:

Stack Pointer=0012FFC0

Implementation Here is the macro’s source code:

;---------------------------------------------------
mShowRegister MACRO regName, regValue
LOCAL tempStr
;
; Displays a register's name and contents.
; Receives: the register name, the register value.
;---------------------------------------------------
.data
tempStr BYTE " &regName=",0
.code

push eax

; Display the register name
push edx
mov edx,OFFSET tempStr
call WriteString
pop edx

; Display the register contents
mov eax,regValue
call WriteHex
pop eax

ENDM
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mWriteSpace
The mWriteSpace macro writes one or more spaces to the console window. You can optionally
pass it an integer parameter specifying the number of spaces to write (the default is one). The
following statement, for example, writes five spaces:

mWriteSpace 5

Implementation Here is the source code for mWriteSpace:

;------------------------------------------------------
mWriteSpace MACRO count:=<1>
;
; Writes one or more spaces to the console window.
; Receives: an integer specifying the number of spaces.
; Default value of count is 1.
;------------------------------------------------------
LOCAL spaces
.data
spaces BYTE count DUP(' '),0
.code

push edx
mov edx,OFFSET spaces
call WriteString
pop edx

ENDM

Section 10.3.2 explains how to use default initializers for macro parameters.

mWriteString
The mWriteString macro writes the contents of a string variable to the console window. Inter-
nally, it simplifies calls to WriteString by letting you pass the name of a string variable on the
same statement line. For example:

.data
str1 BYTE "Please enter your name: ",0
.code
mWriteString str1

Implementation The following mWriteString implementation saves EDX on the stack, fills
EDX with the string’s offset, and pops EDX from the stack after the procedure call:

;------------------------------------------------------
mWriteString MACRO buffer:REQ
;
; Writes a string variable to standard output.
; Receives: string variable name.
;------------------------------------------------------

push  edx
mov   edx,OFFSET buffer
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call  WriteString
pop   edx

ENDM

10.2.6 Example Program: Wrappers
Let’s create a short program named Wraps.asm that shows off the macros we’ve already intro-
duced as procedure wrappers. Because each macro hides a lot of tedious parameter passing, the
program is surprisingly compact. We will assume that all of the macros shown so far are located
inside the Macros.inc file:

; Procedure Wrapper Macros        (Wraps.asm)

; This program demonstrates macros as wrappers
; for library procedures. Contents: mGotoxy, mWrite,
; mWriteString, mReadString, and mDumpMem.

INCLUDE Irvine32.inc
INCLUDE Macros.inc ; macro definitions

.data
array DWORD 1,2,3,4,5,6,7,8
firstName BYTE 31 DUP(?)
lastName  BYTE 31 DUP(?)

.code
main PROC

mGotoxy 0,0
mWrite <"Sample Macro Program",0dh,0ah>

; Input the user's name.
mGotoxy 0,5
mWrite "Please enter your first name: "
mReadString firstName
call Crlf

mWrite "Please enter your last name: "
mReadString lastName
call Crlf

; Display the user's name.
mWrite "Your name is "
mWriteString firstName
mWriteSpace
mWriteString lastName
call Crlf

; Display the array of integers.
mDumpMem OFFSET array, LENGTHOF array, TYPE array
exit

main ENDP
END main
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Program Output The following is a sample of the program’s output:

10.2.7 Section Review
1. (True/False): When a macro is invoked, the CALL and RET instructions are automatically

inserted into the assembled program.

2. (True/False): Macro expansion is handled by the assembler’s preprocessor.

3. What is the primary advantage to using macros with parameters versus macros without them?

4. (True/False): As long as it is in the code segment, a macro definition may appear either
before or after statements that invoke the macro.

5. (True/False): Replacing a long procedure with a macro containing the procedure’s code will
typically increase the compiled code size of a program if the macro is invoked multiple times.

6. (True/False): A macro cannot contain data definitions.

10.3 Conditional-Assembly Directives
A number of different conditional-assembly directives can be used in conjunction with macros
to make them more flexible. The general syntax for conditional-assembly directives is

IF condition
statements

[ELSE
statements]

ENDIF

Table 10-3 lists the more common conditional-assembly directives. When the descriptions
say that a directive permits assembly, it means that any subsequent statements are assembled up
to the next ELSE or ENDIF directive. It must be emphasized that the directives listed in the table
are evaluated at assembly time, not at runtime.

Sample Macro Program

Please enter your first name: Joe

Please enter your last name: Smith

Your name is Joe Smith

Dump of offset 00404000

-------------------------------

00000001  00000002  00000003  00000004  00000005
00000006  00000007  00000008

Tip: The constant directives shown in this chapter should not be confused with runtime direc-
tives such as .IF and .ENDIF introduced in Section 6.7. The latter evaluated expressions based
on runtime values stored in registers and variables.
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Table 10-3  Conditional-Assembly Directives.

Directive Description

IF expression Permits assembly if the value of expression is true (nonzero). Possible relational
operators are LT, GT, EQ, NE, LE, and GE. 

IFB <argument> Permits assembly if argument is blank. The argument name must be enclosed in
angle brackets (<>).  

IFNB <argument> Permits assembly if argument is not blank. The argument name must be enclosed
in angle brackets (<>).

IFIDN <arg1>,<arg2> Permits assembly if the two arguments are equal (identical). Uses a case-sensitive
comparison.

IFIDNI <arg1>,<arg2> Permits assembly if the two arguments are equal. Uses a case-insensitive comparison. 

IFDIF <arg1>,<arg2> Permits assembly if the two arguments are unequal. Uses a case-sensitive comparison. 

IFDIFI <arg1>,<arg2> Permits assembly if the two arguments are unequal. Uses a case-insensitive comparison.

IFDEF name Permits assembly if name has been defined.

IFNDEF name Permits assembly if name has not been defined.

ENDIF Ends a block that was begun using one of the conditional-assembly directives. 

ELSE Terminates assembly of the previous statements if the condition is true. If the condition
is false, ELSE assembles statements up to the next ENDIF. 

ELSEIF expression Assembles all statements up to ENDIF if the condition specified by a previous
conditional directive is false and the value of the current expression is true. 

EXITM Exits a macro immediately, preventing any following macro statements from
being expanded.

10.3.1 Checking for Missing Arguments
A macro can check to see whether any of its arguments are blank. Often, if a blank argument is
received by a macro, invalid instructions result when the macro is expanded by the preprocessor.
For example, if we invoke the mWriteString macro without passing an argument, the macro
expands with an invalid instruction when moving the string offset to EDX. The following are
statements generated by the assembler, which detects the missing operand and issues an error
message:

mWriteString
1 push edx
1 mov  edx,OFFSET
Macro2.asm(18) : error A2081: missing operand after unary operator
1 call WriteString
1 pop  edx

To prevent errors caused by missing operands, you can use the IFB (if blank) directive, which
returns true if a macro argument is blank. Or, you can use the IFNB (if not blank) operator, which
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returns true if a macro argument is not blank. Let’s create an alternate version of mWriteString
that displays an error message during assembly:

mWriteString MACRO string
IFB <string>
  ECHO -------------------------------------------
  ECHO *  Error: parameter missing in mWriteString
  ECHO *  (no code generated)
  ECHO -------------------------------------------
  EXITM
ENDIF
push edx
mov edx,OFFSET string
call WriteString
pop edx

ENDM

(Recall from Section 10.2.2 that the ECHO directive writes a message to the console while a
program is being assembled.) The EXITM directive tells the preprocessor to exit the macro and
to not expand any more statements from the macro. The following shows the screen output when
assembling a program with a missing parameter:

10.3.2 Default Argument Initializers
Macros can have default argument initializers. If a macro argument is missing when the macro is
called, the default argument is used instead. The syntax is

paramname := < argument >

(Spaces before and after the operators are optional.) For example, the mWriteln macro can sup-
ply a string containing a single space as its default argument. If it is called with no arguments, it
still prints a space followed by an end of line:

mWriteln MACRO text:=<" ">
mWrite text
call Crlf

ENDM

The assembler issues an error if a null string (" ") is used as the default argument, so you have to
insert at least one space between the quotes.

 Assembling: Macro2.asm

-------------------------------------------

*  Error: parameter missing in mWriteString

*  (no code generated)

-------------------------------------------
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10.3.3 Boolean Expressions
The assembler permits the following relational operators to be used in constant boolean expres-
sions containing IF and other conditional directives:

10.3.4 IF, ELSE, and ENDIF Directives
The IF directive must be followed by a constant boolean expression. The expression can contain
integer constants, symbolic constants, or constant macro arguments, but it cannot contain regis-
ter or variable names. One syntax format uses just IF and ENDIF:

IF expression
statement-list

ENDIF

Another format uses IF, ELSE, and ENDIF:

IF expression
statement-list

ELSE
statement-list

ENDIF

Example: mGotoxyConst Macro The mGotoxyConst macro uses the LT and GT operators
to perform range checking on the arguments passed to the macro. The arguments X and Y must
be constants. Another constant symbol named ERRS counts the number of errors found.
Depending on the value of X, we may set ERRS to 1. Depending on the value of Y, we may add
1 to ERRS. Finally, if ERRS is greater than zero, the EXITM directive exits the macro:

;-----------------------------------------------------
mGotoxyConst MACRO X:REQ, Y:REQ
;
; Sets the cursor position at column X, row Y.
; Requires X and Y coordinates to be constant expressions
; in the ranges 0 <= X < 80 and 0 <= Y < 25.
;------------------------------------------------------

LOCAL ERRS ;; local constant
ERRS = 0
IF (X LT 0) OR (X GT 79)
   ECHO Warning: First argument to mGotoxy (X) is out of range.
   ECHO ******************************************************
   ERRS = 1
ENDIF

LT Less than

GT Greater than

EQ Equal to

NE Not equal to

LE Less than or equal to

GE Greater than or equal to
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IF (Y LT 0) OR (Y GT 24)
   ECHO Warning: Second argument to mGotoxy (Y) is out of range.
   ECHO ******************************************************
   ERRS = ERRS + 1
ENDIF
IF ERRS GT 0 ;; if errors found,
  EXITM ;; exit the macro
ENDIF
push edx
mov dh,Y
mov dl,X
call Gotoxy
pop edx

ENDM

10.3.5 The IFIDN and IFIDNI Directives
The IFIDNI directive performs a case-insensitive match between two symbols (including
macro parameter names) and returns true if they are equal. The IFIDN directive performs a
case-sensitive match. The former is useful when you want to make sure the caller of your
macro has not used a register argument that might conflict with register usage inside the
macro. The syntax for IFIDNI is

IFIDNI <symbol>, <symbol>
statements

ENDIF

The syntax for IFIDN is identical. In the following mReadBuf macro, for example, the second
argument cannot be EDX because it will be overwritten when the offset of buffer is moved into
EDX. The following revised version of the macro displays a warning message if this require-
ment is not met:

;------------------------------------------------------
mReadBuf MACRO bufferPtr, maxChars
;
; Reads from the keyboard into a buffer.
; Receives: offset of the buffer, count of the maximum
; number of characters that can be entered. The 
; second argument cannot be edx or EDX.
;------------------------------------------------------

IFIDNI <maxChars>,<EDX>
   ECHO Warning: Second argument to mReadBuf cannot be EDX
   ECHO **************************************************
   EXITM
ENDIF
push ecx
push edx
mov edx,bufferPtr
mov ecx,maxChars
call ReadString
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pop edx
pop ecx

ENDM

The following statement causes the macro to generate a warning message because EDX is the second 
argument:

mReadBuf OFFSET buffer,edx

10.3.6 Example: Summing a Matrix Row
Section 9.4.2 showed how to calculate the sum of a single row in a byte matrix. A programming
exercise in Chapter 9 asked you to generalize the procedure for word and doubleword matrices.
Although the solution to that exercise is somewhat lengthy, let us see if we can use a macro to
simplify the task. First, here is the original calc_row_sum procedure shown in Chapter 9:

;------------------------------------------------------------
calc_row_sum PROC USES ebx ecx esi
;
; Calculates the sum of a row in a byte matrix.
; Receives: EBX = table offset, EAX = row index, 
;           ECX = row size, in bytes.
; Returns:  EAX holds the sum.
;------------------------------------------------------------

mul ecx ; row index * row size
add ebx,eax ; row offset
mov eax,0 ; accumulator
mov esi,0 ; column index

L1: movzx edx,BYTE PTR[ebx + esi] ; get a byte
add eax,edx ; add to accumulator
inc esi ; next byte in row
loop L1
ret

calc_row_sum ENDP

We start by changing PROC to MACRO, remove the RET instruction, and change ENDP to ENDM.
There is no macro equivalent to the USES directive, so we insert PUSH and POP instructions:

mCalc_row_sum MACRO 
push ebx ; save changed regs
push ecx
push esi
mul ecx ; row index * row size
add ebx,eax ; row offset
mov eax,0 ; accumulator
mov esi,0 ; column index

L1: movzx edx,BYTE PTR[ebx + esi] ; get a byte
add eax,edx ; add to accumulator
inc esi ; next byte in row
loop L1
pop esi ; restore changed regs
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pop ecx
pop ebx

ENDM

Next, we substitute macro parameters for register parameters and initialize the registers inside
the macro:

mCalc_row_sum MACRO index, arrayOffset, rowSize
push ebx ; save changed regs
push ecx
push esi

; set up the required registers
mov eax,index
mov ebx,arrayOffset
mov ecx,rowSize

mul ecx ; row index * row size
add ebx,eax ; row offset
mov eax,0 ; accumulator
mov esi,0 ; column index

L1: movzx edx,BYTE PTR[ebx + esi] ; get a byte
add eax,edx ; add to accumulator
inc esi ; next byte in row
loop L1
pop esi ; restore changed regs
pop ecx
pop ebx

ENDM

Next, we add a parameter named eltType that specifies the array type (BYTE, WORD, or
DWORD):

mCalc_row_sum MACRO index, arrayOffset, rowSize, eltType

The rowSize parameter, copied into ECX, currently indicates the number of bytes in each row.
If we are to use it as a loop counter, it must contain the number of elements in each row.
Therefore, we divide ECX by 2 for 16-bit arrays and by 4 for doubleword arrays. A fast way to
accomplish this is to divide eltType by 2 and use it as a shift counter, shifting ECX to the
right:

shr ecx,(TYPE eltType / 2) ; byte=0, word=1, dword=2

TYPE eltType becomes the scale factor in the base-index operand of the MOVZX instruction:

movzx edx,eltType PTR[ebx + esi*(TYPE eltType)]

MOVZX will not assemble if the right-hand operand is a doubleword, so we must use the
IFIDNI operator to create a separate MOV instruction when eltType equals DWORD:

IFIDNI <eltType>,<DWORD>
mov edx,eltType PTR[ebx + esi*(TYPE eltType)]

ELSE
movzx edx,eltType PTR[ebx + esi*(TYPE eltType)]

ENDIF
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At last, we have the finished macro, remembering to designate label L1 as LOCAL:

;------------------------------------------------------------
mCalc_row_sum MACRO index, arrayOffset, rowSize, eltType
; Calculates the sum of a row in a two-dimensional array.
;
; Receives: row index, offset of the array, number of bytes
; in each table row, and the array type (BYTE, WORD, or DWORD).
; Returns:  EAX = sum.
;-------------------------------------------------------------
LOCAL L1

push ebx ; save changed regs
push ecx
push esi

; set up the required registers
mov eax,index
mov ebx,arrayOffset
mov ecx,rowSize

; calculate the row offset.
mul ecx ; row index * row size
add ebx,eax ; row offset

; prepare the loop counter.
shr ecx,(TYPE eltType / 2) ; byte=0, word=1, dword=2

; initialize the accumulator and column indexes
mov eax,0 ; accumulator
mov esi,0 ; column index

L1:
IFIDNI <eltType>, <DWORD>
  mov   edx,eltType PTR[ebx + esi*(TYPE eltType)]
ELSE
  movzx edx,eltType PTR[ebx + esi*(TYPE eltType)]
ENDIF
add eax,edx ; add to accumulator
inc esi
loop L1

pop esi ; restore changed regs
pop ecx
pop ebx

ENDM

Following are sample calls to the macro, using arrays of byte, word, and doubleword. See the
rowsum.asm program:

.data
tableB   BYTE  10h,  20h,  30h,  40h,  50h
RowSizeB = ($ - tableB)
         BYTE  60h,  70h,  80h,  90h,  0A0h
         BYTE  0B0h, 0C0h, 0D0h, 0E0h, 0F0h
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tableW WORD  10h,  20h,  30h,  40h,  50h
RowSizeW = ($ - tableW)

WORD  60h,  70h,  80h,  90h,  0A0h
WORD  0B0h, 0C0h, 0D0h, 0E0h, 0F0h

tableD   DWORD  10h,  20h,  30h,  40h,  50h
RowSizeD = ($ - tableD)
         DWORD  60h,  70h,  80h,  90h,  0A0h
         DWORD  0B0h, 0C0h, 0D0h, 0E0h, 0F0h

index DWORD ?
.code
mCalc_row_sum index, OFFSET tableB, RowSizeB, BYTE
mCalc_row_sum index, OFFSET tableW, RowSizeW, WORD
mCalc_row_sum index, OFFSET tableD, RowSizeD, DWORD

10.3.7 Special Operators
There are four assembler operators that make macros more flexible:

Substitution Operator (&)
The substitution (&) operator resolves ambiguous references to parameter names within a
macro. The mShowRegister macro (Section 10.2.5) displays the name and hexadecimal con-
tents of a 32-bit register. The following is a sample call:

.code
mShowRegister ECX

Following is a sample of the output generated by the call to mShowRegister:

A string variable containing the register name could be defined inside the macro:

mShowRegister MACRO regName
.data
tempStr BYTE " regName=",0

But the preprocessor would assume regName was part of a string literal and would not replace it
with the argument value passed to the macro. Instead, if we add the & operator, it forces the pre-
processor to insert the macro argument (such as ECX) into the string literal. The following
shows how to define tempStr:

mShowRegister MACRO regName
.data
tempStr BYTE " &regName=",0

& Substitution operator

<> Literal-text operator

! Literal-character operator

% Expansion operator

ECX=00000101
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Expansion Operator (%)
The expansion operator (%) expands text macros or converts constant expressions into their
text representations. It does this in several different ways. When used with TEXTEQU, the %
operator evaluates a constant expression and converts the result to an integer. In the following
example, the % operator evaluates the expression (5 + count) and returns the integer 15 (as
text):

count = 10
sumVal TEXTEQU %(5 + count) ; = "15"

If a macro requires a constant integer argument, the % operator gives you the flexibility of
passing an integer expression. The expression is evaluated to its integer value, which is then
passed to the macro. For example, when invoking mGotoxyConst, the expressions here evaluate
to 50 and 7:

mGotoxyConst %(5 * 10), %(3 + 4)

The preprocessor produces the following statements:

1 push  edx
1 mov   dh,7
1 mov   dl,50
1 call  Gotoxy
1 pop   edx

% at Beginning of Line When the expansion operator (%) is the first character on a source
code line, it instructs the preprocessor to expand all text macros and macro functions found on
the same line. Suppose, for example, we wanted to display the size of an array on the screen dur-
ing assembly. The following attempts would not produce the intended result:

.data
array DWORD 1,2,3,4,5,6,7,8
.code
ECHO The array contains (SIZEOF array) bytes
ECHO The array contains %(SIZEOF array) bytes

The screen output would be useless:

Instead, if we use TEXTEQU to create a text macro containing (SIZEOF array), the macro can
be expanded on the next line:

TempStr TEXTEQU %(SIZEOF array)
% ECHO The array contains TempStr bytes

The following output is produced:

The array contains (SIZEOF array) bytes
The array contains %(SIZEOF array) bytes

The array contains 32 bytes
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Displaying the Line Number The following Mul32 macro multiplies its first two arguments
together and returns the product in the third argument. Its parameters can be registers, memory
operands, and immediate operands (except for the product):

Mul32 MACRO op1, op2, product
IFIDNI <op2>,<EAX>
  LINENUM TEXTEQU %(@LINE)
  ECHO --------------------------------------------------

%   ECHO *  Error on line LINENUM: EAX cannot be the second
  ECHO *  argument when invoking the MUL32 macro.
  ECHO --------------------------------------------------
EXITM
ENDIF
push eax
mov  eax,op1
mul  op2
mov  product,eax
pop  eax

ENDM

Mul32 checks one important requirement: EAX cannot be the second argument. What is inter-
esting about the macro is that it displays the line number from where the macro was called, to
make it easier to track down and fix the problem. The Text macro LINENUM is defined first. It ref-
erences @LINE, a predefined assembler operator that returns the current source code line number:

LINENUM TEXTEQU %(@LINE)

Next, the expansion operator (%) in the first column of the line containing the ECHO statement
causes LINENUM to be expanded:

%   ECHO * Error on line LINENUM: EAX cannot be the second

Suppose the following macro call occurs in a program on line 40:

MUL32 val1,eax,val3

Then the following message is displayed during assembly:

You can view a test of the Mul32 macro in the program named Macro3.asm.

Literal-Text Operator (< >)
The literal-text operator (< >) groups one or more characters and symbols into a single text lit-
eral. It prevents the preprocessor from interpreting members of the list as separate arguments.
This operator is particularly useful when a string contains special characters, such as commas,
percent signs (%), ampersands (&), and semicolons (;), that would otherwise be interpreted as
delimiters or other operators. For example, the mWrite macro presented earlier in this chapter

--------------------------------------------------

*  Error on line 40: EAX cannot be the second

*  argument when invoking the MUL32 macro.

--------------------------------------------------
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receives a string literal as its only argument. If we were to pass it the following string, the
preprocessor would interpret it as three separate macro arguments:

mWrite "Line three", 0dh, 0ah

Text after the first comma would be discarded because the macro expects only one argument. On
the other hand, if we surrounded the string with the literal-text operator, the preprocessor consid-
ers all text between the brackets to be a single macro argument:

mWrite <"Line three", 0dh, 0ah>

Literal-Character Operator (!)
The literal-character operator (!) was invented for much the same purpose as the literal-text opera-
tor: It forces the preprocessor to treat a predefined operator as an ordinary character. In the following
TEXTEQU definition, the ! operator prevents the > symbol from being a text delimiter:

BadYValue TEXTEQU <Warning: Y-coordinate is !> 24> 

Warning Message Example The following example helps to show how the %, &, and !
operators work together. Let’s assume we have defined the BadYValue symbol. We can create a
macro named ShowWarning that receives a text argument, encloses it in quotes, and passes the
literal to the mWrite macro. Note the use of the substitution (&) operator:

ShowWarning MACRO message
mWrite "&message"

ENDM

Next, we invoke ShowWarning, passing it the expression %BadYValue. The % operator evalu-
ates (dereferences) BadYValue and produces its equivalent string:

.code
ShowWarning %BadYValue

As you might expect, the program runs and displays the warning message:

10.3.8 Macro Functions
A macro function is similar to a macro procedure in that it assigns a name to a list of assembly lan-
guage statements. It is different in that it always returns a constant (integer or string) via the
EXITM directive. In the following example, the IsDefined macro returns true (�1) if a given
symbol has been defined; otherwise, it returns false (0):

IsDefined MACRO symbol
IFDEF symbol
  EXITM <-1> ;; True
ELSE
  EXITM <0> ;; False
ENDIF

ENDM

The EXITM (exit macro) directive halts all further expansion of the macro. 

Warning: Y-coordinate is > 24
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Invoking a Macro Function When you invoke a macro function, its argument list must be
enclosed in parentheses. For example, we can call the IsDefined macro, passing it RealMode,
the name of a symbol which may or may not have been defined:

IF IsDefined( RealMode )
mov ax,@data
mov ds,ax

ENDIF

If the assembler has already encountered a definition of RealMode before this point in the
assembly process, it assembles the two instructions:

mov ax,@data
mov ds,ax

The same IF directive can be placed inside a macro named Startup:

Startup MACRO
IF IsDefined( RealMode )

    mov  ax,@data
  mov  ds,ax
ENDIF

ENDM

A macro such as IsDefined can be useful when you design programs for multiple memory
models. For example, we can use it to determine which include file to use:

IF IsDefined( RealMode )
INCLUDE Irvine16.inc

ELSE
INCLUDE Irvine32.inc

ENDIF

Defining the RealMode Symbol All that remains is to find a way to define the RealMode
symbol. One way is to put the following line at the beginning of a program:

RealMode = 1

Alternatively, the assembler’s command line has an option for defining symbols, using the –D
switch. The following ML command defines the RealMode symbol and assigns it a value of 1:

ML -c -DRealMode=1 myProg.asm

The corresponding ML command for protected mode programs does not define the RealMode
symbol:

ML -c myProg.asm 

HelloNew Program The following program (HelloNew.asm) uses the macros we have just
described, displaying a message on the screen:

; Macro Functions            (HelloNew.asm)

INCLUDE Macros.inc
IF IsDefined( RealMode )

INCLUDE Irvine16.inc
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ELSE
INCLUDE Irvine32.inc

ENDIF

.code
main PROC

Startup
mWrite <"This program can be assembled to run ",0dh,0ah>
mWrite <"in both Real mode and Protected mode.",0dh,0ah>
exit

main ENDP
END main

Real-mode programming is covered in Chapters 14–17. A 16-bit Real Mode program runs in a
simulated MS-DOS environment, and uses the Irvine16.inc include file and the Irvine16 link
library.

10.3.9 Section Review
1. What is the purpose of the IFB directive?

2. What is the purpose of the IFIDN directive?

3. Which directive stops all further expansion of a macro?

4. How is IFIDNI different from IFIDN?

5. What is the purpose of the IFDEF directive?

10.4 Defining Repeat Blocks
MASM has a number of looping directives for generating repeated blocks of statements:
WHILE, REPEAT, FOR, and FORC. Unlike the LOOP instruction, these directives work only at
assembly time, using constant values as loop conditions and counters:

• The WHILE directive repeats a statement block based on a boolean expression.
• The REPEAT directive repeats a statement block based on the value of a counter.
• The FOR directive repeats a statement block by iterating over a list of symbols.
• The FORC directive repeats a statement block by iterating over a string of characters.

Each is demonstrated in an example program named Repeat.asm.

10.4.1 WHILE Directive
The WHILE directive repeats a statement block as long as a particular constant expression is
true. The syntax is

WHILE constExpression
statements

ENDM

The following code shows how to generate Fibonacci numbers between 1 and F0000000h as a
series of assembly-time constants:

.data
val1  = 1
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val2  = 1
DWORD val1 ; first two values
DWORD val2
val3 = val1 + val2
WHILE val3 LT 0F0000000h

DWORD val3
val1 = val2
val2 = val3
val3 = val1 + val2

ENDM

The values generated by this code can be viewed in a listing (.LST) file.

10.4.2 REPEAT Directive
The REPEAT directive repeats a statement block a fixed number of times at assembly time. The
syntax is

REPEAT constExpression
statements

ENDM

constExpression, an unsigned constant integer expression, determines the number of repetitions. 

REPEAT can be used in a similar way as DUP to create an array. In the following example,
the WeatherReadings struct contains a location string, followed by an array of rainfall and
humidity readings:

WEEKS_PER_YEAR = 52

WeatherReadings STRUCT
location BYTE 50 DUP(0)
REPEAT WEEKS_PER_YEAR
  LOCAL rainfall, humidity
  rainfall DWORD ?
  humidity DWORD ?
ENDM

WeatherReadings ENDS

The LOCAL directive was used to avoid errors caused by redefining rainfall and humidity when
the loop was repeated at assembly time.

10.4.3 FOR Directive
The FOR directive repeats a statement block by iterating over a comma-delimited list of sym-
bols. Each symbol in the list causes one iteration of the loop. The syntax is

FOR parameter,<arg1,arg2,arg3,...>
statements

ENDM

On the first loop iteration, parameter takes on the value of arg1; on the second iteration, param-
eter takes on the value of arg2; and so on through the last argument in the list.

Student Enrollment Example Let’s create a student enrollment scenario in which we have a
COURSE structure containing a course number and number of credits. A SEMESTER structure
contains an array of six courses and a counter named NumCourses:
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COURSE STRUCT
Number  BYTE 9 DUP(?)
Credits BYTE ?

COURSE ENDS

; A semester contains an array of courses.
SEMESTER STRUCT

Courses COURSE 6 DUP(<>)
NumCourses WORD ?

SEMESTER ENDS

We can use a FOR loop to define four SEMESTER objects, each having a different name
selected from the list of symbols between angle brackets:

.data
FOR semName,<Fall2013,Spring2014,Summer2014,Fall2014>

semName SEMESTER <>
ENDM

If we inspect the listing file, we find the following variables:

.data
Fall2013 SEMESTER <>
Spring2014 SEMESTER <>
Summer2014 SEMESTER <>
Fall2014 SEMESTER <>

10.4.4 FORC Directive
The FORC directive repeats a statement block by iterating over a string of characters. Each char-
acter in the string causes one iteration of the loop. The syntax is

FORC parameter, <string>
statements

ENDM

On the first loop iteration, parameter is equal to the first character in the string; on the second
iteration, parameter is equal to the second character in the string; and so on, to the end of the
string. The following example creates a character lookup table consisting of several nonalpha-
betic characters. Note that < and > must be preceded by the literal-character (!) operator to pre-
vent them from violating the syntax of the FORC directive:

Delimiters LABEL BYTE
FORC code,<@#$%^&*!<!>>

BYTE "&code"
ENDM

The following data table is generated, which you can view in the listing file:

00000000  40 1 BYTE "@"
00000001  23 1 BYTE "#"
00000002  24 1 BYTE "$"
00000003  25 1 BYTE "%"
00000004  5E 1 BYTE "^"
00000005  26 1 BYTE "&"
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00000006  2A 1 BYTE "*"
00000007  3C 1 BYTE "<"
00000008  3E 1 BYTE ">"

10.4.5 Example: Linked List
It is fairly simple to combine a structure declaration with the REPEAT directive to instruct the
assembler to create a linked list data structure. Each node in a linked list contains a data area and
a link area:

In the data area, one or more variables can hold data unique to each node. In the link area, a
pointer contains the address of the next node in the list. The link part of the final node usually
contains a null pointer. Let’s create a program that creates and displays a simple linked list.
First, the program defines a list node having a single integer (data) and a pointer to the next
node:

ListNode STRUCT
NodeData DWORD ?   ; the node's data
NextPtr  DWORD ?   ; pointer to next node

ListNode ENDS

Next, the REPEAT directive creates multiple instances of ListNode objects. For testing
purposes, the NodeData field contains an integer constant ranging from 1 to 15. Inside the loop,
we increment the counter and insert values into the ListNode fields:

TotalNodeCount = 15
NULL = 0
Counter = 0

.data
LinkedList LABEL PTR ListNode
REPEAT TotalNodeCount

Counter = Counter + 1
ListNode <Counter, ($ + Counter * SIZEOF ListNode)>

ENDM

The expression ($ � Counter * SIZEOF ListNode) tells the assembler to multiply the counter by
the ListNode size and add their product to the current location counter. The value is inserted into
the NextPtr field in the structure. [It’s interesting to note that the location counter’s value ($)
remains fixed at the first node of the list.] The list is given a tail node marking its end, in which
the NextPtr field contains null (0):

ListNode <0,0>

When the program traverses the list, it uses the following statements to retrieve the NextPtr field
and compare it to NULL so the end of the list can be detected:

mov  eax,(ListNode PTR [esi]).NextPtr
cmp  eax,NULL

data link data link data link null
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Program Listing The following is a complete program listing. In main, a loop traverses the
list and displays all the node values. Rather than using a fixed counter for the loop, the program
checks for the null pointer in the tail node and stops looping when it is found:

; Creating a Linked List            (List.asm)

INCLUDE Irvine32.inc

ListNode STRUCT
  NodeData DWORD ?
  NextPtr  DWORD ?
ListNode ENDS

TotalNodeCount = 15
NULL = 0
Counter = 0

.data
LinkedList LABEL PTR ListNode
REPEAT TotalNodeCount

Counter = Counter + 1
ListNode <Counter, ($ + Counter * SIZEOF ListNode)>

ENDM
ListNode <0,0> ; tail node

.code
main PROC

mov esi,OFFSET LinkedList

; Display the integers in the NodeData fields.
NextNode:

; Check for the tail node.
mov eax,(ListNode PTR [esi]).NextPtr
cmp eax,NULL
je quit

; Display the node data.
mov eax,(ListNode PTR [esi]).NodeData
call WriteDec
call Crlf

; Get pointer to next node.
mov esi,(ListNode PTR [esi]).NextPtr
jmp NextNode

quit:
exit

main ENDP
END main

10.4.6 Section Review
1. Briefly describe the WHILE directive.

2. Briefly describe the REPEAT directive.

3. Briefly describe the FOR directive.
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4. Briefly describe the FORC directive.

5. Which looping directive would be the best tool to generate a character lookup table?

6. Write the statements generated by the following macro:

FOR val,<100,20,30>
   BYTE 0,0,0,val
ENDM

7. Assume the following mRepeat macro has been defined:

mRepeat MACRO char,count
LOCAL L1
mov cx,count

L1: mov ah,2
mov dl,char
int 21h     
loop L1

ENDM

Write the code generated by the preprocessor when the mRepeat macro is expanded by 
each of the following statements (a, b, and c):

mRepeat 'X',50 ; a
mRepeat AL,20 ; b
mRepeat byteVal,countVal ; c

8. Challenge: In the Linked List example program (Section 10.4.5), what would be the result
if the REPEAT loop were coded as follows?

REPEAT TotalNodeCount
Counter = Counter + 1
ListNode <Counter, ($ + SIZEOF ListNode)>

ENDM

10.5 Chapter Summary
A structure is a template or pattern used when creating user-defined types. Many structures are
already defined in the Windows API library and are used for the transfer of data between
application programs and the library. Structures can contain a diverse set of field types. Each
field declaration may use a field-initializer, which assigns a default value to the field.

Structures themselves take up no memory, but structure variables do. The SIZEOF operator
returns the number of bytes used by the variable. 

The dot operator (.) references a structure field by using either a structure variable or an indi-
rect operand such as [esi]. When an indirect operand references a structure field, you must use
the PTR operator to identify the structure type, as in (COORD PTR [esi]).X.

Structures can contain fields that are also structures. An example was shown in the Drunk-
ard’s Walk program (Section 10.1.6), where the DrunkardWalk structure contained an array of
COORD structures.

Macros are usually defined at the beginning of a program, before the data and code segments.
Then, when a macro is called, the preprocessor inserts a copy of the macro’s code into the pro-
gram at the calling location.
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conditional-assembly directive

default argument initializer

expansion operator (%)

field

invoke (a macro)

literal-character operator (!)

literal-text operator (< >)

macro

macro function

macro procedure

nested macro

parameters

preprocessing step

structure

substitution operator (&)

union

10.6.2 Operators and Directives

ALIGN

ECHO

ELSE

ENDIF

ENDS

EXITM

FOR

FORC

IF

IFB

IFDEF

IFDIF

IFDIFI

IFIDN

IFIDNI

IFNB

IFNDEF

LENGTHOF

LOCAL

MACRO

OFFSET

Macros can be effectively used as wrappers around procedure calls to simplify parameter passing
and saving registers on the stack. Macros such as mGotoxy, mDumpMem, and mWriteString are
examples of wrappers because they call procedures from the book’s link library.

A macro procedure (or macro) is a named block of assembly language statements. A macro
function is similar, except that it also returns a constant value.

Conditional-assembly directives, such as IF, IFNB, and IFIDNI, can be used to detect argu-
ments that are out of range, missing, or of the wrong type. The ECHO directive displays error
messages during assembly, making it possible to alert the programmer to errors in arguments
passed to macros.

The substitution operator (&) resolves ambiguous references to parameter names. The
expansion operator (%) expands text macros and converts constant expressions to text. The
literal-text operator (< >) groups diverse characters and text into a single literal. The literal-
character operator (!) forces the preprocessor to treat predefined operators as ordinary char-
acters.

Repeat block directives can reduce the amount of repetitive code in programs. The directives
are as follows:

• WHILE repeats a statement block based on a boolean expression.
• REPEAT repeats a statement block based on the value of a counter.
• FOR repeats a statement block by iterating over a list of symbols.
• FORC repeats a statement block by iterating over a string of characters.

10.6 Key Terms

10.6.1 Terms
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10.7 Review Questions and Exercises

10.7.1 Short Answer
1. What is the purpose of the STRUCT directive?

2. Assume that the following structure has been defined:

RentalInvoice STRUCT
invoiceNum BYTE 5 DUP(' ')
dailyPrice WORD ?
daysRented WORD ?

RentalInvoice ENDS

State whether or not each of the following declarations is valid:

a. rentals RentalInvoice <>

b. RentalInvoice rentals <>

c. march RentalInvoice <'12345',10,0>

d. RentalInvoice <,10,0>

e. current RentalInvoice <,15,0,0>

3. (True/False): A macro cannot contain data definitions.

4. What is the purpose of the LOCAL directive?

5. Which directive displays a message on the console during the assembly step?

6. Which directive marks the end of a conditional block of statements?

7. List all the relational operators that can be used in constant boolean expressions.

8. What is the purpose of the & operator in a macro definition?

9. What is the purpose of the ! operator in a macro definition?

10. What is the purpose of the % operator in a macro definition?

10.7.2 Algorithm Workbench
1. Create a structure named SampleStruct containing two fields: field1, a single 16-bit WORD, and

field2, an array of 20 32-bit DWORDs. The initial values of the fields may be left undefined.

2. Write a statement that retrieves the wHour field of a SYSTEMTIME structure.

3. Using the following Triangle structure, declare a structure variable and initialize its vertices
to (0,0), (5, 0), and (7,6):

Triangle STRUCT
Vertex1 COORD <>
Vertex2 COORD <>
Vertex3 COORD <>

Triangle ENDS

REPEAT

REQ

SIZEOF

STRUCT

TYPE

UNION

WHILE
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4. Declare an array of Triangle structures. Write a loop that initializes Vertex1 of each triangle
to random coordinates in the range (0...10, 0...10).

5. Write a macro named mPrintChar that displays a single character on the screen. It should
have two parameters: this first specifies the character to be displayed and the second speci-
fies how many times the character should be repeated. Here is a sample call:

mPrintChar 'X',20

6. Write a macro named mGenRandom that generates a random integer between 0 and n � 1.
Let n be the only parameter.

7. Write a macro named mPromptInteger that displays a prompt and inputs an integer from
the user. Pass it a string literal and the name of a doubleword variable. Sample call:

.data
minVal DWORD ?
.code
mPromptInteger "Enter the minimum value", minVal

8. Write a macro named mWriteAt that locates the cursor and writes a string literal to the console
window. Suggestion: Invoke the mGotoxy and mWrite macros from the book’s macro library.

9. Show the expanded code produced by the following statement that invokes the mWrite-
String macro from Section 10.2.5:

mWriteStr namePrompt

10. Show the expanded code produced by the following statement that invokes the mRead-
String macro from Section 10.2.5:

mReadStr customerName

11. Write a macro named mDumpMemx that receives a single parameter, the name of a variable.
Your macro must call the mDumpMem macro from the book’s library, passing it the variable’s
offset, number of units, and unit size. Demonstrate a call to the mDumpMemx macro.

12. Show an example of a macro parameter having a default argument initializer.

13. Write a short example that uses the IF, ELSE, and ENDIF directives.

14. Write a statement using the IF directive that checks the value of the constant macro parame-
ter Z; if Z is less than zero, display a message during assembly indicating that Z is invalid.

15. Write a short macro that demonstrates the use of the & operator when the macro parameter
is embedded in a literal string.

16. Assume the following mLocate macro definition:

mLocate MACRO xval,yval
IF xval LT 0 ;; xval < 0?

EXITM ;; if so, exit
ENDIF
IF yval LT 0 ;; yval < 0?

EXITM ;; if so, exit
ENDIF
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mov bx,0 ;; video page 0
mov ah,2 ;; locate cursor
mov dh,yval
mov dl,xval
int 10h ;; call the BIOS

ENDM

Show the source code generated by the preprocessor when the macro is expanded by each of
the following statements:

.data
row BYTE 15
col BYTE 60
.code
mLocate -2,20
mLocate 10,20
mLocate col,row

10.8 Programming Exercises

1. mReadkey Macro
Create a macro that waits for a keystroke and returns the key that was pressed. The macro
should include parameters for the ASCII code and keyboard scan code. Hint: Call ReadChar
from the book’s link library. Write a program that tests your macro. For example, the follow-
ing code waits for a key; when it returns, the two arguments contain the ASCII code and scan
code:

.data
ascii BYTE ?
scan BYTE ?
.code
mReadkey ascii, scan

2. mWritestringAttr Macro 
(Requires reading ahead to Section 11.1.11.) Create a macro that writes a null-terminated string to
the console with a given text color. The macro parameters should include the string name and the
color. Hint: Call SetTextColor from the book’s link library. Write a program that tests your macro
with several strings in different colors. Sample call:

.data
myString db "Here is my string",0
.code
mWritestring myString, white

3. mMove32 Macro
Write a macro named mMove32 that receives two 32-bit memory operands. The macro should
move the source operand to the destination operand. Write a program that tests your macro.

★

★

★
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4. mMult32 Macro
Create a macro named mMult32 that multiplies two 32-bit memory operands and produces a
32-bit product. Write a program that tests your macro.

5. mReadInt Macro
Create a macro named mReadInt that reads a 16- or 32-bit signed integer from standard input and
returns the value in an argument. Use conditional operators to allow the macro to adapt to the size
of the desired result. Write a program that tests the macro, passing it operands of various sizes. 

6. mWriteInt Macro
Create a macro named mWriteInt that writes a signed integer to standard output by calling
the WriteInt library procedure. The argument passed to the macro can be a byte, word, or
doubleword. Use conditional operators in the macro so it adapts to the size of the argument.
Write a program that tests the macro, passing it arguments of different sizes.

7. The Professsor’s Lost Phone
When the professor took the drunkard's walk around campus in Section 10.1.6, we discovered that
he lost his cell phone somewhere along the path. When you simulate the drunken walk, your pro-
gram must drop the phone wherever the professor is standing at some random time interval. Each
time you run the program, the cell phone will be lost at a different time interval (and location).

8. Drunkard’s Walk with Probabilities
When testing the DrunkardWalk program, you may have noticed that the professor doesn’t seem
to wander very far from the starting point. This is no doubt caused by an equal probability of the
professor moving in any direction. Modify the program so there is a 50% probability the professor
will continue to walk in the same direction as he or she did when taking the previous step. There
should be a 10% probability that he or she will reverse direction and a 20% probability that he or
she will turn either right or left. Assign a default starting direction before the loop begins. 

9. Shifting Multiple Doublewords
Create a macro that shifts an array of 32-bit integers a variable number of bits in either direction,
using the SHRD and SHLD instructions. Write a test program that tests your macro by shifting
the same array in both directions and displaying the resulting values. You can assume that the
array is in little-endian order. Here is a sample macro declaration:

mShiftDoublewords MACRO arrayName, direction, numberOfBits

Parameters:
   arrayName Name of the array
   direction Right (R) or Left (L)
   numberOfBits Number of bit positions to shift

10. Three-Operand Instructions
Some computer instruction sets permit arithmetic instructions with three operands. Such opera-
tions sometimes appear in simple virtual assemblers used to introduce students to the concept of

★★★

★★★

★★★★

★★★

★

★★

★★
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assembly language or using intermediate language in compilers. In the following macros,
assume EAX is reserved for macro operations and is not preserved. Other registers modified by
the macro must be preserved. All parameters are signed memory doublewords. Write macros
that simulate the following operations:

a. add3 destination, source1, source2
b. sub3 destination, source1, source2 (destination � source1 � source2)
c. mul3 destination, source1, source2
d. div3 destination, source1, source2 (destination � source1 / source2)

For example, the following macro calls implement the expression x � (w � y) * z:

.data
temp DWORD ?
.code
add3 temp, w, y ; temp = w + y
mul3 x, temp, z ; x = temp * z

Write a program that tests your macros by implementing four arithmetic expressions, each
involving multiple operations.
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11.8 Programming Exercises

11.1 Win32 Console Programming
In earlier chapters, you have no doubt been curious as to how we implemented the book’s link
libraries (Irvine32 and Irvine64). While the libraries are convenient, we would like you to
become more independent so you can either create your own library or improve ours. Therefore,
this chapter shows how to use the 32-bit Microsoft Windows API for console window program-
ming. An Application Programming Interface (API) is a collection of types, constants, and func-
tions that provide a way to manipulate objects using computer code.  We discuss API functions



446 Chapter 11  •  MS-Windows Programming

for text I/O, color selection, dates and times, data file I/O, and memory management. We will
also include a few examples of code written for the book’s 64-bit library, named Irvine64.

You will also learn how to create a graphical windows application with an event processing
loop. We’re not suggesting that you use assembly language for extended graphical applications,
but our examples should help to unmask some of the abstractions that high level languages use
to hide internal details.

Finally, we discuss the memory management capabilities of x86 processors, including linear
and logical addresses, as well as segmentation and paging. Although college-level operating sys-
tems courses cover these topics in greater breadth and detail, this chapter can give you a low-
level introduction to this area.

Why not write graphical applications for MS-Windows? If written in assembly language
or C, graphical programs are long and detailed. For years, C and C++ programmers have
labored over technical details such as graphical device handles, message posting, font met-
rics, device bitmaps, and mapping modes, with the help of excellent authors. There is a
devoted group of assembly language programmers with excellent Websites who do graphical
Windows programming.

To provide some interest to graphical programmers, Section 11.2 introduces 32-bit graphical
programming in a generic sort of way. It’s only a start, but you might be inspired to go further
into the topic. A list of recommended books for further study is given in the summary at the end
of this chapter.

Win32 Platform SDK Closely related to the Win32 API is the Microsoft Platform SDK (Soft-
ware Development Kit), a collection of tools, libraries, sample code, and documentation for creating
MS-Windows applications. Complete documentation is available online at Microsoft’s Web site.
Search for “Platform SDK” at www.msdn.microsoft.com. The Platform SDK is a free download.

11.1.1 Background Information
When a Windows application starts, it creates either a console window or a graphical window.
We have been using the following option with the LINK command in our project files. It tells the
linker to create a console-based application:

/SUBSYSTEM:CONSOLE

A console program looks and behaves like an MS-DOS window, with some enhancements,
which we will see later. The console has a single input buffer and one or more screen buffers: 

• The input buffer contains a queue of input records, each containing data about an input event.
Examples of input events are keyboard input, mouse clicks, and the user’s resizing of the con-
sole window.

• A screen buffer is a two-dimensional array of character and color data that affects the appear-
ance of text in the console window.

Tip: The Irvine32 library is compatible with Win32 API functions, so you can call both from the
same program.

www.msdn.microsoft.com
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Win32 API Reference Information

Functions Throughout this section, we will introduce you to a subset of Win32 API functions
and provide a few simple examples. Many details cannot be covered here because of space limi-
tations. To find out more, visit the Microsoft MSDN Web site (currently located at www.msdn.
microsoft.com). When searching for functions or identifiers, set the Filtered by parameter to
Platform SDK. Also, in the sample programs supplied with this book, the kernel32.txt and
user32.txt files provide comprehensive lists of function names in the kernel32.lib and user32.lib
libraries.

Constants Often when reading documentation for Win32 API functions, you will come
across constant names, such as TIME_ZONE_ID_UNKNOWN. In a few cases, the constant will
already be defined in SmallWin.inc. But if you can’t find it there, look on our book’s Web site.
A header file named WinNT.h, for example, defines TIME_ZONE_ID_UNKNOWN along with
related constants:

#define TIME_ZONE_ID_UNKNOWN  0
#define TIME_ZONE_ID_STANDARD 1
#define TIME_ZONE_ID_DAYLIGHT 2

Using this information, you would add the following to SmallWin.h or your own include file:

TIME_ZONE_ID_UNKNOWN  = 0
TIME_ZONE_ID_STANDARD = 1
TIME_ZONE_ID_DAYLIGHT = 2

Character Sets and Windows API Functions
Two types of character sets are used when calling functions in the Win32 API: the 8-bit ASCII/
ANSI character set and the 16-bit Unicode set (available in all recent versions of Windows).
Win32 functions dealing with text are usually supplied in two versions, one ending in the letter A
(for 8-bit ANSI characters) and the other ending in W (for wide character sets, including Uni-
code). One of these is WriteConsole:

• WriteConsoleA
• WriteConsoleW

Function names ending in W are not supported by Windows 95 or 98. In all recent versions of
Windows, on the other hand, Unicode is the native character set. If you call a function such as
WriteConsoleA, for example, the operating system converts the characters from ANSI to Unicode
and calls WriteConsoleW.

In the Microsoft MSDN Library documentation for functions such as WriteConsole, the
trailing A or W is omitted from the name. In the include file for the programs in this book, we
redefine function names such as WriteConsoleA:

 WriteConsole EQU <WriteConsoleA>

This definition makes it possible to call WriteConsole using its generic name.

www.msdn.microsoft.com
www.msdn.microsoft.com
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High-Level and Low-Level Access
There are two levels of access to the console, permitting tradeoffs between simplicity and com-
plete control:

• High-level console functions read a stream of characters from the console’s input buffer.
They write character data to the console’s screen buffer. Both input and output can be redi-
rected to read from or write to text files.

• Low-level console functions retrieve detailed information about keyboard and mouse events
and user interactions with the console window (dragging, resizing, etc.). These functions also
permit detailed control of the window size and position, as well as text colors.

Windows Data Types
Win32 functions are documented using function declarations for C/C++ programmers. In these
declarations, the types of all function parameters are based either on standard C types or on one
of the MS-Windows predefined types (a partial list is in Table 11-1). It is important to distin-
guish data values from pointers to values. A type name that begins with the letters LP is a long
pointer to some other object. 

SmallWin.inc Include File
SmallWin.inc, created by the author, is an include file containing constant definitions, text
equates, and function prototypes for Win32 API programming. It is automatically included in
programs by Irvine32.inc, which we have been using throughout the book. The file is located in
the \Examples\Lib32 folder where you installed the sample programs from this book. Most of
the constants can be found in Windows.h, a header file used for programming in C and C++.
Despite its name, SmallWin.inc is rather large, so we’ll just show highlights:

DO_NOT_SHARE = 0
NULL = 0
TRUE = 1
FALSE = 0

; Win32 Console handles
STD_INPUT_HANDLE EQU -10
STD_OUTPUT_HANDLE EQU -11
STD_ERROR_HANDLE EQU -12

The HANDLE type, an alias for DWORD, helps our function prototypes to be more consistent
with the Microsoft Win32 documentation:

HANDLE TEXTEQU <DWORD>

Table 11-1  Translating MS-Windows Types to MASM.

MS-Windows 
Type MASM Type Description

BOOL, BOOLEAN DWORD A boolean value (TRUE or FALSE)

BYTE BYTE An 8-bit unsigned integer

CHAR BYTE An 8-bit Windows ANSI character
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SmallWin.inc also includes structure definitions used in Win32 calls. Two are shown here:

COORD STRUCT
X WORD ?
Y WORD ?

COORD ENDS

SYSTEMTIME STRUCT
wYear WORD ?
wMonth WORD ?
wDayOfWeek WORD ?
wDay WORD ?
wHour WORD ?
wMinute WORD ?
wSecond WORD ?
wMilliseconds WORD ?

SYSTEMTIME ENDS

COLORREF DWORD A 32-bit value used as a color value

DWORD DWORD A 32-bit unsigned integer

HANDLE DWORD Handle to an object

HFILE DWORD Handle to a file opened by OpenFile

INT SDWORD A 32-bit signed integer

LONG SDWORD A 32-bit signed integer

LPARAM DWORD Message parameter, used by window procedures and callback functions

LPCSTR PTR BYTE A 32-bit pointer to a constant null-terminated string of 8-bit Windows
(ANSI) characters

LPCVOID DWORD Pointer to a constant of any type

LPSTR PTR BYTE A 32-bit pointer to a null-terminated string of 8-bit Windows (ANSI)
characters

LPCTSTR PTR WORD A 32-bit pointer to a constant character string that is portable for Unicode
and double-byte character sets

LPTSTR PTR WORD A 32-bit pointer to a character string that is portable for Unicode and
double-byte character sets

LPVOID DWORD A 32-bit pointer to an unspecified type

LRESULT DWORD A 32-bit value returned from a window procedure or callback function

SIZE_T DWORD The maximum number of bytes to which a pointer can point 

UINT DWORD A 32-bit unsigned integer

WNDPROC DWORD A 32-bit pointer to a window procedure

WORD WORD A 16-bit unsigned integer

WPARAM DWORD A 32-bit value passed as a parameter to a window procedure or callback
function

Table 11-1  Translating MS-Windows Types to MASM.

MS-Windows 
Type MASM Type Description

(Continued)
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Finally, SmallWin.inc contains function prototypes for all Win32 functions documented in this
chapter.

Console Handles
Nearly all Win32 console functions require you to pass a handle as the first argument. A handle
is a 32-bit unsigned integer that uniquely identifies an object such as a bitmap, drawing pen, or
any input/output device:

STD_INPUT_HANDLE standard input
STD_OUTPUT_HANDLE standard output
STD_ERROR_HANDLE standard error output

The latter two handles are used when writing to the console’s active screen buffer. 

The GetStdHandle function returns a handle to a console stream: input, output, or error out-
put. You need a handle in order to do any input/output in a console-based program. Here is the
function prototype:

GetStdHandle PROTO,
nStdHandle:HANDLE ; handle type

nStdHandle can be STD_INPUT_HANDLE, STD_OUTPUT_HANDLE, or STD_ERROR_
HANDLE. The function returns the handle in EAX, which should be copied into a variable for
safekeeping. Here is a sample call:

.data
inputHandle HANDLE ?
.code

INVOKE GetStdHandle, STD_INPUT_HANDLE
mov inputHandle,eax

11.1.2 Win32 Console Functions
Table 11-2 contains a quick reference to the complete set of Win32 console functions.1 You can
find a complete description of each function in the MSDN library at www.msdn.microsoft.com. 

Tip: Win32 API functions do not preserve EAX, EBX, ECX, and EDX, so you should push and
pop those registers yourself. 

Table 11-2  Win32 Console Functions.

Function Description

AllocConsole Allocates a new console for the calling process. 

CreateConsoleScreenBuffer Creates a console screen buffer. 

ExitProcess Ends a process and all its threads.

FillConsoleOutputAttribute Sets the text and background color attributes for a specified number of char-
acter cells. 

FillConsoleOutputCharacter Writes a character to the screen buffer a specified number of times. 

FlushConsoleInputBuffer Flushes the console input buffer. 

FreeConsole Detaches the calling process from its console. 

www.msdn.microsoft.com
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GenerateConsoleCtrlEvent Sends a specified signal to a console process group that shares the console
associated with the calling process. 

GetConsoleCP Retrieves the input code page used by the console associated with the calling
process.

GetConsoleCursorInfo Retrieves information about the size and visibility of the cursor for the specified
console screen buffer. 

GetConsoleMode Retrieves the current input mode of a console input buffer or the current
output mode of a console screen buffer. 

GetConsoleOutputCP Retrieves the output code page used by the console associated with the calling
process.

GetConsoleScreenBufferInfo Retrieves information about the specified console screen buffer. 

GetConsoleTitle Retrieves the title bar string for the current console window. 

GetConsoleWindow Retrieves the window handle used by the console associated with the calling
process.

GetLargestConsoleWindowSize Retrieves the size of the largest possible console window. 

GetNumberOfConsoleInputEvents Retrieves the number of unread input records in the console’s input buffer. 

GetNumberOfConsoleMouseButtons Retrieves the number of buttons on the mouse used by the current console. 

GetStdHandle Retrieves a handle for the standard input, standard output, or standard error
device. 

HandlerRoutine An application-defined function used with the SetConsoleCtrlHandler 
function.

PeekConsoleInput Reads data from the specified console input buffer without removing it from
the buffer. 

ReadConsole Reads character input from the console input buffer and removes it from the
buffer. 

ReadConsoleInput Reads data from a console input buffer and removes it from the buffer. 

ReadConsoleOutput Reads character and color attribute data from a rectangular block of character
cells in a console screen buffer. 

ReadConsoleOutputAttribute Copies a specified number of foreground and background color attributes
from consecutive cells of a console screen buffer. 

ReadConsoleOutputCharacter Copies a number of characters from consecutive cells of a console screen
buffer. 

ScrollConsoleScreenBuffer Moves a block of data in a screen buffer. 

SetConsoleActiveScreenBuffer Sets the specified screen buffer to be the currently displayed console screen
buffer. 

SetConsoleCP Sets the input code page used by the console associated with the calling process. 

SetConsoleCtrlHandler Adds or removes an application-defined HandlerRoutine from the list of handler
functions for the calling process. 

SetConsoleCursorInfo Sets the size and visibility of the cursor for the specified console screen
buffer. 

SetConsoleCursorPosition Sets the cursor position in the specified console screen buffer. 

Table 11-2  Win32 Console Functions.

Function Description

(Continued)
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11.1.3 Displaying a Message Box
One of the easiest ways to generate output in a Win32 application is to call the MessageBoxA
function:

MessageBoxA PROTO,
hWnd:DWORD, ; handle to window (can be null)
lpText:PTR BYTE, ; string, inside of box
lpCaption:PTR BYTE, ; string, dialog box title
uType:DWORD ; contents and behavior

In console-based applications, you can set hWnd to NULL, indicating that the message box
is not associated with a containing or parent window. The lpText parameter is a pointer to the
null-terminated string that you want to put in the message box. The lpCaption parameter points
to a null-terminated string for the dialog box title. The uType parameter specifies the dialog box
contents and behavior.

Contents and Behavior The uType parameter holds a bit-mapped integer combining three
types of options: buttons to display, icons, and default button choice. Several button combinations
are possible:

• MB_OK
• MB_OKCANCEL
• MB_YESNO
• MB_YESNOCANCEL

SetConsoleMode Sets the input mode of a console’s input buffer or the output mode of a con-
sole screen buffer. 

SetConsoleOutputCP Sets the output code page used by the console associated with the calling process. 

SetConsoleScreenBufferSize Changes the size of the specified console screen buffer. 

SetConsoleTextAttribute Sets the foreground (text) and background color attributes of characters written
to the screen buffer. 

SetConsoleTitle Sets the title bar string for the current console window. 

SetConsoleWindowInfo Sets the current size and position of a console screen buffer’s window. 

SetStdHandle Sets the handle for the standard input, standard output, or standard error
device. 

WriteConsole Writes a character string to a console screen buffer beginning at the current
cursor location. 

WriteConsoleInput Writes data directly to the console input buffer. 

WriteConsoleOutput Writes character and color attribute data to a specified rectangular block of
character cells in a console screen buffer. 

WriteConsoleOutputAttribute Copies a number of foreground and background color attributes to consecutive
cells of a console screen buffer. 

WriteConsoleOutputCharacter Copies a number of characters to consecutive cells of a console screen buffer. 

Table 11-2  Win32 Console Functions.

Function Description

(Continued)
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• MB_RETRYCANCEL
• MB_ABORTRETRYIGNORE
• MB_CANCELTRYCONTINUE

Default Button You can choose which button will be automatically selected if the user presses
the Enter key. The choices are MB_DEFBUTTON1 (the default), MB_DEFBUTTON2, MB_
DEFBUTTON3, and MB_DEFBUTTON4. Buttons are numbered from the left, starting with 1.

Icons Four icon choices are available. Sometimes more than one constant produces the same icon:

• Stop-sign: MB_ICONSTOP, MB_ICONHAND, or MB_ICONERROR
• Question mark (?): MB_ICONQUESTION
• Information symbol (i): MB_ICONINFORMATION, MB_ICONASTERISK
• Exclamation point (!): MB_ICONEXCLAMATION, MB_ICONWARNING

Return Value If MessageBoxA fails, it returns zero. Otherwise, it returns an integer specifying
which button the user clicked when closing the box. The choices are IDABORT, IDCANCEL,
IDCONTINUE, IDIGNORE, IDNO, IDOK, IDRETRY, IDTRYAGAIN, and IDYES. All are
defined in Smallwin.inc.

If you want your message box window to float above all other windows on your desktop,
add the MB_SYSTEMMODAL option to the values you pass to the last argument (the uType
parameter).

Demonstration Program
We will demonstrate a short program that demonstrates some capabilities of the MessageBoxA
function. The first function call displays a warning message:

The second function call displays a question icon and Yes/No buttons. If the user selects the Yes
button, the program could use the return value to select a course of action:

SmallWin.inc redefines MessageBoxA as MessageBox, which seems a more user-friendly name.
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The third function call displays an information icon with three buttons:

The fourth function call displays a stop icon with an OK button:

Program Listing 
Following is a complete listing of a MessageBox demonstration program. The function named
MessageBox is an alias for the MessageBoxA function, so we will use the simpler name:

; Demonstrate MessageBoxA           (MessageBox.asm)

INCLUDE Irvine32.inc
.data
captionW BYTE "Warning",0
warningMsg BYTE "The current operation may take years "

BYTE "to complete.",0

captionQ BYTE "Question",0 
questionMsg BYTE "A matching user account was not found."

BYTE 0dh,0ah,"Do you wish to continue?",0

captionC BYTE "Information",0
infoMsg BYTE "Select Yes to save a backup file "

BYTE "before continuing,",0dh,0ah
BYTE "or click Cancel to stop the operation",0

captionH BYTE "Cannot View User List",0
haltMsg BYTE "This operation not supported by your "

BYTE "user account.",0

.code
main PROC

; Display Exclamation icon with OK button
INVOKE MessageBox, NULL, ADDR warningMsg, 
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ADDR captionW, 
MB_OK + MB_ICONEXCLAMATION

; Display Question icon with Yes/No buttons
INVOKE MessageBox, NULL, ADDR questionMsg, 

ADDR captionQ, MB_YESNO + MB_ICONQUESTION

; interpret the button clicked by the user
cmp eax,IDYES ; YES button clicked?

; Display Information icon with Yes/No/Cancel buttons 
INVOKE MessageBox, NULL, ADDR infoMsg, 
  ADDR captionC, MB_YESNOCANCEL + MB_ICONINFORMATION \
  + MB_DEFBUTTON2

; Display stop icon with OK button
INVOKE MessageBox, NULL, ADDR haltMsg, 

ADDR captionH, 
MB_OK + MB_ICONSTOP

exit
main ENDP
END main

11.1.4 Console Input
By now, you have used the ReadString and ReadChar procedures from the book’s link library
quite a few times. They were designed to be simple and straightforward, so you could concen-
trate on other issues. Both procedures are wrappers around ReadConsole, a Win32 function.
(A wrapper procedure hides some of the details of another procedure.) 

Console Input Buffer The Win32 console has an input buffer containing an array of input
event records. Each input event, such as a keystroke, mouse movement, or mouse-button click,
creates an input record in the console’s input buffer. High-level input functions such as
ReadConsole filter and process the input data, returning only a stream of characters. 

ReadConsole Function
The ReadConsole function provides a convenient way to read text input and put it in a buffer.
Here is the prototype:

ReadConsole PROTO,
hConsoleInput:HANDLE, ; input handle
lpBuffer:PTR BYTE, ; pointer to buffer
nNumberOfCharsToRead:DWORD, ; number of chars to read
lpNumberOfCharsRead:PTR DWORD, ; ptr to num bytes read
lpReserved:DWORD ; (not used)

hConsoleInput is a valid console input handle returned by the GetStdHandle function. The
lpBuffer parameter is the offset of a character array. nNumberOfCharsToRead is a 32-bit
integer specifying the maximum number of characters to read. lpNumberOfCharsRead is a
pointer to a doubleword that permits the function to fill in, when it returns, a count of the
number of characters placed in the buffer. The last parameter is not used, so pass the value
zero.
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When calling ReadConsole, include two extra bytes in your input buffer to hold the end-of-
line characters. If you want the input buffer to contain a null-terminated string, replace the byte
containing 0Dh with a null byte. This is exactly what is done by the ReadString procedure from
Irvine32.lib.

Example Program To read characters entered by the user, call GetStdHandle to get the con-
sole’s standard input handle and call ReadConsole, using the same input handle. The following
ReadConsole program demonstrates the technique. Notice that Win32 API calls are compatible
with the Irvine32 library, so we are able to call DumpRegs at the same time we call Win32
functions:

; Read From the Console         (ReadConsole.asm)

INCLUDE Irvine32.inc
BufSize = 80

.data
buffer BYTE BufSize DUP(?),0,0
stdInHandle HANDLE ?
bytesRead   DWORD ?

.code
main PROC

; Get handle to standard input
INVOKE GetStdHandle, STD_INPUT_HANDLE
mov stdInHandle,eax

; Wait for user input
INVOKE ReadConsole, stdInHandle, ADDR buffer,
  BufSize, ADDR bytesRead, 0

; Display the buffer
mov esi,OFFSET buffer
mov ecx,bytesRead
mov ebx,TYPE buffer
call DumpMem

exit
main ENDP
END main

If the user enters “abcdefg”, the program generates the following output. Nine bytes are inserted
in the buffer: “abcdefg” plus 0Dh and 0Ah, the end-of-line characters inserted when the user
pressed the Enter key. bytesRead equals 9: 

Note: Win32 API functions do not preserve the EAX, EBX, ECX, and EDX registers.

Dump of offset 00404000
-------------------------------
61 62 63 64 65 66 67 0D 0A
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Checking for Errors
If a Windows API function returns an error value (such as NULL), you can call the GetLastError
API function to get more information about the error. It returns a 32-bit integer error code in EAX:

.data
messageId DWORD ?
.code
call GetLastError
mov messageId,eax

MS-Windows has a large number of error codes, so you’ll probably want to obtain a message
string explaining the error. To do that, call the FormatMessage function:

FormatMessage PROTO, ; format a message
dwFlags:DWORD, ; formatting options
lpSource:DWORD, ; location of message def
dwMsgID:DWORD, ; message identifier
dwLanguageID:DWORD, ; language identifier
lpBuffer:PTR BYTE, ; ptr to buffer receiving string
nSize:DWORD, ; buffer size
va_list:DWORD ; pointer to list of arguments

Its parameters are somewhat complicated, so you will have to read the SDK documentation to
get the full picture. Following is a brief listing of the values we find most useful. All are input
parameters except lpBuffer, an output parameter:

• dwFlags, a doubleword integer that holds formatting options, including how to interpret the
lpSource parameter. It specifies how to handle line breaks, as well as the maximum width of a for-
matted output line. The recommended values are FORMAT_MESSAGE_ALLOCATE_BUFFER
and FORMAT_MESSAGE_FROM_SYSTEM

• lpSource, a pointer to the location of the message definition. Given the dwFlags setting we
recommend, set lpSource to NULL (0).

• dwMsgID, the integer doubleword returned by calling GetLastError.
• dwLanguageID, a language identifier. If you set it to zero, the message will be language neu-

tral, or it will correspond to the user’s default locale.
• lpBuffer (output parameter), a pointer to a buffer that receives the null-terminated message

string. Because we use the FORMAT_MESSAGE_ALLOCATE_BUFFER option, the buffer
is allocated automatically.

• nSize, which can be used to specify a buffer to hold the message string. You can set this
parameter to 0 if you use the options for dwFlags suggested above.

• va_list, a pointer to an array of values that can be inserted in a formatted message. Because
we are not formatting error messages, this parameter can be NULL (0).

Following is a sample call to FormatMessage:

.data
messageId DWORD ?
pErrorMsg DWORD ? ; points to error message
.code
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call GetLastError
mov messageId,eax
INVOKE FormatMessage, FORMAT_MESSAGE_ALLOCATE_BUFFER + \

FORMAT_MESSAGE_FROM_SYSTEM, NULL, messageID, 0,
ADDR pErrorMsg, 0, NULL

After calling FormatMessage, call LocalFree to release the storage allocated by FormatMessage:

 INVOKE LocalFree, pErrorMsg

WriteWindowsMsg The Irvine32 library contains the following WriteWindowsMsg proce-
dure, which encapsulates the message-handling details:

;----------------------------------------------------
WriteWindowsMsg PROC USES eax edx
;
; Displays a string containing the most recent error 
; generated by MS-Windows.
; Receives: nothing
; Returns: nothing
;----------------------------------------------------
.data
WriteWindowsMsg_1 BYTE "Error ",0
WriteWindowsMsg_2 BYTE ": ",0
pErrorMsg DWORD ? ; points to error message
messageId DWORD ?
.code

call GetLastError
mov messageId,eax

; Display the error number.
mov edx,OFFSET WriteWindowsMsg_1
call WriteString
call WriteDec
mov edx,OFFSET WriteWindowsMsg_2
call WriteString

; Get the corresponding message string.
INVOKE FormatMessage, FORMAT_MESSAGE_ALLOCATE_BUFFER + \
  FORMAT_MESSAGE_FROM_SYSTEM, NULL, messageID, NULL,
  ADDR pErrorMsg, NULL, NULL

; Display the error message generated by MS-Windows.
mov edx,pErrorMsg
call WriteString

; Free the error message string.
INVOKE LocalFree, pErrorMsg

ret
WriteWindowsMsg ENDP
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Single-Character Input
Single-character input in console mode is a little tricky. MS-Windows provides a device driver
for the currently installed keyboard. When a key is pressed, an 8-bit scan code is transmitted to
the computer’s keyboard port. When the key is released, a second scan code is transmitted. MS-
Windows uses a device driver program to translate the scan code into a 16-bit virtual-key code,
a device-independent value defined by MS-Windows that identifies the key’s purpose. A message
is created by MS-Windows containing the scan code, the virtual-key code, and other related
information. The message is placed in the MS-Windows message queue, eventually finding its
way to the currently executing program thread (which we identify by the console input handle).
If you would like to learn more about the keyboard input process, read the About Keyboard
Input topic in the Platform SDK documentation. For a list of virtual key constants, see the
VirtualKeys.inc file in the book’s \Examples\ch11 directory.

Irvine32 Keyboard Procedures The Irvine32 library has two related procedures:

• ReadChar waits for an ASCII character to be typed at the keyboard and returns the character
in AL.

• The ReadKey procedure performs a no-wait keyboard check. If no key is waiting in the con-
sole input buffer, the Zero flag is set. If a key is found, the Zero flag is clear and AL contains
either zero or an ASCII code. The upper halves of EAX and EDX are overwritten. 

In ReadKey, if AL contains zero, the user may have pressed a special key (function key, cursor
arrow, etc.). The AH register contains the keyboard scan code, which you can match to the list of
keyboard keys on the facing page inside the front cover of this book. DX contains the virtual-key
code, and EBX contains state information about the states of the keyboard control keys. See Table
11-3 for a list of control key values. After calling ReadKey, you can use the TEST instruction to
check for various key values. The implementation of ReadKey is somewhat long, so we will not
show it here. You can view it in the Irvine32.asm file in the book’s \Examples\Lib32 folder. 

Table 11-3  Keyboard Control Key State Values.

Value Meaning

CAPSLOCK_ON The CAPS LOCK light is on. 

ENHANCED_KEY The key is enhanced. 

LEFT_ALT_PRESSED The left ALT key is pressed. 

LEFT_CTRL_PRESSED The left CTRL key is pressed. 

NUMLOCK_ON The NUM LOCK light is on. 

RIGHT_ALT_PRESSED The right ALT key is pressed. 

RIGHT_CTRL_PRESSED The right CTRL key is pressed. 

SCROLLLOCK_ON The SCROLL LOCK light is on. 

SHIFT_PRESSED The SHIFT key is pressed. 
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ReadKey Test Program The following program tests ReadKey by waiting for a keypress
and then reporting whether or not the CapsLock key is down. As we mentioned in Chapter 5,
you should include a delay factor when calling ReadKey to allow time for MS-Windows to
process its message loop:

; Testing ReadKey (TestReadkey.asm)

INCLUDE Irvine32.inc
INCLUDE Macros.inc

.code
main PROC
L1: mov eax,10 ; delay for msg processing

call Delay
call ReadKey ; wait for a keypress
jz L1

test ebx,CAPSLOCK_ON
jz L2
mWrite <"CapsLock is ON",0dh,0ah>
jmp L3

L2: mWrite <"CapsLock is OFF",0dh,0ah>

L3: exit
main ENDP
END main

Getting the Keyboard State
You can test the state of individual keyboard keys to find out which are currently pressed. Call
the GetKeyState API function. 

GetKeyState PROTO, nVirtKey:DWORD

Pass it a virtual key value, such as the ones identified by Table 11-4. Your program must test the
value returned in EAX, as indicated by the same table. 

The following example program demonstrates GetKeyState by checking the states of the Num-
Lock and Left Shift keys:

; Keyboard Toggle Keys (Keybd.asm)

INCLUDE Irvine32.inc
INCLUDE Macros.inc

; GetKeyState sets bit 0 in EAX if a toggle key is 
; currently on (CapsLock, NumLock, ScrollLock).
; It sets the high bit of EAX if the specified key is
; currently down.

.code
main PROC

INVOKE GetKeyState, VK_NUMLOCK
test al,1
.IF !Zero?
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  mWrite <"The NumLock key is ON",0dh,0ah>
.ENDIF

INVOKE GetKeyState, VK_LSHIFT
test eax,80000000h
.IF !Zero?
  mWrite <"The Left Shift key is currently DOWN",0dh,0ah>
.ENDIF

exit
main ENDP
END main

11.1.5 Console Output
In earlier chapters we tried to make console output as simple as possible. As far back as Chapter 5,
the WriteString procedure in the Irvine32 link library required only a single argument, the offset
of a string in EDX. It turns out that WriteString is actually a wrapper around a more detailed call to
a Win32 function named WriteConsole.

In this chapter, however, you learn how to make direct calls to Win32 functions such as
WriteConsole and WriteConsoleOutputCharacter. Direct calls require you to learn more details,
but they also offer you more flexibility than the Irvine32 library procedures.

Data Structures
Several of the Win32 console functions use predefined data structures, including COORD and
SMALL_RECT. The COORD structure holds the coordinates of a character cell in the console
screen buffer. The origin of the coordinate system (0,0) is at the top left cell:

COORD STRUCT
X WORD ?
Y WORD ?

COORD ENDS

Table 11-4  Testing Keys with GetKeyState.

Key
Virtual Key 

Symbol
Bit to Test 

in EAX

NumLock VK_NUMLOCK 0

Scroll Lock VK_SCROLL 0

Left Shift VK_LSHIFT 15

Right Shift VK_tRSHIFT 15

Left Ctrl VK_LCONTROL 15

Right Ctrl VK_RCONTROL 15

Left Menu VK_LMENU 15

Right Menu VK_RMENU 15
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The SMALL_RECT structure holds the upper left and lower right corners of a rectangle. It spec-
ifies screen buffer character cells in the console window:

SMALL_RECT STRUCT
Left   WORD ?
Top    WORD ?
Right  WORD ?
Bottom WORD ?

SMALL_RECT ENDS

WriteConsole Function
The WriteConsole function writes a string to the console window at the current cursor position
and leaves the cursor just past the last character written. It acts upon standard ASCII control char-
acters such as tab, carriage return, and line feed. The string does not have to be null-terminated.
Here is the function prototype:

WriteConsole PROTO,
hConsoleOutput:HANDLE,
lpBuffer:PTR BYTE,
nNumberOfCharsToWrite:DWORD,
lpNumberOfCharsWritten:PTR DWORD,
lpReserved:DWORD

hConsoleOutput is the console output stream handle; lpBuffer is a pointer to the array of charac-
ters you want to write; nNumberOfCharsToWrite holds the array length; lpNumberOfCharsWrit-
ten points to an integer assigned the number of bytes actually written when the function returns.
The last parameter is not used, so set it to zero.

Example Program: Console1
The following program, Console1.asm, demonstrates the GetStdHandle, ExitProcess, and
WriteConsole functions by writing a string to the console window:

; Win32 Console Example #1 (Console1.asm)

; This program calls the following Win32 Console functions:
; GetStdHandle, ExitProcess, WriteConsole

INCLUDE Irvine32.inc

.data
endl EQU <0dh,0ah> ; end of line sequence
message LABEL BYTE

BYTE "This program is a simple demonstration of"
BYTE "console mode output, using the GetStdHandle"
BYTE "and WriteConsole functions.",endl

messageSize DWORD ($ - message)

consoleHandle HANDLE 0 ; handle to standard output device
bytesWritten  DWORD ? ; number of bytes written

.code
main PROC
  ; Get the console output handle:
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INVOKE GetStdHandle, STD_OUTPUT_HANDLE
mov consoleHandle,eax

  ; Write a string to the console:
INVOKE WriteConsole,
  consoleHandle, ; console output handle
  ADDR message,       ; string pointer
  messageSize, ; string length
  ADDR bytesWritten, ; returns num bytes written
  0 ; not used

INVOKE ExitProcess,0
main ENDP
END main

The program produces the following output:

WriteConsoleOutputCharacter Function
The WriteConsoleOutputCharacter function copies an array of characters to consecutive cells
of the console screen buffer, beginning at a specified location. Here is the prototype:

WriteConsoleOutputCharacter PROTO,
hConsoleOutput:HANDLE, ; console output handle
lpCharacter:PTR BYTE, ; pointer to buffer
nLength:DWORD, ; size of buffer
dwWriteCoord:COORD, ; first cell coordinates
lpNumberOfCharsWritten:PTR DWORD ; output count

If the text reaches the end of a line, it wraps around. The attribute values in the screen buffer are
not changed. If the function cannot write the characters, it returns zero. ASCII control codes
such as tab, carriage return, and line feed are ignored.

11.1.6 Reading and Writing Files

CreateFile Function
The CreateFile function either creates a new file or opens an existing file. If successful, it returns a
handle to the open file; otherwise, it returns a special constant named INVALID_HANDLE_VALUE.
Here is the prototype:

CreateFile PROTO, ; create new file
lpFilename:PTR BYTE, ; ptr to filename
dwDesiredAccess:DWORD, ; access mode
dwShareMode:DWORD, ; share mode
lpSecurityAttributes:DWORD,  ; ptr security attrib
dwCreationDisposition:DWORD, ; file creation options
dwFlagsAndAttributes:DWORD, ; file attributes
hTemplateFile:DWORD ; handle to template file

The parameters are described in Table 11-5. The return value is zero if the function fails.

This program is a simple demonstration of console mode output, using 
the GetStdHandle and WriteConsole functions.



464 Chapter 11  •  MS-Windows Programming

dwDesiredAccess The dwDesiredAccess parameter lets you specify read access, write
access, read/write access, or device query access to the file. Choose from the values listed in
Table 11-6 or from a large set of specific flag values not listed here. (Search for CreateFile in the
Platform SDK documentation). 

dwCreationDisposition The dwCreationDisposition parameter specifies which action to take
on files that exist and which action to take when files do not exist. Select one of the values in
Table 11-7.

Table 11-5  CreateFile Parameters.

Parameter Description

lpFileName Points to a null-terminated string containing either a partial or a fully qual-
ified filename (drive:\ path \ filename).

dwDesiredAccess Specifies how the file will be accessed (reading or writing).

dwShareMode Controls the ability for multiple programs to access the file while it is
open.

lpSecurityAttributes Points to a security structure controlling security rights.

dwCreationDisposition Specifies what action to take when a file exists or does not exist.

dwFlagsAndAttributes Holds bit flags specifying file attributes such as archive, encrypted, hidden,
normal, system, and temporary.

hTemplateFile Contains an optional handle to a template file that supplies file attributes
and extended attributes for the file being created; when not using this
parameter, set it to zero.

Table 11-6  dwDesiredAccess Parameter Options.

Value Meaning

0 Specifies device query access to the object. An application can query device
attributes without accessing the device, or it can check for the existence of a file.

GENERIC_READ Specifies read access to the object. Data can be read from the file, and the file
pointer can be moved. Combine with GENERIC_WRITE for read/write access.

GENERIC_WRITE Specifies write access to the object. Data can be written to the file, and the file
pointer can be moved. Combine with GENERIC_READ for read/write access. 

Table 11-7  dwCreationDisposition Parameter Options.

Value Meaning

CREATE_NEW Creates a new file. Requires setting the dwDesiredAccess parameter to
GENERIC_WRITE. The function fails if the file already exists. 

CREATE_ALWAYS Creates a new file. If the file exists, the function overwrites the file, clears the
existing attributes, and combines the file attributes and flags specified by the
attributes parameter with the predefined constant FILE_ATTRIBUTE_ARCHIVE.
Requires setting the dwDesiredAccess parameter to GENERIC_WRITE. 
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OPEN_EXISTING Opens the file. The function fails if the file does not exist. May be used for read-
ing from and/or writing to the file.

OPEN_ALWAYS Opens the file if it exists. If the file does not exist, the function creates the file as
if CreationDisposition were CREATE_NEW. 

TRUNCATE_EXISTING Opens the file. Once opened, the file is truncated to size zero. Requires setting
the dwDesiredAccess parameter to GENERIC_WRITE. This function fails if
the file does not exist. 

Table 11-7  dwCreationDisposition Parameter Options.

Value Meaning

Table 11-8 lists the more commonly used values permitted in the dwFlagsAndAttributes
parameter. (For a complete list, search for CreateFile in the online Microsoft documentation.)
Any combination of the attributes is acceptable, except that all other file attributes override
FILE_ATTRIBUTE_NORMAL. The values map to powers of 2, so you can use the assembly
time OR operator or + operator to combine them into a single argument:

FILE_ATTRIBUTE_HIDDEN OR FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN + FILE_ATTRIBUTE_READONLY

Examples The following examples are for illustrative purposes only, to show how you might
create and open files. See the online Microsoft documentation for CreateFile to learn about the
many available options:

• Open an existing file for reading (input):

INVOKE CreateFile,
ADDR filename, ; ptr to filename
GENERIC_READ, ; read from the file
DO_NOT_SHARE, ; share mode
NULL, ; ptr to security attributes
OPEN_EXISTING, ; open an existing file
FILE_ATTRIBUTE_NORMAL, ; normal file attribute
0 ; not used

Table 11-8  Selected FlagsAndAttributes Values.

Attribute Meaning

FILE_ATTRIBUTE_ARCHIVE The file should be archived. Applications use this attribute to mark
files for backup or removal. 

FILE_ATTRIBUTE_HIDDEN The file is hidden. It is not to be included in an ordinary directory listing. 

FILE_ATTRIBUTE_NORMAL The file has no other attributes set. This attribute is valid only if used alone. 

FILE_ATTRIBUTE_READONLY The file is read only. Applications can read the file but cannot write to
it or delete it. 

FILE_ATTRIBUTE_TEMPORARY The file is being used for temporary storage. 

(Continued)
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• Open an existing file for writing (output). Once the file is open, we could write over existing
data or append new data to the file by moving the file pointer to the end (see SetFilePointer,
Section 11.1.6):

INVOKE CreateFile,
ADDR filename,
GENERIC_WRITE, ; write to the file
DO_NOT_SHARE,
NULL,
OPEN_EXISTING, ; file must exist
FILE_ATTRIBUTE_NORMAL,
0

• Create a new file with normal attributes, erasing any existing file by the same name:

INVOKE CreateFile,
ADDR filename,
GENERIC_WRITE, ; write to the file
DO_NOT_SHARE,
NULL,
CREATE_ALWAYS, ; overwrite existing file
FILE_ATTRIBUTE_NORMAL,
0

• Create a new file if the file does not already exist; otherwise, open the existing file for output:

INVOKE CreateFile,
ADDR filename,
GENERIC_WRITE, ; write to the file
DO_NOT_SHARE,
NULL,
CREATE_NEW, ; don't erase existing file
FILE_ATTRIBUTE_NORMAL,
0

(The constants named DO_NOT_SHARE and NULL are defined in the SmallWin.inc include
file, which is automatically included by Irvine32.inc.)

CloseHandle Function
The CloseHandle function closes an open object handle. Its prototype is

CloseHandle PROTO, 
  hObject:HANDLE ; handle to object

You can use CloseHandle to close a currently open file handle. The return value is zero if the
function fails.

ReadFile Function
The ReadFile function reads text from an input file. Here is the prototype:
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ReadFile PROTO,
hFile:HANDLE, ; input handle
lpBuffer:PTR BYTE, ; ptr to buffer
nNumberOfBytesToRead:DWORD, ; num bytes to read
lpNumberOfBytesRead:PTR DWORD, ; bytes actually read
lpOverlapped:PTR DWORD ; ptr to asynch info

The hFile parameter is an open file handle returned by CreateFile; lpBuffer points to a buffer
that receives data read from the file; nNumberOfBytesToRead specifies the maximum number of
bytes to read from the file; lpNumberOfBytesRead points to an integer indicating the number of
bytes actually read when the function returns; lpOverlapped should be set to NULL (0) for syn-
chronous reading (which we use). The return value is zero if the function fails. 

If called more than once on the same open file handle, ReadFile remembers where it last fin-
ished reading and reads from that point on. In other words, it maintains an internal pointer to the
current position in the file. ReadFile can also run in asynchronous mode, meaning that the call-
ing program does not wait for the read operation to finish. 

WriteFile Function
The WriteFile function writes data to a file, using an output handle. The handle can be the
screen buffer handle, or it can be the one assigned to a text file. The function starts writing data
to the file at the position indicated by the file’s internal position pointer. After the write operation
has been completed, the file’s position pointer is adjusted by the number of bytes actually written.
Here is the function prototype:

WriteFile PROTO,
hFile:HANDLE, ; output handle
lpBuffer:PTR BYTE, ; pointer to buffer
nNumberOfBytesToWrite:DWORD, ; size of buffer
lpNumberOfBytesWritten:PTR DWORD, ; num bytes written
lpOverlapped:PTR DWORD ; ptr to asynch info

hFile is a handle to a previously opened file; lpBuffer points to a buffer holding the data written
to the file; nNumberOfBytesToWrite specifies how many bytes to write to the file; lpNumberOf-
BytesWritten points to an integer that specifies the number of bytes actually written after the
function executes; and lpOverlapped should be set to NULL for synchronous operation. The
return value is zero if the function fails.

SetFilePointer Function
The SetFilePointer function moves the position pointer of an open file. This function can be
used to append data to a file or to perform random-access record processing:

SetFilePointer PROTO,
hFile:HANDLE, ; file handle
lDistanceToMove:SDWORD, ; bytes to move pointer
lpDistanceToMoveHigh:PTR SDWORD, ; ptr bytes to move, high
dwMoveMethod:DWORD ; starting point
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The return value is zero if the function fails. dwMoveMethod specifies the starting point for mov-
ing the file pointer, which is selected from three predefined symbols: FILE_BEGIN,
FILE_CURRENT, and FILE_END. The distance itself is a 64-bit signed integer value, divided
into two parts:

• lpDistanceToMove: the lower 32 bits
• pDistanceToMoveHigh: a pointer to a variable containing the upper 32 bits

If lpDistanceToMoveHigh is null, only the value in lpDistanceToMove is used to move the file
pointer. For example, the following code prepares to append to the end of a file:

INVOKE SetFilePointer,
fileHandle, ; file handle
0, ; distance low
0, ; distance high
FILE_END ; move method

See the AppendFile.asm program.

11.1.7 File I/O in the Irvine32 Library
The Irvine32 library contains a few simplified procedures for file input/output, which we docu-
mented in Chapter 5. The procedures are wrappers around the Win32 API functions we have
described in the current chapter. The following source code lists CreateOutputFile, OpenFile,
WriteToFile, ReadFromFile, and CloseFile:

;------------------------------------------------------
CreateOutputFile PROC
;
; Creates a new file and opens it in output mode.
; Receives: EDX points to the filename.
; Returns: If the file was created successfully, EAX 
;   contains a valid file handle. Otherwise, EAX
;   equals INVALID_HANDLE_VALUE.
;------------------------------------------------------

INVOKE CreateFile,
  edx, GENERIC_WRITE, DO_NOT_SHARE, NULL,
  CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0
ret

CreateOutputFile ENDP

;------------------------------------------------------
OpenFile PROC
;
; Opens a new text file and opens for input.
; Receives: EDX points to the filename.
; Returns: If the file was opened successfully, EAX 
; contains a valid file handle. Otherwise, EAX equals 
; INVALID_HANDLE_VALUE.
;------------------------------------------------------

INVOKE CreateFile,
  edx, GENERIC_READ, DO_NOT_SHARE, NULL,
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  OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0
ret

OpenFile ENDP

;--------------------------------------------------------
WriteToFile PROC
;
; Writes a buffer to an output file.
; Receives: EAX = file handle, EDX = buffer offset,
;    ECX = number of bytes to write
; Returns: EAX = number of bytes written to the file.
; If the value returned in EAX is less than the 
; argument passed in ECX, an error likely occurred.
;--------------------------------------------------------
.data
WriteToFile_1 DWORD ?    ; number of bytes written
.code

INVOKE WriteFile, ; write buffer to file
eax, ; file handle
edx, ; buffer pointer
ecx, ; number of bytes to write
ADDR WriteToFile_1, ; number of bytes written
0 ; overlapped execution flag

mov eax,WriteToFile_1 ; return value
ret

WriteToFile ENDP

;--------------------------------------------------------
ReadFromFile PROC
;
; Reads an input file into a buffer. 
; Receives: EAX = file handle, EDX = buffer offset,
;    ECX = number of bytes to read
; Returns: If CF = 0, EAX = number of bytes read; if
;    CF = 1, EAX contains the system error code returned
;    by the GetLastError Win32 API function.
;--------------------------------------------------------
.data
ReadFromFile_1 DWORD ?    ; number of bytes read
.code

INVOKE ReadFile,
    eax, ; file handle
    edx, ; buffer pointer
    ecx, ; max bytes to read
    ADDR ReadFromFile_1, ; number of bytes read
    0 ; overlapped execution flag
mov eax,ReadFromFile_1
ret

ReadFromFile ENDP

;--------------------------------------------------------
CloseFile PROC
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;
; Closes a file using its handle as an identifier. 
; Receives: EAX = file handle 
; Returns: EAX = nonzero if the file is successfully 
;   closed.
;--------------------------------------------------------

INVOKE CloseHandle, eax
ret

CloseFile ENDP

11.1.8 Testing the File I/O Procedures

CreateFile Program Example
The following program creates a file in output mode, asks the user to enter some text, writes the
text to the output file, reports the number of bytes written, and closes the file. It checks for errors
after attempting to create the file:

; Creating a File            (CreateFile.asm)

INCLUDE Irvine32.inc

BUFFER_SIZE = 501
.data
buffer BYTE BUFFER_SIZE DUP(?)
filename     BYTE "output.txt",0
fileHandle   HANDLE ?
stringLength DWORD ?
bytesWritten DWORD ?
str1 BYTE "Cannot create file",0dh,0ah,0
str2 BYTE "Bytes written to file [output.txt]:",0
str3 BYTE "Enter up to 500 characters and press"
     BYTE "[Enter]: ",0dh,0ah,0

.code
main PROC
; Create a new text file.

mov edx,OFFSET filename
call CreateOutputFile
mov fileHandle,eax

; Check for errors.
cmp eax, INVALID_HANDLE_VALUE ; error found?
jne file_ok ; no: skip
mov edx,OFFSET str1 ; display error
call WriteString
jmp quit

file_ok:

; Ask the user to input a string.
mov edx,OFFSET str3 ; "Enter up to ...."
call WriteString
mov ecx,BUFFER_SIZE ; Input a string
mov edx,OFFSET buffer
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call ReadString
mov stringLength,eax ; counts chars entered

; Write the buffer to the output file.
mov eax,fileHandle
mov edx,OFFSET buffer
mov ecx,stringLength
call WriteToFile
mov bytesWritten,eax ; save return value
call CloseFile

; Display the return value.
mov edx,OFFSET str2 ; "Bytes written"
call WriteString
mov eax,bytesWritten
call WriteDec
call Crlf

quit:
exit

main ENDP
END main

ReadFile Program Example
The following program opens a file for input, reads its contents into a buffer, and displays the
buffer. All procedures are called from the Irvine32 library:

; Reading a File                      (ReadFile.asm)

; Opens, reads, and displays a text file using
; procedures from Irvine32.lib. 

INCLUDE Irvine32.inc
INCLUDE macros.inc
BUFFER_SIZE = 5000

.data
buffer BYTE BUFFER_SIZE DUP(?)
filename    BYTE 80 DUP(0)
fileHandle  HANDLE ?

.code
main PROC

; Let user input a filename.
mWrite "Enter an input filename: "
mov edx,OFFSET filename
mov ecx,SIZEOF filename
call ReadString

; Open the file for input.
mov edx,OFFSET filename
call OpenInputFile
mov fileHandle,eax

; Check for errors.
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cmp eax,INVALID_HANDLE_VALUE ; error opening file?
jne file_ok ; no: skip
mWrite <"Cannot open file",0dh,0ah>
jmp quit ; and quit

file_ok:

; Read the file into a buffer.
mov edx,OFFSET buffer
mov ecx,BUFFER_SIZE
call ReadFromFile
jnc check_buffer_size ; error reading?
mWrite "Error reading file. " ; yes: show error message
call WriteWindowsMsg
jmp close_file

check_buffer_size:
cmp eax,BUFFER_SIZE ; buffer large enough?
jb buf_size_ok ; yes
mWrite <"Error: Buffer too small for the file",0dh,0ah>
jmp quit ; and quit

buf_size_ok:
mov buffer[eax],0 ; insert null terminator
mWrite "File size: "
call WriteDec ; display file size
call Crlf

; Display the buffer.
mWrite <"Buffer:",0dh,0ah,0dh,0ah>
mov edx,OFFSET buffer ; display the buffer
call WriteString
call Crlf

close_file:
mov eax,fileHandle
call CloseFile

quit:
exit

main ENDP
END main

The program reports an error if the file cannot be opened:

It reports an error if it cannot read from the file. Suppose, for example, a bug in the program used
the wrong file handle when reading the file:

Enter an input filename: crazy.txt
Cannot open file

Enter an input filename: infile.txt
Error reading file. Error 6: The handle is invalid.
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The buffer might be too small to hold the file:

11.1.9 Console Window Manipulation
The Win32 API provides considerable control over the console window and its buffer. Figure 11-1
shows that the screen buffer can be larger than the number of lines currently displayed in the con-
sole window. The console window acts as a “viewport,” showing part of the buffer. 

Figure 11–1 Screen buffer and console window.

Several functions affect the console window and its position relative to the screen buffer: 

• SetConsoleWindowInfo sets the size and position of the console window relative to the
screen buffer. 

• GetConsoleScreenBufferInfo returns (among other things) the rectangle coordinates of the
console window relative to the screen buffer. 

• SetConsoleCursorPosition sets the cursor position to any location within the screen buffer;
if that area is not visible, the console window is shifted to make the cursor visible. 

• ScrollConsoleScreenBuffer moves some or all of the text within the screen buffer, which
can affect the displayed text in the console window.

SetConsoleTitle
The SetConsoleTitle function lets you change the console window’s title. Here’s a sample:

.data
titleStr BYTE "Console title",0
.code
INVOKE SetConsoleTitle, ADDR titleStr

Enter an input filename: infile.txt
Error: Buffer too small for the file

text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text

text text text text
text text text text
text text text text
text text text text
text text text text
text text text text

text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text
text text text text text text text text text

Active screen
buffer

Console window
text text text text text
text text text text text
text text text text text
text text text text text
text text text text text
text text text text text
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GetConsoleScreenBufferInfo
The GetConsoleScreenBufferInfo function returns information about the current state of the
console window. It has two parameters: a handle to the console screen, and a pointer to a struc-
ture that is filled in by the function:

GetConsoleScreenBufferInfo PROTO,
hConsoleOutput:HANDLE,
lpConsoleScreenBufferInfo:PTR CONSOLE_SCREEN_BUFFER_INFO

This is the CONSOLE_SCREEN_BUFFER_INFO structure:

CONSOLE_SCREEN_BUFFER_INFO STRUCT
dwSize                COORD <>
dwCursorPosition      COORD <>
wAttributes           WORD ?
srWindow              SMALL_RECT <>
dwMaximumWindowSize   COORD <>

CONSOLE_SCREEN_BUFFER_INFO ENDS

dwSize returns the size of the screen buffer, in character columns and rows. dwCursorPosition
returns the location of the cursor. Both fields are COORD structures. wAttributes returns the
foreground and background colors of characters written to the console by functions such as
WriteConsole and WriteFile. srWindow returns the coordinates of the console window relative
to the screen buffer. drMaximumWindowSize returns the maximum size of the console window,
based on the current screen buffer size, font, and video display size. The following is a sample
call to the function:

.data
consoleInfo CONSOLE_SCREEN_BUFFER_INFO <>
outHandle HANDLE ?
.code
INVOKE GetConsoleScreenBufferInfo, outHandle,
   ADDR consoleInfo

Figure 11-2 shows a sample of the structure data shown by the Microsoft Visual Studio debugger.

SetConsoleWindowInfo Function
The SetConsoleWindowInfo function lets you set the size and position of the console window
relative to its screen buffer. Following is its function prototype:

SetConsoleWindowInfo PROTO,
hConsoleOutput:HANDLE, ; screen buffer handle
bAbsolute:DWORD, ; coordinate type
lpConsoleWindow:PTR SMALL_RECT ; ptr to window rectangle

bAbsolute indicates how the coordinates in the structure pointed to by lpConsoleWindow are to
be used. If bAbsolute is true, the coordinates specify the new upper left and lower right corners
of the console window. If bAbsolute is false, the coordinates will be added to the current window
coordinates.
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Figure 11–2 CONSOLE_SCREEN_BUFFER_INFO structure.

The following Scroll.asm program writes 50 lines of text to the screen buffer. It then resizes
and repositions the console window, effectively scrolling the text backward. It uses the
SetConsoleWindowInfo function:

; Scrolling the Console Window (Scroll.asm)

INCLUDE Irvine32.inc

.data
message BYTE ":  This line of text was written "
        BYTE "to the screen buffer",0dh,0ah
messageSize DWORD ($-message)

outHandle     HANDLE 0      ; standard output handle
bytesWritten  DWORD ?  ; number of bytes written
lineNum       DWORD 0
windowRect    SMALL_RECT <0,0,60,11>  ; left,top,right,bottom

.code
main PROC

INVOKE GetStdHandle, STD_OUTPUT_HANDLE
mov outHandle,eax

.REPEAT
  mov eax,lineNum
  call WriteDec ; display each line number

INVOKE WriteConsole,
  outHandle, ; console output handle
  ADDR message,       ; string pointer
  messageSize, ; string length
  ADDR bytesWritten, ; returns num bytes written
  0 ; not used

  inc  lineNum ; next line number
.UNTIL lineNum > 50
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; Resize and reposition the console window relative to the
; screen buffer.

INVOKE SetConsoleWindowInfo,
  outHandle,
  TRUE,
  ADDR windowRect ; window rectangle

call Readchar ; wait for a key
call Clrscr ; clear the screen buffer
call Readchar ; wait for a second key

INVOKE ExitProcess,0
main ENDP
END main

It is best to run this program directly from MS-Windows Explorer or a command prompt rather
than an integrated editor environment. Otherwise, the editor may affect the behavior and appear-
ance of the console window. You must press a key twice at the end: once to clear the screen
buffer and a second time to end the program. 

SetConsoleScreenBufferSize Function
The SetConsoleScreenBufferSize function lets you set the screen buffer size to X columns by
Y rows. Here is the prototype:

SetConsoleScreenBufferSize PROTO,
hConsoleOutput:HANDLE, ; handle to screen buffer
dwSize:COORD ; new screen buffer size

11.1.10 Controlling the Cursor
The Win32 API provides functions to set the cursor size, visibility, and screen location. An
important data structure related to these functions is CONSOLE_CURSOR_INFO, which con-
tains information about the console’s cursor size and visibility:

CONSOLE_CURSOR_INFO STRUCT
dwSize   DWORD ?
bVisible DWORD ?

CONSOLE_CURSOR_INFO ENDS

dwSize is the percentage (1 to 100) of the character cell filled by the cursor. bVisible equals
TRUE (1) if the cursor is visible.

GetConsoleCursorInfo Function
The GetConsoleCursorInfo function returns the size and visibility of the console cursor. Pass it
a pointer to a CONSOLE_CURSOR_INFO structure:

GetConsoleCursorInfo PROTO,
hConsoleOutput:HANDLE,
lpConsoleCursorInfo:PTR CONSOLE_CURSOR_INFO

By default, the cursor size is 25, indicating that the character cell is 25% filled by the cursor.
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SetConsoleCursorInfo Function
The SetConsoleCursorInfo function sets the size and visibility of the cursor. Pass it a pointer to
a CONSOLE_CURSOR_INFO structure:

SetConsoleCursorInfo PROTO,
hConsoleOutput:HANDLE,
lpConsoleCursorInfo:PTR CONSOLE_CURSOR_INFO

SetConsoleCursorPosition
The SetConsoleCursorPostion function sets the X, Y position of the cursor. Pass it a COORD
structure and the console output handle:

SetConsoleCursorPosition PROTO,
hConsoleOutput:DWORD, ; input mode handle
dwCursorPosition:COORD ; screen X,Y coordinates

11.1.11 Controlling the Text Color
There are two ways to control the color of text in a console window. You can change the current text
color by calling SetConsoleTextAttribute, which affects all subsequent text output to the console.
Alternatively, you can set the attributes of specific cells by calling WriteConsoleOutputAttribute.
The GetConsoleScreenBufferInfo function (Section 11.1.9) returns the current screen colors, along
with other console information.

SetConsoleTextAttribute Function
The SetConsoleTextAttribute function lets you set the foreground and background colors for
all subsequent text output to the console window. Here is its prototype:

SetConsoleTextAttribute PROTO,
hConsoleOutput:HANDLE, ; console output handle
wAttributes:WORD ; color attribute

The color value is stored in the low-order byte of the wAttributes parameter.

WriteConsoleOutputAttribute Function
The WriteConsoleOutputAttribute function copies an array of attribute values to consecutive
cells of the console screen buffer, beginning at a specified location. Here is the prototype:

WriteConsoleOutputAttribute PROTO,
hConsoleOutput:DWORD, ; output handle
lpAttribute:PTR WORD, ; write attributes
nLength:DWORD, ; number of cells
dwWriteCoord:COORD, ; first cell coordinates
lpNumberOfAttrsWritten:PTR DWORD ; output count

lpAttribute points to an array of attributes in which the low-order byte of each contains the color;
nLength is the length of the array; dwWriteCoord is the starting screen cell to receive the
attributes; and lpNumberOfAttrsWritten points to a variable that will hold the number of cells
written.
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Example: Writing Text Colors
To demonstrate the use of colors and attributes, the WriteColors.asm program creates an array of
characters and an array of attributes, one for each character. It calls WriteConsoleOutputAttribute
to copy the attributes to the screen buffer and WriteConsoleOutputCharacter to copy the characters
to the same screen buffer cells:

; Writing Text Colors              (WriteColors.asm)

INCLUDE Irvine32.inc
.data
outHandle    HANDLE ?
cellsWritten DWORD ?
xyPos COORD <10,2>

; Array of character codes:
buffer BYTE 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
       BYTE 16,17,18,19,20
BufSize DWORD ($-buffer)

; Array of attributes:
attributes WORD 0Fh,0Eh,0Dh,0Ch,0Bh,0Ah,9,8,7,6
           WORD 5,4,3,2,1,0F0h,0E0h,0D0h,0C0h,0B0h
.code
main PROC
; Get the Console standard output handle:

INVOKE GetStdHandle,STD_OUTPUT_HANDLE
mov outHandle,eax

; Set the colors of adjacent cells:
INVOKE WriteConsoleOutputAttribute,
  outHandle, ADDR attributes,
  BufSize, xyPos, ADDR cellsWritten

; Write character codes 1 through 20:
INVOKE WriteConsoleOutputCharacter,
  outHandle, ADDR buffer, BufSize,
  xyPos, ADDR cellsWritten

INVOKE ExitProcess,0 ; end program
main ENDP
END main

Figure 11-3 shows a snapshot of the program’s output, in which character codes 1 through 20 are
displayed as graphic characters. Each character is in a different color, although the printed page
appears in grayscale.

Figure 11–3 Output from the WriteColors program. 
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11.1.12 Time and Date Functions
The Win32 API provides a fairly large selection of time and date functions. Most commonly,
you may want to use them to get and set the current date and time. We can only discuss a small
subset of the functions here, but you can look up the Platform SDK documentation for the
Win32 functions listed in Table 11-9.

SYSTEMTIME Structure The SYSTEMTIME structure is used by date- and time-related
Windows API functions:

SYSTEMTIME STRUCT
wYear WORD ? ; year (4 digits)
wMonth WORD ? ; month (1-12)

Table 11-9  Win32 DateTime Functions.

Function Description

CompareFileTime Compares two 64-bit file times. 

DosDateTimeToFileTime Converts MS-DOS date and time values to a 64-bit file time. 

FileTimeToDosDateTime Converts a 64-bit file time to MS-DOS date and time values. 

FileTimeToLocalFileTime Converts a UTC (universal coordinated time) file time to a local file time. 

FileTimeToSystemTime Converts a 64-bit file time to system time format. 

GetFileTime Retrieves the date and time that a file was created, last accessed, and last modified. 

GetLocalTime Retrieves the current local date and time. 

GetSystemTime Retrieves the current system date and time in UTC format. 

GetSystemTimeAdjustment Determines whether the system is applying periodic time adjustments to its
time-of-day clock. 

GetSystemTimeAsFileTime Retrieves the current system date and time in UTC format. 

GetTickCount Retrieves the number of milliseconds that have elapsed since the system
was started. 

GetTimeZoneInformation Retrieves the current time-zone parameters. 

LocalFileTimeToFileTime Converts a local file time to a file time based on UTC. 

SetFileTime Sets the date and time that a file was created, last accessed, or last modified. 

SetLocalTime Sets the current local time and date. 

SetSystemTime Sets the current system time and date. 

SetSystemTimeAdjustment Enables or disables periodic time adjustments to the system’s time-of-day clock. 

SetTimeZoneInformation Sets the current time-zone parameters. 

SystemTimeToFileTime Converts a system time to a file time. 

SystemTimeToTzSpecificLocalTime Converts a UTC time to a specified time zone’s corresponding local time. 
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wDayOfWeek WORD ? ; day of week (0-6)
wDay WORD ? ; day (1-31)
wHour WORD ? ; hours (0-23)
wMinute WORD ? ; minutes (0-59)
wSecond WORD ? ; seconds (0-59)
wMilliseconds WORD ? ; milliseconds (0-999)

SYSTEMTIME ENDS

The wDayOfWeek field value begins with Sunday = 0, Monday = 1, and so on. The value in
wMilliseconds is not exact because the system can periodically refresh the time by synchroniz-
ing with a time source. 

GetLocalTime and SetLocalTime
The GetLocalTime function returns the date and current time of day, according to the system
clock. The time is adjusted for the local time zone. When calling it, pass a pointer to a SYSTEM-
TIME structure:

GetLocalTime PROTO,
  lpSystemTime:PTR SYSTEMTIME

The following is a sample call to the GetLocalTime function:

.data
sysTime SYSTEMTIME <>
.code
INVOKE GetLocalTime, ADDR sysTime

The SetLocalTime function sets the system’s local date and time. When calling it, pass a
pointer to a SYSTEMTIME structure containing the desired date and time:

SetLocalTime PROTO,
  lpSystemTime:PTR SYSTEMTIME

If the function executes successfully, it returns a nonzero integer; if it fails, it returns zero. 

GetTickCount Function
The GetTickCount function returns the number of milliseconds that have elapsed since the sys-
tem was started:

GetTickCount PROTO ; return value in EAX

Because the returned value is a doubleword, the time will wrap around to zero if the system is
run continuously for 49.7 days. You can use this function to monitor the elapsed time in a loop
and break out of the loop when a certain time limit has been reached. 

The following Timer.asm program measures the elapsed time between two calls to GetTick-
Count. It attempts to verify that the timer count has not rolled over (beyond 49.7 days). Similar
code could be used in a variety of programs:

; Calculate Elapsed Time               (Timer.asm)

; Demonstrate a simple stopwatch timer, using
; the Win32 GetTickCount function.
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INCLUDE Irvine32.inc
INCLUDE macros.inc

.data
startTime DWORD ?

.code
main PROC

INVOKE GetTickCount ; get starting tick count
mov startTime,eax ; save it

; Create a useless calculation loop.
mov ecx,10000100h

L1: imul ebx
imul ebx
imul ebx
loop L1

INVOKE GetTickCount ; get new tick count
cmp eax,startTime ; lower than starting one?
jb error ; it wrapped around

sub eax,startTime ; get elapsed milliseconds
call WriteDec ; display it
mWrite <" milliseconds have elapsed",0dh,0ah>
jmp quit

error:
mWrite "Error: GetTickCount invalid--system has"
mWrite <"been active for more than 49.7 days",0dh,0ah>

quit:
exit

main ENDP
END main

Sleep Function
Programs sometimes need to pause or delay for short periods of time. Although one could con-
struct a calculation loop or busy loop that keeps the processor busy, the loop’s execution time
would vary from one processor to the next. In addition, the busy loop would needlessly tie up the
processor, slowing down other programs executing at the same time. The Win32 Sleep function
suspends the currently executing thread for a specified number of milliseconds:

Sleep PROTO,
dwMilliseconds:DWORD

(Because our assembly language programs are single-threaded, we will assume a thread is the
same as a program.) A thread uses no processor time while it is sleeping.

GetDateTime Procedure
The GetDateTime procedure in the Irvine32 library returns the number of 100-nanosecond time
intervals that have elapsed since January 1, 1601. This may seem a little odd, in that computers
were unknown at the time. In any event, Microsoft uses this value to keep track of file dates and
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times. The following steps are recommended by the Win32 SDK when you want to prepare a
system date/time value for date arithmetic:

1. Call a function such as GetLocalTime that fills in a SYSTEMTIME structure.
2. Convert the SYSTEMTIME structure to a FILETIME structure by calling the SystemTime-

ToFileTime function.
3. Copy the resulting FILETIME structure to a 64-bit quadword.

A FILETIME structure divides a 64-bit quadword into two doublewords:

FILETIME STRUCT
    loDateTime DWORD ?
    hiDateTime DWORD ?
FILETIME ENDS

The following GetDateTime procedure receives a pointer to a 64-bit quadword variable. It
stores the current date and time in the variable, in Win32 FILETIME format:

;--------------------------------------------------
GetDateTime PROC,

pStartTime:PTR QWORD
LOCAL sysTime:SYSTEMTIME, flTime:FILETIME

;
; Gets and saves the current local date/time as a
; 64-bit integer (in the Win32 FILETIME format).
;--------------------------------------------------
; Get the system local time

INVOKE GetLocalTime,
  ADDR sysTime

; Convert the SYSTEMTIME to FILETIME
INVOKE SystemTimeToFileTime,
  ADDR sysTime,
  ADDR flTime

; Copy the FILETIME to a 64-bit integer
mov esi,pStartTime
mov eax,flTime.loDateTime
mov DWORD PTR [esi],eax
mov eax,flTime.hiDateTime
mov DWORD PTR [esi+4],eax
ret

GetDateTime ENDP

Because a SYSTEMTIME is a 64-bit integer, you can use the extended precision arithmetic tech-
niques shown in Section 7.5 to perform date arithmetic.

11.1.13 Using the 64-Bit Windows API
You can rewrite any 32-bit calls to Windows API functions as calls to 64-bit functions. There are
just a few key points to remember:
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1. Input and output handles are 64 bits long.
2. Before calling a system function, the calling program must reserve at least 32 bytes of

shadow space by subtracting 32 from the stack pointer (RSP) register. This allows the system
function use the space to hold temporary copies of the RCX, RDX, R8, and R9 registers. 

3. When calling a system function, RSP should be aligned on a 16-byte address boundary
(basically, that’s any hexadecimal address that ends with a zero). Fortunately, the Win64
API does not seem to enforce this rule, and it is often difficult to precisely control the stack
alignment in application programs.

4. After a system call returns, the caller must restore RSP to its original value by adding the
same value to it that was subtracted before the function call. This point is critical when you
call a Win64 API function from a subroutine, because ESP must end up pointing at your sub-
routine’s return address by the time you execute the RET instruction.

5. Integer parameters are passed in 64-bit registers.
6. INVOKE is not permitted. Instead, the first four arguments should be placed in the following

registers, from left to right: RCX, RDX, R8, and R9. Additional arguments should be pushed
on the runtime stack.

7. System functions return 64-bit integer values in RAX.

The following lines show how the 64-bit GetStdHandle function is called from the Irvine64 library:

.data
STD_OUTPUT_HANDLE EQU -11
consoleOutHandle QWORD ? 
.code
sub rsp,40 ; reserve shadow space & align RSP

mov rcx,STD_OUTPUT_HANDLE
call GetStdHandle
mov  consoleOutHandle,rax
add  rsp,40

Once the console output handle has been initialized, the next code example shows how we call
the 64-bit WriteConsoleA function. There are 5 arguments: RCX (the console handle), RDX
(pointer to the string), R8 (length of the string), and R9 (a pointer to the bytesWritten variable),
and a final dummy zero parameter, which is added to the 5th stack position above RSP.

WriteString proc uses rcx rdx r8 r9
sub rsp, (5 * 8) ; reserve space for 5 parameters

movr cx,rdx
call Str_length ; returns length of string in EAX
mov rcx,consoleOutHandle
mov rdx,rdx ; string pointer
mov r8, rax ; length of string
lea r9,bytesWritten
mov qword ptr [rsp + 4 * SIZEOF QWORD],0 ; (always zero)
call WriteConsoleA
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add rsp,(5 * 8) ; restore RSP
ret

WriteString ENDP

11.1.14 Section Review
1. What is the linker command that specifies that the target program is for the Win32 console?

2. (True/False): A function ending with the letter W (such as WriteConsoleW) is designed to
work with a wide (16-bit) character set such as Unicode.

3. (True/False): Unicode is the native character set for Windows 98.

4. (True/False): The ReadConsole function reads mouse information from the input buffer.

5. (True/False): Win32 console input functions can detect when the user has resized the con-
sole window.

11.2 Writing a Graphical Windows Application
In this section, we will show how to write a simple graphical application for 32-bit Microsoft
Windows. The program creates and displays a main window, displays message boxes, and
responds to mouse events. The information provided here is only a brief introduction; it would
require at least an entire chapter to describe the workings of even the simplest Windows applica-
tion. If you want more information, see the Platform SDK documentation. Another great source
is Charles Petzold’s book, Programming Windows.

Table 11-10 lists the various libraries and includes files used when building this program. Use
the Visual Studio project file located in the book’s Examples\Ch11\WinApp folder to build and
run the program.

/SUBSYSTEM:WINDOWS replaces the /SUBSYSTEM:CONSOLE we used in previous
chapters. The program calls functions from two standard MS-Windows libraries: kernel32.lib
and user32.lib.

Main Window The program displays a main window which fills the screen. It is reduced in
size here to make it fit on the printed page (Fig. 11-4).

11.2.1 Necessary Structures
The POINT structure specifies the X and Y coordinates of a point on the screen, measured in
pixels. It can be used, for example, to locate graphic objects, windows, and mouse clicks:

Table 11-10  Files Required When Building the WinApp Program.

Filename Description

WinApp.asm Program source code

GraphWin.inc Include file containing structures, constants, and function prototypes
used by the program

kernel32.lib Same MS-Windows API library used earlier in this chapter

user32.lib Additional MS-Windows API functions
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POINT STRUCT
ptX DWORD ?
ptY DWORD ?

POINT ENDS

Figure 11–4 Main startup window, WinApp program.

The RECT structure defines the boundaries of a rectangle. The left member contains the
X-coordinate of the left side of the rectangle. The top member contains the Y-coordinate of
the top of the rectangle. Similar values are stored in the right and bottom members:

RECT STRUCT
left DWORD ?
top DWORD ?
right DWORD ?
bottom DWORD ?

RECT ENDS

The MSGStruct structure defines the data needed for an MS-Windows message: 

MSGStruct STRUCT
msgWnd DWORD ?
msgMessage DWORD ?
msgWparam DWORD ?
msgLparam DWORD ?
msgTime DWORD ?
msgPt POINT <>

MSGStruct ENDS

The WNDCLASS structure defines a window class. Each window in a program must belong
to a class, and each program must define a window class for its main window. This class is regis-
tered with the operating system before the main window can be shown:

WNDCLASS STRUC
  style DWORD ? ; window style options
  lpfnWndProc DWORD ? ; pointer to WinProc function
  cbClsExtra DWORD ? ; shared memory
  cbWndExtra DWORD ? ; number of extra bytes
  hInstance DWORD ? ; handle to current program
  hIcon DWORD ? ; handle to icon
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  hCursor DWORD ? ; handle to cursor
  hbrBackground DWORD ? ; handle to background brush
  lpszMenuName DWORD ? ; pointer to menu name
  lpszClassName DWORD ? ; pointer to WinClass name
WNDCLASS ENDS

Here’s a quick summary of the parameters:

• style is a conglomerate of different style options, such as WS_CAPTION and WS_BORDER,
that control the window’s appearance and behavior. 

• lpfnWndProc is a pointer to a function (in our program) that receives and processes event mes-
sages triggered by the user. 

• cbClsExtra refers to shared memory used by all windows belonging to the class. Can be null.
• cbWndExtra specifies the number of extra bytes to allocate following the window instance. 
• hInstance holds a handle to the current program instance. 
• hIcon and hCursor hold handles to icon and cursor resources for the current program. 
• hbrBackground holds a handle to a background (color) brush.
• lpszMenuName points to a menu name.
• lpszClassName points to a null-terminated string containing the window’s class name.

11.2.2 The MessageBox Function
The easiest way for a program to display text is to put it in a message box that pops up and waits
for the user to click on a button. The MessageBox function from the Win32 API library displays
a simple message box. Its prototype is shown here:

MessageBox PROTO,
hWnd:DWORD,
lpText:PTR BYTE,
lpCaption:PTR BYTE,
uType:DWORD

hWnd is a handle to the current window. lpText points to a null-terminated string that will appear
inside the box. lpCaption points to a null-terminated string that will appear in the box’s caption
bar. style is an integer that describes both the dialog box’s icon (optional) and the buttons
(required). Buttons are identified by constants such as MB_OK and MB_YESNO. Icons are also
identified by constants such as MB_ICONQUESTION. When a message box is displayed, you
can add together the constants for the icon and buttons:

  INVOKE MessageBox, hWnd, ADDR QuestionText,
    ADDR QuestionTitle, MB_OK + MB_ICONQUESTION

11.2.3 The WinMain Procedure
Every Windows application needs a startup procedure, usually named WinMain, which is
responsible for the following tasks:

• Get a handle to the current program.
• Load the program’s icon and mouse cursor.
• Register the program’s main window class and identify the procedure that will process event

messages for the window.
• Create the main window.
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• Show and update the main window.
• Begin a loop that receives and dispatches messages. The loop continues until the user closes

the application window.

WinMain contains a message processing loop that calls GetMessage to retrieve the next
available message from the program’s message queue. If GetMessage retrieves a WM_QUIT
message, it returns zero, telling WinMain that it’s time to halt the program. For all other mes-
sages, WinMain passes them to the DispatchMessage function, which forwards them to the pro-
gram’s WinProc procedure. To read more about messages, search for Windows Messages in
the Platform SDK documentation.

11.2.4 The WinProc Procedure
The WinProc procedure receives and processes all event messages relating to a window. Most
events are initiated by the user by clicking and dragging the mouse, pressing keyboard keys, and
so on. This procedure’s job is to decode each message, and if the message is recognized, to carry
out application-oriented tasks relating to the message. Here is the declaration:

WinProc PROC,
hWnd:DWORD, ; handle to the window
localMsg:DWORD, ; message ID
wParam:DWORD, ; parameter 1 (varies)
lParam:DWORD ; parameter 2 (varies)

The content of the third and fourth parameters will vary, depending on the specific message
ID. When the mouse is clicked, for example, lParam contains the X- and Y-coordinates of the
point clicked. In the upcoming example program, the WinProc procedure handles three spe-
cific messages:

• WM_LBUTTONDOWN, generated when the user presses the left mouse button 
• WM_CREATE, indicates that the main window was just created 
• WM_CLOSE, indicates that the application’s main window is about to close

For example, the following lines (from the procedure) handle the WM_LBUTTONDOWN mes-
sage by calling MessageBox to display a popup message to the user:

.IF eax == WM_LBUTTONDOWN
  INVOKE MessageBox, hWnd, ADDR PopupText,
    ADDR PopupTitle, MB_OK
  jmp WinProcExit

The resulting message seen by the user is shown in Fig. 11-5. Any other messages that we don’t
wish to handle are passed on to DefWindowProc, the default message handler for MS-Windows. 

Figure 11–5 Popup window, WinApp program.
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11.2.5 The ErrorHandler Procedure
The ErrorHandler procedure, which is optional, is called if the system reports an error dur-
ing the registration and creation of the program’s main window. For example, the Register-
Class function returns a nonzero value if the program’s main window was successfully
registered. But if it returns zero, we call ErrorHandler (to display a message) and quit the
program:

INVOKE RegisterClass, ADDR MainWin
.IF eax == 0
  call ErrorHandler
  jmp Exit_Program
.ENDIF

The ErrorHandler procedure has several important tasks to perform:

• Call GetLastError to retrieve the system error number.
• Call FormatMessage to retrieve the appropriate system-formatted error message string.
• Call MessageBox to display a popup message box containing the error message string.
• Call LocalFree to free the memory used by the error message string.

11.2.6 Program Listing
Don’t be distressed by the length of this program. Much of it is code that would be identical in
any MS-Windows application:

; Windows Application             (WinApp.asm)

; This program displays a resizable application window and
; several popup message boxes. Special thanks to Tom Joyce
; for the first version of this program.

.386

.model flat,STDCALL
INCLUDE GraphWin.inc

;==================== DATA =======================
.data

AppLoadMsgTitle BYTE "Application Loaded",0
AppLoadMsgText  BYTE "This window displays when the WM_CREATE "
                BYTE "message is received",0

PopupTitle  BYTE "Popup Window",0
PopupText   BYTE "This window was activated by a "
            BYTE "WM_LBUTTONDOWN message",0

GreetTitle  BYTE "Main Window Active",0
GreetText   BYTE "This window is shown immediately after "
            BYTE "CreateWindow and UpdateWindow are called.",0

CloseMsg    BYTE "WM_CLOSE message received",0

ErrorTitle  BYTE "Error",0
WindowName  BYTE "ASM Windows App",0
className   BYTE "ASMWin",0
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; Define the Application's Window class structure.
MainWin WNDCLASS <NULL,WinProc,NULL,NULL,NULL,NULL,NULL, \

COLOR_WINDOW,NULL,className>

msg MSGStruct <>
winRect   RECT <>
hMainWnd  DWORD ?
hInstance DWORD ?

;=================== CODE =========================
.code
WinMain PROC

; Get a handle to the current process.
INVOKE GetModuleHandle, NULL
mov hInstance, eax
mov MainWin.hInstance, eax

; Load the program's icon and cursor.
INVOKE LoadIcon, NULL, IDI_APPLICATION
mov MainWin.hIcon, eax
INVOKE LoadCursor, NULL, IDC_ARROW
mov MainWin.hCursor, eax

; Register the window class.
INVOKE RegisterClass, ADDR MainWin
.IF eax == 0
  call ErrorHandler
  jmp Exit_Program
.ENDIF

; Create the application's main window.
INVOKE CreateWindowEx, 0, ADDR className,
  ADDR WindowName,MAIN_WINDOW_STYLE,
  CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,
  CW_USEDEFAULT,NULL,NULL,hInstance,NULL

; If CreateWindowEx failed, display a message and exit.
.IF eax == 0
  call ErrorHandler
  jmp  Exit_Program
.ENDIF

; Save the window handle, show and draw the window.
mov hMainWnd,eax
INVOKE ShowWindow, hMainWnd, SW_SHOW
INVOKE UpdateWindow, hMainWnd

; Display a greeting message.
INVOKE MessageBox, hMainWnd, ADDR GreetText,
  ADDR GreetTitle, MB_OK

; Begin the program's continuous message-handling loop.
Message_Loop:

; Get next message from the queue.
INVOKE GetMessage, ADDR msg, NULL,NULL,NULL
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; Quit if no more messages.
.IF eax == 0
  jmp Exit_Program
.ENDIF

; Relay the message to the program's WinProc.
INVOKE DispatchMessage, ADDR msg
jmp Message_Loop

Exit_Program:
INVOKE ExitProcess,0

WinMain ENDP

;-----------------------------------------------------
WinProc PROC,

hWnd:DWORD, localMsg:DWORD, wParam:DWORD, lParam:DWORD
;
; The application's message handler, which handles
; application-specific messages. All other messages
; are forwarded to the default Windows message
; handler.
;-----------------------------------------------------

mov eax, localMsg

.IF eax == WM_LBUTTONDOWN ; mouse button?
  INVOKE MessageBox, hWnd, ADDR PopupText,
    ADDR PopupTitle, MB_OK
  jmp WinProcExit
.ELSEIF eax == WM_CREATE ; create window?
  INVOKE MessageBox, hWnd, ADDR AppLoadMsgText,
    ADDR AppLoadMsgTitle, MB_OK
  jmp WinProcExit
.ELSEIF eax == WM_CLOSE ; close window?
  INVOKE MessageBox, hWnd, ADDR CloseMsg,
    ADDR WindowName, MB_OK
  INVOKE PostQuitMessage,0
  jmp WinProcExit
.ELSE ; other message?
  INVOKE DefWindowProc, hWnd, localMsg, wParam, lParam
  jmp WinProcExit
.ENDIF

WinProcExit:
ret

WinProc ENDP

;---------------------------------------------------
ErrorHandler PROC
; Display the appropriate system error message.
;---------------------------------------------------

In the previous loop, the msg structure is passed to the GetMessage function. It fills in the struc-
ture, which is then passed to the MS-Windows DispatchMessage function.
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.data
pErrorMsg  DWORD ? ; ptr to error message
messageID  DWORD ?
.code

INVOKE GetLastError ; Returns message ID in EAX
mov messageID,eax

; Get the corresponding message string.
INVOKE FormatMessage, FORMAT_MESSAGE_ALLOCATE_BUFFER + \
  FORMAT_MESSAGE_FROM_SYSTEM,NULL,messageID,NULL,
  ADDR pErrorMsg,NULL,NULL

; Display the error message.
INVOKE MessageBox,NULL, pErrorMsg, ADDR ErrorTitle,
  MB_ICONERROR+MB_OK

; Free the error message string.
INVOKE LocalFree, pErrorMsg
ret

ErrorHandler ENDP
END WinMain

Running the Program
When the program first loads, the following message box displays:

When the user clicks on OK to close the Application Loaded message box, another message
box displays:

When the user closes the Main Window Active message box, the program’s main window displays:
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When the user clicks the mouse anywhere inside the main window, the following message box
displays:

When the user closes this message box and then clicks on the X in the upper-right corner of the
main window, the following message displays just before the window closes:

When the user closes this message box, the program ends.

11.2.7 Section Review
1. Describe a POINT structure.

2. How is the WNDCLASS structure used?

3. In a WNDCLASS structure, what is the meaning of the lpfnWndProc field?

4. In a WNDCLASS structure, what is the meaning of the style field?

5. In a WNDCLASS structure, what is the meaning of the hInstance field?

11.3 Dynamic Memory Allocation
Dynamic memory allocation, also known as heap allocation, is a technique programming lan-
guages use for reserving memory when objects, arrays, and other structures are created. In Java,
for example, a statement such as the following causes memory to be reserved for a String object:

String str = new String("abcde");

Similarly, in C++ you might want to allocate space for an array of integers, using a size attribute
from a variable:

int size;
cin >> size;                     // user inputs the size
int array[] = new int[size];

C, C++, and Java have built-in runtime heap managers that handle programmatic requests for
storage allocation and deallocation. Heap managers generally allocate a large block of memory from
the operating system when the program starts up. They create a free list of pointers to storage blocks.
When an allocation request is received, the heap manager marks an appropriately sized block of
memory as reserved and returns a pointer to the block. Later, when a delete request for the same
block is received, the heap frees up the block, returning it to the free list. Each time a new alloca-
tion request is received, the heap manager scans the free list, looking for the first available block
large enough to grant the request.
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Assembly language programs can perform dynamic allocation in a couple of ways. First, they
can make system calls to get blocks of memory from the operating system. Second, they can imple-
ment their own heap managers that serve requests for smaller objects. In this section, we show how
to implement the first method. The example program is a 32-bit protected mode application.

You can request multiple blocks of memory of varying sizes from Windows, using several
Win32 API functions listed in Table 11-11. All of these functions overwrite the general-purpose
registers, so you may want to create wrapper procedures that push and pop important registers.
To learn more about memory management, search for Memory Management Reference in the
Microsoft online documentation.

GetProcessHeap GetProcessHeap is sufficient if you’re content to use the default heap
owned by the current program. It has no parameters, and the return value in EAX is the heap
handle:

GetProcessHeap PROTO

Sample call:

.data
hHeap HANDLE ?
.code
INVOKE GetProcessHeap
.IF eax == NULL ; cannot get handle
  jmp quit

Table 11-11  Heap-Related Functions.

Function Description

GetProcessHeap Returns a 32-bit integer handle to the program’s existing heap area in EAX. If the
function succeeds, it returns a handle to the heap in EAX. If it fails, the return value in
EAX is NULL.

HeapAlloc Allocates a block of memory from a heap. If it succeeds, the return value in EAX con-
tains the address of the memory block. If it fails, the returned value in EAX is NULL.

HeapCreate Creates a new heap and makes it available to the calling program. If the function suc-
ceeds, it returns a handle to the newly created heap in EAX. If it fails, the return value
in EAX is NULL.

HeapDestroy Destroys the specified heap object and invalidates its handle. If the function succeeds,
the return value in EAX is nonzero.

HeapFree Frees a block of memory previously allocated from a heap, identified by its address
and heap handle. If the block is freed successfully, the return value is nonzero. 

HeapReAlloc Reallocates and resizes a block of memory from a heap. If the function succeeds, the
return value is a pointer to the reallocated memory block. If the function fails and you
have not specified HEAP_GENERATE_EXCEPTIONS, the return value is NULL.

HeapSize Returns the size of a memory block previously allocated by a call to HeapAlloc or
HeapReAlloc. If the function succeeds, EAX contains the size of the allocated memory
block, in bytes. If the function fails, the return value is SIZE_T – 1. (SIZE_T equals
the maximum number of bytes to which a pointer can point.)
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.ELSE
  mov   hHeap,eax ; handle is OK
.ENDIF

HeapCreate HeapCreate lets you create a new private heap for the current program:

HeapCreate PROTO,
    flOptions:DWORD, ; heap allocation options
    dwInitialSize:DWORD, ; initial heap size, in bytes
    dwMaximumSize:DWORD ; maximum heap size, in bytes

Set flOptions to NULL. Set dwInitialSize to the initial heap size, in bytes. The value is rounded
up to the next page boundary. When calls to HeapAlloc exceed the initial heap size, it will grow
as large as the value you specify in the dwMaximumSize parameter (rounded up to the next page
boundary). After calling it, a null return value in EAX indicates the heap was not created. The fol-
lowing is a sample call to HeapCreate:

HEAP_START =   2000000 ;   2 MB
HEAP_MAX  =  400000000 ; 400 MB
.data
hHeap HANDLE ? ; handle to heap
.code
INVOKE HeapCreate, 0, HEAP_START, HEAP_MAX
.IF eax == NULL ; heap not created
  call  WriteWindowsMsg ; show error message
  jmp quit
.ELSE
  mov   hHeap,eax ; handle is OK
.ENDIF

HeapDestroy HeapDestroy destroys an existing private heap (one created by HeapCreate).
Pass it a handle to the heap:

HeapDestroy PROTO,
    hHeap:DWORD ; heap handle

If it fails to destroy the heap, EAX equals NULL. Following is a sample call, using the
WriteWindowsMsg procedure described in Section 11.1.4:

.data
hHeap HANDLE ? ; handle to heap
.code
INVOKE HeapDestroy, hHeap
.IF eax == NULL
  call WriteWindowsMsg ; show error message
.ENDIF

HeapAlloc HeapAlloc allocates a memory block from an existing heap:

HeapAlloc PROTO,
hHeap:HANDLE, ; handle to existing heap block
dwFlags:DWORD, ; heap allocation control flags
dwBytes:DWORD ; number of bytes to allocate
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Pass the following arguments:

• hHeap, a 32-bit handle to a heap that was initialized by GetProcessHeap or HeapCreate.
• dwFlags, a doubleword containing one or more flag values. You can optionally set it to

HEAP_ZERO_MEMORY, which sets the memory block to all zeros.
• dwBytes, a doubleword indicating the size of the heap allocation, in bytes.

If HeapAlloc succeeds, EAX contains a pointer to the new storage; if it fails, the value returned
in EAX is NULL. The following code allocates a 1000-byte array from the heap identified by
hHeap and initializes the array to all zeros:

.data
hHeap HANDLE ? ; heap handle
pArray DWORD ? ; pointer to array
.code
INVOKE HeapAlloc, hHeap, HEAP_ZERO_MEMORY, 1000
.IF eax == NULL
  mWrite "HeapAlloc failed"
  jmp  quit
.ELSE
  mov  pArray,eax
.ENDIF

HeapFree The HeapFree function frees a block of memory previously allocated from a heap,
identified by its address and heap handle: 

HeapFree PROTO,
hHeap:HANDLE,
dwFlags:DWORD,
lpMem:DWORD

The first argument is a handle to the heap containing the memory block. The second argument is
usually zero, and the third argument is a pointer to the block of memory to be freed. If the block
is freed successfully, the return value is nonzero. If the block cannot be freed, the function
returns zero. Here is a sample call:

INVOKE HeapFree, hHeap, 0, pArray

Error Handling If you encounter an error when calling HeapCreate, HeapDestroy, or GetPro-
cessHeap, you can get details by calling the GetLastError API function. Or, you can call the
WriteWindowsMsg function from the Irvine32 library. Following is an example that calls
HeapCreate:

INVOKE HeapCreate, 0,HEAP_START, HEAP_MAX

.IF eax == NULL ; failed?
  call  WriteWindowsMsg ; show error message
.ELSE
  mov   hHeap,eax ; success
.ENDIF

The HeapAlloc function, on the other hand, does not set a system error code when it fails, so
you cannot call GetLastError or WriteWindowsMsg. 
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11.3.1 HeapTest Programs
The following example (Heaptest1.asm) uses dynamic memory allocation to create and fill a
1000-byte array:

; Heap Test #1                          (Heaptest1.asm)

INCLUDE Irvine32.inc

; This program uses dynamic memory allocation to allocate and 
; fill an array of bytes. 

.data
ARRAY_SIZE = 1000
FILL_VAL EQU 0FFh

hHeap   HANDLE ? ; handle to the process heap
pArray  DWORD ? ; pointer to block of memory
newHeap DWORD ? ; handle to new heap
str1 BYTE "Heap size is: ",0

.code
main PROC

INVOKE GetProcessHeap ; get handle prog's heap
.IF eax == NULL ; if failed, display message
call WriteWindowsMsg
jmp quit
.ELSE
mov hHeap,eax ; success
.ENDIF

call allocate_array
jnc arrayOk ; failed (CF = 1)?
call WriteWindowsMsg
call Crlf
jmp quit

arrayOk: ; ok to fill the array
call fill_array
call display_array
call Crlf

; free the array
INVOKE HeapFree, hHeap, 0, pArray

quit:
exit

main ENDP

;--------------------------------------------------------
allocate_array PROC USES eax
;
; Dynamically allocates space for the array.
; Receives: EAX = handle to the program heap
; Returns: CF = 0 if the memory allocation succeeds.
;--------------------------------------------------------

INVOKE HeapAlloc, hHeap, HEAP_ZERO_MEMORY, ARRAY_SIZE



11.3   Dynamic Memory Allocation 497

.IF eax == NULL
   stc ; return with CF = 1
.ELSE
   mov  pArray,eax ; save the pointer
   clc ; return with CF = 0
.ENDIF

ret
allocate_array ENDP

;--------------------------------------------------------
fill_array PROC USES ecx edx esi
;
; Fills all array positions with a single character.
; Receives: nothing
; Returns: nothing
;--------------------------------------------------------

mov ecx,ARRAY_SIZE ; loop counter
mov esi,pArray ; point to the array

L1: mov BYTE PTR [esi],FILL_VAL ; fill each byte
inc esi ; next location
loop L1

ret
fill_array ENDP

;--------------------------------------------------------
display_array PROC USES eax ebx ecx esi
;
; Displays the array
; Receives: nothing
; Returns: nothing
;--------------------------------------------------------

mov ecx,ARRAY_SIZE ; loop counter
mov esi,pArray ; point to the array

L1: mov al,[esi] ; get a byte
mov ebx,TYPE BYTE
call WriteHexB ; display it
inc esi ; next location
loop L1

ret
display_array ENDP

END main

The following example (Heaptest2.asm) uses dynamic memory allocation to repeatedly allocate
large blocks of memory until the heap size is exceeded.

; Heap Test #2                (Heaptest2.asm)

INCLUDE Irvine32.inc

.data
HEAP_START =   2000000 ;   2 MByte
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HEAP_MAX  =  400000000 ; 400 MByte
BLOCK_SIZE =    500000 ;  .5 MByte

hHeap HANDLE ? ; handle to the heap
pData DWORD ? ; pointer to block

str1 BYTE 0dh,0ah,"Memory allocation failed",0dh,0ah,0

.code
main PROC

INVOKE HeapCreate, 0,HEAP_START, HEAP_MAX

.IF eax == NULL ; failed?
call WriteWindowsMsg
call Crlf
jmp quit
.ELSE
mov hHeap,eax ; success
.ENDIF

mov ecx,2000 ; loop counter

L1: call allocate_block ; allocate a block
.IF Carry? ; failed?
mov edx,OFFSET str1 ; display message
call WriteString
jmp quit
.ELSE ; no: print a dot to
mov al,'.' ; show progress
call WriteChar
.ENDIF

;call free_block ; enable/disable this line
loop L1

quit:
INVOKE HeapDestroy, hHeap ; destroy the heap
.IF eax == NULL ; failed?
call WriteWindowsMsg ; yes: error message
call Crlf
.ENDIF

exit
main ENDP

allocate_block PROC USES ecx

; allocate a block and fill with all zeros.
INVOKE HeapAlloc, hHeap, HEAP_ZERO_MEMORY, BLOCK_SIZE

.IF eax == NULL
   stc ; return with CF = 1
.ELSE
   mov  pData,eax ; save the pointer
   clc ; return with CF = 0
.ENDIF



11.4   x86 Memory Management 499

ret
allocate_block ENDP

free_block PROC USES ecx

INVOKE HeapFree, hHeap, 0, pData
ret

free_block ENDP
END main

11.3.2 Section Review
1. What is another term for heap allocation, in the context of C, C++, and Java?

2. Describe the GetProcessHeap function.

3. Describe the HeapAlloc function.

4. Show a sample call to the HeapCreate function.

5. When calling HeapDestroy, how do you identify the memory block being destroyed?

11.4 x86 Memory Management
In this section, we would like to give a brief overview of Windows 32-bit memory management,
showing how it uses capabilities built directly into x86 processors. We will focus on two primary
aspects of memory management:

• Translating logical addresses into linear addresses
• Translating linear addresses into physical addresses (paging)

Let’s briefly review some of the x86 memory-management terms introduced in Chapter 2,
beginning with the following:

• Multitasking permits multiple programs (or tasks) to run at the same time. The processor
divides its time among all of the running programs.

• Segments are variable-sized areas of memory used by a program containing either code or
data.

• Segmentation provides a way to isolate memory segments from each other. This permits mul-
tiple programs to run simultaneously without interfering with each other.

• A segment descriptor is a 64-bit value that identifies and describes a single memory segment:
It contains information about the segment’s base address, access rights, size limit, type, and
usage.

Now we will add two new terms to the list:

• A segment selector is a 16-bit value stored in a segment register (CS, DS, SS, ES, FS, or GS).
• A logical address is a combination of a segment selector and a 32-bit offset.

Segment registers have been ignored throughout this book because they are never modified
directly by user programs. We have only been concerned with 32-bit data offsets. From a system
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programmer’s point of view, however, segment registers are important because they contain indi-
rect references to memory segments.

11.4.1 Linear Addresses

Translating Logical Addresses to Linear Addresses
A multitasking operating system allows several programs (tasks) to run in memory at the same
time. Each program has its own unique area for data. Suppose three programs each had a variable
at offset 200h; how could the three variables be separate from each other without being shared?
The answer to this is that x86 processors use a one- or two-step process to convert each variable’s
offset into a unique memory location. 

The first step combines a segment value with a variable’s offset to create a linear address.
This linear address could be the variable’s physical address. But operating systems such as
MS-Windows and Linux employ a feature called paging to permit programs to use more linear
memory than is physically available in the computer. They must use a second step called page
translation to convert a linear address to a physical address. We will explain page translation
in Section 11.4.2.

First, let’s look at the way the processor uses a segment and offset to determine the linear
address of a variable. Each segment selector points to a segment descriptor (in a descriptor
table), which contains the base address of a memory segment. The 32-bit offset from the logical
address is added to the segment’s base address, generating a 32-bit linear address, as shown in
Fig. 11-6.

Figure 11–6 Converting a logical address into a linear address.
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Linear Address A linear address is a 32-bit integer ranging between 0 and FFFFFFFFh,
which refers to a memory location. The linear address may also be the physical address of the
target data if a feature called paging is disabled.

Paging
Paging is an important feature of the x86 processor that makes it possible for a computer to run
a combination of programs that would not otherwise fit into memory. The processor does this
by initially loading only part of a program in memory while keeping the remaining parts on disk.
The memory used by the program is divided into small units called pages, typically 4 KByte
each. As each program runs, the processor selectively unloads inactive pages from memory and
loads other pages that are immediately required.

The operating system maintains a page directory and a set of page tables to keep track of
the pages used by all programs currently in memory. When a program attempts to access an
address somewhere in the linear address space, the processor automatically converts the linear
address into a physical address. This conversion is called page translation. If the requested page is
not currently in memory, the processor interrupts the program and issues a page fault. The operat-
ing system copies the required page from disk into memory before the program can resume. From
the point of view of an application program, page faults and page translation happen automatically.

You can activate a Microsoft Windows utility named Task Manager and see the difference
between physical memory and virtual memory. Figure 11-7 shows a computer with 256 MByte 

Figure 11–7 Windows Task Manager example.
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of physical memory. The total amount of virtual memory currently in use is in the Commit
Charge frame of the Task Manager. The virtual memory limit is 633 MByte, considerably larger
than the computer’s physical memory size.

Descriptor Tables
Segment descriptors can be found in two types of tables: global descriptor tables and local
descriptor tables.

Global Descriptor Table (GDT) A single GDT is created when the operating system switches
the processor into protected mode during boot up. Its base address is held in the GDTR (global
descriptor table register). The table contains entries (called segment descriptors) that point to seg-
ments. The operating system has the option of storing the segments used by all programs in the GDT.

Local Descriptor Tables (LDT) In a multitasking operating system, each task or program is
usually assigned its own table of segment descriptors, called an LDT. The LDTR register con-
tains the address of the program’s LDT. Each segment descriptor contains the base address of a
segment within the linear address space. This segment is usually distinct from all other seg-
ments, as in Fig. 11-8. Three different logical addresses are shown, each selecting a different
entry in the LDT. In this figure we assume that paging is disabled, so the linear address space is
also the physical address space.

Segment Descriptor Details
In addition to the segment’s base address, the segment descriptor contains bit-mapped fields
specifying the segment limit and segment type. An example of a read-only segment type is the
code segment. If a program tries to modify a read-only segment, a processor fault is generated.

Figure 11–8 Indexing into a local descriptor table.
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Segment descriptors can contain protection levels that protect operating system data from access
by application programs. The following are descriptions of individual selector fields:

Base address: A 32-bit integer that defines the starting location of the segment in the 4 GByte
linear address space.

Privilege level: Each segment can be assigned a privilege level between 0 and 3, where 0 is the
most privileged, usually for operating system kernel code. If a program with a higher-numbered
privilege level tries to access a segment having a lower-numbered privilege level, a processor fault
is generated.

Segment type: Indicates the type of segment and specifies the type of access that can be made
to the segment and the direction the segment can grow (up or down). Data (including Stack) seg-
ments can be read-only or read/write and can grow either up or down. Code segments can be
execute-only or execute/read-only.

Segment present flag: This bit indicates whether the segment is currently present in physical
memory.

Granularity flag: Determines the interpretation of the Segment limit field. If the bit is clear,
the segment limit is interpreted in byte units. If the bit is set, the segment limit is interpreted in
4096-byte units.

Segment limit: This 20-bit integer specifies the size of the segment. It is interpreted in one of
the following two ways, depending on the Granularity flag:

• The number of bytes in the segment, ranging from 1 to 1 MByte.
• The number of 4096-byte units, permitting the segment size to range from 4 KByte to 4 GByte.

11.4.2 Page Translation
When paging is enabled, the processor must translate a 32-bit linear address into a 32-bit physi-
cal address.2 There are three structures used in the process:

• Page directory: An array of up to 1024 32-bit page-directory entries.
• Page table: An array of up to 1024 32-bit page-table entries.
• Page: A 4 KByte or 4 MByte address space.

To simplify the following discussion, we will assume that 4 KByte pages are used:

A linear address is divided into three fields: a pointer to a page-directory entry, a pointer to a
page-table entry, and an offset into a page frame. Control register (CR3) contains the starting
address of the page directory. The following steps are carried out by the processor when translat-
ing a linear address to a physical address, as shown in Fig. 11-9:

1. The linear address references a location in the linear address space.
2. The 10-bit directory field in the linear address is an index to a page-directory entry. The page-

directory entry contains the base address of a page table. 
3. The 10-bit table field in the linear address is an index into the page table identified by the

page-directory entry. The page-table entry at that position contains the base location of a page
in physical memory.

4. The 12-bit offset field in the linear address is added to the base address of the page, generat-
ing the exact physical address of the operand.
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Figure 11–9 Translating linear address to physical address.

The operating system has the option of using a single page directory for all running programs
and tasks, or one page directory per task, or a combination of the two.

Windows Virtual Machine Manager
Now that we have a general idea of how the IA-32 manages memory, it might be interesting to
see how memory management is handled by Windows. The following passage is paraphrased
from the online Microsoft documentation:

In the foregoing passage, we can interpret the term virtual machine to be what Intel calls a
process or task. It consists of program code, supporting software, memory, and registers. Each
virtual machine is assigned its own address space, I/O port space, interrupt vector table,
and local descriptor table. Applications running in virtual-8086 mode run at privilege level 3.
In Windows, protected-mode programs run at privilege levels 0 and 3.

The Virtual Machine Manager (VMM) is the 32-bit protected mode operating system at the core of
Windows. It creates, runs, monitors, and terminates virtual machines. It manages memory, processes,
interrupts, and exceptions. It works with virtual devices, allowing them to intercept interrupts and faults
that control access to hardware and installed software. The VMM and virtual devices run in a single 32-bit
flat model address space at privilege level 0. The system creates two global descriptor table entries (segment
descriptors), one for code and the other for data. The segments are fixed at linear address 0. The VMM
provides multithreaded, preemptive multitasking. It runs multiple applications simultaneously by sharing
CPU time between the virtual machines in which the applications run. 
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11.4.3 Section Review
1. Define the following terms:

a. Multitasking

b. Segmentation

2. Define the following terms:

a. Segment selector

b. Logical address

3. (True/False): A segment selector points to an entry in a segment descriptor table.

4. (True/False): A segment descriptor contains the base location of a segment.

5. (True/False): A segment selector is 32 bits.

6. (True/False): A segment descriptor does not contain segment size information.

11.5 Chapter Summary
On the surface, 32-bit console mode programs look and behave like 16-bit MS-DOS programs
running in text mode. Both types of programs read from standard input and write to standard
output, they support command-line redirection, and they can display text in color. Beneath the
surface, however, Win32 consoles and MS-DOS programs are quite different. Win32 runs in
32-bit protected mode, whereas MS-DOS runs in real-address mode. Win32 programs can call
functions from the same function library used by graphical Windows applications. MS-DOS
programs are limited to a smaller set of BIOS and MS-DOS interrupts that have existed since
the introduction of the IBM-PC. 

Types of character sets are used in Windows API functions: the 8-bit ASCII/ANSI character
set and a 16-bit version of the Unicode character set.

Standard MS-Windows data types used in the API functions must be translated to MASM
data types (see Table 11-1).

Console handles are 32-bit integers used for input/output in console windows. The
GetStdHandle function retrieves a console handle. For high-level console input, call the
ReadConsole function; for high-level output, call WriteConsole. When creating or opening a
file, call CreateFile. When reading from a file, call ReadFile, and when writing, call WriteFile.
CloseHandle closes a file. To move a file pointer, call SetFilePointer.

To manipulate the console screen buffer, call SetConsoleScreenBufferSize. To change
the text color, call SetConsoleTextAttribute. The WriteColors program in this chapter
demonstrated the WriteConsoleOutputAttribute and WriteConsoleOutputCharacter
functions.

To get the system time, call GetLocalTime; to set the time, call SetLocalTime. Both func-
tions use the SYSTEMTIME structure. The GetDateTime function example in this chapter returns
the date and time as a 64-bit integer, specifying the number of 100-nanosecond intervals that have
occurred since January 1, 1601. The TimerStart and TimerStop functions can be used to create a
simple stopwatch timer.
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When creating a graphical MS-Windows application, fill in a WNDCLASS structure with
information about the program’s main window class. Create a WinMain procedure that gets a
handle to the current process, loads the icon and mouse cursor, registers the program’s main
window, creates the main window, shows and updates the main windows, and begins a message
loop that receives and dispatches messages.

The WinProc procedure is responsible for handling incoming Windows messages, often acti-
vated by user actions such as a mouse click or keystroke. Our example program processes a
WM_LBUTTONDOWN message, a WM_CREATE message, and a WM_CLOSE message. It
displays popup messages when these events are detected.

Dynamic memory allocation, or heap allocation, is a tool you can use to reserve memory
and free memory for use by your program. Assembly language programs can perform dynamic
allocation in a couple of ways. First, they can make system calls to get blocks of memory from
the operating system. Second, they can implement their own heap managers that serve requests
for smaller objects. Following are the most important Win32 API calls for dynamic memory
allocation:

• GetProcessHeap returns a 32-bit integer handle to the program’s existing heap area.
• HeapAlloc allocates a block of memory from a heap.
• HeapCreate creates a new heap.
• HeapDestroy destroys a heap.
• HeapFree frees a block of memory previously allocated from a heap.
• HeapReAlloc reallocates and resizes a block of memory from a heap.
• HeapSize returns the size of a previously allocated memory block.

The memory management section of this chapter focuses on two main topics: translating
logical addresses into linear addresses and translating linear addresses into physical
addresses.

The selector in a logical address points to an entry in a segment descriptor table, which in
turn points to a segment in linear memory. The segment descriptor contains information about
the segment, including its size and type of access. There are two types of descriptor tables: a sin-
gle global descriptor table (GDT) and one or more local descriptor tables (LDT).

Paging is an important feature of the IA-32 processor that makes it possible for a computer to
run a combination of programs that would not otherwise fit into memory. The processor does
this by initially loading only part of a program in memory, while keeping the remaining parts on
disk. The processor uses a page directory, page table, and page frame to generate the physical
location of data. A page directory contains pointers to page tables. A page table contains pointers
to pages.

Reading For further reading about Windows programming, the following books may be helpful:

• Mark Russinovich and David Solomon, Windows Internals, Parts 1 and 2., Microsoft Press,
2012.

• Barry Kauler, Windows Assembly Language and System Programming, CMP Books, 1997.
• Charles Petzold, Programming Windows, 5th Ed., Microsoft Press, 1998.
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11.7 Review Questions and Exercises

11.7.1 Short Answer
1. Name the MASM data type that matches each of the following standard MS-Windows

types:
a. BOOL
b. COLORREF
c. HANDLE
d. LPSTR
e. WPARAM

2. Which Win32 function returns a handle to standard input?

3. Which Win32 function reads a string of text from the keyboard and places the string in a
buffer?

4. Describe the COORD structure.

5. Which Win32 function moves the file pointer to a specified offset relative to the beginning
of a file?

6. Which Win32 function changes the title of the console window?

7. Which Win32 function lets you change the dimensions of the screen buffer?

8. Which Win32 function lets you change the size of the cursor?

9. Which Win32 function lets you change the color of subsequent text output?

10. Which Win32 function lets you copy an array of attribute values to consecutive cells of the
console screen buffer?
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11. Which Win32 function lets you pause a program for a specified number of milliseconds?

12. When CreateWindowEx is called, how is the window’s appearance information transmitted
to the function?

13. Name two button constants that can be used when calling the MessageBox function.

14. Name two icon constants that can be used when calling the MessageBox function.

15. Name at least three tasks performed by the WinMain (startup) procedure.

16. Describe the role of the WinProc procedure in the example program.

17. Which messages are processed by the WinProc procedure in the example program?

18. Describe the role of the ErrorHandler procedure in the example program.

19. Does the message box activated immediately after calling CreateWindow appear before or
after the application’s main window?

20. Does the message box activated by WM_CLOSE appear before or after the main window
closes?

21. Describe a linear address.

22. How does paging relate to linear memory?

23. If paging is disabled, how does the processor translate a linear address to a physical
address?

24. What advantage does paging offer?

25. Which register contains the base location of a local descriptor table?

26. Which register contains the base location of a global descriptor table?

27. How many global descriptor tables can exist?

28. How many local descriptor tables can exist?

29. Name at least four fields in a segment descriptor.

30. Which structures are involved in the paging process?

31. Which structure contains the base address of a page table?

32. Which structure contains the base address of a page frame?

11.7.2 Algorithm Workbench
1. Show an example call to the ReadConsole function.

2. Show an example call to the WriteConsole function.

3. Show an example call to the CreateFile function that will open an existing file for reading.

4. Show an example call to the CreateFile function that will create a new file with normal
attributes, erasing any existing file by the same name.

5. Show an example call to the ReadFile function.

6. Show an example call to the WriteFile function.

7. Show an example of calling the MessageBox function.
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11.8 Programming Exercises

1. ReadString
Implement your own version of the ReadString procedure, using stack parameters. Pass it a
pointer to a string and an integer, indicating the maximum number of characters to be entered.
Return a count (in EAX) of the number of characters actually entered. The procedure must input
a string from the console and insert a null byte at the end of the string (in the position occupied
by 0Dh). See Section 11.1.4 for details on the Win32 ReadConsole function. Write a short pro-
gram that tests your procedure.

2. String Input/Output
Write a program that inputs the following information from the user, using the Win32 Read-
Console function: first name, last name, age, phone number. Redisplay the same information
with labels and attractive formatting, using the Win32 WriteConsole function. Do not use any
procedures from the Irvine32 library.

3. Clearing the Screen
Write your own version of the link library’s Clrscr procedure that clears the screen. 

4. Random Screen Fill
Write a program that fills each screen cell with a random character in a random color. Extra:
Assign a 50% probability that the color of any character will be red.

5. DrawBox
Draw a box on the screen using line-drawing characters from the character set listed on the
inside back cover of the book. Hint: Use the WriteConsoleOutputCharacter function.

6. Student Records
Write a program that creates a new text file. Prompt the user for a student identification number,
last name, first name, and date of birth. Write this information to the file. Input several more
records in the same manner and close the file.

7. Scrolling Text Window
Write a program that writes 50 lines of text to the console screen buffer. Number each line. Move
the console window to the top of the buffer, and begin scrolling the text upward at a steady rate
(two lines per second). Stop scrolling when the console window reaches the end of the buffer.

8. Block Animation
Write a program that draws a small square on the screen using several blocks (ASCII code DBh) in
color. Move the square around the screen in randomly generated directions. Use a fixed delay value
of 50 milliseconds. Extra: Use a randomly generated delay value between 10 and 100 milliseconds.

9. Last Access Date of a File
Write a procedure named LastAccessDate that fills a SYSTEMTIME structure with the date
and time stamp information of a file. Pass the offset of a filename in EDX, and pass the offset of
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a SYSTEMTIME structure in ESI. If the function fails to find the file, set the Carry flag. When
you implement this function, you will need to open the file, get its handle, pass the handle to
GetFileTime, pass its output to FileTimeToSystemTime, and close the file. Write a test pro-
gram that calls your procedure and prints out the date when a particular file was last accessed.
Sample:

ch11_09.asm was last accessed on: 6/16/2005

10. Reading a Large File
Modify the ReadFile.asm program in Section 11.1.8 so that it can read files larger than its input
buffer. Reduce the buffer size to 1024 bytes. Use a loop to continue reading and displaying the
file until it can read no more data. If you plan to display the buffer with WriteString, remember
to insert a null byte at the end of the buffer data.

11. Linked List
Advanced: Implement a singly linked list, using the dynamic memory allocation functions pre-
sented in this chapter. Each link should be a structure named Node (see Chapter 10) containing
an integer value and a pointer to the next link in the list. Using a loop, prompt the user for as
many integers as they want to enter. As each integer is entered, allocate a Node object, insert the
integer in the Node, and append the Node to the linked list. When a value of 0 is entered, stop the
loop. Finally, display the entire list from beginning to end. This project should only be attempted
if you have previously created linked lists in a high-level language.

End Notes
1. Source: Microsoft MSDN Documentation, at http://msdn.microsoft.com/en-us/library/windows/desktop/

ms682073(v=vs.85).aspx

2. The Pentium Pro and later processors permit a 36-bit address option, but it will not be covered here.
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12.1 Floating-Point Binary Representation
A floating-point decimal number contains three components: a sign, a significand, and an expo-
nent. In the number �1.23154 � 105, for example, the sign is negative, the significand is 1.23154,
and the exponent is 5. (Although slightly less correct, the term mantissa is sometimes substituted
for significand.)
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12.1.1 IEEE Binary Floating-Point Representation
x86 processors use three floating-point binary storage formats specified in the Standard 754-
1985 for Binary Floating-Point Arithmetic produced by the IEEE organization. Table 12-1
describes their characteristics.1

Because the three formats are so similar, we will focus on the single-precision format (Fig. 12-1). The
32 bits are arranged with the most significant bit (MSB) on the left. The segment marked fraction
indicates the fractional part of the significand. As you might expect, the individual bytes are stored in
memory in little-endian order [least significant bit (LSB) at the starting address].

Figure 12–1 Single-precision format.

The Sign
If the sign bit is 1, the number is negative; if the bit is 0, the number is positive. Zero is consid-
ered positive.

The Significand
In the floating-point number represented by the expression m * be, m is called the significand, or
mantissa; b is the base; and e is the exponent. The significand (or mantissa) of a floating-point
number consists of the decimal digits to the left and right of the decimal point. In Chapter 1 we
introduced the concept of weighted positional notation when explaining the binary, decimal, and
hexadecimal numbering systems. The same concept can be extended to include the fractional
part of a floating-point number. For example, the decimal value 123.154 is represented by the
following sum:

123.154 � (1 � 102) � (2 � 101) � (3 � 100) � (1 � 10�1) � (5 � 10�2) � (4 � 10�3)

All digits to the left of the decimal point have positive exponents, and all digits to the right side
have negative exponents.

Finding the Intel x86 Documentation. To get the most out of this chapter, get free electronic cop-
ies of the Intel 64 and IA-32 Architectures Software Developer’s Manual, Vols. 1 and 2. Point your
Web browser to www.intel.com, and search for IA-32 manuals.

Table 12-1  IEEE Floating-Point Binary Formats.

Single Precision 32 bits: 1 bit for the sign, 8 bits for the exponent, and 23 bits for
the fractional part of the significand. Approximate normalized
range: 2�126 to 2127. Also called a short real.

Double Precision 64 bits: 1 bit for the sign, 11 bits for the exponent, and 52 bits for
the fractional part of the significand. Approximate normalized
range: 2�1022 to 21023. Also called a long real.

Double Extended Precision 80 bits: 1 bit for the sign, 16 bits for the exponent, and 63 bits for
the fractional part of the significand. Approximate normalized
range: 2�16382 to 216383. Also called an extended real.

Exponent Fraction

1 238

Sign

www.intel.com
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Binary floating-point numbers also use weighted positional notation. The floating-point
binary value 11.1011 is expressed as

11.1011 � (1 � 21) � (1 � 20) � (1 � 2�1) � (0 � 2�2) � (1 � 2�3) � (1 � 2�4)

Another way to express the values to the right of the binary point is to list them as a sum of frac-
tions whose denominators are powers of 2. In our sample, the sum is 11/16 (or 0.6875):

.1011 � 1�2 � 0�4 � 1�8 � 1�16 � 11�16

Generating the decimal fraction is fairly intuitive. The decimal numerator (11) represents the
binary bit pattern 1011. If e is the number of significant bits to the right of the binary point, the
decimal denominator is 2e. In our example, e = 4, so 2e = 16. Table 12-2 shows additional exam-
ples of translating binary floating-point notation to base-10 fractions. The last entry in the table
contains the smallest fraction that can be stored in a 23-bit normalized significand. For quick ref-
erence, Table 12-3 lists examples of binary floating-point numbers alongside their equivalent
decimal fractions and decimal values.

The Significand’s Precision
The entire continuum of real numbers cannot be represented in any floating-point format having
a finite number of bits. Suppose, for example, a simplified floating-point format had 5-bit signif-
icands. There would be no way to represent values falling between 1.1111 and 10.000 binary.
The binary value 1.11111, for example, requires a more precise significand. Extending this idea to
the IEEE double-precision format, we see that its 53-bit significand cannot represent a binary
value requiring 54 or more bits.

Table 12-2  Examples: Translating Binary Floating-Point 
to Fractions.

Binary Floating-Point Base-10 Fraction

11.11 3 3/4

101.0011 5 3/16

1101.100101 13 37/64

0.00101 5/32

1.011 1 3/8

0.00000000000000000000001 1/8388608

Table 12-3  Binary and Decimal Fractions.

Binary
Decimal
Fraction

Decimal
Value

.1 1/2 .5

.01 1/4 .25

.001 1/8 .125

.0001 1/16 .0625

.00001 1/32 .03125
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12.1.2 The Exponent
Single precision exponents are stored as 8-bit unsigned integers with a bias of 127. The num-
ber’s actual exponent must be added to 127. Consider the binary value 1.101 � 25: After the
actual exponent (5) is added to 127, the biased exponent (132) is stored in the number’s repre-
sentation. Table 12-4 shows examples of exponents in signed decimal, then biased decimal, and
finally unsigned binary. The biased exponent is always positive, between 1 and 254. As stated
earlier, the actual exponent range is from �126 to �127. The range was chosen so the smallest
possible exponent’s reciprocal cannot cause an overflow. 

12.1.3 Normalized Binary Floating-Point Numbers
Most floating-point binary numbers are stored in normalized form so as to maximize the preci-
sion of the significand. Given any floating-point binary number, you can normalize it by shifting
the binary point until a single “1” appears to the left of the binary point. The exponent expresses
the number of positions the binary point is moved left (positive exponent) or right (negative
exponent). Here are examples:

Denormalized Values To reverse the normalizing operation is to denormalize (or unnormalize)
a binary floating-point number. Shift the binary point until the exponent is zero. If the exponent is
positive n, shift the binary point n positions to the right; if the exponent is negative n, shift the
binary point n positions to the left, filling leading zeros if necessary. 

12.1.4 Creating the IEEE Representation

Real Number Encodings
Once the sign bit, exponent, and significand fields are normalized and encoded, it’s easy to gen-
erate a complete binary IEEE short real. Using Fig. 12-1 as a reference, we can place the sign bit
first, the exponent bits next, and the fractional part of the significand last. For example, binary
1.101 � 20 is represented as follows:

Table 12-4  Sample Exponents Represented in Binary.

Exponent (E)
Biased

(E � 127) Binary

+5 132 10000100

0 127 01111111

–10 117 01110101

+127 254 11111110

–126 1 00000001

–1 126 01111110

Denormalized Normalized

1110.1 1.1101 x 23

.000101 1.01 x 2-4

1010001. 1.010001 x 26
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• Sign bit: 0
• Exponent: 01111111
• Fraction: 10100000000000000000000

The biased exponent (01111111) is the binary representation of decimal 127. All normalized
significands have a 1 to the left of the binary point, so there is no need to explicitly encode the
bit. Additional examples are shown in Table 12-5. 

The IEEE specification includes several real-number and non-number encodings.

• Positive and negative zero
• Denormalized finite numbers
• Normalized finite numbers
• Positive and negative infinity
• Non-numeric values (NaN, known as Not a Number)
• Indefinite numbers

Indefinite numbers are used by the floating-point unit (FPU) as responses to some invalid floating-
point operations.

Normalized and Denormalized Normalized finite numbers are all the nonzero finite values
that can be encoded in a normalized real number between zero and infinity. Although it would seem
that all finite nonzero floating-point numbers should be normalized, it is not possible when their val-
ues are close to zero. This happens when the FPU cannot shift the binary point to a normalized posi-
tion, given the limitation posed by the range of the exponent. Suppose the FPU computes a result of
1.0101111 � 2�129, which has an exponent that is too small to be stored in a single-precision num-
ber. An underflow exception condition is generated, and the number is gradually denormalized by
shifting the binary point left 1 bit at a time until the exponent reaches a valid range:

1.01011110000000000001111 x 2-129

0.10101111000000000000111 x 2-128

0.01010111100000000000011 x 2-127

0.00101011110000000000001 x 2-126

In this example, some loss of precision occurred in the significand as a result of the shifting of
the binary point. 

Table 12-5  Examples of Single Precision Bit Encodings.

Binary Value
Biased

Exponent Sign, Exponent, Fraction

-1.11 127 1  01111111  11000000000000000000000

+1101.101 130 0  10000010  10110100000000000000000

-.00101 124 1  01111100  01000000000000000000000

+100111.0 132 0  10000100  00111000000000000000000 

+.0000001101011 120 0  01111000  10101100000000000000000
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Positive and Negative Infinity Positive infinity (�∞) represents the maximum positive real
number, and negative infinity (�∞) represents the maximum negative real number. You can
compare infinities to other values: �∞ is less than �∞, �∞ is less than any finite number, and
�∞ is greater than any finite number. Either infinity may represent a floating-point overflow
condition. The result of a computation cannot be normalized because its exponent would be too
large to be represented by the available number of exponent bits.

NaNs NaNs are bit patterns that do not represent any valid real number. The x86 includes two
types of NaNs: A quiet NaN can propagate through most arithmetic operations without causing
an exception. A signaling NaN can be used to generate a floating-point invalid operation excep-
tion. A compiler might fill an uninitialized array with signaling NaN values so that any attempt
to perform calculations on the array will generate an exception. A quiet NaN can be used to hold
diagnostic information created during debugging sessions. A program is free to encode any
information in a NaN it wishes. The FPU does not attempt to perform operations on NaNs. The
Intel manuals contain a set of rules that determine instruction results when combinations of the
two types of NaNs are used as operands.2

Specific Encodings There are several specific encodings for values often encountered in
floating-point operations, listed in Table 12-6. Bit positions marked with the letter x can be
either 1 or 0. QNaN is a quiet NaN, and SNaN is a signaling NaN.

12.1.5 Converting Decimal Fractions to Binary Reals
When a decimal fraction can be represented as a sum of fractions in the form (1/2 � 1/4 � 1/8 �
. . . ), it is fairly easy for you to discover the corresponding binary real. In Table 12-7, most of the
fractions in the left column are not in a form that translates easily to binary. They can, however, be
written as in the second column.

Many real numbers, such as 1/10 (0.1) or 1/100 (.01), cannot be represented by a finite
number of binary digits. Such a fraction can only be approximated by a sum of fractions
whose denominators are powers of 2. Imagine how currency values such as $39.95 are
affected! 

Table 12-6  Specific Single-Precision Encodings.

Value Sign, Exponent, Significand

Positive zero 0  00000000  00000000000000000000000

Negative zero 1  00000000  00000000000000000000000

Positive infinity 0  11111111  00000000000000000000000

Negative infinity 1  11111111  00000000000000000000000

QNaN x  11111111  1xxxxxxxxxxxxxxxxxxxxxx

SNaN x  11111111  0xxxxxxxxxxxxxxxxxxxxxxa

a SNaN significand field begins with 0, but at least one of the remaining bits must be 1.
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Alternate Method, Using Binary Long Division When small decimal values are involved,
an easy way to convert decimal fractions into binary is to first convert the numerator and denom-
inator to binary and then perform long division. For example, decimal 0.5 is represented as the
fraction 5/10. Decimal 5 is binary 0101, and decimal 10 is binary 1010. Performing the binary
long division, we find that the quotient is 0.1 binary:

When 1010 binary is subtracted from the dividend the remainder is zero, and the division stops.
Therefore, the decimal fraction 5/10 equals 0.1 binary. We will call this approach the binary long
division method.3

Representing 0.2 in Binary Let’s convert decimal 0.2 (2/10) to binary using the binary long
division method. First, we divide binary 10 by binary 1010 (decimal 10):

Table 12-7  Examples of Decimal Fractions and Binary Reals.

Decimal Fraction     Factored As... Binary Real

1/2 1/2 .1

1/4 1/4 .01

3/4 1/2 + 1/4 .11

1/8 1/8 .001

7/8 1/2 + 1/4 + 1/8 .111

3/8 1/4 + 1/8 .011

1/16 1/16 .0001

3/16 1/8 + 1/16 .0011

5/16 1/4 + 1/16 .0101

0 1 0 1.01 0 1 0
�1 0 1 0

.1

0

1 0.0 0 0 0 0 0 0 01 0 1 0
1 0 1 0

.0 0 1 1 0 0 1 1 (etc.)

1 1 0 0
1 0 1 0

1 0 0 0 0
1 0 1 0

1 1 0 0

etc.

1 0 1 0
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The first quotient large enough to use is 10000. After dividing 1010 into 10000, the remainder is
110. Appending another zero, the new dividend is 1100. After dividing 1010 into 1100, the remain-
der is 10. After appending three zeros, the new dividend is 10000. This is the same dividend
we started with. From this point on, the sequence of the bits in the quotient repeats (0011. . .),
so we know that an exact quotient will not be found and 0.2 cannot be represented by a finite
number of bits. The single-precision encoded significand is 00110011001100110011001.

Converting Single-Precision Values to Decimal
The following are suggested steps when converting a IEEE single-precision value to decimal:

1. If the MSB is 1, the number is negative; otherwise, it is positive.
2. The next 8 bits represent the exponent. Subtract binary 01111111 (decimal 127), producing

the unbiased exponent. Convert the unbiased exponent to decimal.
3. The next 23 bits represent the significand. Notate a “1.”, followed by the significand bits.

Trailing zeros can be ignored. Create a floating-point binary number, using the significand,
the sign determined in step 1, and the exponent calculated in step 2.

4. Denormalize the binary number produced in step 3. (Shift the binary point the number of
places equal to the value of the exponent. Shift right if the exponent is positive, or left if the
exponent is negative.)

5. From left to right, use weighted positional notation to form the decimal sum of the powers of
2 represented by the floating-point binary number.

Example: Convert IEEE (0 10000010 01011000000000000000000) to Decimal
1. The number is positive.

2. The unbiased exponent is binary 00000011, or decimal 3.

3. Combining the sign, exponent, and significand, the binary number is �1.01011 � 23.

4. The denormalized binary number is �1010.11.

5. The decimal value is �10 3/4, or �10.75.

12.1.6 Section Review
1. Why doesn’t the single-precision real format permit an exponent of �127?

2. Why doesn’t the single-precision real format permit an exponent of �128?

3. In the IEEE double-precision format, how many bits are reserved for the fractional part of
the significand?

4. In the IEEE single-precision format, how many bits are reserved for the exponent?

12.2 Floating-Point Unit
The Intel 8086 processor was designed to handle only integer arithmetic. This turned out to be
a problem for graphics and calculation-intensive software using floating-point calculations. It was
possible to emulate floating-point arithmetic purely through software, but the performance penalty
was severe. Programs such as AutoCad (by Autodesk) demanded a more powerful way to perform
floating-point math. Intel sold a separate floating-point coprocessor chip named the 8087, and
upgraded it along with each processor generation. With the advent of the Intel486, floating-point
hardware was integrated into the main CPU and called the FPU.
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12.2.1 FPU Register Stack
The FPU does not use the general-purpose registers (EAX, EBX, etc.). Instead, it has its own set
of registers called a register stack. It loads values from memory into the register stack, performs
calculations, and stores stack values into memory. FPU instructions evaluate mathematical
expressions in postfix format, in much the same way as Hewlett-Packard calculators. The follow-
ing, for example, is called an infix expression: (5 * 6) � 4. The postfix equivalent is

5 6 * 4 �

The infix expression  (A � B) * C  requires parentheses to override the default precedence rules
(multiplication before addition). The equivalent postfix expression does not require parentheses:

A B � C *

Expression Stack A stack holds intermediate values during the evaluation of postfix expressions.
Figure 12-2 shows the steps required to evaluate the postfix expression  5  6 * 4 –. The stack entries are
labeled ST(0) and ST(1), with ST(0) indicating where the stack pointer would normally be pointing.

Figure 12–2 Evaluating the postfix expression 5  6 * 4  – .

Commonly used methods for translating infix expressions to postfix are well documented in
introductory computer science texts and on the Internet, so we will skip them here. Table 12-8
contains a few examples of equivalent expressions.

FPU Data Registers
The FPU has eight individually addressable 80-bit data registers named R0 through R7 (see
Fig. 12-3). Together, they are called a register stack. A three-bit field named TOP in the FPU status

Table 12-8  Infix to Postfix Examples.

Infix Postfix

A + B A B +

(A - B) / D A B - D /

(A + B) * (C + D) A B + C D + *

((A + B) / C) * (E - F) A B + C / E F - *

Left to Right

55

Stack

5
6

5  6

305  6  *

305  6  *  4
4

Multiply ST(1) by 
ST(0) and pop 
ST(0) off the

ST (0)

ST (0)

ST (1)

ST (0)

push 5

Action

push 6

push 4

5  6  *  4 -

ST (0)

ST (1)

26 ST (0)
Subtract ST(0) from 
ST(1) and pop 
ST(0) off the stack.

stack.
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word identifies the register number that is currently the top of the stack. In Fig. 12-3, for example,
TOP equals binary 011, identifying R3 as the top of the stack. This stack location is also known as
ST(0) (or simply ST) when writing floating-point instructions. The last register is ST(7).

Figure 12–3 Floating-point data register stack.  

As we might expect, a push operation (also called load) decrements TOP by 1 and copies an
operand into the register identified as ST(0). If TOP equals 0 before a push, TOP wraps around
to register R7. A pop operation (also called store) copies the data at ST(0) into an operand, then
adds 1 to TOP. If TOP equals 7 before the pop, it wraps around to register R0. If loading a value
into the stack would result in overwriting existing data in the register stack, a floating-point
exception is generated. Figure 12-4 shows the same stack after 1.0 and 2.0 have been pushed
(loaded) on the stack.

Figure 12–4 FPU stack after pushing 1.0 and 2.0.  

Although it is interesting to understand how the FPU implements the stack using a limited set
of registers, we need only focus on the ST(n) notation, where ST(0) is always the top of stack.
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From this point forward, we refer to stack registers as ST(0), ST(1), and so on. Instruction oper-
ands cannot refer directly to register numbers.

Floating-point values in registers use the IEEE 10-byte extended real format (also known as
temporary real). When the FPU stores the result of an arithmetic operation in memory, it trans-
lates the result into one of the following formats: integer, long integer, single precision (short
real), double precision (long real), or packed binary-coded decimal (BCD).

Special-Purpose Registers
The FPU has six special-purpose registers (see Fig. 12-5):

• Opcode register: stores the opcode of the last noncontrol instruction executed. 
• Control register: controls the precision and rounding method used by the FPU when perform-

ing calculations. You can also use it to mask out (hide) individual floating-point exceptions.
• Status register: contains the top-of-stack pointer, condition codes, and warnings about exceptions. 
• Tag register: indicates the contents of each register in the FPU data-register stack. It uses

two bits per register to indicate whether the register contains a valid number, zero, or a special
value (NaN, infinity, denormal, or unsupported format) or is empty.

• Last instruction pointer register: stores a pointer to the last noncontrol instruction executed.
• Last data (operand) pointer register: stores a pointer to a data operand, if any, used by the

last instruction executed. 

Figure 12–5 FPU special-purpose registers. 

The special-purpose registers are used by operating systems to preserve state information when
switching between tasks. We mentioned state preservation in Chapter 2 when explaining how the
CPU performs multitasking.

12.2.2 Rounding
The FPU attempts to generate an infinitely accurate result from a floating-point calculation. In many
cases this is impossible because the destination operand may not be able to accurately represent
the calculated result. For example, suppose a certain storage format would only permit three
fractional bits. It would permit us to store values such as 1.011 or 1.101, but not 1.0101. Suppose

Control

Status

Tag

Last instruction pointer

Last data (operand) pointer

Opcode

010

15

47
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the precise result of a calculation produced �1.0111 (decimal 1.4375). We could either round the
number up to the next higher value by adding .0001 or round it downward to by subtracting .0001:

(a) 1.0111 --> 1.100
(b) 1.0111 --> 1.011

If the precise result were negative, adding –.0001 would move the rounded result closer to –∞.
Subtracting –.0001 would move the rounded result closer to both zero and +∞:

(a) -1.0111 --> -1.100
(b) -1.0111 --> -1.011

The FPU lets you select one of four rounding methods:

• Round to nearest even: The rounded result is the closest to the infinitely precise result. If two
values are equally close, the result is an even value (LSB = 0). 

• Round down toward �∞: The rounded result is less than or equal to the infinitely precise result.
• Round up toward �∞: The rounded result is greater than or equal to the infinitely precise result.
• Round toward zero: (also known as truncation): The absolute value of the rounded result is

less than or equal to the infinitely precise result.

FPU Control Word The FPU control word contains two bits named the RC field that specify 
which rounding method to use. The field values are as follows:

• 00 binary: Round to nearest even (default).
• 01 binary: Round down toward negative infinity.
• 10 binary: Round up toward positive infinity.
• 11 binary: Round toward zero (truncate).

Round to nearest even is the default, and is considered to be the most accurate and appropriate for
most application programs. Table 12-9 shows how the four rounding methods would be applied to
binary +1.0111. Similarly, Table 12-10 shows the possible roundings of binary –1.0111.

Table 12-9  Example: Rounding +1.0111.

Method Precise Result Rounded

Round to nearest even 1.0111 1.100

Round down toward �∞ 1.0111 1.011

Round toward �∞ 1.0111 1.100

Round toward zero 1.0111 1.011

Table 12-10  Example: Rounding –1.0111.

Method Precise Result Rounded

Round to nearest (even) -1.0111 -1.100

Round toward �∞ -1.0111 -1.100

Round toward �∞ -1.0111 -1.011

Round toward zero -1.0111 -1.011
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12.2.3 Floating-Point Exceptions
In every program, things can go wrong, and the FPU has to deal with the results. Consequently,
it recognizes and detects six types of exception conditions: Invalid operation (#I), Divide by zero
(#Z), Denormalized operand (#D), Numeric overflow (#O), Numeric underflow (#U), and Inex-
act precision (#P). The first three (#I, #Z, and #D) are detected before any arithmetic operation
occurs. The latter three (#O, #U, and #P) are detected after an operation occurs.

Each exception type has a corresponding flag bit and mask bit. When a floating-point excep-
tion is detected, the processor sets the matching flag bit. For each exception flagged by the pro-
cessor, there are two courses of action:

• If the corresponding mask bit is set, the processor handles the exception automatically and
lets the program continue. 

• If the corresponding mask bit is clear, the processor invokes a software exception handler.

The processor’s masked (automatic) responses are generally acceptable for most programs.
Custom exception handlers can be used in cases where specific responses are required by the
application. A single instruction can trigger multiple exceptions, so the processor keeps an ongo-
ing record of all exceptions occurring since the last time exceptions were cleared. After a
sequence of calculations completes, you can check to see if any exceptions occurred. 

12.2.4 Floating-Point Instruction Set
The FPU instruction set is somewhat complex, so we will attempt here to give you an overview
of its capabilities, along with specific examples that demonstrate code typically generated by
compilers. In addition, we will see how you can exercise control over the FPU by changing its
rounding mode. The instruction set contains the following basic categories of instructions:

• Data transfer
• Basic arithmetic
• Comparison
• Transcendental
• Load constants (specialized predefined constants only)
• x87 FPU control
• x87 FPU and SIMD state management

Floating-point instruction names begin with the letter F to distinguish them from CPU
instructions. The second letter of the instruction mnemonic (often B or I) indicates how a mem-
ory operand is to be interpreted: B indicates a BCD operand, and I indicates a binary integer
operand. If neither is specified, the memory operand is assumed to be in real-number format. For
example, FBLD operates on BCD numbers, FILD operates on integers, and FLD operates on
real numbers.

Operands A floating-point instruction can have zero operands, one operand, or two operands.
If there are two operands, one must be a floating-point register. There are no immediate oper-
ands, but certain predefined constants (such as 0.0, �, and log2 10) can be loaded into the stack.

Table B-3 in Appendix B contains a reference listing of x86 floating-point instructions.
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General-purpose registers such as EAX, EBX, ECX, and EDX cannot be operands. (The only
exception is FSTSW, which stores the FPU status word in AX.) Memory-to-memory operations
are not permitted. 

Integer operands must be loaded into the FPU from memory (never from CPU registers);
they are automatically converted to floating-point format. Similarly, when storing floating-
point values into integer memory operands, the values are automatically truncated or rounded
into integers.

Initialization (FINIT)
The FINIT instruction initializes the FPU. It sets the FPU control word to 037Fh, which masks
(hides) all floating-point exceptions, sets rounding to nearest even, and sets the calculation preci-
sion to 64 bits. We recommend calling FINIT at the beginning of your programs, so you know
the starting state of the processor.

Floating-Point Data Types
Let’s quickly review the floating-point data types supported by MASM (QWORD, TBYTE,
REAL4, REAL8, and REAL10), listed in Table 12-11. You will need to use these types when
defining memory operands for FPU instructions. For example, when loading a floating-point
variable into the FPU stack, the variable is defined as REAL4, REAL8, or REAL10:

.data
bigVal REAL10 1.212342342234234243E+864
.code
fld bigVal ; load variable into stack

Load Floating-Point Value (FLD)
The FLD (load floating-point value) instruction copies a floating-point operand to the top of the
FPU stack [known as ST(0)]. The operand can be a 32-bit, 64-bit, or 80-bit memory operand
(REAL4, REAL8, REAL10) or another FPU register:

FLD m32fp
FLD m64fp
FLD m80fp
FLD ST(i)

Memory Operand Types FLD supports the same memory operand types as MOV. Here are
examples:

Table 12-11  Intrinsic Data Types.

Type Usage

QWORD 64-bit integer

TBYTE 80-bit (10-byte) integer

REAL4 32-bit (4-byte) IEEE short real

REAL8 64-bit (8-byte) IEEE long real

REAL10 80-bit (10-byte) IEEE extended real
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.data
array REAL8 10 DUP(?)
.code
fld array ; direct
fld [array+16] ; direct-offset
fld REAL8 PTR[esi] ; indirect
fld array[esi] ; indexed
fld array[esi*8] ; indexed, scaled
fld array[esi*TYPE array] ; indexed, scaled
fld REAL8 PTR[ebx+esi] ; base-index
fld array[ebx+esi] ; base-index-displacement
fld array[ebx+esi*TYPE array] ; base-index-displacement, scaled

Example The following example loads two direct operands on the FPU stack:

.data
dblOne   REAL8 234.56
dblTwo   REAL8 10.1
.code
fld dblOne ; ST(0) = dblOne
fld dblTwo ; ST(0) = dblTwo, ST(1) = dblOne

The following figure shows the stack contents after executing each instruction:

When the second FLD executes, TOP is decremented, causing the stack element previously
labeled ST(0) to become ST(1).

FILD The FILD (load integer) instruction coverts a 16-, 32-, or 64-bit signed integer source
operand to double-precision floating point and loads it into ST(0). The source operand’s sign is
preserved. We will demonstrate its use in Section 12.2.10 (Mixed-Mode Arithmetic). FILD sup-
ports the same memory operand types as MOV (indirect, indexed, base-indexed, etc.).

Loading Constants The following instructions load specialized constants on the stack. They
have no operands:

• The FLD1 instruction pushes 1.0 onto the register stack. 
• The FLDL2T instruction pushes log2 10 onto the register stack.
• The FLDL2E instruction pushes log2 e onto the register stack.
• The FLDPI instruction pushes � onto the register stack.
• The FLDLG2 instruction pushes log10 2 onto the register stack.
• The FLDLN2 instruction pushes loge 2 onto the register stack.
• The FLDZ (load zero) instruction pushes 0.0 on the FPU stack. 

234.56ST(0)

10.1

ST(1)

ST(0)

234.56fld  dblTwo

fld  dblOne
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Store Floating-Point Value (FST, FSTP)
The FST (store floating-point value) instruction copies a floating-point operand from the top of the FPU
stack into memory. FST supports the same memory operand types as FLD. The operand can be a 32-bit,
64-bit, or 80-bit memory operand (REAL4, REAL8, REAL10) or it can be another FPU register:

FST m32fp FST m80fp
FST m64fp FST ST(i)

FST does not pop the stack. The following instructions store ST(0) into memory. Let’s assume
ST(0) equals 10.1 and ST(1) equals 234.56:

fst dblThree ; 10.1
fst dblFour ; 10.1

Intuitively, we might have expected dblFour to equal 234.56. But the first FST instruction left
10.1 in ST(0). If our intention is to copy ST(1) into dblFour, we must use the FSTP instruction.

FSTP The FSTP (store floating-point value and pop) instruction copies the value in ST(0) to
memory and pops ST(0) off the stack. Let’s assume ST(0) equals 10.1 and ST(1) equals 234.56
before executing the following instructions:

fstp dblThree ; 10.1
fstp dblFour ; 234.56

After execution, the two values have been logically removed from the stack. Physically, the TOP
pointer is incremented each time FSTP executes, changing the location of ST(0). 

The FIST (store integer) instruction converts the value in ST(0) to signed integer and stores
the result in the destination operand. Values can be stored as words or doublewords. We will
demonstrate its use in Section 12.2.10 (Mixed-Mode Arithmetic). FIST supports the same mem-
ory operand types as FST.

12.2.5 Arithmetic Instructions
The basic arithmetic operations are listed in Table 12-12. Arithmetic instructions all support the
same memory operand types as FLD (load) and FST (store), so operands can be indirect,
indexed, base-index, and so on.

Table 12-12  Basic Floating-Point Arithmetic 
Instructions.

FCHS Change sign

FADD Add source to destination

FSUB Subtract source from destination

FSUBR Subtract destination from source

FMUL Multiply source by destination

FDIV Divide destination by source

FDIVR Divide source by destination
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FCHS and FABS
The FCHS (change sign) instruction reverses the sign of the floating-point value in ST(0). The
FABS (absolute value) instruction clears the sign of the number in ST(0) to create its absolute
value. Neither instruction has operands:

FCHS
FABS

FADD, FADDP, FIADD
The FADD (add) instruction has the following formats, where m32fp is a REAL4 memory oper-
and, m64fp is a REAL8 operand, and i is a register number:

FADD4

FADD m32fp
FADD m64fp
FADD ST(0), ST(i)
FADD ST(i), ST(0)

No Operands If no operands are used with FADD, ST(0) is added to ST(1). The result is tempo-
rarily stored in ST(1). ST(0) is then popped from the stack, leaving the result on the top of the stack.
The following figure demonstrates FADD, assuming that the stack already contains two values:

Register Operands Starting with the same stack contents, the following illustration demon-
strates adding ST(0) to ST(1):

Memory Operand When used with a memory operand, FADD adds the operand to ST(0).
Here are examples:

fadd mySingle ; ST(0) += mySingle
fadd REAL8 PTR[esi] ; ST(0) += [esi]

ST(0)

10.1

ST(1)

ST(0)

234.56

After:

Before:

244.66

fadd

10.1ST(0)

fadd st(1), st(0)

10.1

ST(1)

ST(0)

234.56

244.66After: ST(1)

Before:
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FADDP The FADDP (add with pop) instruction pops ST(0) from the stack after performing
the addition operation. MASM supports the following format:

FADDP ST(i),ST(0)

The following figure shows how FADDP works:

FIADD The FIADD (add integer) instruction converts the source operand to double extended-
precision floating-point format before adding the operand to ST(0). It has the following syntax:

FIADD m16int
FIADD m32int

Example:

.data
myInteger DWORD 1
.code
fiadd  myInteger ; ST(0) += myInteger

FSUB, FSUBP, FISUB
The FSUB instruction subtracts a source operand from a destination operand, storing the differ-
ence in the destination operand. The destination is always an FPU register, and the source can be
either an FPU register or memory. It accepts the same operands as FADD:

FSUB5

FSUB m32fp
FSUB m64fp
FSUB ST(0), ST(i)
FSUB ST(i), ST(0)

FSUB’s operation is similar to that of FADD, except that it subtracts rather than adds. For exam-
ple, the no-operand form of FSUB subtracts ST(0) from ST(1). The result is temporarily stored in
ST(1). ST(0) is then popped from the stack, leaving the result on the top of the stack. FSUB with a
memory operand subtracts the memory operand from ST(0) and does not pop the stack.

Examples:

fsub mySingle    ; ST(0) -= mySingle
fsub array[edi*8] ; ST(0) -= array[edi*8]

FSUBP The FSUBP (subtract with pop) instruction pops ST(0) from the stack after perform-
ing the subtraction. MASM supports the following format:

FSUBP ST(i),ST(0)

244.66ST(0)

faddp st(1), st(0)

10.1

ST(1)

ST(0)

234.56

After:

Before:
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FISUB The FISUB (subtract integer) instruction converts the source operand to double extended-
precision floating-point format before subtracting the operand from ST(0):

FISUB m16int
FISUB m32int

FMUL, FMULP, FIMUL
The FMUL instruction multiplies a source operand by a destination operand, storing the product
in the destination operand. The destination is always an FPU register, and the source can be a
register or memory operand. It uses the same syntax as FADD and FSUB:

FMUL6

FMUL m32fp
FMUL m64fp
FMUL ST(0), ST(i)
FMUL ST(i), ST(0)

FMUL’s operation is similar to that of FADD, except it multiplies rather than adds. For exam-
ple, the no-operand form of FMUL multiplies ST(0) by ST(1). The product is temporarily stored
in ST(1). ST(0) is then popped from the stack, leaving the product on the top of the stack. Simi-
larly, FMUL with a memory operand multiplies ST(0) by the memory operand:

fmul mySingle    ; ST(0) *= mySingle

FMULP The FMULP (multiply with pop) instruction pops ST(0) from the stack after performing 
the multiplication. MASM supports the following format:

FMULP ST(i),ST(0)

FIMUL is identical to FIADD, except that it multiplies rather than adds:

FIMUL m16int
FIMUL m32int

FDIV, FDIVP, FIDIV
The FDIV instruction divides a destination operand by a source operand, storing the dividend in
the destination operand. The destination is always a register, and the source operand can be
either a register or memory. It has the same syntax as FADD and FSUB:

FDIV7

FDIV m32fp
FDIV m64fp
FDIV ST(0), ST(i)
FDIV ST(i), ST(0)

FDIV’s operation is similar to that of FADD, except that it divides rather than adds. For
example, the no-operand form of FDIV divides ST(1) by ST(0). ST(0) is popped from the
stack, leaving the dividend on the top of the stack. FDIV with a memory operand divides
ST(0) by the memory operand. The following code divides dblOne by dblTwo and stores the
quotient in dblQuot:

.data
dblOne   REAL8  1234.56
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dblTwo   REAL8  10.0
dblQuot  REAL8  ?
.code
fld dblOne ; load into ST(0)
fdiv dblTwo ; divide ST(0) by dblTwo
fstp dblQuot ; store ST(0) to dblQuot

If the source operand is zero, a divide-by-zero exception is generated. A number of special
cases apply when operands equal to positive or negative infinity, zero, and NaN are divided. For
details, see the Intel Instruction Set Reference manual.

FIDIV The FIDIV instruction converts an integer source operand to double extended-precision
floating-point format before dividing it into ST(0). Syntax:

FIDIV m16int
FIDIV m32int

12.2.6 Comparing Floating-Point Values
Floating-point values cannot be compared using the CMP instruction—the latter uses integer
subtraction to perform comparisons. Instead, the FCOM instruction must be used. After execut-
ing FCOM, special steps must be taken before using conditional jump instructions (JA, JB, JE,
etc.) in logical IF statements. Since all floating-point values are implicitly signed, FCOM per-
forms a signed comparison.

FCOM, FCOMP, FCOMPP The FCOM (compare floating-point values) instruction compares 
ST(0) to its source operand. The source can be a memory operand or FPU register. Syntax:

The FCOMP instruction carries out the same operations with the same types of operands, and
ends by popping ST(0) from the stack. The FCOMPP instruction is the same as that of FCOMP,
except it pops the stack one more time.

Condition Codes Three FPU condition code flags, C3, C2, and C0, indicate the results of
comparing floating-point values (Table 12-13). The column headings show equivalent CPU sta-
tus flags because C3, C2, and C0 are similar in function to the Zero, Parity, and Carry flags,
respectively.

Instruction Description

FCOM Compare ST(0) to ST(1)

FCOM m32fp Compare ST(0) to m32fp

FCOM m64fp Compare ST(0) to m64fp

FCOM ST(i) Compare ST(0) to ST(i)
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The primary challenge after comparing two values and setting FPU condition codes is to find
a way to branch to a label based on the conditions. Two steps are involved: 

• Use the FNSTSW instruction to move the FPU status word into AX.
• Use the SAHF instruction to copy AH into the EFLAGS register.

Once the condition codes are in EFLAGS, you can use conditional jumps based on the Zero,
Parity, and Carry flags. Table 12-13 showed the appropriate conditional jump for each combina-
tion of flags. We can infer additional jumps: The JAE instruction causes a transfer of control if
CF = 0. JBE causes a transfer of control if CF = 1 or ZF = 1. JNE transfers if ZF = 0.

Example Start with the following C++ code:

double X = 1.2;
double Y = 3.0;
int N = 0;
if( X < Y )

N = 1;

The following assembly language code is equivalent:

.data
X REAL8  1.2
Y REAL8  3.0
N DWORD 0
.code
; if( X < Y )
; N = 1

fld X ; ST(0) = X
fcomp Y ; compare ST(0) to Y
fnstsw ax ; move status word into AX
sahf ; copy AH into EFLAGS
jnb L1 ; X not < Y? skip
mov N,1 ; N = 1

L1:

P6 Processor Improvements One point to be made about the foregoing example is that
floating-point comparisons incur more runtime overhead than integer comparisons. With this in
mind, Intel’s P6 family introduced the FCOMI instruction. It compares floating-point values and

Table 12-13  Condition Codes Set by FCOM, FCOMP, FCOMPP.

Condition
C3

(Zero Flag)
C2

(Parity Flag)
C0

(Carry Flag)
Conditional Jump 

to Use

ST(0) > SRC 0 0 0 JA, JNBE

ST(0) < SRC 0 0 1 JB, JNAE

ST(0) = SRC 1 0 0 JE, JZ

Unordereda

aIf an invalid arithmetic operand exception is raised (because of invalid operands) and the exception is
masked, C3, C2, and C0 are set according to the row marked Unordered.

1 1 1 (None)
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sets the Zero, Parity, and Carry flags directly. (The P6 family started with the Pentium Pro and
Pentium II processors.) FCOMI has the following syntax:

FCOMI ST(0),ST(i)

Let’s rewrite our previous code example (comparing X and Y) using FCOMI:

.code
; if( X < Y )
; N = 1

fld Y ; ST(0) = Y
fld X ; ST(0) = X, ST(1) = Y 
fcomi ST(0),ST(1) ; compare ST(0) to ST(1)
jnb L1 ; ST(0) not < ST(1)? skip
mov N,1 ; N = 1

L1:

The FCOMI instruction took the place of three instructions in the previous version, but required
one more FLD. The FCOMI instruction does not accept memory operands.

Comparing for Equality
Almost every beginning programming textbook warns readers not to compare floating-point val-
ues for equality because of rounding errors that occur during calculations. We can demonstrate
the problem by calculating the following expression: (sqrt(2.0) * sqrt(2.0)) � 2.0. Mathemati-
cally, it should equal zero, but the results are quite different (approximately 4.4408921E-016).
We will use the following data, and show the FPU stack after every step in Table 12-14:

val1 REAL8 2.0

The proper way to compare floating-point values x and y is to take the absolute value of their
difference, |x � y|, and compare it to a small user-defined value called epsilon. Here’s code in
assembly language that does it, using epsilon as the maximum difference they can have and still
be considered equal:

.data
epsilon REAL8 1.0E-12
val2 REAL8 0.0 ; value to compare
val3 REAL8 1.001E-13 ; considered equal to val2

.code
; if( val2 == val3 ), display "Values are equal".

fld epsilon
fld val2

Table 12-14  Calculating (sqrt(2.0) * sqrt(2.0)) – 2.0.

Instruction FPU Stack

fld   val1
fsqrt
fmul  ST(0),ST(0)
fsub  val1

ST(0): +2.0000000E+000
ST(0): +1.4142135E+000
ST(0): +2.0000000E+000
ST(0): +4.4408921E-016
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fsub val3
fabs
fcomi ST(0),ST(1)
ja skip
mWrite <"Values are equal",0dh,0ah> 

skip:

Table 12-15 tracks the program’s progress, showing the stack after each of the first four instruc-
tions execute.

If we redefined val3 as being larger than epsilon, it would not be equal to val2:

val3 REAL8 1.001E-12 ; not equal

12.2.7 Reading and Writing Floating-Point Values
Included in the book’s link libraries are two procedures for floating-point input–output, created
by William Barrett of San Jose State University:

• ReadFloat: Reads a floating-point value from the keyboard and pushes it on the floating-point stack.
• WriteFloat: Writes the floating-point value at ST(0) to the console window in exponential

format.

ReadFloat accepts a wide variety of floating-point formats. Here are examples:

35
+35.
-3.5
.35
3.5E5
3.5E005
-3.5E+5
3.5E-4
+3.5E-4

ShowFPUStack Another useful procedure, written by James Brink of Pacific Lutheran Uni-
versity, displays the FPU stack. Call it with no parameters:

call ShowFPUStack

Table 12-15  Calculating a Dot Product (6.0 * 2.0) + (4.5 * 3.2).

Instruction FPU Stack

fld   epsilon
fld   val2

fsub  val3

fabs

fcomi ST(0),ST(1)

ST(0): +1.0000000E-012
ST(0): +0.0000000E+000
ST(1): +1.0000000E-012
ST(0): -1.0010000E-013
ST(1): +1.0000000E-012
ST(0): +1.0010000E-013
ST(1): +1.0000000E-012
ST(0) < ST(1), so CF=1, ZF=0
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Example Program The following example program pushes two floating-point values on the FPU
stack, displays it, inputs two values from the user, multiplies them, and displays their product:

; 32-bit Floating-Point I/O Test  (floatTest32.asm)

INCLUDE Irvine32.inc
INCLUDE macros.inc

.data
first  REAL8 123.456
second REAL8 10.0
third  REAL8 ?

.code
main PROC

finit ; initialize FPU

; Push two floats and display the FPU stack.
fld first
fld second
call ShowFPUStack

; Input two floats and display their product.
mWrite "Please enter a real number: "
call ReadFloat

mWrite "Please enter a real number: "
call ReadFloat

fmul ST(0),ST(1) ; multiply

mWrite "Their product is: "
call WriteFloat
call Crlf

exit
main ENDP
END main

Sample input/output (user input shown in bold type):

12.2.8 Exception Synchronization
The integer (CPU) and FPU are separate units, so floating-point instructions can execute at the
same time as integer and system instructions. This capability, named concurrency, can be a
potential problem when unmasked floating-point exceptions occur. Masked exceptions, on the

------ FPU Stack ------

ST(0): +1.0000000E+001

ST(1): +1.2345600E+002

Please enter a real number: 3.5

Please enter a real number: 4.2

Their product is: +1.4700000E+001
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other hand, are not a problem because the FPU always completes the current operation and
stores the result. 

When an unmasked exception occurs, the current floating-point instruction is interrupted and
the FPU signals the exception event. When the next floating-point instruction or the FWAIT
(WAIT) instruction is about to execute, the FPU checks for pending exceptions. If any are found,
it invokes the floating-point exception hander (a subroutine). 

What if the floating-point instruction causing the exception is followed by an integer or sys-
tem instruction? Unfortunately, such instructions do not check for pending exceptions—they
execute immediately. If the first instruction is supposed to store its output in a memory operand
and the second instruction modifies the same memory operand, the exception handler cannot
execute properly. Here’s an example:

.data
intVal DWORD 25
.code
fild intVal ; load integer into ST(0)
inc intVal ; increment the integer

The WAIT and FWAIT instructions were created to force the processor to check for pending,
unmasked floating-point exceptions before proceeding to the next instruction. Either one solves
our potential synchronization problem, preventing the INC instruction from executing until the
exception handler has a chance to finish:

fild intVal ; load integer into ST(0)
fwait ; wait for pending exceptions
inc intVal ; increment the integer

12.2.9 Code Examples
In this section, we look at a few short examples that demonstrate floating-point arithmetic
instructions. An excellent way to learn is to code expressions in C++, compile them, and inspect
the code produced by the compiler.

Expression
Let’s code the expression valD � �valA � (valB * valC). A possible step-by-step solution
is: Load valA on the stack and negate it. Load valB into ST(0), moving valA down to ST(1).
Multiply ST(0) by valC, leaving the product in ST(0). Add ST(1) and ST(0) and store the sum
in valD:

.data
valA REAL8 1.5
valB REAL8 2.5
valC REAL8 3.0
valD REAL8 ?; +6.0
.code
fld valA ; ST(0) = valA
fchs ; change sign of ST(0)
fld valB ; load valB into ST(0)
fmul valC ; ST(0) *= valC
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fadd ; ST(0) += ST(1)
fstp valD ; store ST(0) to valD

Sum of an Array
The following code calculates and displays the sum of an array of double-precision reals:

ARRAY_SIZE = 20
.data
sngArray  REAL8  ARRAY_SIZE DUP(?)
.code

mov esi,0 ; array index
fldz ; push 0.0 on stack
mov ecx,ARRAY_SIZE

L1: fld sngArray[esi] ; load mem into ST(0)
fadd ; add ST(0), ST(1), pop
add esi,TYPE REAL8 ; move to next element
loop L1

call WriteFloat ; display the sum in ST(0)

Sum of Square Roots
The FSQRT instruction replaces the number in ST(0) with its square root. The following code
calculates the sum of two square roots:

.data
valA REAL8 25.0
valB REAL8 36.0
.code
fld valA ; push valA
fsqrt ; ST(0) = sqrt(valA)
fld valB ; push valB
fsqrt ; ST(0) = sqrt(valB)
fadd ; add ST(0), ST(1)

Array Dot Product
The following code calculates the expression (array[0] * array[1]) + (array[2] * array[3]). The
calculation is sometimes referred to as a dot product. Table 12-16 displays the FPU stack after
each instruction executes. Here is the input data:

.data
array REAL4 6.0, 2.0, 4.5, 3.2

Table 12-16  Calculating a Dot Product (6.0 * 2.0) � (4.5 * 3.2).

Instruction FPU Stack

fld  array
fmul [array+4]
fld  [array+8]

fmul [array+12]

fadd

ST(0): +6.0000000E+000
ST(0): +1.2000000E+001
ST(0): +4.5000000E+000
ST(1): +1.2000000E+001
ST(0): +1.4400000E+001
ST(1): +1.2000000E+001
ST(0): +2.6400000E+001
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12.2.10 Mixed-Mode Arithmetic
Up to this point, we have performed arithmetic operations involving only reals. Applications
often perform mixed-mode arithmetic, combining integers and reals. Integer arithmetic instruc-
tions such as ADD and MUL cannot handle reals, so our only choice is to use floating-point
instructions. The Intel instruction set provides instructions that promote integers to reals and load
the values onto the floating-point stack. 

Example The following C++ code adds an integer to a double and stores the sum in a double.
C++ automatically promotes the integer to a real before performing the addition:

int N = 20;
double X = 3.5;
double Z = N + X;

Here is the equivalent assembly language:

.data
N SDWORD 20
X REAL8 3.5
Z REAL8 ?
.code
fild N ; load integer into ST(0)
fadd X ; add mem to ST(0)
fstp Z ; store ST(0) to mem

Example The following C++ program promotes N to a double, evaluates a real expression,
and stores the result in an integer variable:

int N = 20;
double X = 3.5;
int Z = (int) (N + X);

The code generated by Visual C++ calls a conversion function (ftol) before storing the truncated
result in Z. If we code the expression in assembly language using FIST, we can avoid the func-
tion call, but Z is (by default) rounded upward to 24:

fild N ; load integer into ST(0)
fadd X ; add mem to ST(0)
fist Z ; store ST(0) to mem int

Changing the Rounding Mode The RC field of the FPU control word lets you specify the
type of rounding to be performed. We can use FSTCW to store the control word in a variable,
modify the RC field (bits 10 and 11), and use the FLDCW instruction to load the variable back
into the control word:

fstcw ctrlWord ; store control word
or ctrlWord,110000000000b ; set RC = truncate
fldcw ctrlWord ; load control word

Then we perform calculations requiring truncation, producing Z = 23: 

fild N ; load integer into ST(0)
fadd X ; add mem to ST(0)
fist Z ; store ST(0) to mem int
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Optionally, we reset the rounding mode to its default (round to nearest even):

fstcw ctrlWord ; store control word
and ctrlWord,001111111111b ; reset rounding to default
fldcw ctrlWord ; load control word

12.2.11 Masking and Unmasking Exceptions
Exceptions are masked by default (Section 12.2.3), so when a floating-point exception is generated,
the processor assigns a default value to the result and continues quietly on its way. For example,
dividing a floating-point number by zero produces infinity without halting the program:

.data
val1 DWORD 1
val2 REAL8 0.0
.code
fild val1 ; load integer into ST(0)
fdiv val2 ; ST(0) = positive infinity

If you unmask the exception in the FPU control word, the processor tries to execute an appro-
priate exception handler. Unmasking is accomplished by clearing the appropriate bit in the FPU
control word (Table 12-17). Suppose we want to unmask the divide by Zero exception. Here are
the required steps:

1. Store the FPU control word in a 16-bit variable.
2. Clear bit 2 (divide by zero flag).
3. Load the variable back into the control word.

The following code unmasks floating-point exceptions:

.data
ctrlWord WORD ?
.code
fstcw ctrlWord ; get the control word

Table 12-17  Fields in the FPU Control Word.

Bit(s) Description

0 Invalid operation exception mask

1 Denormal operand exception mask

2 Divide by zero exception mask

3 Overflow exception mask

4 Underflow exception mask

5 Precision exception mask

8–9 Precision control

10–11 Rounding control

12 Infinity control
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and ctrlWord,1111111111111011b; unmask divide by zero
fldcw ctrlWord ; load it back into FPU

Now, if we execute code that divides by zero, an unmasked exception is generated:

fild val1
fdiv val2 ; divide by zero
fst val2

As soon as the FST instruction begins to execute, MS-Windows displays the following dialog:

Masking Exceptions To mask an exception, set the appropriate bit in the FPU control word. The 
following code masks divide by zero exceptions:

.data
ctrlWord WORD ?
.code
fstcw ctrlWord ; get the control word
or ctrlWord,100b ; mask divide by zero
fldcw ctrlWord ; load it back into FPU

12.2.12 Section Review
1. Write an instruction that loads a duplicate of ST(0) onto the FPU stack.

2. If ST(0) is positioned at absolute register R6 in the register stack, what is the position of
ST(2)?

3. Name at least three FPU special-purpose registers. 

4. When the second letter of a floating-point instruction is B, what type of operand is indicated? 

5. Which floating-point instructions accept immediate operands? 

12.3 x86 Instruction Encoding
To fully understand assembly language operation codes and operands, you need to spend some
time looking at the way assembly instructions are translated into machine language. The topic is
quite complex because of the rich variety of instructions and addressing modes available in the
Intel instruction set. We will begin with the 8086/8088 processor as an illustrative example, run-
ning in real-address mode. Later, we will show some of the changes made when Intel introduced
32-bit processors.

The Intel 8086 processor was the first in a line of processors using a Complex Instruction Set
Computer (CISC) design. The instruction set includes a wide variety of memory-addressing,
shifting, arithmetic, data movement, and logical operations. Compared to RISC (Reduced
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Instruction Set Computer) instructions, Intel instructions are somewhat tricky to encode and
decode. To encode an instruction means to convert an assembly language instruction and its
operands into machine code. To decode an instruction means to convert a machine code instruc-
tion into assembly language. If nothing else, our walk-through of the encoding and decoding of
Intel instructions will help to give you an appreciation for the hard work done by MASM’s
authors.

12.3.1 Instruction Format
The general x86 machine instruction format (Fig. 12-6) contains an instruction prefix byte, opcode,
Mod R/M byte, scale index byte (SIB), address displacement, and immediate data. Instructions are
stored in little-endian order, so the prefix byte is located at the instruction’s starting address. Every
instruction has an opcode, but the remaining fields are optional. Few instructions contain all fields;
on average, most instructions are 2 or 3 bytes. Here is a quick summary of the fields:

• The instruction prefix overrides default operand sizes.
• The opcode (operation code) identifies a specific variant of an instruction. The ADD instruc-

tion, for example, has nine different opcodes, depending on the parameter types used.
• The Mod R/M field identifies the addressing mode and operands. The notation “R/M”

stands for register and mode. Table 12-18 describes the Mod field, and Table 12-19 describes
the R/M field for 16-bit applications when Mod = 10 binary.

• The scale index byte (SIB) is used to calculate offsets of array indexes.
• The address displacement field holds an operand’s offset, or it can be added to base and

index registers in addressing modes such as base-displacement or base-index-displacement.
• The immediate data field holds constant operands.

Figure 12–6 x86 Instruction Format.

Table 12-18  Mod Field Values.

Mod Displacement

00 DISP = 0, disp-low and disp-high are absent (unless r/m = 110).

01 DISP = disp-low sign-extended to 16 bits; disp-high is absent.

10 DISP = disp-high and disp-low are used.

11 R/M field contains a register number.

Instruction Prefix Opcode ModR/M SIB Address Displacement Immediate Data 

1 byte 1-3 bytes 1 byte 1 byte 1-4 bytes 1-4 bytes

Mod Reg/Opcode R/M

bits 6-7 bits 3-5 bits 0-2

Scale Index Base

bits 6-7 bits 3-5 bits 0-2
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12.3.2 Single-Byte Instructions 
The simplest type of instruction is one with either no operand or an implied operand. Such
instructions require only the opcode field, the value of which is predetermined by the processor’s
instruction set. Table 12-20 lists a few common single-byte instructions. It might appear that the
INC DX instruction slipped into the table by mistake, but the designers of the instruction set
decided to supply unique opcodes for certain commonly used instructions. As a consequence,
register increments are optimized for code size and execution speed.

12.3.3 Move Immediate to Register
Immediate operands (constants) are appended to instructions in little-endian order (lowest byte
first). We will focus first on instructions that move immediate values to registers, avoiding the
complications of memory-addressing modes for the moment. The encoding format of a MOV
instruction that moves an immediate word into a register is B8 +rw dw, where the opcode byte
value is B8 + rw, indicating that a register number (0 through 7) is added to B8; dw is the imme-
diate word operand, low byte first. (Register numbers used in opcodes are listed in Table 12-21.)
All numeric values in the following examples are hexadecimal. 

Table 12-19  16-Bit R/M Field Values 
(for Mod = 10).

R/M Effective Address

000 [ BX + SI ] + D16a

001 [ BX + DI ] + D16

010 [ BP + SI ] + D16

011 [ BP + DI ] + D16

100 [ SI ] + D16

101 [ DI ] + D16

110 [ BP ] + D16

111 [ BX ] + D16

aD16 indicates a 16-bit displacement.

Table 12-20  Single-Byte
Instructions.

Instruction Opcode

AAA 37

AAS 3F

CBW 98

LODSB AC

XLAT D7

INC DX 42
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Example: PUSH CX The machine instruction is 51. The encoding steps are as follows:

1. The opcode for PUSH with a 16-bit register operand is 50.

2. The register number for CX is 1, so add 1 to 50, producing opcode 51.

Example: MOV AX,1 The machine instruction is B8 01 00 (hexadecimal). Here’s how it is
encoded:

1. The opcode for moving an immediate value to a 16-bit register is B8.

2. The register number for AX is 0, so 0 is added to B8 (refer to Table 12-21).

3. The immediate operand (0001) is appended to the instruction in little-endian order (01, 00). 

Example: MOV BX, 1234h The machine instruction is BB 34 12. The encoding steps are as
follows:

1. The opcode for moving an immediate value to a 16-bit register is B8.

2. The register number for BX is 3, so add 3 to B8, producing opcode BB.

3. The immediate operand bytes are 34 12.

For practice, we suggest you hand-assemble a few MOV immediate instructions to improve your
skills, and then check your results by inspecting the code generated by MASM in a source listing file.

12.3.4 Register-Mode Instructions
In instructions using register operands, the Mod R/M byte contains a 3-bit identifier for each regis-
ter operand. Table 12-22 lists the bit encodings for registers. The choice of 8-bit or 16-bit register
depends on bit 0 of the opcode field: 1 indicates a 16-bit register, and 0 indicates an 8-bit register.

For example, the machine language for MOV AX, BX is 89 D8. The Intel encoding of a 16-bit
MOV from a register to any other operand is 89/r, where /r indicates that a Mod R/M byte fol-

Table 12-21  Register Numbers 
(8/16 bit).

Register Code

AX/AL 0

CX/CL 1

DX/DL 2

BX/BL 3

SP/AH 4

BP/CH 5

SI/DH 6

DI/BH 7

Table 12-22  Identifying Registers in the Mod R/M Field.

R/M Register R/M Register

000 AX or AL 100 SP or AH 

001 CX or CL 101 BP or CH 

010 DX or DL 110 SI or DH

011 BX or BL 111 DI or BH
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lows the opcode. The Mod R/M byte is made up of three fields (mod, reg, and r/m). A Mod R/M
value of D8, for example, contains the following fields: 

• Bits 6 to 7 are the mod field, which identifies the addressing mode. The mod field is 11, indi-
cating that the r/m field contains a register number.

• Bits 3 to 5 are the reg field, which identifies the source operand. In our example, BX is
register 011.

• Bits 0 to 2 are the r/m field, which identifies the destination operand. In our example, AX is
register 000.

Table 12-23 lists a few more examples that use 8-bit and 16-bit register operands.

12.3.5 Processor Operand-Size Prefix
Let us now turn our attention to instruction encoding for x86 processors (IA-32). Some instruc-
tions begin with an operand-size prefix (66h) that overrides the default segment attribute for the
instruction it modifies. The question is, why have an instruction prefix? When the 8088/8086
instruction set was created, almost all 256 possible opcodes were used to handle instructions
using 8- and 16-bit operands. When Intel introduced 32-bit processors, they had to find a way to
invent new opcodes to handle 32-bit operands, yet retain compatibility with older processors.
For programs targeting 16-bit processors, they added a prefix byte to any instruction that used
32-bit operands. For programs targeting 32-bit processors, 32-bit operands were the default, so a
prefix byte was added to any instruction using 16-bit operands. Eight-bit operands need
no prefix. 

Example: 16-Bit Operands We can see how prefix bytes work in 16-bit mode by assembling
the MOV instructions listed earlier in Table 12-23. The .286 directive indicates the target proces-
sor for the compiled code, assuring (for one thing) that no 32-bit registers are used. Alongside
each MOV instruction, we show its instruction encoding:

.model small

.286

.stack 100h

.code
main PROC

mov ax,dx ; 8B C2
mov al,dl ; 8A C2

mod reg r/m

11 011 000 

Table 12-23  Sample MOV Instruction Encodings, Register Operands.

Instruction Opcode mod reg r/m

mov ax,dx 8B 11 000 010

mov al,dl 8A 11 000 010

mov cx,dx 8B 11 001 010

mov cl,dl 8A 11 001 010
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Let’s assemble the same instructions for a 32-bit processor, using the .386 directive; the
default operand size is 32 bits. We will include both 16-bit and 32-bit operands. The first MOV
instruction (EAX, EDX) needs no prefix because it uses 32-bit operands. The second MOV (AX,
DX) requires an operand-size prefix (66) because it uses 16-bit operands:

.model small

.386

.stack 100h

.code
main PROC

mov eax,edx ; 8B C2
mov ax,dx ; 66 8B C2
mov al,dl ; 8A C2

12.3.6 Memory-Mode Instructions
If the Mod R/M byte were only used for identifying register operands, Intel instruction encoding
would be relatively simple. In fact, Intel assembly language has a wide variety of memory-
addressing modes, causing the encoding of the Mod R/M byte to be fairly complex. (The
instruction set’s complexity is a common source of criticism by proponents of reduced instruc-
tion set computer designs.)

Exactly 256 different combinations of operands can be specified by the Mod R/M byte.
Table 12-24 lists the Mod R/M bytes (in hexadecimal) for Mod 00. (The complete table can be
found in the Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol. 2A.) Here’s
how the encoding of Mod R/M bytes works: The two bits in the Mod column indicate groups of
addressing modes. Mod 00, for example, has eight possible R/M values (000 to 111 binary) that
identify operand types listed in the Effective Address column. 

Suppose we want to encode MOV AX,[SI]; the Mod bits are 00, and the R/M bits are 100
binary. We know from Table 12-19 that AX is register number 000 binary, so the complete Mod
R/M byte is 00 000 100 binary or 04 hexadecimal: 

The hexadecimal byte 04 appears in the column marked AX, in row 5 of Table 12-24. 

The Mod R/M byte for MOV [SI],AL is the same (04h) because register AL is also register
number 000. Let’s encode the instruction MOV [SI],AL. The opcode for a move from an 8-bit
register is 88. The Mod R/M byte is 04h, and the machine instruction is 88 04.

MOV Instruction Examples
All the instruction formats and opcodes for 8-bit and 16-bit MOV instructions are shown in
Table 12-25. Tables 12-26 and 12-27 provide supplemental information about abbreviations used
in Table 12-25. Use these tables as references when hand-assembling MOV instructions. (For more
details, refer to the Intel manuals.)

mod reg r/m

00 000 100 
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Table 12-24  Partial List of Mod R/M Bytes (16-Bit Segments).

Byte: AL CL DL BL AH CH DH BH

Word: AX CX DX BX SP BP SI DI

Register ID: 000 001 010 011 100 101 110 111

Mod R/M Mod R/M Value Effective Address

00 000 00 08 10 18 20 28 30 38 [ BX + SI ]

001 01 09 11 19 21 29 31 39 [ BX + DI ]

010 02 0A 12 1A 22 2A 32 3A [ BP + SI ]

011 03 0B 13 1B 23 2B 33 3B [ BP + DI ]

100 04 0C 14 1C 24 2C 34 3C [ SI ]

101 05 0D 15 1D 25 2D 35 3D [ DI ]

110 06 0E 16 1E 26 2E 36 3E 16-bit displacement

111 07 0F 17 1F 27 2F 37 3F [ BX ]

Table 12-25  MOV Instruction Opcodes.

Opcode Instruction Description

88/r MOV eb,rb Move byte register into EA byte

89/r MOV ew,rw Move word register into EA word

8A/r MOV rb,eb Move EA byte into byte register

8B/r MOV rw,ew Move EA word into word register

8C/0 MOV ew,ES Move ES into EA word

8C/1 MOV ew,CS Move CS into EA word

8C/2 MOV ew,SS Move SS into EA word

8C/3 MOV ew,DS Move DS into EA word

8E/0 MOV ES,mw Move memory word into ES

8E/0 MOV ES,rw Move word register into ES

8E/2 MOV SS,mw Move memory word into SS

8E/2 MOV SS,rw Move register word into SS

8E/3 MOV DS,mw Move memory word into DS

8E/3 MOV DS,rw Move word register into DS

A0 dw MOV AL,xb Move byte variable (offset dw) into AL

A1 dw MOV AX,xw Move word variable (offset dw) into AX

A2 dw MOV xb,AL Move AL into byte variable (offset dw)
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Table 12-28 contains a few additional examples of MOV instructions that you can assemble
by hand and compare to the machine code shown in the table. We assume that myWord begins
at offset 0102h.

A3 dw MOV xw,AX Move AX into word register (offset dw)

B0 +rb db MOV rb,db Move immediate byte into byte register

B8 +rw dw MOV rw,dw Move immediate word into word register

C6 /0 db MOV eb,db Move immediate byte into EA byte

C7 /0 dw MOV ew,dw Move immediate word into EA word

Table 12-26  Key to Instruction Opcodes.

/n: A Mod R/M byte follows the opcode, possibly followed by immediate and displacement
fields. The digit n (0–7) is the value of the reg field of the Mod R/M byte.

/r: A Mod R/M byte follows the opcode, possibly followed by immediate and displacement
fields.

db: An immediate byte operand follows the opcode and Mod R/M bytes.

dw: An immediate word operand follows the opcode and Mod R/M bytes.

+rb: A register code (0–7) for an 8-bit register, which is added to the preceding hexadecimal
byte to form an 8-bit opcode.

+rw: A register code (0–7) for a 16-bit register, which is added to the preceding hexadecimal
byte to form an 8-bit opcode.

Table 12-27  Key to Instruction Operands.

db A signed value between �128 and �127. If combined with a word operand, this
value is sign-extended.

dw An immediate word value that is an operand of the instruction.

eb A byte-sized operand, either register or memory.

ew A word-sized operand, either register or memory.

rb An 8-bit register identified by the value (0–7).

rw A 16-bit register identified by the value (0–7).

xb A simple byte memory variable without a base or index register.

xw A simple word memory variable without a base or index register.

Table 12-25  MOV Instruction Opcodes.

Opcode Instruction Description

(Continued)
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12.3.7 Section Review
1. Provide opcodes for the following MOV instructions:

.data
myByte BYTE ?
myWord WORD ?
.code
mov ax,@data
mov ds,ax ; a.
mov ax,bx ; b.
mov bl,al ; c.
mov al,[si] ; d.
mov myByte,al ; e.
mov myWord,ax ; f.

2. Provide Mod R/M bytes for the following MOV instructions:

.data
array WORD 5 DUP(?)
.code
mov ax,@data
mov ds,ax ; a.
mov dl,bl ; b.
mov bl,[di] ; c.
mov ax,[si+2] ; d.
mov ax,array[si] ; e.
mov array[di],ax ; f.

12.4 Chapter Summary
A binary floating-point number contains three components: a sign, a significand, and an expo-
nent. Intel processors use three floating-point binary storage formats specified in the Standard
754-1985 for Binary Floating-Point Arithmetic produced by the IEEE organization:

• A 32-bit single precision value uses 1 bit for the sign, 8 bits for the exponent, and 23 bits for
the fractional part of the significand. 

Table 12-28  Sample MOV Instructions, with Machine Code.

Instruction Machine Code Addressing Mode

mov ax,myWord A1 02 01 direct (optimized for AX)

mov myWord,bx 89 1E 02 01 direct

mov [di],bx 89 1D indexed

mov [bx+2],ax 89 47 02 base-disp

mov [bx+si],ax 89 00 base-indexed

mov word ptr [bx+di+2],1234h C7 41 02 34 12 base-indexed-disp
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• A 64-bit double-precision value uses 1 bit for the sign, 11 bits for the exponent, and 52 bits
for the fractional part of the significand. 

• An 80-bit double extended-precision value uses 1 bit for the sign, 16 bits for the exponent,
and 63 bits for the fractional part of the significand. 

If the sign bit equals 1, the number is negative; if the bit is 0, the number is positive.

The significand of a floating-point number consists of the decimal digits to the left and right
of the decimal point.

Not all real numbers between 0 and 1 can be represented by floating-point numbers in a com-
puter because there are only a finite number of available bits.

Normalized finite numbers are all the nonzero finite values that can be encoded in a normal-
ized real number between zero and infinity. Positive infinity (�∞) represents the maximum pos-
itive real number, and negative infinity (�∞) represents the maximum negative real number.
NaNs are bit patterns that do not represent valid floating-point numbers. 

The Intel 8086 processor was designed to handle only integer arithmetic, so Intel produced a
separate 8087 floating-point coprocessor chip that was inserted on the computer’s motherboard
along with the 8086. With the advent of the Intel486, floating-point operations were integrated
into the main CPU and renamed the Floating-Point Unit (FPU).

The FPU has eight individually addressable 80-bit registers, named R0 through R7, arranged
in the form of a register stack. Floating-point operands are stored in the FPU stack in extended
real format while being used in calculations. Memory operands are also used in calculations.
When the FPU stores the result of an arithmetic operation in memory, it translates the result into
one of the following formats: integer, long integer, single precision, double precision, or binary-
coded decimal. 

Intel floating-point instruction mnemonics begin with the letter F to distinguish them from
CPU instructions. The second letter of an instruction (often B or I) indicates how a memory
operand is to be interpreted: B indicates a binary-coded decimal (BCD) operand, and I indicates
a binary integer operand. If neither is specified, the memory operand is assumed to be in real-
number format. 

The Intel 8086 processor was the first in a line of processors using a Complex Instruction Set
Computer (CISC) design. The instruction set is large, and includes a wide variety of memory-
addressing, shifting, arithmetic, data movement, and logical operations.

To encode an instruction means to convert an assembly language instruction and its operands
into machine code. To decode an instruction means to convert a machine code instruction into an
assembly language instruction and its operands. 

The x86 machine instruction format contains an optional prefix byte, an opcode, a optional
Mod R/M byte, optional immediate bytes, and optional memory displacement bytes. Few
instructions contain all of the fields. The prefix byte overrides the default operand size for the
target processor. The opcode byte contains the instruction’s unique operation code. The Mod R/
M field identifies the addressing mode and operands. In instructions using register operands, the
Mod R/M byte contains a 3-bit identifier for each register operand.
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12.6.1 Short Answer
1. Given the binary floating-point value 1101.01101, how can it be expressed as a sum of dec-

imal fractions?

2. Why cannot decimal 0.2 be represented exactly by a finite number of bits?

3. Given the binary value 11011.01011, what is its normalized value?

4. Given the binary value 0000100111101.1, what is its normalized value?

5. What are the two types of NaNs?

6. What is the largest data type permitted by the FLD instruction, and how many bits does it
contain?

7. How is the FSTP instruction different from FST?

address displacement

binary-coded decimal (BCD)

binary long division

Complex Instruction Set Computer (CISC)

control register

concurrency

decode an instruction

denormalize

double extended precision

double precision

encode an instruction

exponent

expression stack

extended real

floating-point exception

FPU control word

immediate data

indefinite number

infix expression

last data pointer register

last instruction pointer register

long real

mantissa

masked exception

Mod R/M byte

NaN (Not a Number)

negative infinity

normalized finite number

normalized form

opcode register

positive infinity

postfix expression

prefix byte

quiet NaN

RC field

Reduced Instruction Set (RISC)

register stack

rounding

Scale Index Byte (SIB)

short real

sign

signaling NaN

significand

single precision

status register

tag register

temporary real

unmasked exception

12.5 Key Terms
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8. Which instruction changes the sign of a floating-point number?

9. What types of operands may be used with the FADD instruction?

10. How is the FISUB instruction different from FSUB?

11. In processors prior to the P6 family, which instruction compares two floating-point values?

12. Which instruction loads an integer operand into ST(0)?

13. Which field in the FPU control word lets you change the processor’s rounding mode?

12.6.2 Algorithm Workbench
1. Show the IEEE single-precision encoding of binary +1110.011.

2. Convert the fraction 5/8 to a binary real.

3. Convert the fraction 17/32 to a binary real.

4. Convert the decimal value +10.75 to IEEE single-precision real.

5. Convert the decimal value −76.0625 to IEEE single-precision real.

6. Write a two-instruction sequence that moves the FPU status flags into the EFLAGS
register.

7. Given a precise result of 1.010101101, round it to an 8-bit significand using the FPU’s
default rounding method.

8. Given a precise result of –1.010101101, round it to an 8-bit significand using the FPU’s
default rounding method.

9. Write instructions that implement the following C++ code:

double B = 7.8;
double M = 3.6;
double N = 7.1;
double P = -M * (N + B);

10. Write instructions that implement the following C++ code:

int B = 7;
double N = 7.1;
double P = sqrt(N) + B;

11. Provide opcodes for the following MOV instructions:

.data
myByte BYTE ?
myWord WORD ?
.code
mov  ax,@data
mov  ds,ax
mov  es,ax ; a.
mov  dl,bl ; b.
mov  bl,[di] ; c.
mov  ax,[si+2] ; d.
mov  al,myByte ; e.
mov  dx,myWord ; f.
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12. Provide Mod R/M bytes for the following MOV instructions:

.data
array WORD 5 DUP(?)
.code
mov  ax,@data
mov  ds,ax
mov  BYTE PTR array,5 ; a.
mov  dx,[bp+5] ; b.
mov  [di],bx ; c.
mov  [di+2],dx ; d.
mov  array[si+2],ax ; e.
mov  array[bx+di],ax ; f.

13. Assemble the following instructions by hand and write the hexadecimal machine language
bytes for each labeled instruction. Assume that val1 is located at offset 0. Where 16-bit val-
ues are used, the bytes must appear in little endian order:

.data
val1 BYTE 5
val2 WORD 256
.code
mov  ax,@data
mov  ds,ax ; a.
mov  al,val1 ; b.
mov  cx,val2 ; c.
mov  dx,OFFSET val1 ; d.
mov  dl,2 ; e.
mov  bx,1000h ; f.

12.7 Programming Exercises

1. Floating-Point Comparison
Implement the following C++ code in assembly language. Substitute calls to WriteString for the
printf() function calls:

double X;
double Y;
if( X < Y )

printf("X is lower\n");
else

printf("X is not lower\n");

(Use Irvine32 library routines for console output, rather than calling the Standard C library’s
printf function.) Run the program several times, assigning a range of values to X and Y that test
your program’s logic.

2. Display Floating-Point Binary
Write a procedure that receives a single-precision floating-point binary value and displays it in
the following format: sign: display � or �; significand: binary floating-point, prefixed by “1.”;

★

★★★
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exponent: display in decimal, unbiased, preceded by the letter E and the exponent’s sign.
Sample:

.data
sample REAL4 -1.75

Displayed output:

3. Set Rounding Modes
(Requires knowledge of macros.) Write a macro that sets the FPU rounding mode. The single
input parameter is a two-letter code:

• RE: Round to nearest even
• RD: Round down toward negative infinity
• RU: Round up toward positive infinity
• RZ: Round toward zero (truncate)

Sample macro calls (case should not matter):

mRound Re 
mRound rd
mRound RU
mRound rZ

Write a short test program that uses the FIST (store integer) instruction to test each of the possi-
ble rounding modes. 

4. Expression Evaluation
Write a program that evaluates the following arithmetic expression:

((A � B) / C) * ((D � A) � E)

Assign test values to the variables and display the resulting value.

5. Area of a Circle
Write a program that prompts the user for the radius of a circle. Calculate and display the circle’s
area. Use the ReadFloat and WriteFloat procedures from the book’s library. Use the FLDPI
instruction to load � onto the register stack.

6. Quadratic Formula
Prompt the user for coefficients a, b, and c of a polynomial in the form ax2 � bx � c � 0. Calcu-
late and display the real roots of the polynomial using the quadratic formula. If any root is imag-
inary, display an appropriate message.

7. Showing Register Status Values
The Tag register (Section 12.2.1) indicates the type of contents in each FPU register, using 2 bits
for each (Fig. 12-7). You can load the Tag word by calling the FSTENV instruction, which fills
in the following protected-mode structure (defined in Irvine32.inc):

-1.11000000000000000000000 E+0

★

★★

★★★

★★

★★
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FPU_ENVIRON STRUCT
controlWord    WORD ?
ALIGN DWORD
statusWord     WORD ?
ALIGN DWORD
tagWord        WORD ?
ALIGN DWORD
instrPointerOffset     DWORD ?
instrPointerSelector   DWORD ?
operandPointerOffset   DWORD ?
operandPointerSelector WORD ?
WORD ? ; not used

FPU_ENVIRON ENDS

Write a program that pushes two or more values on the FPU stack, displays the stack by call-
ing ShowFPUStack, displays the Tag value of each FPU data register, and displays the register
number that corresponds to ST(0). (For the latter, call the FSTSW instruction to save the status
word in a 16-bit integer variable, and extract the stack TOP indicator from bits 11 through 13.)
Use the following sample output as a guide:

From the sample output, we can see that ST(0) is R6, and therefore ST(1) is R7. Both contain
valid floating-point numbers.

Figure 12–7 Tag word values.

------ FPU Stack ------

ST(0): +1.5000000E+000

ST(1): +2.0000000E+000

R0  is empty

R1  is empty

R2  is empty

R3  is empty

R4  is empty

R5  is empty

R6  is valid

R7  is valid

ST(0) = R6

R0R1R2R3R4R5R6R7
015

TAG values:
00 � valid
01 � zero 
10 � special (NaN, unsupported, infinity, or denormal)
11 � empty
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End Notes
1. Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol. 1, Chapter 4. See also http://grouper.ieee.org/

groups/754/.

2. Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol. 1, Chapter 4.

3. From Harvey Nice of DePaul University.

4. MASM uses a no-parameter FADD to perform the same operation as Intel’s no-parameter FADDP.

5. MASM uses a no-parameter FSUB to perform the same operation as Intel’s no-parameter FSUBP.

6. MASM uses a no-parameter FMUL to perform the same operation as Intel’s no-parameter FMULP.

7. MASM uses a no-parameter FDIV to perform the same operation as Intel’s no-parameter FDIVP.

http://grouper.ieee.org/groups/754/
http://grouper.ieee.org/groups/754/
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13.1 Introduction
Most programmers do not write large-scale applications in assembly language because doing so
would require too much time. Instead, high-level languages hide details that would otherwise
slow down a project’s development. Assembly language is still used widely, however, to config-
ure hardware devices and optimize both the speed and code size of programs. 

In this chapter, we focus on the interface, or connection, between assembly language and
high-level programming languages. In the first section, we will show how to write inline assem-
bly code in C++. In the next section, we will link 32-bit assembly language modules to C++ pro-
grams. Finally, we will show how to call C library functions from assembly language.
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13.1.1 General Conventions
There are a number of general considerations that must be addressed when calling assembly
language procedures from high-level languages.

First, the naming convention used by a language refers to the rules or characteristics regard-
ing the naming of variables and procedures. For example, we have to answer an important ques-
tion: Does the assembler or compiler alter the names of identifiers placed in object files, and if
so, how?

Second, segment names must be compatible with those used by the high-level language.

Third, the memory model used by a program (tiny, small, compact, medium, large, huge, or
flat) determines the segment size (16 or 32 bits), and whether calls and references will be near
(within the same segment) or far (between different segments). 

Calling Convention The calling convention refers to the low-level details about how proce-
dures are called. The following details must be considered:

• Which registers must be preserved by called procedures
• The method used to pass arguments: in registers, on the stack, in shared memory, or by some

other method
• The order in which arguments are passed by calling programs to procedures
• Whether arguments are passed by value or by reference
• How the stack pointer is restored after a procedure call
• How functions return values to calling programs

Naming Conventions and External Identifiers When calling an assembly language proce-
dure from a program written in another language, external identifiers must have compatible
naming conventions (naming rules). External identifiers are names that have been placed in a
module’s object file in such a way that the linker can make the names available to other program
modules. The linker resolves references to external identifiers, but can only do so if the naming
conventions being used are consistent. 

For example, suppose a C program named Main.c calls an external procedure named Array-
Sum. As illustrated in the following diagram, the C compiler automatically preserves case and
appends a leading underscore to the external name, changing it to _ArraySum:

The Array.asm module, written in assembly language, exports the ArraySum procedure
name as ARRAYSUM because the module uses the Pascal language option in its .MODEL
directive. The linker fails to produce an executable program because the two exported names
are different.

Compilers for older programming languages such as COBOL and PASCAL usually convert
identifiers to all uppercase letters. More recent languages such as C, C++, and Java preserve the
case of identifiers. In addition, languages that support function overloading (such as C++) use a

Linker Array.asm
.model flat, Pascalmain.c

calls:
_ArraySum

exports:
ARRAYSUM



13.1   Introduction 557

technique known as name decoration that adds additional characters to function names. A func-
tion named MySub(int n, double b), for example, might be exported as MySub#int#double.

In an assembly language module, you can control case sensitivity by choosing one of the lan-
guage specifiers in the .MODEL directive.

Segment Names When linking an assembly language procedure to a program written in a
high-level language, segment names must be compatible. In this chapter, we use the Microsoft
simplified segment directives .CODE, .STACK, and .DATA because they are compatible with
segment names produced by Microsoft C++ compilers. 

Memory Models A calling program and a called procedure must both use the same memory
model. In real-address mode, for example, you can choose from the small, medium, compact,
large, and huge models. In protected mode, you must use the flat model. We show examples of
both modes in this chapter.

13.1.2 .MODEL Directive
In 16-bit and 32-bit modes, MASM uses the .MODEL directive to determine several important
characteristics of a program: its memory model type, procedure naming scheme, and parameter
passing convention. The last two are particularly important when assembly language is called by
programs written in other programming languages. The syntax of the .MODEL directive is

.MODEL memorymodel [,modeloptions]

MemoryModel The memorymodel field can be one of the models described in Table 13-1. All
of the models, with the exception of flat, are used when programming in 16-bit real-address mode.

32-bit programs use the flat memory model, in which offsets are 32 bits, and the code and
data can be as large as 4 GByte. The Irvine32.inc file, for example, contains the following
.MODEL directive:

.model flat,STDCALL

Table 13-1  Memory Models.

Model Description

Tiny A single segment, containing both code and data. This model is used by pro-
grams having a .com extension in their filenames.

Small One code segment and one data segment. All code and data are near, by default.

Medium Multiple code segments and a single data segment.

Compact One code segment and multiple data segments.

Large Multiple code and data segments.

Huge Same as the large model, except that individual data items may be larger than a
single segment.

Flat Protected mode. Uses 32-bit offsets for code and data. All data and code
(including system resources) are in a single 32-bit segment.
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ModelOptions The ModelOptions field in the .MODEL directive can contain both a language
specifier and a stack distance. The language specifier determines calling and naming conven-
tions for procedures and public symbols. The stack distance can be NEARSTACK (the default)
or FARSTACK.

Language Specifiers
The .MODEL directive has a number of different possible language specifiers, some of which
are rarely used (such as BASIC, FORTRAN, and PASCAL). On the other hand, C and STD-
CALL are very common. Each is shown here, combined with the flat memory model:

.model flat, C

.model flat, STDCALL

STDCALL is the language specifier used when calling Windows system functions. In this
chapter we use the C language specifier when linking assembly language code to C and C++
programs.

STDCALL
The STDCALL language specifier causes subroutine arguments to be pushed on the stack
in reverse order (last to first). To illustrate, let’s write the following function call in a high-level
language:

AddTwo( 5, 6 );

The following assembly language code is equivalent when STDCALL is the chosen language
specifier:

push 6
push 5
call AddTwo

Another important consideration is how arguments are removed from the stack after proce-
dure calls. STDCALL requires a constant operand to be supplied in the RET instruction.
The constant indicates the value added to ESP after the return address is popped from the
stack by RET:

AddTwo PROC
push ebp
mov ebp,esp
mov eax,[ebp + 12]   ; second parameter
add eax,[ebp + 8] ; first parameter
pop ebp
ret 8 ; clean up the stack

AddTwo ENDPP

By adding 8 to the stack pointer, we reset it to the value it had before the arguments were pushed
on the stack by the calling program.

Finally, STDCALL modifies exported (public) procedure names by storing them in the fol-
lowing format:

_name@nn
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A leading underscore is added to the procedure name, and an integer follows the @ sign indicat-
ing the number of bytes used by the procedure parameters (rounded upward to a multiple of 4).
For example, suppose the procedure AddTwo has two doubleword parameters. The name passed
by the assembler to the linker is _AddTwo@8.

C Specifier
The C language specifier requires procedure arguments to be pushed on the stack from last to
first, like STDCALL. Regarding the removal of arguments from the stack after a procedure call,
the C language specifier places responsibility on the caller. In the calling program, a constant is
added to ESP, resetting it to the value it had before the arguments were pushed:

push 6 ; second argument
push 5 ; first argument
call AddTwo
add esp,8 ; clean up the stack

The C language specifier appends a leading underscore character to external procedure names.
For example:

_AddTwo

13.1.3 Examining Compiler-Generated Code
C and C++ compilers have been generating assembly language source code for a long time, but
programmers usually do not see it. That’s because assembly language is an intermediate step in
the process of creating an executable file. Fortunately, you can ask most compilers to generate an
assembly language source code file. For example, Table 13-2 lists the Visual Studio command
line options that control assembly source code output.

Examining a compiler-generated code file helps you to understand low-level details such as
stack frame construction, coding of loops and logic, and may be useful in looking for low-level
programming errors. Another benefit is that you can more easily detect differences between code
generated by one compiler versus another.

Let’s examine the ways in which a C++ compiler produces optimized code. As an initial
example, we can write a simple C method named ArraySum and compile it in Visual Studio
2012, using the following settings:

The Microsoft linker is case sensitive, so _MYSUB@8 is different from _MySub@8. To view all
procedure names inside an OBJ file, use the DUMPBIN utility supplied in Visual Studio with the /
SYMBOLS option.

Table 13-2  Visual C++ Command-Line Options for Assembly Code Generation.

Command Line Contents of Listing File

/FA Assembly-only listing

/FAc Assembly with machine code

/FAs Assembly with source code

/FAcs Assembly, machine code, and source
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• Optimization = Disabled (required when using the debugger)
• Favor Size Or Speed = Favor fast code
• Assembler Output = Assembly With Source Code

This is the source for arraySum, written in ANSI C:

int arraySum( int array[], int count )
{

int i;
int sum = 0;

for(i = 0; i < count; i++)
sum += array[i];

return sum;
}

Let’s look at the assembly code generated by the compiler for arraySum, shown in Fig. 13-1.
Lines 1–4 define negative offsets for the two local variables (sum and i), and positive offsets for
the input parameters array and count:

 1: _sum$ = -8 ; size = 4
 2: _i$ = -4 ; size = 4
 3: _array$ = 8 ; size = 4
 4: _count$ = 12 ; size = 4

Lines 9–10 set up EBP as the frame pointer:

 9: push ebp
10: mov ebp,esp

Next, lines 11–14 set aside stack space for local variables by subtracting 72 from ESP and sav-
ing three registers that will be modified by the function.

11: sub esp,72
12: push ebx
13: push esi
14: push edi

Line 19 locates the local variable named sum inside the stack frame and initializes it to zero.
Since the symbol _sum$ was defined with the value �8, this location is 8 bytes below the cur-
rent value of EBP:

19: mov DWORD PTR _sum$[ebp],0

Lines 24 and 25 initialize the variable i to zero, and jump to Line 30, bypassing statements that
will later increment the loop counter:

24: mov DWORD PTR _i$[ebp], 0
25: jmp SHORT $LN3@arraySum

Lines 26–30 mark the top of the loop and the place where the loop counter is incremented. The
C source code implies that this increment operation (i++) is performed at the end of the loop, but
the compiler has moved that code to the top of the loop:

26: $LN2@arraySum:
27: mov eax, DWORD PTR _i$[ebp]
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28: add eax, 1
29: mov DWORD PTR _i$[ebp], eax

Lines 30–33 compare the variable i to count, and jump just beyond the end of the loop if i is
greater than or equal to count:

30: $LN3@arraySum:
31: mov eax, DWORD PTR _i$[ebp]
32: cmp eax, DWORD PTR _count$[ebp]
33: jge SHORT $LN1@arraySum

Lines 37–41 evaluate the expression sum += array[i]. Array[i] is copied into ECX, sum is copied
into EDX, and after the addition, EDX is copied back into sum:

37: mov eax, DWORD PTR _i$[ebp]
38: mov ecx, DWORD PTR _array$[ebp] ; array[i]
39: mov edx, DWORD PTR _sum$[ebp] ; sum
40: add edx, DWORD PTR [ecx+eax*4]
41: mov DWORD PTR _sum$[ebp], edx

Line 42 returns control to the top of the loop:

42: jmp SHORT $LN2@arraySum

Line 43 holds a label that is just beyond the loop. It is a convenient place to jump to when the
loop has finished:

43: $LN1@arraySum:

Line 48 moves the sum variable into EAX in preparation for the return to the calling program.
Lines 52–56 restore the saved registers, including ESP, which must point to the calling pro-
gram’s return address on the stack.

48: mov eax, DWORD PTR _sum$[ebp]
49:
50: ; 12 : }
51:
52: pop edi
53: pop esi
54: pop ebx
55: mov esp, ebp
56: pop ebp
57: ret 0
58: _arraySum ENDP

You may think you could write faster code than this, and you're probably right. This code was
written for interactive debugging, so it compromises speed for readability. If you compile the
same program to a release target and select full optimization, the resulting code will execute
very fast, but is almost impossible for human readers to understand.

Debugger Settings To see assembly language source code while debugging your C and C++
programs in Visual Studio, select Options from the Tools menu to display the dialog window
shown in Fig. 13-2, and select the option indicated by the arrow. Do this before starting the
debugger. Then, after a debugging session has begun, right-click the source code window and
select Go to Disassembly from the popup menu.
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Our goal in this chapter is to become familiar with the most straightforward and simple code
generation examples produced by the C and C++ compilers. At the same time, it is important to
realize that compilers have many ways of generating code. For example, they can optimize code
for the fewest possible machine code bytes. Or, they can try to produce the fastest possible code,
even if the output results in a larger number of machine code bytes (it usually does). Finally, a
compiler can compromise by optimizing for both code size and speed. Code that is optimized for
speed may contain more instructions because loops may be unrolled to produce faster execution.
Machine code can also be split into two parts to take advantage of dual-core processors and their
ability to execute two parallel lines of code at the same time. 

Figure 13–1 ArraySum assembly code generated by Visual Studio.

 1: _sum$ = -8 ; size = 4
 2: _i$ = -4 ; size = 4
 3: _array$ = 8 ; size = 4
 4: _count$ = 12 ; size = 4
 5: _arraySum PROC ; COMDAT
 6: 
 7: ; 4    : {
 8: 
 9: push ebp
10: mov ebp, esp
11: sub esp, 72 ; 00000048H
12: push ebx
13: push esi
14: push edi
15:
16: ; 5    : int i;
17: ; 6    : int sum = 0;
18:
19: mov DWORD PTR _sum$[ebp], 0
20:
21: ; 7    : 
22: ; 8    : for(i = 0; i < count; i++)
23:
24: mov DWORD PTR _i$[ebp], 0
25: jmp SHORT $LN3@arraySum
26: $LN2@arraySum:
27: mov eax, DWORD PTR _i$[ebp]
28: add eax, 1
29: mov DWORD PTR _i$[ebp], eax
30: $LN3@arraySum:
31: mov eax, DWORD PTR _i$[ebp]
32: cmp eax, DWORD PTR _count$[ebp]
33: jge SHORT $LN1@arraySum
34:
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35: ; 9    : sum += array[i];
36:
37: mov eax, DWORD PTR _i$[ebp]
38: mov ecx, DWORD PTR _array$[ebp]
39: mov edx, DWORD PTR _sum$[ebp]
40: add edx, DWORD PTR [ecx+eax*4]
41: mov DWORD PTR _sum$[ebp], edx
42: jmp SHORT $LN2@arraySum
43: $LN1@arraySum:
44:
45: ; 10   : 
46: ; 11   : return sum;
47:
48: mov eax, DWORD PTR _sum$[ebp]
49:
50: ; 12   : }
51:
52: pop edi
53: pop esi
54: pop ebx
55: mov esp, ebp
56: pop ebp
57: ret 0
58: _arraySum ENDP

Figure 13–2 Enabling address-level debugging in Visual Studio.
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13.1.4 Section Review
1. What is meant by the naming convention used by a language?

2. Which memory models are available in real-address mode?

3. Will an assembly language procedure that uses the STDCALL language specifier link to a
C++ program?

13.2 Inline Assembly Code

13.2.1 __asm Directive in Visual C++
Inline assembly code is assembly language source code that is inserted directly into high-level
language programs. Most C and C++ compilers support this feature. 

In this section, we demonstrate how to write inline assembly code for Microsoft Visual C++
running in 32-bit protected mode with the flat memory model. Other high-level language com-
pilers support inline assembly code, but the exact syntax varies. 

Inline assembly code is a straightforward alternative to writing assembly code in external
modules. The primary advantage to writing inline code is simplicity because there are no exter-
nal linking issues, naming problems, and parameter passing protocols to worry about. 

The primary disadvantage to using inline assembly code is its lack of portability. This is an
issue when a high-level language program must be compiled for different target platforms.
Inline assembly code that runs on an Intel Pentium processor will not run on a RISC processor,
for example. To some extent, the problem can be solved by inserting conditional definitions in
the program’s source code to enable different versions of functions for different target systems.
It is easy to see, however, that maintenance is still a problem. A link library of external assembly
language procedures, on the other hand, could easily be replaced by a similar link library
designed for a different target machine.

The __asm Directive In Visual C++, the __asm directive can be placed at the beginning of a
single statement, or it can mark the beginning of a block of assembly language statements
(called an asm block). The syntax is

__asm  statement

__asm {
  statement-1
  statement-2
  ...
  statement-n
}

(There are two underline characters before “asm.”)

Comments Comments can be placed after any statements in the asm block, using either
assembly language syntax or C/C++ syntax. The Visual C++ manual suggests that you avoid
assembler-style comments because they might interfere with C macros, which expand on a sin-
gle logical line. Here are examples of permissible comments:
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mov  esi,buf     ; initialize index register
mov  esi,buf    // initialize index register
mov  esi,buf    /* initialize index register */

Features Here is what you can do when writing inline assembly code:

• Use most instructions from the x86 instruction set.
• Use register names as operands.
• Reference function parameters by name.
• Reference code labels and variables that were declared outside the asm block. (This is impor-

tant because local function variables must be declared outside the asm block.)
• Use numeric literals that incorporate either assembler-style or C-style radix notation. For

example, 0A26h and 0xA26 are equivalent and can both be used.
• Use the PTR operator in statements such as inc BYTE PTR [esi].
• Use the EVEN and ALIGN directives.

Limitations You cannot do the following when writing inline assembly code:

• Use data definition directives such as DB (BYTE) and DW (WORD).
• Use assembler operators (other than PTR).
• Use STRUCT, RECORD, WIDTH, and MASK.
• Use macro directives, including MACRO, REPT, IRC, IRP, and ENDM, or macro operators

(<>, !, &, %, and .TYPE). 
• Reference segments by name. (You can, however, use segment register names as operands.)

Register Values You cannot make any assumptions about register values at the beginning of
an asm block. The registers may have been modified by code that executed just before the asm
block. The __fastcall keyword in Microsoft Visual C++ causes the compiler to use registers to
pass parameters. To avoid register conflicts, do not use __fastcall and __asm together.

In general, you can modify EAX, EBX, ECX, and EDX in your inline code because the com-
piler does not expect these values to be preserved between statements. If you modify too many
registers, however, you may make it impossible for the compiler to fully optimize the C++ code
in the same procedure because optimization requires the use of registers.

Although you cannot use the OFFSET operator, you can retrieve the offset of a variable using
the LEA instruction. For example, the following instruction moves the offset of buffer to ESI:

lea esi,buffer

Length, Type, and Size You can use the LENGTH, SIZE, and TYPE operators with the
inline assembler. The LENGTH operator returns the number of elements in an array. The TYPE
operator returns one of the following, depending on its target:

• The number of bytes used by a C or C++ type or scalar variable
• The number of bytes used by a structure
• For an array, the size of a single array element

The SIZE operator returns LENGTH * TYPE. The following program excerpt demonstrates the
values returned by the inline assembler for various C++ types.
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Using the LENGTH, TYPE, and SIZE Operators
The following program contains inline assembly code that uses the LENGTH, TYPE, and SIZE
operators to evaluate C++ variables. The value returned by each expression is shown as a com-
ment on the same line:

struct Package {
long originZip; // 4
long destinationZip; // 4
float shippingPrice; // 4

};

char myChar;
bool myBool;
short myShort;
int myInt;
long myLong;
float myFloat;
double myDouble;
Package myPackage;

long double myLongDouble;
long myLongArray[10];

__asm {
mov eax,myPackage.destinationZip;

mov eax,LENGTH myInt; // 1
mov eax,LENGTH myLongArray; // 10

mov eax,TYPE myChar; // 1
mov eax,TYPE myBool; // 1
mov eax,TYPE myShort; // 2
mov eax,TYPE myInt; // 4
mov eax,TYPE myLong; // 4
mov eax,TYPE myFloat; // 4
mov eax,TYPE myDouble; // 8
mov eax,TYPE myPackage; // 12
mov eax,TYPE myLongDouble; // 8
mov eax,TYPE myLongArray; // 4

mov eax,SIZE myLong; // 4
mov eax,SIZE myPackage; // 12
mov eax,SIZE myLongArray; // 40

}

13.2.2 File Encryption Example
We will look at a short program that reads a file, encrypts it, and writes the output to another file.
The TranslateBuffer function uses an __asm block to define statements that loop through a
character array and XOR each character with a predefined value. The inline statements can refer
to function parameters, local variables, and code labels. Because this example was compiled

Microsoft Visual C++ inline assembler does not support the SIZEOF and LENGTHOF operators.
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under Microsoft Visual C++ as a Win32 Console application, the unsigned integer data type is
32 bits:

void TranslateBuffer( char * buf, 
     unsigned count, unsigned char eChar )
{

__asm {
mov esi,buf
mov ecx,count
mov al,eChar

L1:
xor [esi],al
inc esi
loop L1

}     // asm
}

C++ Module The C++ startup program reads the names of the input and output files from the
command line. It calls TranslateBuffer from a loop that reads blocks of data from a file, encrypts
it, and writes the translated buffer to a new file:

// ENCODE.CPP - Copy and encrypt a file.

#include <iostream>
#include <fstream>
#include "translat.h"

using namespace std;

int main( int argcount, char * args[] ) 
{

// Read input and output files from the command line.
if( argcount < 3 ) {

cout << "Usage: encode infile outfile" << endl;
return -1;

}

const int BUFSIZE = 2000;
char buffer[BUFSIZE];
unsigned int count; // character count

unsigned char encryptCode;
cout << "Encryption code [0-255]? ";
cin >> encryptCode;

ifstream infile( args[1], ios::binary );
ofstream outfile( args[2], ios::binary );

cout << "Reading" << args[1] << "and creating" 
<< args[2] << endl;

while (!infile.eof() )
{

infile.read(buffer, BUFSIZE);
count = infile.gcount();
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TranslateBuffer(buffer, count, encryptCode);
outfile.write(buffer, count);

}
return 0;

}

It’s easiest to run this program from a command prompt, passing the names of the input and out-
put files. For example, the following command line reads infile.txt and produces encoded.txt:

encode infile.txt encoded.txt

Header File The translat.h header file contains a single function prototype for Translate-
Buffer:

void TranslateBuffer(char * buf, unsigned count, 
                      unsigned char eChar);

You can view this program in the book’s \Examples\ch13\VisualCPP\Encode folder.

Procedure Call Overhead
If you view the Disassembly window while debugging this program in a debugger, it is inter-
esting to see exactly how much overhead can be involved in calling and returning from a pro-
cedure. The following statements push three arguments on the stack and call TranslateBuffer.
In the Visual C++ Disassembly window, we activated the Show Source Code and Show Symbol
Names options:

; TranslateBuffer(buffer, count, encryptCode)
mov al,byte ptr [encryptCode] 
push eax  
mov ecx,dword ptr [count] 
push ecx  
lea edx,[buffer] 
push edx  
call TranslateBuffer (4159BFh) 
add esp,0Ch 

The following code is a disassembly of TranslateBuffer. A number of statements were auto-
matically inserted by the compiler to set up EBP and save a standard set of registers that are
always preserved whether or not they are actually modified by the procedure:

push ebp  
mov ebp,esp 
sub esp,40h 
push ebx  
push esi  
push edi 

; Inline code begins here.
mov esi,dword ptr [buf] 
mov ecx,dword ptr [count] 
mov al,byte ptr [eChar] 
L1:
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  xor byte ptr [esi],al 
  inc esi  
  loop L1 (41D762h)
; End of inline code.

pop edi  
pop esi  
pop ebx  
mov esp,ebp 
pop ebp  
ret

If we turn off the Display Symbol Names option in the debugger’s Disassembly window, the
three statements that move parameters to registers appear as:

mov esi,dword ptr [ebp+8] 
mov ecx,dword ptr [ebp+0Ch] 
mov al,byte ptr [ebp+10h] 

The compiler was instructed to generate a Debug target, which is nonoptimized code suitable for inter-
active debugging. If we had selected a Release target, the compiler would have generated more
efficient (but harder to read) code.

Omit the Procedure Call The six inline instructions in the TranslateBuffer function shown
at the beginning of this section required a total of 18 instructions to execute. If the function were
called thousands of times, the required execution time might be measurable. To avoid this over-
head, let’s insert the inline code into the loop that called TranslateBuffer, creating a more effi-
cient program:

while (!infile.eof() )
{
   infile.read(buffer, BUFSIZE );
   count = infile.gcount();
   __asm {
       lea esi,buffer
       mov ecx,count
       mov al,encryptCode
   L1:
       xor [esi],al
       inc  esi
       Loop L1
   } // asm
    outfile.write(buffer, count);
}

You can view this program in the book’s \Examples\ch13\VisualCPP\Encode_Inline folder.

13.2.3 Section Review
1. How is inline assembly code different from an inline C++ procedure?

2. What advantage does inline assembly code offer over the use of external assembly language
procedures?
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3. Show at least two ways of placing comments in inline assembly code.

4. (Yes/No): Can an inline statement refer to code labels outside the __asm block?

13.3 Linking 32-Bit Assembly Language Code to C/C++
Programmers who create device drivers and code for embedded systems must often integrate
C/C++ modules with specialized code written in assembly language. Assembly language is par-
ticularly good at direct hardware access, bit mapping, and low-level access to registers and CPU
status flags. It would be tedious to write an entire application in assembly language, but it can be
useful to write the main application in C/C++ and use assembly language to write only the code
that would otherwise be awkward to write in C. Let’s discuss some of the standard requirements
for calling assembly language routines from 32-bit C/C++ programs.

Arguments are passed by a C/C++ program from right to left, as they appear in the argument
list. After a function returns, the calling program is responsible for restoring the stack to its pre-
vious state. This can be done by either adding a value to the stack pointer equal to the size of the
arguments or popping an adequate number of values from the stack.

In assembly language source code, you need to specify the C calling convention in the
.MODEL directive and create a prototype for each procedure called from an external C/C++ pro-
gram. Here is an example:

.586

.model flat,C
IndexOf PROTO,

srchVal:DWORD, arrayPtr:PTR DWORD, count:DWORD

Declaring the Function In a C program, use the extern qualifier when declaring an external
assembly language procedure. For example, this is how to declare IndexOf:

extern long IndexOf( long n, long array[], unsigned count );

If the procedure will be called from a C++ program, add a “C” qualifier to prevent C++ name
decoration:

extern "C" int IndexOf( long n, long array[], unsigned count );

Name decoration is a standard C++ compiler technique that involves modifying a function name
with extra characters that indicate the exact type of each function parameter. It is required in any
language that supports function overloading (multiple functions having the same name, with dif-
ferent parameter lists). From the assembly language programmer’s point of view, the problem
with name decoration is that the C++ compiler tells the linker to look for the decorated name
rather than the original one when producing the executable file.

13.3.1 IndexOf Example
Let’s create a simple assembly language function that performs a linear search for the first
matching instance of an integer in an array. If the search is successful, the matching element’s
index position is found; otherwise, the function returns 1. We will call it from a C++ program. In
C++, for example, we might write it like this: 
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long IndexOf( long searchVal, long array[], unsigned count )
{

for(unsigned i = 0; i < count; i++) {
if( array[i] == searchVal )

return i;
}
return -1;

}

The parameters are the value we wish to find, a pointer to the array, and the size of the array. It is
certainly an easy program to write in assembly language. We will put the assembly language
code in its own source code file named IndexOf.asm. This file will be compiled into an object
code file named IndexOf.obj. We will use Visual Studio to compile and link the calling C++ pro-
gram and the assembly language module. The C++ project will use Win32 Console as its output
type, although there is no reason it could not be a graphical application. Figure 13-3 contains a
listing of the source code in the IndexOf module. First, notice in lines 25–28 of the assembly
language code that the testing loop is small and efficient. We try to use as few instructions as
possible inside a loop that will execute many times:

25: L1: cmp  [esi+edi*4],eax
26: je   found
27: inc  edi
28: loop L1

If a matching value is found, the program jumps to line 34 and copies EDI into EAX, the reg-
ister holding the function return value. EDI contains the current index position during the
search.

34: found:
35:    mov  eax,edi

If a matching value is not found, we assign �1 to EAX and return:

30: notFound:
31:    mov  eax,NOT_FOUND
32:    jmp  short exit

Figure 13-4 contains a listing of the calling C++ program. First, it initializes the array with pseu-
dorandom values:

12: long array[ARRAY_SIZE]; 
13: for(unsigned i = 0; i < ARRAY_SIZE; i++)
14:      array[i] = rand();

Lines 18-19 prompt the use for a value to find in the array:

18: cout << "Enter an integer value to find: ";
19: cin >> searchVal;

Line 23 calls the time function from the C library (in time.h) and stores the number of seconds
since midnight of the current day in the variable named startTime:

23: time( &startTime );
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Lines 26 and 27 perform the same search over and over, based on the value of LOOP_SIZE
(100,000):

26: for( unsigned n = 0; n < LOOP_SIZE; n++)
27: count = IndexOf( searchVal, array, ARRAY_SIZE );

Since the array size is also 100,000, the overall number of execution steps is 100,000 � 100,000,
or 10 billion. Lines 31–33 check the time of day again, and display the number of seconds that
have elapsed while the loop was running:

31: time( &endTime );
32: cout << "Elapsed ASM time: " << long(endTime - startTime) 
33: << " seconds. Found = " << boolstr[found] << endl;

When tested on a fairly fast computer, the loop executed in 6 seconds. That’s not bad for 10
billion iterations. That’s about 1.67 billion loop iterations per second. It’s important to
realize that the program repeated the procedure call overhead (pushing parameters, execut-
ing CALL and RET instructions) 100,000 times. Procedure calls cause quite a bit of extra
processing.

Figure 13–3 Listing of the IndexOf module.

 1: ; IndexOf function      (IndexOf.asm)
 2: 
 3: .586
 4: .model flat,C
 5: IndexOf PROTO,
 6: srchVal:DWORD, arrayPtr:PTR DWORD, count:DWORD
 7: 
 8: .code
 9: ;-----------------------------------------------
10: IndexOf PROC USES ecx esi edi,
11: srchVal:DWORD, arrayPtr:PTR DWORD, count:DWORD
12: ;
13: ; Performs a linear search of a 32-bit integer array,
14: ; looking for a specific value. If the value is found,
15: ; the matching index position is returned in EAX; 
16: ; otherwise, EAX equals -1.
17: ;-----------------------------------------------
18: NOT_FOUND = -1
19:
20: mov  eax,srchVal    ; search value
21: mov  ecx,count      ; array size
22: mov  esi,arrayPtr   ; pointer to array
23: mov  edi,0 ; index
24:
25: L1:cmp  [esi+edi*4],eax
26: je   found
27: inc  edi
28: loop L1
29:
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30: notFound:
31: mov  al,NOT_FOUND
32: jmp  short exit
33:
34: found:
35: mov  eax,edi
36:
37: exit:
38: ret   
39: IndexOf ENDP
40: END

Figure 13–4 Listing of the C++ test program that calls IndexOf.

 1: #include <iostream>
 2: #include <time.h>
 3: #include "indexof.h"
 4: using namespace std;
 5: 
 6: int main()  {
 7: // Fill an array with pseudorandom integers.
 8: const unsigned ARRAY_SIZE = 100000; 
 9: const unsigned LOOP_SIZE = 100000;
10: char* boolstr[] = {"false","true"};
11:
12: long array[ARRAY_SIZE]; 
13: for(unsigned i = 0; i < ARRAY_SIZE; i++)
14: array[i] = rand();
15:
16: long searchVal;
17: time_t startTime, endTime;
18: cout << "Enter an integer value to find: ";
19: cin >> searchVal;
20: cout << "Please wait...\n";
21:
22: // Test the Assembly language function.
23: time( &startTime );
24: int count = 0;
25:
26: for( unsigned n = 0; n < LOOP_SIZE; n++)
27: count = IndexOf( searchVal, array, ARRAY_SIZE );
28:
29: bool found = count != -1;
30:
31: time( &endTime );
32: cout << "Elapsed ASM time: " << long(endTime - startTime) 
33: << " seconds. Found = " << boolstr[found] << endl;
34:
35: return 0;
36: }
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13.3.2 Calling C and C++ Functions
You can write assembly language programs that call C and C++ functions. There are at least a cou-
ple of reasons for doing so:

• Input–output is more flexible under C and C++, with their rich input–output libraries. This is
particularly useful when working with floating-point numbers.

• Both languages have extensive math libraries.

When calling functions from the standard C library (or C++ library), you must start the program
from a C or C++ main( ) procedure to allow library initialization code to run.

Function Prototypes
C++ functions called from assembly language code must be defined with the “C” and extern
keywords. Here’s the basic syntax:

extern "C" funcName( paramlist )
{ . . . }

Here’s an example:

extern "C" int askForInteger( )
{

cout << "Please enter an integer:";
//...

}

Rather than modifying every function definition, it’s easier to group multiple function prototypes
inside a block. Then you can omit extern and “C” from the individual function implementations:

extern "C" { 
int askForInteger();
int showInt( int value, unsigned outWidth );
//etc.

}

Assembly Language Module
If your assembly language module will be calling procedures from the Irvine32 link library, be
aware that it uses the following .MODEL directive:

.model flat, STDCALL

Although STDCALL is compatible with the Win32 API, it does not match the calling conven-
tion used by C programs. Therefore, you must add the C qualifier to the PROTO directive when
declaring external C or C++ functions to be called by the assembly module:

INCLUDE Irvine32.inc
askForInteger PROTO C
showInt PROTO C, value:SDWORD, outWidth:DWORD

The C qualifier is required because the linker must match up the function names and parame-
ter lists to functions exported by the C++ module. In addition, the assembler must generate the
right code to clean up the stack after the function calls, using the C calling convention (see
Section 8.2.4).
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Assembly language procedures called by the C++ program must use also the C qualifier so
the assembler will use a naming convention the linker can recognize. The following SetTextColor
procedure, for example, has a single doubleword parameter:

SetTextOutColor PROC C, 
color:DWORD
.
.

SetTextOutColor ENDP

Finally, if your assembly code calls other assembly language procedures, the C calling conven-
tion requires you to remove parameters from the stack after each procedure call. 

Using the .MODEL Directive If your assembly language code does not call Irvine32 proce-
dures, you can tell the .MODEL directive to use the C calling convention:

; (do not INCLUDE Irvine32.inc)
.586
.model flat,C

Now you no longer have to add the C qualifier to the PROTO and PROC directives:

askForInteger PROTO
showInt PROTO, value:SDWORD, outWidth:DWORD

SetTextOutColor PROC, 
color:DWORD
.
.

SetTextOutColor ENDP

Function Return Values
The C++ language specification says nothing about code implementation details, so there is no
standardized way for C and C++ functions to return values. When you write assembly language
code that calls functions in these languages, check your compiler’s documentation to find out how
their functions return values. The following list contains several, but by no means all, possibilities: 

• Integers can be returned in a single register or combination of registers.
• Space for function return values can be reserved on the stack by the calling program. The

function can insert the return values into the stack before returning.
• Floating-point values are usually pushed on the processor’s floating-point stack before return-

ing from the function.

The following list shows how Microsoft Visual C++ functions return values:

• bool and char values are returned in AL.
• short int values are returned in AX.
• int and long int values are returned in EAX.
• Pointers are returned in EAX.
• float, double, and long double values are pushed on the floating-point stack as 4-, 8-, and 10-

byte values, respectively.
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13.3.3 Multiplication Table Example
Let’s write a simple application that prompts the user for an integer, multiplies it by ascending
powers of 2 (from 21 to 210) using bit shifting, and redisplays each product with leading padded
spaces. We will use C++ for the input–output. The assembly language module will contain calls
to three functions written in C++. The program will be launched by a module written in C++.

Assembly Language Module
The assembly language module contains one function, named DisplayTable. It calls a C++
function named askForInteger that inputs an integer from the user. It uses a loop to repeatedly
shift an integer named intVal to the left and display it by calling showInt.

; ASM function called from C++

INCLUDE Irvine32.inc

; External C++ functions:
askForInteger PROTO C
showInt PROTO C, value:SDWORD, outWidth:DWORD
newLine PROTO C

OUT_WIDTH = 8
ENDING_POWER = 10

.data
intVal DWORD ?

.code
;---------------------------------------------
SetTextOutColor PROC C, 

color:DWORD
;
; Sets the text colors and clears the console
; window. Calls Irvine32 library functions.
;---------------------------------------------

mov eax,color
call SetTextColor
call Clrscr
ret

SetTextOutColor ENDP

;---------------------------------------------
DisplayTable PROC C
;
; Inputs an integer n and displays a
; multiplication table ranging from n * 2^1
; to n * 2^10.
;----------------------------------------------

INVOKE askForInteger ; call C++ function
mov intVal,eax ; save the integer
mov ecx,ENDING_POWER ; loop counter

L1: push ecx ; save loop counter
shl intVal,1 ; multiply by 2
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INVOKE showInt,intVal,OUT_WIDTH
INVOKE newLine ; output CR/LF
pop ecx ; restore loop counter
loop L1

ret
DisplayTable ENDP
END

In the DisplayTable procedure, ECX must be pushed and popped before calling showInt and
newLine because Visual C++ functions do not save and restore general-purpose registers. The
askForInteger function returns its result in the EAX register. 

DisplayTable is not required to use INVOKE when calling the C++ functions. The same
result could be achieved using PUSH and CALL instructions. This is how the call to showInt
would look:

push  OUT_WIDTH ; push last argument first
push  intVal
call  showInt ; call the function
add  esp,8 ; clean up stack

You must follow the C language calling convention, in which arguments are pushed on the
stack in reverse order and the caller is responsible for removing arguments from the stack after
the call.

C++ Test Program
Let’s look at the C++ module that starts the program. Its entry point is main( ), ensuring the execu-
tion of required C++ language initialization code. It contains function prototypes for the external
assembly language procedure and the three exported functions:

// main.cpp

// Demonstrates function calls between a C++ program
// and an external assembly language module.

#include <iostream>
#include <iomanip>
using namespace std;

extern "C" {
// external ASM procedures:
void DisplayTable();
void SetTextOutColor(unsigned color);

// local C++ functions:
int askForInteger();
void showInt(int value, int width);

}

// program entry point
int main()
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{
SetTextOutColor( 0x1E ); // yellow on blue
DisplayTable(); // call ASM procedure
return 0;

}

// Prompt the user for an integer. 

int askForInteger()
{

int n;
cout << "Enter an integer between 1 and 90,000:";
cin >> n;
return n;

}

// Display a signed integer with a specified width.

void showInt( int value, int width )
{

cout << setw(width) << value;
}

Building the Project Add both the C++ and assembly language modules to the Visual Studio
project, and select Build Solution from the Project menu. 

Program Output Here is the sample output generated by the Multiplication Table program
when the user enters 90,000:

Visual Studio Project Properties
If you’re using Visual Studio to build programs that integrate C++ and assembly language and
make calls to the Irvine32 library, you need to alter some project settings. We’ll use the
Multiplication_Table program as an example. Select Properties from the Project menu. Under
Configuration Properties entry on the the left side of the window, select Linker. In the panel on

Enter an integer between 1 and 90,000: 90000

180000

  360000

  720000

 1440000

 2880000

 5760000

11520000

23040000

46080000

92160000
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the right side, enter c:\Irvine into the Additional Library Directories entry. An example is shown
in Fig. 13-5. Click on OK to close the Public Property Pages window. Now Visual Studio can
find the Irvine32 library.

13.3.4 Calling C Library Functions
The C language has a standardized collection of functions named the Standard C Library. The
same functions are available to C++ programs, and therefore to assembly language modules
attached to C and C++ programs. Assembly language modules must contain a prototype for each
C function they call. You can usually find C function prototypes by accessing the help system
supplied with your C++ compiler. You must translate C function prototypes into assembly lan-
guage prototypes before calling them from your program. 

printf Function The following is the C/C++ language prototype for the printf function, show-
ing a pointer to character as its first parameter, followed by a variable number of parameters:

int printf(
   const char *format [, argument]... 
);

Figure 13–5 Specifying the location of Irvine32.lib. 

The information here was tested in Visual Studio 2012, but is subject to change. Please see our
Web site (www.asmirvine.com) for updates.

www.asmirvine.com
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(Consult the C/C++ compiler’s help library for documentation about the printf function.) The
equivalent prototype in assembly language changes char * into PTR BYTE, and it changes the
variable-length parameter list into the VARARG type:

printf PROTO C, pString:PTR BYTE, args:VARARG

Another useful function is scanf, which inputs characters, numbers, and strings from standard
input (the keyboard) and assigns the input values to variables:

scanf PROTO C, format:PTR BYTE, args:VARARG

Displaying Formatted Reals with the printf Function
Writing assembly language functions that format and display floating-point values is not easy.
Rather than doing it yourself, you can take advantage of the C library printf function. You must
create a startup module in C or C++ and link it to your assembly language code. Here’s how to
set up such a program in Visual C++ .NET:

1. Create a Win32 Console program in Visual C++. Create a file named main.cpp and insert a
main function that calls asmMain:

extern "C" void asmMain( );

int main( )
{

asmMain( );
return 0;

}

2. In the same folder as main.cpp, create an assembly language module named asmMain.asm. It
should contain a procedure named asmMain, declared with the C calling convention:

; asmMain.asm
.386
.model flat,stdcall
.stack 2000
.code
asmMain PROC C

ret
asmMain ENDP
END

3. Assemble asmMain.asm (but do not link), producing asmMain.obj.
4. Add asmMain.obj to the C++ project.
5. Build and run the project. If you modify asmMain.asm, assemble it again and rebuild the

project before running it again.

Once your program has been set up properly, you can add code to asmMain.asm that calls C/
C++ language functions.

Displaying Double-Precision Values The following assembly language code in asmMain
prints a REAL8 by calling printf:

.data
double1 REAL8  1234567.890123
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formatStr BYTE "%.3f",0dh,0ah,0
.code
INVOKE printf, ADDR formatStr, double1

This is the corresponding output:

The format string passed to printf here is a little different than it would be in C++. Rather than
embedding escape characters such as \n, you must insert ASCII codes (0dh, 0ah). 

Multiple Arguments The printf function accepts a variable number of arguments, so we can
just as easily format and display two numbers in one function call:

TAB = 9
.data
formatTwo BYTE "%.2f",TAB,"%.3f",0dh,0ah,0
val1 REAL8 456.789
val2 REAL8 864.231
.code
INVOKE printf, ADDR formatTwo, val1, val2

This is the corresponding output:

(See the project named Printf_Example in the book’s Examples\ch13\VisualCPP folder.)

Entering Reals with the scanf Function
You can call scanf to input floating-point values from the user. The following prototype is
defined in SmallWin.inc (included by Irvine32.inc):

scanf PROTO C,
format:PTR BYTE, args:VARARG

Pass it the offset of a format string and the offsets of one or more REAL4 or REAL8 variables to
hold values entered by the user. Sample calls:

.data
strSingle BYTE "%f",0
strDouble BYTE "%lf",0
single1 REAL4 ?
double1 REAL8 ?
.code
INVOKE scanf, ADDR strSingle, ADDR single1
INVOKE scanf, ADDR strDouble, ADDR double1

You must invoke your assembly language code from a C or C++ startup program. 

1234567.890

Floating-point arguments passed to printf should be declared type REAL8. Although it is possi-
ble to pass values of type REAL4, a fair amount of clever programming is required. You can see
how your C++ compiler does it by declaring a variable of type float and passing it to printf. Com-
pile the program and trace the program’s disassembled code with a debugger.

456.79  864.231
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13.3.5 Directory Listing Program
Let’s write a short program that clears the screen, displays the current disk directory, and asks
the user to enter a filename. (You might want to extend this program so it opens and displays the
selected file.)

C++ Stub Module The C++ module contains only a call to asm_main, so we can call it a
stub module:

// main.cpp
// stub module: launches assembly language program

extern "C" void asm_main(); // asm startup proc

void main()
{

asm_main();
}

ASM Module The assembly language module contains the function prototypes, several strings,
and a fileName variable. It calls the system function twice, passing it “cls” and “dir” commands.
Then printf is called, displaying a prompt for a filename, and scanf is called so the user can input
the name. It does not make any calls to the Irvine32 library, so we can set the .MODEL directive to
the C language convention:

; ASM program launched from C++      (asmMain.asm)

.586

.MODEL flat,C

; Standard C library functions:
system PROTO, pCommand:PTR BYTE
printf PROTO, pString:PTR BYTE, args:VARARG
scanf  PROTO, pFormat:PTR BYTE,pBuffer:PTR BYTE, args:VARARG
fopen  PROTO, mode:PTR BYTE, filename:PTR BYTE
fclose PROTO, pFile:DWORD

BUFFER_SIZE = 5000
.data
str1 BYTE "cls",0
str2 BYTE "dir/w",0
str3 BYTE "Enter the name of a file:",0
str4 BYTE "%s",0
str5 BYTE "cannot open file",0dh,0ah,0
str6 BYTE "The file has been opened",0dh,0ah,0
modeStr BYTE "r",0

fileName BYTE 60 DUP(0)
pBuf  DWORD ?
pFile DWORD ?

.code
asm_main PROC
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; clear the screen, display disk directory
INVOKE system,ADDR str1
INVOKE system,ADDR str2

; ask for a filename
INVOKE printf,ADDR str3
INVOKE scanf, ADDR str4, ADDR filename

; try to open the file
INVOKE fopen, ADDR fileName, ADDR modeStr
mov pFile,eax

.IF eax == 0 ; cannot open file?
INVOKE printf,ADDR str5

  jmp quit
.ELSE

INVOKE printf,ADDR str6
.ENDIF
; Close the file
INVOKE fclose, pFile

quit:
ret             ; return to C++ main

asm_main ENDP
END

The scanf function requires two arguments: the first is a pointer to a format string (“%s”), and
the second is a pointer to the input string variable (fileName). We will not take the time to
explain standard C functions because there is ample documentation on the Web. An excellent
reference is Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, 2nd
Ed., Prentice Hall, 1988. 

13.3.6 Section Review
1. Which two C++ keywords must be included in a function definition if the function will be

called from an assembly language module?

2. In what way is the calling convention used by the Irvine32 library not compatible with the
calling convention used by the C and C++ languages?

3. How do C++ functions usually return floating-point values?

4. How does a Microsoft Visual C++ function return a short int?

13.4 Chapter Summary
Assembly language is the perfect tool for optimizing selected parts of a large application written
in some high-level language. Assembly language is also a good tool for customizing certain pro-
cedures for specific hardware. These techniques require one of two approaches:

• Write inline assembly code embedded within high-level language code.
• Link assembly language procedures to high-level language code.
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Both approaches have their merits and their limitations. In this chapter, we presented both
approaches.

The naming convention used by a language refers to the way segments and modules are
named, as well as rules or characteristics regarding the naming of variables and procedures. The
memory model used by a program determines whether calls and references will be near (within the
same segment) or far (between different segments). 

When calling an assembly language procedure from a program written in another language,
any identifiers that are shared between the two languages must be compatible. You must also use
segment names in the procedure that are compatible with the calling program. The writer of a
procedure uses the high-level language’s calling convention to determine how to receive param-
eters. The calling convention affects whether the stack pointer must be restored by the called
procedure or by the calling program.

In Visual C++, the __asm directive is used for writing inline assembly code in a C++ source pro-
gram. In this chapter, a File Encryption program was used to demonstrate inline assembly language. 

This chapter showed how to link assembly language procedures to Microsoft Visual C++ pro-
grams running in 32-bit protected mode.

When calling functions from the Standard C (C++) library, create a stub program in C or C++
containing a main( ) function. When main( ) starts, the compiler’s runtime library is automati-
cally initialized. From main( ), you can call a startup procedure in the assembly language
module. The assembly language module can call any function from the C Standard Library.

A procedure named IndexOf was written in assembly language and called from a Visual C++
program. We also examined assembly language source file generated by the Microsoft C++
compiler to gain a clearer idea of how compilers optimize code.

13.5 Key Terms
C language specifier

external identifier

inline assembly code

memory model

name decoration

naming convention

STDCALL language specifier

13.6 Review Questions
1. When a procedure written in assembly language is called by a high-level language program,

must the calling program and the procedure use the same memory model?

2. Why is case sensitivity important when calling assembly language procedures from C and
C++ programs?

3. Does a language’s calling convention include the preserving of certain registers by procedures?

4. (Yes/No): Can both the EVEN and ALIGN directives be used in inline assembly code?

5. (Yes/No): Can the OFFSET operator be used in inline assembly code?
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6. (Yes/No): Can variables be defined with both the DW and the DUP operator in inline assem-
bly code?

7. When using the __fastcall calling convention, what might happen if your inline assembly
code modifies registers?

8. Rather than using the OFFSET operator, is there another way to move a variable’s offset
into an index register?

9. What value is returned by the LENGTH operator when applied to an array of 32-bit inte-
gers?

10. What value is returned by the SIZE operator when applied to an array of long integers?

11. What is a valid assembly language PROTO declaration for the standard C printf( ) function?

12. When the following C language function is called, will the argument x be pushed on the
stack first or last?

void MySub( x, y, z );

13. What is the purpose of the “C” specifier in the extern declaration in procedures called from
C++?

14. Why is name decoration important when calling external assembly language procedures
from C++?

15. Using an Internet search, make a short list of optimization tricks used by C/C++ compilers.

13.7 Programming Exercises

1. Multiply an Array by an Integer
Write an assembly language subroutine that multiplies a doubleword array by an integer. Write a
test program in C/C++ that creates an array, passes it to the subroutine, and prints the resulting
array values.

2. Longest Increasing Sequence
Write an assembly language subroutine that receives two input parameters: the offset of an array
and the array’s size. It must return a count of the longest increasing sequence of integer values.
For example, in the following array, the longest strictly increasing sequence begins at index 3
and has a length of 4 { 14, 17, 26, 42 }: 

[ -5, 10, 20, 14, 17, 26, 42, 22, 19, -5 ]

Call your subroutine from a C/C++ program that creates the array, passes the arguments, and
prints the value returned by the subroutine.

3. Summing Three Arrays
Write an assembly language subroutine that receives the offsets of three arrays, all of equal size.
It adds the second and third arrays to the values in the first array. When it returns, the first array
has all new values. Write a test program in C/C++ that creates an array, passes it to the subrou-
tine, and prints the contents of the first array.

★★

★★★

★★
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4. Prime Number Program
Write an assembly language procedure that returns a value of 1 if the 32-bit integer passed in the
EAX register is prime, and 0 if EAX is nonprime. Call this procedure from a high-level language
program. Let the user input a sequence of integers, and have your program display a message for
each one indicating whether or not it is prime. Suggestion: use the Sieve of Eratosthenes algo-
rithm to initialize a boolean array the first time your procedure is called.

5. LastIndexOf Procedure
Modify the IndexOf procedure from Section 13.3.1. Name your function LastIndexOf, and let
it search backward from the end of the array. Return the index of the first matching value, or if
no match is found, return –1.

★★★

★★



14.1

14
16-Bit MS-DOS 
Programming

14.1 MS-DOS and the IBM-PC 
14.1.1 Memory Organization 
14.1.2 Redirecting Input–Output 
14.1.3 Software Interrupts 
14.1.4 INT Instruction 
14.1.5 Coding for 16-Bit Programs
14.1.6 Section Review

14.2 MS-DOS Function Calls (INT 21h) 
14.2.1 Selected Output Functions
14.2.2 Hello World Program Example
14.2.3 Selected Input Functions 
14.2.4 Date/Time Functions 
14.2.5 Section Review 

14.3 Standard MS-DOS File I/O Services 
14.3.1 Create or Open File (716Ch)
14.3.2 Close File Handle (3Eh) 
14.3.3 Move File Pointer (42h)
14.3.4 Get File Creation Date and Time
14.3.5 Selected Library Procedures 
14.3.6 Example: Read and Copy a Text File 
14.3.7 Reading the MS-DOS Command Tail 
14.3.8 Example: Creating a Binary File 
14.3.9 Section Review 

14.4 Chapter Summary 
14.5 Programming Exercises 

14.1 MS-DOS and the IBM-PC
IBM’s PC-DOS was the first operating system to implement real-address mode on the IBM Per-
sonal Computer, using the Intel 8088 processor. Later, it evolved into Microsoft MS-DOS.
Because of this history, it makes sense to use MS-DOS as the environment for explaining real-
address mode programming. Real-address mode is also called 16-bit mode because addresses
are constructed from 16-bit values. 

In this chapter, you will learn the basic memory organization of MS-DOS, how to activate
MS-DOS function calls (called interrupts), and how to perform basic input–output operations at

We recommend that you install an early version of Windows such as Windows 98 to insure full
compatibility with the programs in this chapter. You may want to use a software utility to create a
virtual machine on your computer, so you can experiment with this software.
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the operating system level. All of the programs in this chapter run in real-address mode because
they use the INT instruction. Interrupts were originally designed to run under MS-DOS in real-
address mode. It is possible to call interrupts in protected mode, but the techniques for doing so
are beyond the scope of this book.

Real-address mode programs have the following characteristics:

• They can only address 1 megabyte of memory.
• Only one program can run at once (single tasking) in a single session.
• No memory boundary protection is possible, so any application program can overwrite mem-

ory used by the operating system.
• Offsets are 16 bits.

When it first appeared, the IBM-PC had a strong appeal because it was affordable and it ran
Lotus 1-2-3, the electronic spreadsheet program that was instrumental in the PC’s adoption by
businesses. Computer hobbyists loved the PC because it was an ideal tool for learning how com-
puters work. It should be noted that Digital Research CP/M, the most popular 8-bit operating
system before PC-DOS, was only capable of addressing 64K of RAM. From this point of view,
PC-DOS’s 640K seemed like a gift from heaven.

Because of the obvious memory and speed limitations of the early Intel microprocessors,
the IBM-PC was a single-user computer. There was no built-in protection against memory
corruption by application programs. In contrast, the minicomputer systems available at the
time could handle multiple users and prevented application programs from overwriting each
other’s data. Over time, more-robust operating systems for the PC have become available,
making it a viable alternative to minicomputer systems, particularly when PCs are networked
together.

14.1.1 Memory Organization
In real-address mode, the lowest 640K of memory is used by both the operating system and
application programs. Following this is video memory and reserved memory for hardware con-
trollers. Finally, locations F0000 to FFFFF are reserved for system ROM (read-only memory).
Figure 14-1 shows a simple memory map. Within the operating system area of memory, the
lowest 1024 bytes of memory (addresses 00000 to 003FF) contain a table of 32-bit addresses
named the interrupt vector table. These addresses, called interrupt vectors, are used by the CPU
when processing hardware and software interrupts.

Just above the vector table is the BIOS and MS-DOS data area. Next is the software BIOS,
which includes procedures that manage most I/O devices, including the keyboard, disk drive,
video display, serial, and printer ports. BIOS procedures are loaded from a hidden system file
on an MS-DOS system (boot) disk. The MS-DOS kernel is a collection of procedures (called
services) that are also loaded from a file on the system disk.

Grouped with the MS-DOS kernel are the file buffers and installable device drivers. Next
highest in memory, the resident part of the command processor is loaded from an executable file
named command.com. The command processor interprets commands typed at the MS-DOS
prompt and loads and executes programs stored on disk. A second part of the command proces-
sor occupies high memory just below location A0000. 
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Figure 14–1 MS-DOS Memory Map.

Application programs can load into memory at the first address above the resident part of the
command processor and can use memory all the way up to address 9FFFF. If the currently run-
ning program overwrites the transient command processor area, the latter is reloaded from the
boot disk when the program exits.

Video Memory The video memory area (VRAM) on an IBM-PC begins at location A0000,
which is used when the video adapter is switched into graphics mode. When the video is in color
text mode, memory location B8000 holds all text currently displayed on the screen. The screen
is memory-mapped, so that each row and column on the screen corresponds to a 16-bit word in
memory. When a character is copied into video memory, it immediately appears on the screen. 

ROM BIOS The ROM BIOS, at memory locations F0000 to FFFFF, is an important part of the
computer’s operating system. It contains system diagnostic and configuration software, as well
as low-level input–output procedures used by application programs. The BIOS is stored in a static
memory chip on the system board. Most systems follow a standardized BIOS specification mod-
eled after IBM’s original BIOS and use the BIOS data area from 00400 to 004FF. 

14.1.2 Redirecting Input–Output
Throughout this chapter, references will be made to the standard input device and the standard
output device. Both are collectively called the console, which involves the keyboard for input
and the video display for output. 

ROM BIOS

Reserved

Video Text & Graphics

Video Graphics

Resident Command Processor

DOS Kernel, Device Drivers

Software BIOS

BIOS & DOS Data

Interrupt Vector Table

FFFFF

00400

A0000

B8000

C0000

F0000

00000

Address

640K RAM

Transient Program Area
(available for application programs)

VRAM

Transient Command Processor



14.4 Chapter 14  •  16-Bit MS-DOS Programming

When running programs from the command prompt, you can redirect standard input so that it
is read from a file or hardware port rather than the keyboard. Standard output can be redirected
to a file, printer, or other I/O device. Without this capability, programs would have to be substan-
tially revised before their input–output could be changed. For example, the operating system has
a program named sort.exe that sorts an input file. The following command sorts a file named
myfile.txt and displays the output:

sort < myfile.txt

The following command sorts myfile.txt and sends the output to outfile.txt:

sort < myfile.txt > outfile.txt

You can use the pipe (|) symbol to copy the output from the DIR command to the input of the
sort.exe program. The following command sorts the current disk directory and displays the out-
put on the screen:

dir | sort

The following command sends the output of the sort program to the default (non-networked)
printer (identified by PRN):

dir | sort > prn

The complete set of device names is shown in Table 14-1.

14.1.3 Software Interrupts
A software interrupt is a call to an operating system procedure. Most of these procedures, called
interrupt handlers, provide input–output capability to application programs. They are used for
such tasks as the following:

• Displaying characters and strings
• Reading characters and strings from the keyboard
• Displaying text in color
• Opening and closing files
• Reading data from files
• Writing data to files
• Setting and retrieving the system time and date

Table 14-1  Standard MS-DOS Device Names.

Device Name Description

CON Console (video display or keyboard)

LPT1 or PRN First parallel printer

LPT2, LPT3 Parallel ports 2 and 3

COM1, COM2 Serial ports 1 and 2

NUL Nonexistent or dummy device
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14.1.4 INT Instruction
The INT (call to interrupt procedure) instruction calls a system subroutine also known as an
interrupt handler. Before the INT instruction executes, one or more parameters must be inserted
in registers. At the very least, a number identifying the particular procedure must be moved to
the AH register. Depending on the function, other values may have to be passed to the interrupt
in registers. The syntax is 

INT number

where number is an integer in the range 0 to FF hexadecimal. 

Interrupt Vectoring
The CPU processes the INT instruction using the interrupt vector table, which, as we’ve men-
tioned, is a table of addresses in the lowest 1024 bytes of memory. Each entry in this table is a
32-bit segment-offset address that points to an interrupt handler. The actual addresses in this
table vary from one machine to another. Figure 14-2 illustrates the steps taken by the CPU when
the INT instruction is invoked by a program:

• Step 1: The operand of the INT instruction is multiplied by 4 to locate the matching interrupt
vector table entry. 

• Step 2: The CPU pushes the flags and a 32-bit segment/offset return address on the stack, dis-
ables hardware interrupts, and executes a far call to the address stored at location (10h * 4) in
the interrupt vector table (F000:F065). 

• Step 3: The interrupt handler at F000:F065 executes until it reaches an IRET (interrupt return)
instruction.

• Step 4: The IRET instruction pops the flags and the return address off the stack, causing the
processor to resume execution immediately following the INT 10h instruction in the calling
program.

Figure 14–2 Interrupt Vectoring Process.

mov...
int 10h
add...

F000: F0653069 F000: AB62

 F000: F065
      F066
      F067
      F068

.

.

sti
cld
push es
.
.
IRET

Calling program

00040h (entry for INT 10)
Interrupt vector table

Interrupt handler

4

1 2

3
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Common Interrupts
Software interrupts call interrupt service routines (ISRs) either in the BIOS or in DOS. Some
frequently used interrupts are the following:

• INT 10h Video Services. Procedures that display routines that control the cursor position,
write text in color, scroll the screen, and display video graphics. 

• INT 16h Keyboard Services. Procedures that read the keyboard and check its status.
• INT 17h Printer Services. Procedures that initialize, print, and return the printer status. 
• INT 1Ah Time of Day. Procedure that gets the number of clock ticks since the machine was

turned on or sets the counter to a new value.
• INT 1Ch User Timer Interrupt. An empty procedure that is executed 18.2 times per second.
• INT 21h MS-DOS Services. Procedures that provide input–output, file handling, and mem-

ory management. Also known as MS-DOS function calls.

14.1.5 Coding for 16-Bit Programs 
Programs designed for MS-DOS must be 16-bit applications running in real-address mode. Real-
address mode applications use 16-bit segments and follow the segmented addressing scheme
described in Section 2.3.1. If you’re using a 32-bit processor, you can use the 32-bit general-
purpose registers for data, even in real-address mode. Here is a summary of coding characteristics
in 16-bit programs:

• The .MODEL directive specifies which memory model your program will use. We recommend the
Small model, which keeps your code in one segment and your stack plus data in another segment:

.MODEL small

• The .STACK directive allocates a small amount of local stack space for your program. Ordi-
narily, you rarely need more than 256 bytes of stack space. The following is particularly gen-
erous, with 512 bytes:

.STACK 200h

• Optionally, you may want to enable the use of 32-bit registers. This can be done with the .386
directive:

.386
• Two instructions are required at the beginning of main if your program references variables.

They initialize the DS register to the starting location of the data segment, identified by the
predefined MASM constant @data:

mov ax,@data
mov ds,ax

• Every program must include a statement that ends the program and returns to the operating
system. One way to do this is to use the .EXIT directive:

.EXIT

Alternatively, you can call INT 21h, Function 4Ch:

mov ah,4ch ; terminate process
int 21h ; MS-DOS interrupt

• You can assign values to segment registers using the MOV instruction, but do so only when
assigning the address of a program segment.
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• When assembling 16-bit programs, use the make16.bat (batch) file provided in the example
programs folder for this book. It links to Irvine16.lib and executes the older Microsoft 16-bit
linker (version 5.6).

• Real-address mode programs can only access hardware ports, interrupt vectors, and system
memory when running under MS-DOS, Windows 95, 98, and Millenium. Beginning with
Windows XP, this type of access is not permitted.

• When the Small memory model is used, offsets (addresses) of data and code labels are 16
bits. The Irvine16 library uses the Small memory model, in which all code fits in a 16-bit seg-
ment and the program’s data and stack fit into a 16-bit segment.

• In real-address mode, stack entries are 16 bits by default. You can still place a 32-bit value on
the stack (it uses two stack entries).

You can simplify coding of 16-bit programs by including the Irvine16.inc file. It inserts the fol-
lowing statements into the assembly stream, which define the memory mode and calling conven-
tion, allocate stack space, enable 32-bit registers, and redefine the .EXIT directive as exit:

.MODEL small,stdcall

.STACK 200h

.386
exit EQU <.EXIT>

14.1.6 Section Review
1. What is the highest memory location into which you can load an application program?

2. What occupies the lowest 1024 bytes of memory?

3. What is the starting location of the BIOS and MS-DOS data area?

4. What is the name of the memory area containing low-level procedures used by the computer
for input–output?

5. Show an example of redirecting a program’s output to the printer.

6. What is the MS-DOS device name for the first parallel printer?

7. What is an interrupt service routine?

8. When the INT instruction executes, what is the first task carried out by the CPU?

9. What four steps are taken by the CPU when an INT instruction is invoked by a program?
Hint: See Fig. 14-2.

10. When an interrupt service routine finishes, how does an application program resume execution?

11. Which interrupt number is used for video services?

12. Which interrupt number is used for the time of day?

13. What offset within the interrupt vector table contains the address of the INT 21h interrupt
handler?

14.2 MS-DOS Function Calls (INT 21h)
MS-DOS provides a lot of easy-to-use functions for displaying text on the console. They are
all part of a group typically called INT 21h MS-DOS Function calls. There are about 200 dif-
ferent functions supported by this interrupt, identified by a function number placed in the AH
register. An excellent, if somewhat outdated, source is Ray Duncan’s book, Advanced MS-DOS
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Programming, 2nd Ed., Microsoft Press, 1988. A more comprehensive and up-to-date list,
named Ralf Brown’s Interrupt List, can be found on the Web. See the current book’s Web site
for details.

For each INT 21h function described in this chapter, we will list the necessary input parame-
ters and return values, give notes about its use, and include a short code example that calls the
function.

A number of functions require that the 32-bit address of an input parameter be stored in the
DS:DX registers. DS, the data segment register, is usually set to your program’s data area. If for
some reason this is not the case, use the SEG operator to set DS to the segment containing the
data passed to INT 21h. The following statements do this:

.data
inBuffer BYTE 80 DUP(?)
.code
mov ax,SEG inBuffer
mov ds,ax
mov dx,OFFSET inBuffer

INT 21h Function 4Ch: Terminate Process INT 21h Function 4Ch terminates the current
program (called a process). In the real-address mode programs presented in this book, we have
relied on a macro definition in the Irvine16 library named exit. It is defined as

exit TEXTEQU <.EXIT>

In other words, exit is an alias, or substitute for .EXIT (the MASM directive that ends a pro-
gram). The exit symbol was created so you could use a single command to terminate 16-bit and
32-bit programs. In 16-bit programs, the code generated by .EXIT is

mov ah,4Ch ; terminate process
int 21h

If you supply an optional return code argument to the .EXIT macro, the assembler generates
an additional instruction that moves the return code to AL:

.EXIT 0 ; macro call

Generated code:

mov ah,4Ch ; terminate process
mov al,0 ; return code
int 21h

The value in AL, called the process return code, is received by the calling process (including a
batch file) to indicate the return status of your program. By convention, a return code of zero is
considered successful completion. Other return codes between 1 and 255 can be used to indicate
additional outcomes that have specific meaning for your program. For example, ML.EXE, the
Microsoft Assembler, returns 0 if a program assembles correctly and a nonzero value if it does not.

Appendix D contains a fairly extensive list of BIOS and MS-DOS interrupts. 
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14.2.1 Selected Output Functions
In this section we present some of the most common INT 21h functions for writing characters
and text. None of these functions alters the default current screen colors, so output will only be
in color if you have previously set the screen color by other means. (For example, you can call
video BIOS functions from Chapter 16.)

Filtering Control Characters All of the functions in this section filter or interpret ASCII
control characters. If you write a backspace character to standard output, for example, the cursor
moves one column to the left. Table 14-2 contains a list of control characters that you are likely
to encounter.

The next several tables describe the important features of INT 21h Functions 2, 5, 6, 9, and
40h. INT 21h Function 2 writes a single character to standard output. INT 21h Function 5 writes
a single character to the printer. INT 21h Function 6 writes a single unfiltered character to stan-
dard output. INT 21h Function 9 writes a string (terminated by a $ character) to standard output.
INT 21h Function 40h writes an array of bytes to a file or device.

Table 14-2  ASCII Control Characters.

ASCII
Code Description

08h Backspace (moves one column to the left)

09h Horizontal tab (skips forward n columns)

0Ah Line feed (moves to next output line)

0Ch Form feed (moves to next printer page)

0Dh Carriage return (moves to leftmost output column)

1Bh Escape character

INT 21h Function 2

Description Write a single character to standard output and advance the cursor one column
forward

Receives AH � 2
DL � character value

Returns Nothing

Sample call mov  ah,2
mov  dl,'A'
int  21h
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INT 21h Function 5

Description Write a single character to the printer

Receives AH � 5
DL � character value

Returns Nothing

Sample call mov  ah,5     ; select printer output
mov dl,"Z" ; character to be printed
int  21h      ; call MS-DOS

Notes MS-DOS waits until the printer is ready to accept the character. You can terminate the
wait by pressing the Ctrl-Break keys. The default output is to the printer port for LPT1. 

INT 21h Function 6

Description Write a character to standard output

Receives AH � 6
DL � character value

Returns If ZF � 0, AL contains the character’s ASCII code

Sample call mov  ah,6
mov  dl,"A" 
int  21h

Notes Unlike other INT 21h functions, this one does not filter (interpret) ASCII control
characters.

INT 21h Function 9

Description Write a $-terminated string to standard output

Receives AH � 9
DS:DX � segment/offset of the string

Returns Nothing

Sample call .data
string BYTE "This is a string$"
.code
mov  ah,9
mov  dx,OFFSET string
int  21h

Notes The string must be terminated by a dollar-sign character ($)
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14.2.2 Hello World Program Example
The following is a simple program that displays a string on the screen using an MS-DOS func-
tion call:

; Hello World Program         (Hello.asm)

.MODEL small

.STACK 100h

.386

.data
message BYTE "Hello, world!",0dh,0ah

.code
main PROC

mov ax,@data ; initialize DS
mov ds,ax

mov ah,40h ; write to file/device
mov bx,1 ; output handle
mov cx,SIZEOF message ; number of bytes
mov dx,OFFSET message ; addr of buffer
int 21h

.EXIT
main ENDP
END main

Alternate Version Another way to write Hello.asm is to use the predefined .STARTUP direc-
tive (which initializes the DS register). Doing so requires the removal of the label next to the
END directive:

INT 21h Function 40h

Description Write an array of bytes to a file or device

Receives AH � 40h
BX � file or device handle (console � 1)
CX � number of bytes to write
DS:DX � address of array

Returns AX � number of bytes written

Sample call .data
message "Hello, world"
.code
mov  ah,40h
mov  bx,1
mov  cx,LENGTHOF message
mov  dx,OFFSET message
int  21h
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; Hello World Program         (Hello2.asm)

.MODEL small

.STACK 100h

.386

.data
message BYTE "Hello, world!",0dh,0ah

.code
main PROC

.STARTUP

mov ah,40h ; write to file/device
mov bx,1 ; output handle
mov cx,SIZEOF message ; number of bytes
mov dx,OFFSET message ; addr of buffer
int 21h

    .EXIT
main ENDP
END

14.2.3 Selected Input Functions
In this section, we describe a few of the most commonly used MS-DOS functions that read from
standard input. For a more complete list, see Appendix D. As shown in the following table, INT
21h Function 1 reads a single character from standard input:

INT 21h Function 6 reads a character from standard input if the character is waiting in the
input buffer. If the buffer is empty, the function returns with the Zero flag set and no other action
is taken: 

INT 21h Function 1

Description Read a single character from standard input

Receives AH � 1

Returns AL � character (ASCII code)

Sample call mov  ah,1
int  21h
mov  char,al

Notes If no character is present in the input buffer, the program waits. This function echoes
the character to standard output.

INT 21h Function 6

Description Read a character from standard input without waiting

Receives AH � 6
DL � FFh
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INT 21h Function 0Ah reads a buffered string from standard input, terminated by the Enter
key. When calling this function, pass a pointer to an input structure having the following format
(count can be between 0 and 128):

count = 80
KEYBOARD STRUCT

maxInput BYTE count ; max chars to input
inputCount BYTE ? ; actual input count
buffer BYTE count DUP(?) ; holds input chars

KEYBOARD ENDS

The maxInput field specifies the maximum number of characters the user can input, including
the Enter key. The backspace key can be used to erase characters and back up the cursor. The
user terminates the input either by pressing the Enter key or by pressing Ctrl-Break. All non-
ASCII keys, such as PageUp and F1, are filtered out and are not stored in the buffer. After the
function returns, the inputCount field indicates how many characters were input, not counting
the Enter key. The following table describes Function 0Ah:

Returns If ZF � 0, AL contains the character’s ASCII code.

Sample call     mov ah,6
    mov dl,0FFh       
    int 21h
    jz skip
    mov char,AL
skip:

Notes The interrupt only returns a character if one is already waiting in the input
buffer. Does not echo the character to standard output and does not filter control
characters.

INT 21h Function 0Ah

Description Read an array of buffered characters from standard input

Receives AH � 0Ah
DS:DX � address of keyboard input structure

Returns The structure is initialized with the input characters

Sample call .data
kybdData KEYBOARD <>
.code
    mov  ah,0Ah
    mov  dx,OFFSET kybdData
    int  21h

INT 21h Function 6
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INT 21h Function 0Bh gets the status of the standard input buffer:

Example: String Encryption Program
INT 21h Function 6 has the unique ability to read characters from standard input without paus-
ing the program or filtering control characters. This can be put to good use if we run a program
from the command prompt and redirect the input. That is, the input will come from a text file
rather than the keyboard. 

The following program (Encrypt.asm) reads each character from standard input, uses the
XOR instruction to alter the character, and writes the altered character to standard output:

; Encryption Program               (Encrypt.asm)

; This program uses MS-DOS function calls to
; read and encrypt a file. Run it from the
; command prompt, using redirection:
;    Encrypt < infile.txt > outfile.txt
; Function 6 is also used for output, to avoid
; filtering ASCII control characters.

INCLUDE Irvine16.inc
XORVAL = 239 ; any value between 0-255
.code
main PROC

mov ax,@data
mov ds,ax

L1:
mov ah,6 ; direct console input
mov dl,0FFh ; don't wait for character
int 21h ; AL = character
jz L2 ; quit if ZF = 1 (EOF)
xor al,XORVAL
mov ah,6 ; write to output

INT 21h Function 0Bh

Description Get the status of the standard input buffer

Receives AH � 0Bh

Returns If a character is waiting, AL � 0FFh; otherwise, AL � 0

Sample Call     mov  ah,0Bh
    int  21h
    cmp  al,0
    je   skip
    ; (input the character)
skip:

Notes Does not remove the character
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mov dl,al
int 21h
jmp L1 ; repeat the loop

L2: exit
main ENDP
END  main

The choice of 239 as the encryption value is completely arbitrary. You can use any value
between 0 and 255 in this context, although using 0 will not cause any encryption to occur. The
encryption is weak, of course, but it might be enough to discourage the average user from trying
to defeat the encryption. When you run the program at the command prompt, indicate the name
of the input file (and output file, if any). The following are two examples:

Int 21h Function 3Fh
INT 21h Function 3Fh, as shown in the following table, reads an array of bytes from a file or
device. It can be used for keyboard input when the device handle in BX is equal to zero:

encrypt < infile.txt Input from file (infile.txt), output to console

encrypt < infile.txt > outfile.txt Input from file (infile.txt), output to file (outfile.txt)

INT 21h Function 3Fh

Description Read an array of bytes from a file or device

Receives AH � 3Fh
BX � file/device handle (0 � keyboard)
CX � maximum bytes to read
DS:DX � address of input buffer

Returns AX � number of bytes actually read

Sample Call .data
inputBuffer BYTE 127 dup(0)
bytesRead WORD ?
.code
mov  ah,3Fh
mov  bx,0
mov  cx,127
mov  dx,OFFSET inputBuffer
int  21h
mov  bytesRead,ax

Notes If reading from the keyboard, input terminates when the Enter key is pressed, and
the 0Dh, 0Ah, characters are appended to the input buffer
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If the user enters more characters than were requested by the function call, excess characters
remain in the MS-DOS input buffer. If the function is called anytime later in the program, execu-
tion may not pause and wait for user input because the buffer already contains data (including
the 0Dh, 0Ah, marking the end of the line). This can even occur between separate instances of
program execution. To be absolutely sure your program works as intended, you need to flush the
input buffer, one character at a time, after calling Function 3Fh. The following code does this
(see the Keybd.asm program for a complete demonstration):

;------------------------------------------
FlushBuffer PROC
; Flush the standard input buffer.
; Receives: nothing. Returns: nothing
;-----------------------------------------
.data
oneByte BYTE ?
.code

pusha
L1:

mov ah,3Fh ; read file/device
mov bx,0 ; keyboard handle
mov cx,1 ; one byte
mov dx,OFFSET oneByte ; save it here
int 21h ; call MS-DOS
cmp oneByte,0Ah ; end of line yet?
jne L1 ; no: read another
popa
ret

FlushBuffer ENDP

14.2.4 Date/Time Functions
Many popular software applications display the current date and time. Others retrieve the date
and time and use it in their internal logic. A scheduling program, for example, can use the cur-
rent date to verify that a user is not accidentally scheduling an appointment in the past. 

As shown in the next series of tables, INT 21h Function 2Ah gets the system date, and INT
21h Function 2Bh sets the system date. INT 21h Function 2Ch gets the system time, and INT
21h Function 2Dh sets the system time.

INT 21h Function 2Ah

Description Get the system date

Receives AH � 2Ah

Returns CX � year 
DH, DL � month, day
AL � day of week (Sunday � 0, Monday � 1, etc.)
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Sample Call mov  ah,2Ah
int  21h
mov  year,cx
mov  month,dh
mov  day,dl
mov  dayOfWeek,al

INT 21h Function 2Bh

Description Set the system date

Receives AH � 2Bh
CX � year
DH � month
DL � day

Returns If the change was successful, AL � 0; otherwise, AL � FFh.

Sample Call mov  ah,2Bh
mov  cx,year
mov  dh,month
mov  dl,day
int  21h
cmp  al,0
jne  failed

Notes Probably will not work if you are running Windows NT, 2000, or XP with a
restricted user profile.

INT 21h Function 2Ch

Description Get the system time

Receives AH � 2Ch

Returns CH � hours (0 – 23)
CL � minutes (0 – 59)
DH � seconds (0 – 59)
DL � hundredths of seconds (usually not accurate)

Sample Call mov  ah,2Ch
int  21h
mov  hours,ch
mov  minutes,cl
mov  seconds,dh

INT 21h Function 2Ah



14.18 Chapter 14  •  16-Bit MS-DOS Programming

Example: Displaying the Time and Date
The following program (DateTime.asm) displays the system date and time. The code is a little
longer than one would expect because the program inserts leading zeros before the hours, min-
utes, and seconds:

; Display the Date and Time     (DateTime.asm)

Include Irvine16.inc
Write PROTO char:BYTE
.data
str1 BYTE "Date: ",0
str2 BYTE ",  Time: ",0

.code
main PROC

mov  ax,@data
mov  ds,ax

; Display the date:
mov dx,OFFSET str1
call WriteString
mov ah,2Ah ; get system date
int 21h
movzx eax,dh ; month
call WriteDec
INVOKE Write,'-'
movzx eax,dl ; day
call WriteDec

INT 21h Function 2Dh

Description Set the system time

Receives AH � 2Dh
CH � hours (0 – 23)
CL � minutes (0 – 59)
DH � seconds (0 – 59)

Returns If the change was successful, AL � 0; otherwise, AL � FFh.

Sample Call mov  ah,2Dh
mov  ch,hours
mov  cl,minutes
mov  dh,seconds
int  21h
cmp  al,0
jne  failed

Notes Does not work if you are running Windows with a restricted user profile.
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INVOKE Write,'-'
movzx eax,cx ; year
call WriteDec

; Display the time:
mov dx,OFFSET str2
call WriteString
mov ah,2Ch ; get system time
int 21h
movzx eax,ch ; hours
call WritePaddedDec
INVOKE Write,':'
movzx eax,cl ; minutes
call WritePaddedDec
INVOKE Write,':'
movzx eax,dh ; seconds
call WritePaddedDec
call Crlf

exit
main ENDP

;---------------------------------------------
Write PROC char:BYTE
; Display a single character.
;---------------------------------------------

push eax
push edx
mov ah,2 ; character output function
mov dl,char
int 21h
pop edx
pop eax
ret

Write ENDP

;---------------------------------------------
WritePaddedDec PROC
; Display unsigned integer in EAX, padding
; to two digit positions with a leading zero.
;---------------------------------------------
.IF eax < 10

push eax
push edx
mov ah,2 ; display leading zero
mov dl,'0'
int 21h
pop edx
pop eax

.ENDIF
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call WriteDec ; write unsigned decimal
ret ; using value in EAX

WritePaddedDec ENDP
END main

Sample output:

14.2.5 Section Review
1. Which register holds the function number when calling INT 21h?

2. Which INT 21h function terminates a program?

3. Which INT 21h function writes a single character to standard output?

4. Which INT 21h function writes a string terminated by a $ character to standard output?

5. Which INT 21h function writes a block of data to a file or device?

6. Which INT 21h function reads a single character from standard input?

7. Which INT 21h function reads a block of data from the standard input device?

8. If you want to get the system date, display it, and then change it, which INT 21h functions
are required?

9. Which INT 21h functions shown in this chapter probably will not work under Windows NT,
2000, or XP with a restricted user profile?

10. Which INT 21h function would you use to check the standard input buffer to see if a charac-
ter is waiting to be processed?

14.3 Standard MS-DOS File I/O Services
INT 21h provides more file and directory I/O services that we can possibly show here. Table 14-3
shows a few of the functions you are likely to use.

File/Device Handles MS-DOS and MS-Windows use 16-bit integers called handles to
identify files and I/O devices. There are five predefined device handles. Each, except handle
2 (error output), supports redirection at the command prompt. The following handles are
available all the time:

Date: 12-8-2006,  Time: 23:01:23

Table 14-3  File- and Directory-Related INT 21h Functions.

Function Description

716Ch Create or open a file

3Eh Close file handle

42h Move file pointer

5706h Get file creation date and time
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Each I/O function has a common characteristic: If it fails, the Carry flag is set, and an error code
is returned in AX. You can use this error code to display an appropriate message. Table 14-4 con-
tains a list of the error codes and their descriptions.

0 Keyboard (standard input)

1 Console (standard output)

2 Error output

3 Auxiliary device (asynchronous)

4 Printer

Microsoft provides extensive documentation on MS-DOS function calls. Search the Platform SDK
documentation for your version of Windows. 

Table 14-4  MS-DOS Extended Error Codes.

Error Code Description
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

Invalid function number
File not found
Path not found
Too many open files (no handles left)
Access denied
Invalid handle
Memory control blocks destroyed
Insufficient memory
Invalid memory block address
Invalid environment
Invalid format
Invalid access code
Invalid data
Reserved
Invalid drive was specified
Attempt to remove the current directory
Not same device
No more files
Diskette write-protected
Unknown unit
Drive not ready
Unknown command
Data error (CRC)
Bad request structure length
Seek error
Unknown media type
Sector not found
Printer out of paper
Write fault
Read fault
General failure
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14.3.1 Create or Open File (716Ch)
INT 21h Function 716Ch can either create a new file or open an existing file. It permits the use
of extended filenames and file sharing. As shown in the following table, the filename may
optionally include a directory path.

Additional Examples The following code either creates a new file or truncates an existing file
having the same name:

mov ax,716Ch ; extended open/create
mov bx,2 ; read-write
mov cx,0      ; normal attribute
mov dx,10h + 02h ; action: create + truncate
mov si,OFFSET Filename
int 21h
jc failed
mov handle,ax        ; file handle
mov actionTaken,cx   ; action taken to open file

INT 21h Function 716Ch

Description Create new file or open existing file

Receives AX � 716Ch
BX � access mode (0 � read, 1 � write, 2 � read/write)
CX � attributes (0 � normal, 1 � read only, 2 � hidden, 3 � system, 8 � volume
ID, 20h � archive)
DX � action (1 � open, 2 � truncate, 10h � create)
DS:SI � segment/offset of filename
DI � alias hint (optional)

Returns If the create/open was successful, CF � 0, AX � file handle, and CX � action
taken. If create/open failed, CF � 1.

Sample Call mov  ax,716Ch             ; extended open/create
mov  bx,0                 ; read-only
mov  cx,0                 ; normal attribute
mov  dx,1                 ; open existing file
mov  si,OFFSET Filename
int  21h
jc   failed
mov  handle,ax            ; file handle
mov  actionTaken,cx       ; action taken

Notes The access mode in BX can optionally be combined with one of the following sharing
mode values: OPEN_SHARE_COMPATIBLE, OPEN_SHARE_DENYREADWRITE,
OPEN_SHARE_DENYWRITE, OPEN_SHARE_DENYREAD, OPEN_SHARE_
DENYNONE. The action taken returned in CX can be one of the following values:
ACTION_OPENED, ACTION_CREATED_OPENED, ACTION_REPLACED_
OPENED. All are defined in Irvine16.inc.
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The following code attempts to create a new file. It fails (with the Carry flag set) if the file
already exists:

mov ax,716Ch ; extended open/create
mov bx,2 ; read-write
mov cx,0      ; normal attribute
mov dx,10h ; action: create
mov si,OFFSET Filename
int 21h
jc failed
mov handle,ax        ; file handle
mov actionTaken,cx   ; action taken to open file

14.3.2 Close File Handle (3Eh)
INT 21h Function 3Eh closes a file handle. This function flushes the file’s write buffer by copy-
ing any remaining data to disk, as shown in the following table: 

14.3.3 Move File Pointer (42h)
INT 21h Function 42h, as can be seen in the following table, moves the position pointer of an
open file to a new location. When calling this function, the method code in AL identifies how the
pointer will be set:

INT 21h Function 3Eh

Description Close file handle

Receives AH � 3Eh
BX � file handle

Returns If the file was closed successfully, CF � 0; otherwise, CF � 1.

Sample Call .data
filehandle WORD ?
.code
mov  ah,3Eh
mov  bx,filehandle
int  21h
jc   failed

Notes If the file has been modified, its time stamp and date stamp are updated.

0 Offset from the beginning of the file
1 Offset from the current location 
2 Offset from the end of the file

INT 21h Function 42h

Description Move file pointer

Receives AH � 42h
AL � method code
BX � file handle
CX:DX � 32-bit offset value

Returns If the file pointer was moved successfully, CF � 0 and DX:AX returns the new file
pointer offset; otherwise, CF � 1.
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14.3.4 Get File Creation Date and Time
INT 21h Function 5706h, shown in the following table, obtains the date and time when a file was
created. This is not necessarily the same date and time when the file was last modified or even
accessed. To learn about MS-DOS packed date and time formats, see Section 15.3.7. To see an
example of extracting date/time fields, see Section 7.3.4.

14.3.5 Selected Library Procedures
Two procedures from the Irvine16 link library are shown here: ReadString and WriteString.
ReadString is the trickiest of the two, since it must read one character at a time until it encoun-
ters the end of line character (0Dh). It reads the character, but does not copy it to the buffer.

ReadString
The ReadString procedure reads a string from standard input and places the characters in an
input buffer as a null-terminated string. It terminates when the user presses the Enter key.:

;--------------------------------------------------------
ReadString PROC
; Receives: DS:DX points to the input buffer,
;           CX = maximum input size

Sample Call mov  ah,42h
mov  al,0       ; method: offset from beginning
mov  bx,handle
mov  cx,offsetHi
mov  dx,offsetLo
int  21h

Notes The returned file pointer offset in DX:AX is always relative to the beginning of the
file.

INT 21h Function 5706h

Description Get file creation date and time

Receives AX � 5706h
BX � file handle

Returns If the function call was successful, CF � 0, DX � date (in MS-DOS packed format),
CX � time, and SI � milliseconds. If the function failed, CF � 1.

Sample Call mov  ax,5706h          ; Get creation date/time
mov  bx,handle
int  21h
jc   error             ; quit if failed
mov  date,dx
mov  time,cx
mov  milliseconds,si

Notes The file must already be open. The milliseconds value indicates the number of 
10-millisecond intervals to add to the MS-DOS time. Range is 0 to 199, indicating
that the field can add as many as 2 seconds to the overall time.

INT 21h Function 42h (continued)
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; Returns:  AX = size of the input string
; Comments: Stops when the Enter key (0Dh) is pressed.
;--------------------------------------------------------

push  cx ; save registers
push  si
push  cx ; save digit count again
mov   si,dx ; point to input buffer

L1: mov   ah,1 ; function: keyboard input
int   21h ; returns character in AL
cmp   al,0Dh ; end of line?
je    L2 ; yes: exit
mov   [si],al ; no: store the character
inc   si ; increment buffer pointer
loop  L1 ; loop until CX=0

L2: mov  byte ptr [si],0 ; end with a null byte
pop  ax ; original digit count
sub  ax,cx ; AX = size of input string
pop  si ; restore registers
pop  cx
ret

ReadString ENDP

WriteString
The WriteString procedure writes a null-terminated string to standard output. It calls a helper pro-
cedure named Str_length that returns the number of bytes in a string:

;--------------------------------------------------------
WriteString PROC
; Writes a null-terminated string to standard output
; Receives: DS:DX = address of string
; Returns: nothing
;--------------------------------------------------------

pusha
push  ds           ; set ES to DS
pop   es
mov   di,dx        ; ES:DI = string ptr
call  Str_length   ; AX = string length
mov   cx,ax        ; CX = number of bytes
mov   ah,40h       ; write to file or device
mov   bx,1         ; standard output handle
int   21h          ; call MS-DOS
popa
ret

WriteString ENDP

14.3.6 Example: Read and Copy a Text File
We presented INT 21h Function 3Fh earlier in this chapter, in the context of reading from
standard input. This function can also be used to read a file if the handle in BX identifies a file
that has been opened for input. When Function 3Fh returns, AX indicates the number of bytes
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actually read from the file. When the end of the file is reached, the value returned in AX is less
than the number of bytes requested (in CX). 

We also presented INT 21h Function 40h earlier in this chapter in the context of writing to
standard output (device handle 1). Instead, the handle in BX can refer to an open file. The func-
tion automatically updates the file’s position pointer, so the next call to Function 40h begins
writing where the previous call left off. 

The Readfile.asm program we’re about to present demonstrates several INT 21h functions
presented in this section: 

• Function 716Ch: Create new file or open existing file
• Function 3Fh: Read from file or device
• Function 40h: Write to file or device
• Function 3Eh: Close file handle

The following program opens a text file for input, reads no more than 5,000 bytes from the
file, displays it on the console, creates a new file, and copies the data to a new file:

; Read a text file         (Readfile.asm)

; Read, display, and copy a text file.
INCLUDE Irvine16.inc

.data
BufSize = 5000
infile    BYTE "my_text_file.txt",0
outfile   BYTE "my_output_file.txt",0
inHandle  WORD ?
outHandle WORD ?
buffer    BYTE BufSize DUP(?)
bytesRead WORD ?

.code
main PROC

mov ax,@data
mov ds,ax

; Open the input file
mov ax,716Ch   ; extended create or open
mov bx,0      ; mode = read-only
mov cx,0 ; normal attribute
mov dx,1 ; action: open
mov si,OFFSET infile
int 21h       ; call MS-DOS
jc quit ; quit if error
mov inHandle,ax

; Read the input file
mov ah,3Fh ; read file or device
mov bx,inHandle ; file handle
mov cx,BufSize ; max bytes to read
mov dx,OFFSET buffer ; buffer pointer
int 21h
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jc quit ; quit if error
mov bytesRead,ax

; Display the buffer
mov ah,40h ; write file or device
mov bx,1 ; console output handle
mov cx,bytesRead ; number of bytes
mov dx,OFFSET buffer ; buffer pointer
int 21h
jc quit ; quit if error

; Close the file
mov ah,3Eh    ; function: close file
mov bx,inHandle ; input file handle
int 21h       ; call MS-DOS
jc quit ; quit if error

; Create the output file
mov ax,716Ch   ; extended create or open
mov bx,1      ; mode = write-only
mov cx,0 ; normal attribute
mov dx,12h ; action: create/truncate
mov si,OFFSET outfile
int 21h       ; call MS-DOS
jc quit ; quit if error
mov outHandle,ax ; save handle

; Write buffer to new file
mov ah,40h ; write file or device
mov bx,outHandle ; output file handle
mov cx,bytesRead ; number of bytes
mov dx,OFFSET buffer ; buffer pointer
int 21h
jc quit ; quit if error

; Close the file
mov ah,3Eh    ; function: close file
mov bx,outHandle ; output file handle
int 21h       ; call MS-DOS

quit:
call Crlf
exit

main ENDP
END main

14.3.7 Reading the MS-DOS Command Tail
In the programs that follow, we will often pass information to programs on the command line.
Suppose we needed to pass the name file1.doc to a program named attr.exe. The MS-DOS com-
mand line would be 

attr file1.doc

When a program starts up, any additional text on its command line is automatically stored in
the 128-byte MS-DOS Command Tail located in memory at offset 80h from the beginning of the
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segment address specified by the ES register. The memory area is named the program segment
prefix (PSP). The program segment prefix is discussed in Section 17.3.1. Also see Section 2.3.1
for a discussion of how segmented addressing works in real-address mode.

The first byte contains the length of the command line. If its value is greater than zero, the
second byte contains a space character. The remaining bytes contain the text typed on the com-
mand line. Using the example command line for the attr.exe program, the hexadecimal contents
of the command tail would be the following:

There is one exception to the rule that MS-DOS stores all characters after the command or pro-
gram name: It doesn’t keep the file and device names used when redirecting input–output. For
example, MS-DOS does not save any text in the command tail when the following command is
typed because both infile.txt and PRN are used for redirection: 

prog1 < infile.txt > prn

GetCommandTail Procedure The GetCommandTail procedure from the Irvine16 library
returns a copy of the running program’s command tail under MS-DOS. When calling this proce-
dure, set DX to the offset of the buffer where the command tail will be copied. Real-address
mode programs often deal directly with segment registers so they can access data in different
memory segments. For example, GetCommandTail saves the current value of ES on the stack,
obtains the PSP segment using INT 21h Function 62h and copies it to ES:

push es
.
.
mov ah,62h ; get PSP segment address
int 21h ; returned in BX
mov es,bx ; copied to ES

Next, it locates a byte inside the PSP. Because ES does not point to the program’s default
data segment, we must use a segment override (es:) to address data inside the program seg-
ment prefix:

mov cl,es:[di-1] ; get length byte

GetCommandTail skips over leading spaces with SCASB and sets the Carry flag if the com-
mand tail is empty. This makes it easy for the calling program to execute a JC (jump carry)
instruction if nothing is typed on the command line:

cld ; scan in forward direction
mov al,20h ; space character
repz scasb ; scan for non space

,

Software BIOS

BIOS & DOS Data

Interrupt Vector Table
00400

00000
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jz L2 ; all spaces found
.
.

L2: stc ; CF=1 means no command tail

SCASB automatically scans memory pointed to by the ES segment registers, so we had no choice
but to set ES to the PSP segment at the beginning of GetCommandTail. Here’s a complete listing:

;--------------------------------------------------
GetCommandTail PROC
;
; Gets a copy of the MS-DOS command tail at PSP:80h.
; Receives: DX contains the offset of the buffer
;    that receives a copy of the command tail.
; Returns: CF=1 if the buffer is empty; otherwise,
;    CF=0.
;--------------------------------------------------
SPACE = 20h

push es
pusha ; save general registers

mov ah,62h ; get PSP segment address
int 21h ; returned in BX
mov es,bx ; copied to ES

mov si,dx ; point to buffer
mov di,81h ; PSP offset of command tail
mov cx,0 ; byte count
mov cl,es:[di-1] ; get length byte
cmp cx,0 ; is the tail empty?
je L2 ; yes: exit
cld ; scan in forward direction
mov al,SPACE ; space character
repz scasb ; scan for non space
jz L2 ; all spaces found
dec di ; non space found
inc cx

L1: mov al,es:[di] ; copy tail to buffer
mov [si],al ; pointed to by DS:SI
inc si
inc di
loop L1
clc ; CF=0 means tail found
jmp L3

L2: stc ; CF=1 means no command tail
L3: mov byte ptr [si],0 ; store null byte

By default, the assembler assumes that DI is an offset from the segment address in DS. The seg-
ment override ( es:[di] ) tells the CPU to use the segment address in ES instead. 
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popa ; restore registers
pop es
ret

GetCommandTail ENDP

14.3.8 Example: Creating a Binary File
A binary file is given its name because the data stored in the file is simply a binary image of pro-
gram data. Suppose, for example, that your program created and filled an array of doublewords:

myArray DWORD 50 DUP(?)

If you wanted to write this array to a text file, you would have to convert each integer to a string
and write it separately. A more efficient way to store this data would be to just write a binary
image of myArray to a file. An array of 50 doublewords uses 200 bytes of memory, and that is
exactly the amount of disk space the file would use.

The following Binfile.asm program fills an array with random integers, displays the integers
on the screen, writes the integers to a binary file, and closes the file. It reopens the file, reads the
integers, and displays them on the screen:

; Binary File Program         (Binfile.asm)

; This program creates a binary file containing 
; an array of doublewords. It then reads the file
; back in and displays the values.

INCLUDE Irvine16.inc

.data
myArray DWORD 50 DUP(?)

fileName   BYTE "binary array file.bin",0
fileHandle WORD ?
commaStr   BYTE ", ",0

; Set CreateFile to zero if you just want to
; read and display the existing binary file.
CreateFile = 1

.code
main PROC

mov ax,@data
mov ds,ax

.IF CreateFile EQ 1
call FillTheArray
call DisplayTheArray
call CreateTheFile
call WaitMsg
call Crlf

.ENDIF
call ReadTheFile
call DisplayTheArray
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quit:
call Crlf
exit

main ENDP

;------------------------------------------------------
ReadTheFile PROC
;
; Open and read the binary file.
; Receives: nothing.
; Returns: nothing
;------------------------------------------------------

mov ax,716Ch    ; extended file open
mov bx,0 ; mode: read-only
mov cx,0      ; attribute: normal
mov dx,1 ; open existing file
mov si,OFFSET fileName ; filename
int 21h       ; call MS-DOS
jc quit ; quit if error
mov fileHandle,ax ; save handle

; Read the input file, then close the file.
mov ah,3Fh ; read file or device
mov bx,fileHandle ; file handle
mov cx,SIZEOF myArray ; max bytes to read
mov dx,OFFSET myArray ; buffer pointer
int 21h
jc quit ; quit if error
mov ah,3Eh    ; function: close file
mov bx,fileHandle ; output file handle
int 21h       ; call MS-DOS

quit:
ret

ReadTheFile ENDP

;------------------------------------------------------
DisplayTheArray PROC
;
; Display the doubleword array.
; Receives: nothing.
; Returns: nothing
;------------------------------------------------------

mov CX,LENGTHOF myArray
mov si,0

L1:
mov eax,myArray[si] ; get a number
call WriteHex ; display the number
mov edx,OFFSET commaStr ; display a comma
call WriteString
add si,TYPE myArray ; next array position
loop L1
ret
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DisplayTheArray ENDP

;------------------------------------------------------
FillTheArray PROC
;
; Fill the array with random integers.
; Receives: nothing.
; Returns: nothing
;------------------------------------------------------

mov CX,LENGTHOF myArray
mov si,0

L1:
mov eax,1000 ; generate random integers
call RandomRange ; between 0 - 999 in EAX
mov myArray[si],eax ; store in the array
add si,TYPE myArray ; next array position
loop L1
ret

FillTheArray ENDP

;------------------------------------------------------
CreateTheFile PROC
;
; Create a file containing binary data.
; Receives: nothing.
; Returns: nothing
;------------------------------------------------------

mov ax,716Ch    ; create file
mov bx,1 ; mode: write only
mov cx,0      ; normal file
mov dx,12h ; action: create/truncate
mov si,OFFSET fileName ; filename
int 21h       ; call MS-DOS
jc quit ; quit if error
mov fileHandle,ax ; save handle

; Write the integer array to the file.
mov ah,40h ; write file or device
mov bx,fileHandle ; output file handle
mov cx,SIZEOF myArray ; number of bytes
mov dx,OFFSET myArray ; buffer pointer
int 21h
jc quit ; quit if error

; Close the file.
mov ah,3Eh ; function: close file
mov bx,fileHandle ; output file handle
int 21h ; call MS-DOS

quit:
ret

CreateTheFile ENDP
END main
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It is worth noting that writing the entire array is done with a single call to INT 21h Function
40h. There is no need for a loop:

mov ah,40h ; write file or device
mov bx,fileHandle ; output file handle
mov cx,SIZEOF myArray ; number of bytes
mov dx,OFFSET myArray ; buffer pointer
int 21h

The same is true when reading the file back into the array. A single call to INT 21h Function 3Fh
does the job:

mov ah,3Fh ; read file or device
mov bx,fileHandle ; file handle
mov cx,SIZEOF myArray ; max bytes to read
mov dx,OFFSET myArray ; buffer pointer
int 21h

14.3.9 Section Review
1. Name the five standard MS-DOS device handles.

2. After calling an MS-DOS I/O function, which flag indicates that an error has occurred?

3. When you call Function 716Ch to create a file, what arguments are required?

4. Show an example of opening an existing file for input.

5. When you call Function 716Ch to read a binary array from a file that is already open, what
argument values are required?

6. How do you check for end of file when reading an input file using INT 21h Function 3Fh?

7. When calling Function 3Fh, how is reading from a file different from reading from the
keyboard?

8. If you wanted to read a random-access file, which INT 21h function would permit you to
jump directly to a particular record in the middle of the file?

9. Write a short code segment that positions the file pointer 50 bytes from the beginning of a
file. Assume that the file is already open, and BX contains the file handle.

14.4 Chapter Summary
In this chapter, you learned the basic memory organization of MS-DOS, how to activate MS-DOS
function calls, and how to perform basic input–output operations at the operating system level.

The standard input device and the standard output device are collectively called the console,
which involves the keyboard for input and the video display for output.

A software interrupt is a call to an operating system procedure. Most of these procedures,
called interrupt handlers, provide input–output capability to application programs.

The INT (call to interrupt procedure) instruction pushes the CPU flags and 32-bit return
address (CS and IP) on the stack, disables other interrupts, and calls an interrupt handler. The CPU
processes the INT instruction using the interrupt vector table, a table containing 32-bit segment-
offset addresses of interrupt handlers. 
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Programs designed for MS-DOS must be 16-bit applications running in real-address mode.
Real-address mode applications use 16-bit segments and use segmented addressing.

The .MODEL directive specifies which memory model your program will use. The .STACK
directive allocates a small amount of local stack space for your program. In real-address mode,
stack entries are 16 bits by default. Enable the use of 32-bit registers using the .386 directive.

A 16-bit application containing variables must set DS to the location of the data segment
before accessing the variables.

Every program must include a statement that ends the program and returns to the operating
system. One way to do this is by using the .EXIT directive. Another way is by calling INT 21h
Function 4Ch.

Any real-address mode program can access hardware ports, interrupt vectors, and system
memory when running under MS-DOS, and early version of Windows. and early version of
Windows. On the other hand, this type of access is only granted to kernel mode and device driver
programs in more recent versions of Windows.

When a program runs, any additional text on its command line is automatically stored in the 128-
byte MS-DOS command tail area, at offset 80h in special memory segment named the program
segment prefix (PSP). The GetCommandTail procedure from the Irvine16 library returns a copy
of the command tail.

Some frequently used BIOS interrupts are listed here:

• INT 10h Video Services: Procedures that display routines that control the cursor position,
write text in color, scroll the screen, and display video graphics. 

• INT 16h Keyboard Services: Procedures that read the keyboard and check its status.
• INT 17h Printer Services: Procedures that initialize, print, and return the printer status. 
• INT 1Ah Time of Day: A procedure that gets the number of clock ticks since the machine was

turned on or sets the counter to a new value.
• INT 1Ch User Timer Interrupt: An empty procedure that is executed 18.2 times per second.

A number of important MS-DOS (INT 21h) functions are listed here:

• INT 21h MS-DOS Services: Procedures that provide input–output, file handling, and memory
management. Also known as MS-DOS function calls. 

• About 200 different functions are supported by INT 21h, identified by a function number
placed in the AH register. 

• INT 21h Function 4Ch terminates the current program (called a process). 
• INT 21h Functions 2 and 6 write a single character to standard output. 
• INT 21h Function 5 writes a single character to the printer. 
• INT 21h Function 9 writes a string to standard output. 
• INT 21h Function 40h writes an array of bytes to a file or device.
• INT 21h Function 1 reads a single character from standard input. 
• INT 21h Function 6 reads a character from standard input without waiting.
• INT 21h Function 0Ah reads a buffered string from standard input. 
• INT 21h Function 0Bh gets the status of the standard input buffer.
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• INT 21h Function 3Fh reads an array of bytes from a file or device.
• INT 21h Function 2Ah gets the system date. 
• INT 21h Function 2Bh sets the system date. 
• INT 21h Function 2Ch gets the system time. 
• INT 21h Function 2Dh sets the system time.
• INT 21h Function 716Ch either creates a file or opens an existing file.
• INT 21h Function 3Eh closes a file handle.
• INT 21h Function 42h moves a file’s position pointer. 
• INT 21h Function 5706h obtains a file’s creation date and time. 
• INT 21h Function 62h returns the segment portion of the program segment prefix address.

The following sample programs showed how to apply MS-DOS functions:

• The DateTime.asm program displays the system date and time. 
• The Readfile.asm program opens a text file for input, reads the file, displays it on the console,

creates a new file, and copies the data to a new file.
• The Binfile.asm program fills an array with random integers, displays the integers on the

screen, writes the integers to a binary file, and closes the file. It reopens the file, reads the
integers, and displays them on the screen. 

A binary file is given its name because the data stored in the file is a binary image of program
data.

14.5 Programming Exercises
The following exercises must be done in real-address mode. Do not use any functions from the
Irvine16 library. Use INT 21h function calls for all input–output, unless an exercise specifically
says to do otherwise.

1. Read a Text File
Open a file for input, read the file, and display its contents on the screen in hexadecimal. Make
the input buffer small—about 256 bytes—so the program uses a loop to repeat the call to Func-
tion 3Fh as many times as necessary until the entire file has been processed.

2. Copy a Text File
Modify the Readfile program in Section 14.3.6 so that it can read a file of any size. Assuming
that the buffer is smaller than the input file, use a loop to read all data. Use a buffer size of 256
bytes. Display appropriate error messages if the Carry flag is set after any INT 21h function
calls.

3. Setting the Date
Write a program that displays the current date and prompts the user for a new date. If a nonblank
date is entered, use it to update the system date. 

4. Uppercase Conversion
Write a program that uses INT 21h to input lowercase letters from the keyboard and convert
them to uppercase. Display only the uppercase letters.

★★

★★

★

★
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5. File Creation Date
Write a procedure that displays the date when a file was created, along with its filename. Pass a
pointer to the filename in the DX register. Write a test program that demonstrates the procedure
with several different filenames, including extended filenames. If a file cannot be found, display
an appropriate error message. 

6. Text Matching Program
Write a program that opens a text file containing up to 60K bytes and performs a case-insensitive
search for a string. The string and the filename can be input by the user. Display each line from the
file on which the string appears and prefix each line with a line number. Review the Str_find pro-
cedure from the programming exercises in Section 9.7. Your program must run in real-address
mode.

7. File Encryption Using XOR
Enhance the file encryption program from Section 6.3.4 as follows:

• Prompt the user for the name of a plaintext file and a ciphertext file.
• Open the plaintext file for input, and open the cipher text file for output.
• Let the user enter a single integer encryption code (1 to 255).
• Read the plaintext file into a buffer, and exclusive-OR each byte with the encryption code.
• Write the buffer to the ciphertext file.

The only procedure you may call from the book’s link library is ReadInt. All other input/output
must be performed using INT 21h. The same code you write could also be used to decrypt the
ciphertext file, producing the original plaintext file.

8. CountWords Procedure
Write a program that counts the words in a text file. Prompt the user for a file name, and display
the word count on the screen. The only procedure you may call from the book’s link library is
WriteDec. All other input/output must be performed using INT 21h.

★

★★★

★★

★★★
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15.1 Disk Storage Systems
In this chapter, we introduce the basics of disk storage systems. We also show how disk storage
relates to the BIOS-level disk storage in legacy versions of Windows, and we show how MS-Windows
interacts with application programs to provide access to files and directories. The system BIOS was
first mentioned in Section 2.5. The interaction between a computer’s different layers of input–output
access is readily apparent when you consider disk storage (Fig. 15-1):

• At the lowest layer is the disk controller firmware, which uses intelligent controller chips to map
out the disk geometry (physical locations) for specific disk drive brands and models.

We recommend that you install an early version of Windows such as Windows 95 or Windows 98
to insure full compatibility with the programs in this chapter. You may want to use a software util-
ity to create a virtual machine on your computer, so you can experiment with this software.
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• At the next layer is the system BIOS, which provides a low-level collection of functions that oper-
ating systems use to perform tasks such as sector reads, sector writes, and track formatting. 

• At the next highest layer is the operating system API, which provides a collection of API functions
that provides services such as opening and closing files, setting file properties, reading files, and
writing files.

Figure 15–1 Virtual levels of disk access.

Disk storage systems all have certain common characteristics: They handle physical partitioning
of data and access to data at the file level, and they map filenames to physical storage. At the hardware
level, disk storage is described in terms of platters, sides, tracks, cylinders, and sectors. At the system
BIOS level, disk storage is described in terms of clusters and sectors. At the OS level, disk storage is
described in terms of directories and files.

Assembly Language Programs User-level programs written in assembly language can directly
access the system BIOS under MS-DOS, Windows 95, 98, and Millenium. For example, you might
want to store and retrieve data stored in an unconventional format, to recover lost data, or to perform
diagnostics on disk hardware. In this chapter, we show examples of system-BIOS file and sector func-
tions. As an illustration of typical OS-level access to data, a number of MS-DOS functions for drive
and directory manipulation are listed at the end of the chapter. 

15.1.1 Tracks, Cylinders, and Sectors
A typical hard drive, shown in Fig. 15-2, is made up of multiple platters attached to a spindle that rotates
at constant speed. Above the surface of each platter is a read/write head that records magnetic pulses.
The read/write heads move in toward the center and out toward the rim as a group, in small steps.

The surface of a disk is formatted into invisible concentric bands called tracks on which data is
stored magnetically. A typical 3.5” hard drive may contain thousands of tracks. Moving the read/write
heads from one track to another is called seeking. The average seek time is one type of disk speed
measurement. Another measurement is RPM (revolutions per minute), typically 7200. The outside
track of a disk is track 0, and the track numbers increase as you move toward the center.

A cylinder refers to all tracks accessible from a single position of the read/write heads. A file
is initially stored on a disk using adjacent cylinders. This reduces the amount of movement by the
read/write heads. 

If you’re using recent 32-bit versions of Windows, user-level programs can only access the disk
system using the Win32 API. That rule safeguards system security, and can only be bypassed by
device driver programs running at the highest privilege level.

Operating system API

System BIOS

Disk controller firmware



15.1   Disk Storage Systems 15.3

Figure 15–2 Physical elements of a hard drive.

A sector is a 512-byte portion of a track, as shown in Fig. 15-3. Physical sectors are magnetically
(invisibly) marked on the disk by the manufacturer, using what is called a low-level format. Sector
sizes never change, regardless of the installed operating system. A hard disk may have 63 or more
sectors per track

Figure 15–3 Disk tracks and sectors. 

Physical disk geometry is a way of describing the disk’s structure to make it readable by the system
BIOS. It consists of the number of cylinders per disk, the number of read/write heads per cylinder,
and the number of sectors per track. The following relationships exist:

• The number of cylinders per disk equals the number of tracks per surface.
• The total number of tracks equals the number of cylinders times the number of heads per cylinder.

Fragmentation Over time, as files become more spread out around a disk, they become frag-
mented. A fragmented file is one whose sectors are no longer located in contiguous areas of the disk.
When this happens, the read/write heads have to skip across tracks when reading the file’s data. This
slows down the reading and writing of files.

Translation to Logical Sector Numbers Hard disk controllers perform a process called trans-
lation, the conversion of physical disk geometry to a logical structure that is understood by the
operating system. The controller is usually embedded in firmware, either on the drive itself or on
a separate controller card. After translation, the operating system can work with what are called
logical sector numbers. Logical sector numbers are always numbered sequentially, starting at
zero.

platter

rotating spindle head 0 head 1

movement

track

sector
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15.1.2 Disk Partitions (Volumes)
Under MS-Windows, a single physical hard drive can be divided into one or more logical units named
partitions, or volumes. Each formatted partition is represented by a separate drive letter such as C, D,
or E, and it can be formatted using one of several file systems. A drive may contain two types of par-
titions: primary and extended. 

A primary partition is usually bootable and holds an operating system. An extended partition can
be divided into an unlimited number of logical partitions. Each logical partition is mapped to a drive
letter (C, D, E, etc.). Logical partitions cannot be bootable. It is possible to format each system or log-
ical partition with a different file system. 

Suppose, for example, that a 20 GByte hard drive was assigned a primary 10 GByte partition
(drive C), and we installed the operating system on it. Its extended partition would be 10 GByte. Arbi-
trarily, we could divide the latter into two logical partitions of 2 GByte and 8 GByte and format them
with various file systems such as FAT16, FAT32, or NTFS. (We will discuss the details of these file
systems in the next section of this chapter.) Assuming that no other hard drives were already installed,
the two logical partitions would be assigned drive letters D and E.

Multi-boot Systems It is quite common to create multiple primary partitions, each capable of
booting (loading) a different operating system. This makes it possible to test software in different
environments and to take advantage of security features in the more advanced systems. Before
virtualization software was widely available, software developers could use a primary partition to
create a test environment for software under development. Then they could retain another primary
partition that holds production software that has already been tested and is ready for use by
customers.

Logical partitions, on the other hand, are primarily intended for data. It is possible for different
operating systems to share data stored in the same logical partition. For example, all recent versions
of MS-Windows and Linux can read FAT32 disks. A computer can boot from any of these operating
systems and read the same data files in a shared logical partition.

Master Boot Record The Master Boot Record (MBR), created when the first partition is created
on a hard disk, is located in the drive’s first logical sector. The MBR contains the following:

• The disk partition table, which describes the sizes and locations of all partitions on the disk. 
• A small program that locates the partition’s boot sector and transfers control to a program in the

sector that loads the operating system.

15.1.3 Section Review
1. (True/False): A track is divided into multiple units called sectors.

2. (True/False): A sector consists of multiple tracks.

3. A ________ consists of all tracks accessible from a single position of the read/write heads of a hard
drive.

Tools: You can use the FDISK.EXE program under MS-DOS and Windows 98 to create and
remove partitions, but it does not preserve data. Better yet, recent versions of Windows have a
Disk Manager utility that provides the ability to create, delete, and resize partitions without
destroying data.



15.2   File Systems 15.5

4. (True/False): Physical sectors are always 512 bytes because the sectors are marked on the disk by the
manufacturer.

5. Under FAT32, how many bytes are used by a logical sector?

6. Why are files initially stored in adjacent cylinders?

7. When a file’s storage becomes fragmented, what does this mean in terms of cylinders and seek opera-
tions performed by the drive?

8. Another name for a drive partition is a drive _________.

9. What does a drive’s average seek time measure?

10. What is a low-level format?

11. What is contained in the master boot record?

12. How many primary partitions can be active at the same time?

13. When a primary partition is active, it is called the ______ partition.

15.2 File Systems
Every operating system has some type of disk management system. At the lowest level, it manages
partitions. At the next-highest level, it manages files and directories. A file system must keep track of
the location, sizes, and attributes of each disk file. Let’s take a look at the FAT-type file system origi-
nally created for the IBM-PC, and still available under Windows. A FAT-type file system uses the
following structure:

• A mapping of logical sectors to clusters, the basic unit of storage for all files and directories.
• A mapping of file and directory names to sequences of clusters.

A cluster is the smallest unit of space used by a file; it consists of one or more adjacent disk sec-
tors. A file system stores each file as a linked sequence of clusters. The size of a cluster depends on
both the type of file system in use and the size of its disk partition. Figure 15-4 shows a file made up
of two 2048-byte clusters, each containing four 512-byte sectors. A chain of clusters is referenced by
a file allocation table (FAT) that keeps track of all clusters used by a file. A pointer to the first cluster
entry in the FAT is stored in each file’s directory entry. Section 15.3.2 explains the FAT in greater
detail.

Figure 15–4 Cluster chain example.

Wasted Space Even a small file requires at least one cluster of disk storage, which can result in
wasted space. Figure 15-5 shows an 8200-byte file, which completely fills two 4096-byte clusters and
uses only 8 bytes of a third cluster. This leaves 4088 bytes of wasted disk space in the third cluster. A
cluster size of 4096 (4 KByte) is considered an efficient way to store small files. Imagine what would
result if our 8200-byte file were stored on a volume having 32 KByte clusters. In that case, 24568
bytes (32768 � 8200) would be wasted. On volumes having a large number of small files, small clus-
ter sizes are best.

Cluster 1

1 2 43

Cluster 2

5 6 87

sector
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Figure 15–5 Cluster chain showing wasted space.

Windows 2000/XP Example Standard cluster sizes and file system types for hard drives used
under Windows 2000 and Windows XP are shown in Table 15-1. These values change often with new
operating system releases, so the information shown here is for illustrative purposes only.

Table 15-1  Partition and Cluster Sizes (Over 1 GByte).

15.2.1 FAT12
The FAT12 file system was first used on IBM-PC diskettes. It is still supported by all versions of MS-
Windows and Linux. The cluster size is only 512 bytes, so it is ideal for storing small files. Each entry
in its file allocation table is 12 bits long. A FAT12 volume holds fewer than 4087 clusters.

15.2.2 FAT16
The FAT16 file system is the only available format for hard drives formatted under MS-DOS. It is
supported by all versions of MS-Windows and Linux. There are some drawbacks to FAT16:

• Storage is inefficient on volumes over 1 GByte because FAT16 uses large cluster sizes.
• Each entry in the file allocation table is 16 bits long, limiting the total number of clusters.
• The volume can hold between 4087 and 65,526 clusters.
• The boot sector is not backed up, so a single sector read error can be catastrophic.
• There is no built-in file system security or individual user permissions.

15.2.3 FAT32
The FAT32 file system was introduced with Windows 95, and was refined under Windows 98. It has a
number of improvements over FAT16:

• A single file can be as large as 4 GBytes minus 2 bytes.
• Each entry in the file allocation table is 32 bits long.
• A volume can hold between 65,526 and 268,435,456 clusters.
• The root folder can be located anywhere on the disk, and it can be almost any size.

Volume Size FAT16 Cluster FAT32 Cluster NTFS Clustera

a Default sizes under NTFS. Can be changed when disk is formatted.

1.25 GByte–2 GByte 32 KByte 4 KByte 2 KByte

2 GByte–4 GByte 64 KByteb

b 64 KByte clusters with FAT16 are only supported by Windows 2000 and XP.

4 KByte 4 KByte

4 GByte–8 GByte ns (not supported) 4 KByte 4 KByte

8 GByte–16 GByte ns 8 KByte 4 KByte

16 GByte–32 GByte ns 16 KByte 4 KByte

32 GByte–2 TByte ns nsc

c A software patch is available that permits Windows 98 to format drives over 32 GByte.

4 KByte

Cluster 1 Cluster 2 Cluster 3

File size: 8,200 bytes

4,096 used
8 bytes used,
4,088 empty4,096 used
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• Volumes can hold up to 32 GBytes.
• It uses a smaller cluster size than FAT16 on volumes holding 1 GByte to 8 GByte, resulting in less

wasted space.
• The boot record includes a backup copy of critical data structures. This means that FAT32 drives

are less susceptible to a single point of failure than FAT16 drives.

15.2.4 NTFS
The NTFS file system is supported by all recent versions of Windows. It has significant improvements
over FAT32:

• NTFS handles large volumes, which can be either on a single hard drive or spanned across multiple
hard drives.

• The default cluster size is 4 KBytes for disks over 2 GBytes.
• Supports Unicode filenames (non-ANSI characters) up to 255 characters long.
• Allows the setting of permissions on files and folders. Access can be by individual users or groups

of users. Different levels of access are possible (read, write, modify, etc.)
• Provides built-in data encryption and compression on files, folders, and volumes.
• Can track individual changes to files over time in a change journal.
• Disk quotas can be set for individual users or groups of users.
• Provides robust recovery from data errors. Automatically repairs errors by keeping a transaction log.
• Supports disk mirroring, in which the same data are simultaneously written to multiple drives.

Table 15-2 lists each of the different file systems commonly used on Intel-based computers, showing
their support by various operating systems. 

15.2.5 Primary Disk Areas
FAT12 and FAT16 volumes have specific locations reserved for the boot record, file allocation table,
and root directory. (The root directory on a FAT32 drive is not stored in a fixed location.) The size of
each area is determined when the volume is formatted. For example, the mapping of sectors on a 3.5-inch,
1.44 MByte diskette is show in Table 15-3. 

Table 15-2  Operating System Support for File Systems.

File
System MS-DOS Linux

Win 95/
98 Win NT 4

Win 2000 
Onward

FAT12 X X X X X

FAT16 X X X X X

FAT32 X X X

NTFS X X

Table 15-3  Sector Mapping of a 1.44 MByte Diskette.

Logical Sector Contents

0 Boot record

1–18 File allocation table (FAT)

19–32 Root directory

33–2,879 Data area
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Boot Record The boot record contains a table holding volume information and a short boot pro-
gram that loads MS-DOS into memory. The boot program checks for the existence of certain operat-
ing system files and loads them into memory. Table 15-4 shows a representative list of fields in a
typical MS-DOS boot record. The exact arrangement of fields varies among different versions of the
operating system.

Table 15-4  MS-DOS Boot Record Layout.

File Allocation Table (FAT) The file allocation table is fairly complex, so we will discuss it at more
length in Section 15.3.3.

Root Directory The root directory is a disk volume’s main directory. Directory entries can be other
directory names or references to files. A directory entry that refers to a file contains the filename, size,
attribute, and starting cluster number used by the file.

Data Area The data area of the disk is where files and subdirectories are stored.

15.2.6 Section Review
1. (True/False): A file system maps logical sectors to clusters.

2. (True/False): The starting cluster number of a file is stored in the disk parameter table.

3. (True/False): All file systems except NTFS require the use of at least one cluster to store a file.

Offset Length Description

00
03
0B
0D
0E
10
11
13
15
16
18
1A
1C
20
24
25
26
27
2B
36
3E

3
8
2
1
2
1
2
2
1
2
2
2
4
4
1
1
1
4
11
8
—

Jump to boot code (JMP instruction)
Manufacturer name, version number 
Bytes per sector
Sectors per cluster (power of 2)
Number of reserved sectors (preceding FAT #1)
Number of copies of FAT
Maximum number of root directory entries
Number of disk sectors for drives under 32 MByte
Media descriptor byte
Size of FAT, in sectors
Sectors per track
Number of drive heads
Number of hidden sectors
Number of disk sectors for drives over 32 MByte
Drive number (modified by MS-DOS)
Reserved
Extended boot signature (always 29h)
Volume ID number (binary)
Volume label
File-system type (ASCII)
Start of boot program and data
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4. (True/False): The FAT32 file system allows the setting of individual user permissions for directories,
but not files.

5. (True/False): Linux does not support the FAT32 file system.

6. Under Windows 98, what is the largest permitted FAT16 volume?

7. Suppose your disk volume’s boot record was corrupted. Which file system(s) would provide support
for a backup copy of the boot record?

8. Which MS-Windows file system(s) support 16-bit Unicode filenames?

9. Which MS-Windows file system(s) support disk mirroring, where the same data is simultaneously
written to multiple drives?

10. Suppose you need to keep a record of the last ten changes to a file. Which file system(s) supports this
feature?

11. If you have a 20 GByte disk volume and you wish to have a cluster size 
  8 KByte (to avoid wasted
space), which file system(s) could you use?

12. What is the largest FAT32 disk volume that supports 4 KByte clusters?

13. Describe the four areas (in order) of a 1.44 MByte diskette.

14. On a disk drive formatted by MS-DOS, how might you determine the number of sectors used by each
cluster?

15. Challenge: If a disk has a cluster size of 8 KByte, how many bytes of wasted space will there be when
storing an 8200-byte file?

16. Challenge: Explain how NTFS stores sparse files. (To answer this question, you will have to visit the
Microsoft MSDN Web site and look for the information.)

15.3 Disk Directory
Every FAT-style and NTFS disk has a root directory containing the primary list of files on the disk.
The root directory may also contain the names of other directories, called subdirectories. A subdirec-
tory may be thought of as a directory whose name appears in some other directory—the latter is
known as the parent directory. Each subdirectory can contain filenames and additional directory
names. The result is a treelike structure with the root directory at the top, branching out to other direc-
tories at lower levels (Fig. 15-6).

Figure 15–6 Disk directory tree example. 

Each directory name and each file within a directory is qualified by the names of the directories above
it, called the path. For example, the path for the file PROG1.ASM in the SOURCE directory below
ASM on drive C is

C:\ASM\SOURCE\PROG1.ASM

Root directory

JAVAASM CPP

LIB SOURCE CLASSES SOURCE RUN SOURCE
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Generally, the drive letter can be omitted from the path when an input–output operation is carried out
on the current disk drive. A complete list of the directory names in our sample directory tree follows: 

C:\
\ASM
\ASM\LIB
\ASM\SOURCE
\JAVA
\JAVA\CLASSES
\JAVA\SOURCE
\CPP
\CPP\RUN
\CPP\SOURCE

Thus, a file specification can take the form of an individual filename or a directory path followed by a
filename. It can also be preceded by a drive specification. 

15.3.1 MS-DOS Directory Structure
If we tried to explain all the various directory formats available today on Intel-based computers, we
would at least have to include Linux, MS-DOS, and all the versions of MS-Windows. Instead, let’s
use MS-DOS as a basic example and examine its structure more closely. Then we will follow with a
description of the extended filename structure available in MS-Windows.

Each MS-DOS directory entry is 32 bytes long and contains the fields shown in Table 15-5. The
filename field holds the name of a file, a subdirectory, or the disk volume label. The first byte may
indicate the file’s status, or it may be the first character of a filename. The possible status values are
shown in Table 15-6. The 16-bit starting cluster number field refers to the number of the first cluster
allocated to the file, as well as its starting entry in the file allocation table (FAT). The file size field is a
32-bit number that indicates the file size, in bytes.

Table 15-5  MS-DOS Directory Entry.

Hexadecimal Offset Field Name Format

00-07 Filename ASCII

08-0A Extension ASCII

0B Attribute 8-bit binary

0C-15 Reserved by MS-DOS 

16-17 Time stamp 16-bit binary

18-19 Date stamp 16-bit binary

1A-1B Starting cluster number 16-bit binary

1C-1F File size 32-bit binary

Table 15-6  Filename Status Byte.

Status Byte Description

00h The entry has never been used.

01h If the attribute byte � 0Fh and the status byte � 01h, this is the first long filename
entry. (Holds the last part of the name, “.”, and the filename extension.)

05h The first character of the filename is actually the E5h character (rare).

E5h The entry contains a filename, but the file has been erased.
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Attribute Field
The attribute field identifies the type of file. The field is bit-mapped and usually contains a combina-
tion of one of the values shown in Fig. 15-7. The two reserved bits should always be 0. The archive bit
is set when a file is modified. The subdirectory bit is set if the entry contains the name of a subdirectory.
The volume label identifies the entry as the name of a disk volume. The system file bit indicates that
the file is part of the operating system. The hidden file bit makes the file hidden; its name does not
appear in a display of the directory. The read-only bit prevents the file from being deleted or modified
in any way. Finally, an attribute value of 0Fh indicates that the current directory entry is for an
extended filename.

Figure 15–7 File attribute byte fields.

Date and Time
The date stamp field (Fig. 15-8) indicates the date when the file was created or last changed,
expressed as a bit-mapped value. The year value is between 0 and 119, and is automatically added to
1980 (the year the IBM-PC was released). The month value is between 1 and 12, and the day value is
between 1 and 31. 

Figure 15–8 File date stamp field.

The time stamp field (Fig. 15-9) indicates the time when the file was created or last changed,
expressed as a bit-mapped value. The hours may be 0 to 23, the minutes 0 to 59, and the seconds 0 to

2Eh The entry (.) is for a directory name. If the second byte is also 2Eh (..), the cluster
field contains the cluster number of this directory’s parent directory. 

4nh First long filename entry (holds the first part of the name): If the attribute byte � 0Fh,
this marks the last of multiple entries containing a single long filename. The digit n
indicates the number of entries used by the filename. 

Table 15-6  Filename Status Byte.

Status Byte Description

read-only file

hidden file

system file

volume label

subdirectory

archive bit

(reserved, 0)

(reserved, 0)

year daymonth

015

(Continued)
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59, stored as a count of 2-second increments. For example, a value of 10100 binary equals 40 seconds.
The time stamp in Fig. 15-10 indicates a time of 14:02:40.

Figure 15–9 File time stamp field.

Figure 15–10 Time stamp example. 

File Directory Entry Example Let’s examine the entry for a file named MAIN.CPP (Fig. 15-11).
This file has a normal attribute, and its archive bit (20h) has been set, showing that the file was modi-
fied. Its starting cluster number is 0020h, its size is 000004EEh bytes, the Time field equals 4DBDh
(9:45:58), and the Date field equals 247Ah (March 26, 1998).

Figure 15–11 Sample file directory entry.

In this figure, the time, date, and starting cluster number are 16-bit values, stored in little-endian order
(low byte, followed by high byte). The File size field is a doubleword, also stored in little-endian order.

15.3.2 Long Filenames in MS-Windows
In MS-Windows, a filename longer than 8 � 3 characters or a filename using a combination of
uppercase and lowercase letters is assigned multiple disk directory entries. If the attribute byte equals
0Fh, the system looks at the byte at offset 0. If the upper digit equals 4, this entry begins a series of
long filename entries. The lower digit indicates the number of directory entries to be used by the long
filename. Subsequent entries count downward from n � 1 to 1, where n � the number of entries. For
example, if a filename requires three entries, the first status byte will be 43h. The subsequent entries
will be status bytes equal to 02h and 01h, as may be seen in the following table:

Example To illustrate, let’s use a file having the 26-character filename ABCDEFGHIJKLM-
NOPQRSTUV.TXT and save it as a text file in the root directory of  drive A. Next, we run
DEBUG.EXE from the command prompt and load the directory sectors into memory at offset 100.
This is followed by the D (dump command)1:

Status Byte Description

43 Indicates that three entries are used for the long filename, total, and this entry
holds the last part of the filename, “.”, and a three-character extension.

02 Holds the second part of the filename.

01 Holds the first part of the filename.

hours secondsminutes

015

0 1 1 1 0 0 0 0 0 1 0 1 0 1 0 0
hours secondsminutes

4D 41 2049 4E 20 20 20 43 50 50 20 00 22 E8 80
A5 24 A5 24 00 00 BD 4D 7A 24 20 00 EE 04 00 00

-
-

Filename

Time Date

Extension

Starting
cluster

File size

Attribute

MAIN
. $ . $ . . . Mz$ .  .  .  .  .

 CPP   .  " .  .
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L 100 0 13 5 (load sectors 13h - 17h)
D 100 (dump offset 100 on the screen)

Windows creates three directory entries for this file, as shown in Fig. 15-12. 

Let’s start with the entry at 01C0h. The first byte, containing 01, marks this entry as the last of a
sequence of long filename entries. It is followed by the first 13 characters of the filename “ABCDEF
GHIJKLM.” Each Unicode character is 16 bits, stored in little-endian order. Note that the attribute
byte at offset 0B equals 0F, indicating that this is an extended filename entry (any filename having
this attribute is automatically ignored by MS-DOS). 

The entry at 01A0h contains the final 13 characters of the long filename, which are
“NOPQRSTUV.TXT.”

At offset 01E0h, the autogenerated short filename is built from the first six letters of the long file-
name, followed by ~1, followed by the first three characters after the last period in the original name.
These characters are 1-byte ASCII codes. The short filename entry also contains the file creation date
and time, the last access date, the last modified date and time, the starting cluster number, and the file
size. Figure 15-13 shows the information displayed by the Windows Explorer Properties dialog,
which matches the raw directory data.

Figure 15–12 Directory entry for a long filename.

Figure 15–13 File properties dialog.

01A0    42 4E 00 4F 00 50 00 51 00 52 00 0F 00 27 53 00   BN.O.P.Q.R...'S.
01B0    54 00 55 00 56 00 2E 00 54 00 00 00 58 00 54 00   T.U.V...T...X.T.

01C0    01 41 00 42 00 43 00 44 00 45 00 0F 00 27 46 00   .A.B.C.D.E...'F.
01D0    47 00 48 00 49 00 4A 00 4B 00 00 00 4C 00 4D 00   G.H.I.J.K...L.M.

01E0    41 42 43 44 45 46 7E 31 54 58 54 20 00 AF 78 62   ABCDEF~1TXT ..xb
01F0    2F 2B 30 2B 00 00 59 B9 30 2B 02 00 52 01 00 00   /+0+..Y.0+..R...

first long entry

last long entry attribute (long entry)

creation timecreation date last accessed
date

last modified time

last modified
date

first cluster number

file size
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15.3.3 File Allocation Table (FAT)
The FAT12, FAT16, and FAT32 file systems use a table called the file allocation table (FAT) to keep track of
each file’s location on the disk. The FAT maps the disk clusters, showing their ownership by specific files.
Each entry corresponds to a cluster number, and each cluster contains one or more sectors. In other words,
the 10th FAT entry identifies the 10th cluster on the disk, the 11th entry identifies the 11th cluster, and so on. 

Each file is represented in the FAT as a linked list, called a cluster chain. Each FAT entry contains
an integer that identifies the next entry. Two cluster chains are shown in Fig. 15-14, one for File1 and
the other for File2. File1 occupies clusters 1, 2, 3, 4, 8, 9, and 10. File2 occupies clusters 5, 6, 7, 11,
and 12. The eoc (end of chain) marker in the last FAT entry for a file is a predefined integer value
marking the final cluster in the chain.

When a file is created, the operating system looks for the first available cluster entry in the FAT.
Gaps occur when not enough contiguous clusters are available to hold the entire file. In the preced-
ing diagram, this happened to both File1 and File2. When a file is modified and saved back to disk,
its cluster chain often becomes increasingly fragmented. If many files become fragmented, the
disk’s performance begins to degrade because the read/write heads must jump between different
tracks to locate all of a file’s clusters. Most operating systems supply a built-in disk defragmenta-
tion utility.

Figure 15–14 Example: Two cluster chains. 

15.3.4 Section Review
1. (True/False): A file specification includes both a file path and a file name. 

2. (True/False): The primary list of files on a disk is called the base directory.

3. (True/False): A file’s directory entry contains the file’s starting sector number.

4. (True/False): The MS-DOS date field in a directory entry must be added to 1980.

5. How many bytes are used by an MS-DOS directory entry?

6. Name the seven basic fields of an MS-DOS directory entry (do not include the reserved field).

7. In an MS-DOS filename entry, identify the six possible status byte values.

8. Show the format of the time stamp field in an MS-DOS directory entry.

9. When a long filename is stored in a volume directory (under MS-Windows), how is the first long filename
entry identified?

10. If a filename has 18 characters, how many long filename entries are required?

11. MS-Windows added two new date fields to the original MS-DOS file directory entry. What are their names?

12. Challenge: Illustrate the file allocation table links for a file that uses clusters 2, 3, 7, 6, 4, and 8, in that order.

1 2

File1: starting cluster number � 1, size � 7 clusters

2 3 4 8

3 4 5 6 7 8

9 10 eoc

9 10 11 12 13 14 15 16

1 2

File2: starting cluster number � 5, size � 5 clusters

3 4 5 6 7 8

6 7 11 12 eoc

9 10 11 12 13 14 15 16



15.4   Reading and Writing Disk Sectors 15.15

15.4 Reading and Writing Disk Sectors
INT 21h Function 7305h (absolute disk read and write) lets you read and write logical disk sectors.
Like all INT instructions, it is designed to run only in 16-bit real-address mode. We will not attempt
to call INT 21h (or any other interrupt) from protected mode because of the complexities involved.

Function 7305h works on FAT12, FAT16, and FAT32 file systems under Windows 95, 98, and
Windows Me. It does not work under Windows NT, 2000, XP, or beyond because of their tighter
security. Any program permitted to read and write disk sectors could easily bypass file and directory
sharing permissions. When calling function 7305h, pass the following arguments:

A DISKIO structure contains the starting sector number, the number of sectors to read or write,
and the segment/offset address of the sector buffer:

DISKIO STRUCT
startSector DWORD 0 ; starting sector number
numSectors  WORD 1 ; number of sectors
bufferOfs   WORD OFFSET buffer ; buffer offset
bufferSeg   WORD SEG buffer ; buffer segment

DISKIO ENDS

Following are examples of an input buffer to hold the sector data, along with a DISKIO structure variable:

.data
buffer BYTE 512 DUP(?)
diskStruct DISKIO <>
diskStruct2 DiskIO <10,5> ; sectors 10,11,12,13,14

When calling Function 7305h, the argument passed in SI determines whether you want to read or
write sectors. To read, clear bit 0; to write, set bit 0. In addition, bits 13, 14, and 15 are configured
when writing sectors using the following scheme:

The remaining bits (1 through 12) must always be clear.

Example 1: The following statements read one or more sectors from drive C:

mov ax,7305h ; absolute Read/Write
mov cx,0FFFFh ; always this value
mov dl,3 ; drive C
mov bx,OFFSET diskStruct ; DISKIO structure
mov si,0 ; read sector
int 21h

AX 7305h

DS:BX Segment/offset of a DISKIO structure variable

CX 0FFFFh

DL Drive number (0 = default, 1 = A, 2 = B, 3 = C, etc.)

SI Read/write flag

Bits 15–13 Type of Sector

000 Other/unknown

001 FAT data

010 Directory data

011 Normal file data



15.16 Chapter 15  •  Disk Fundamentals

Example 2: The following statements write one or more sectors to drive A:

mov ax,7305h ; absolute Read/Write
mov cx,0FFFFh ; always this value
mov dl,1 ; drive A
mov bx,OFFSET diskStruct ; DISKIO structure
mov si,6001h ; write normal sector(s)
int 21h

15.4.1 Sector Display Program
Let’s put what we’ve learned about sectors to good use by writing a program that reads and displays
individual disk sectors in ASCII format. The pseudocode is listed here: 

Ask for starting sector number and drive number
do while (keystroke <> ESC)
  Display heading
  Read one sector
  If MS-DOS error then exit
  Display one sector
  Wait for keystroke
  Increment sector number
end do

Program Listing Here is a complete listing of the 16-bit Sector.asm program. It runs in real-address
mode under Windows 95, 98, and Me, but not under Windows NT, 2000, XP, and beyond because of
their tighter security relating to disk access:

; Sector Display Program              (Sector.asm)

; Demonstrates INT 21h function 7305h (ABSDiskReadWrite)
; This Real-mode program reads and displays disk sectors.
; Works on FAT16 & FAT32 file systems running under Windows
; 95, 98, and Millenium.

INCLUDE Irvine16.inc

Setcursor PROTO, row:BYTE, col:BYTE
EOLN EQU <0dh,0ah>
ESC_KEY = 1Bh
DATA_ROW = 5
DATA_COL = 0
SECTOR_SIZE = 512
READ_MODE = 0 ; for Function 7505h

DiskIO STRUCT
startSector DWORD ? ; starting sector number
numSectors  WORD 1 ; number of sectors
bufferOfs   WORD OFFSET buffer ; buffer offset
bufferSeg   WORD @DATA ; buffer segment

DiskIO ENDS

.data
driveNumber BYTE ?
diskStruct DiskIO <>
buffer BYTE SECTOR_SIZE DUP(0),0    ; one sector

curr_row   BYTE  ?
curr_col   BYTE  ?
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; String resources
strLine       BYTE  EOLN,79 DUP(0C4h),EOLN,0
strHeading    BYTE "Sector Display Program (Sector.exe)"
              BYTE EOLN,EOLN,0
strAskSector  BYTE "Enter starting sector number: ",0
strAskDrive   BYTE "Enter drive number (1=A, 2=B, "

BYTE "3=C, 4=D, 5=E, 6=F): ",0
strCannotRead BYTE EOLN,"*** Cannot read the sector. "

BYTE "Press any key...", EOLN, 0
strReadingSector \

BYTE "Press Esc to quit, or any key to continue..."
BYTE EOLN,EOLN,"Reading sector: ",0

.code
main PROC

mov ax,@data
mov ds,ax
call Clrscr
mov dx,OFFSET strHeading ; display greeting
call Writestring ; ask user for...
call AskForSectorNumber

L1: call Clrscr
call ReadSector ; read a sector
jc L2                 ; quit if error
call DisplaySector
call ReadChar
cmp al,ESC_KEY         ; Esc pressed?
je L3                 ; yes: quit
inc diskStruct.startSector ; next sector
jmp L1 ; repeat the loop

L2: mov dx,OFFSET strCannotRead ; error message
call Writestring
call ReadChar

L3: call Clrscr
exit

main ENDP

;-----------------------------------------------------
AskForSectorNumber PROC
;
; Prompts the user for the starting sector number
; and drive number. Initializes the startSector
; field of the DiskIO structure, as well as the
; driveNumber variable.
;-----------------------------------------------------

pusha
mov dx,OFFSET strAskSector
call WriteString
call ReadInt
mov diskStruct.startSector,eax
call Crlf
mov dx,OFFSET strAskDrive
call WriteString
call ReadInt



15.18 Chapter 15  •  Disk Fundamentals

mov driveNumber,al
call Crlf
popa
ret

AskForSectorNumber ENDP

;-----------------------------------------------------
ReadSector PROC
;
; Reads a sector into the input buffer.
; Receives: DL = Drive number
; Requires: DiskIO structure must be initialized.
; Returns:  If CF=0, the operation was successful;
;           otherwise, CF=1 and AX contains an
;           error code.
;-----------------------------------------------------

pusha
mov ax,7305h ; ABSDiskReadWrite
mov cx,-1              ; always -1
mov bx,OFFSET diskStruct ; sector number
mov si,READ_MODE ; read mode
int 21h               ; read disk sector
popa
ret

ReadSector ENDP

;-----------------------------------------------------
DisplaySector PROC
;
; Display the sector data in <buffer>, using INT 10h
; BIOS function calls. This avoids filtering of ASCII
; control codes.
; Receives: nothing. Returns: nothing.
; Requires: buffer must contain sector data.
;-----------------------------------------------------

mov dx,OFFSET strHeading ; display heading
call WriteString
mov eax,diskStruct.startSector ; display sector number
call WriteDec
mov dx,OFFSET strLine    ; horizontal line
call Writestring
mov si,OFFSET buffer    ; point to buffer
mov curr_row,DATA_ROW ; set row, column
mov curr_col,DATA_COL
INVOKE SetCursor,curr_row,curr_col

mov cx,SECTOR_SIZE    ; loop counter
mov bh,0              ; video page 0

L1: push cx                ; save loop counter
mov ah,0Ah            ; display character
mov al,[si]           ; get byte from buffer
mov cx,1              ; display it
int 10h
call MoveCursor
inc si                ; point to next byte
pop cx                ; restore loop counter
loop L1                ; repeat the loop
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ret
DisplaySector ENDP

;-----------------------------------------------
MoveCursor PROC
;
; Advance the cursor to the next column,
; check for possible wraparound on screen.
;-----------------------------------------------

cmp curr_col,79 ; last column?
jae L1         ; yes: go to next row
inc curr_col ; no: increment column
jmp L2

L1: mov curr_col,0 ; next row
inc curr_row

L2: INVOKE Setcursor,curr_row,curr_col
ret

MoveCursor ENDP

;-----------------------------------------------------
Setcursor PROC USES dx,

row:BYTE, col:BYTE
;
; Set the screen cursor position
;-----------------------------------------------------

mov dh, row
mov dl, col
call Gotoxy
ret

Setcursor ENDP
END main

The core of the program is the ReadSector procedure, which reads each sector from the disk using
INT 21h Function 7305h. The sector data is placed in a buffer, and the buffer is displayed by the
DisplaySector procedure.

Using INT 10h Most sectors contain binary data, and if INT 21h were used to display them, ASCII
control characters would be filtered. Tab and Newline characters, for example, would cause the dis-
play to become disjointed. Instead, it’s better to use INT 10h Function 0Ah, which displays ASCII
codes 0 to 31 as graphics characters. INT 10h is described in Chapter 16. Because Function 0Ah does
not advance the cursor, additional code must be written to move the cursor one column to the right
after displaying each character. The SetCursor procedure simplifies the implementation of the
Gotoxy procedure in the Irvine16 library.

Variations Interesting variations can be created on the Sector Display program. For example, you
can prompt the user for a range of sector numbers to be displayed. Each sector can be displayed in
hexadecimal. You can let the user scroll forward and backward through the sectors using the PageUp
and PageDown keys. Some of these enhancements appear in the chapter exercises.

15.4.2 Section Review
1. (True/False): You can read sectors from a hard drive using INT 21h Function 7305h under Windows

Me, but not under Windows XP.

2. (True/False): INT 21h Function 7305h reads one or more disk sectors only in protected mode.

3. What input parameters are required by INT 21h Function 7305h?
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4. In the Sector Display program (Section 15.4.1), why is Interrupt 10h used to display characters?

5. Challenge: In the Sector Display program (Section 15.4.1), what would happen if the starting sector
number was out of range?

15.5 System-Level File Functions
In real-address mode, INT 21h provides system services (Table 15-7) that create and change directories,
change file attributes, find matching files, and so forth. These services go beyond what is typically
available in high-level programing language libraries. When calling any of these services, the func-
tion number is placed in AH or AX. Other registers may contain input parameters. Let’s take a
detailed look at a few commonly used functions. A more detailed list of MS-DOS interrupts and their
descriptions can be found in Appendix D.

Windows 95/98/Me supports all existing MS-DOS INT 21h functions and provides exten-
sions that permit MS-DOS-based applications to take advantage of features such as long file-
names and exclusive volume locking. INT 21h Function 7303h (get disk free space) is an
example of an enhanced system function that recognizes disks larger than those originally sup-
ported in MS-DOS.

15.5.1 Get Disk Free Space (7303h)
INT 21h Function 7303h can be used to find both the size of a disk volume and how much free disk
space is available on a FAT16 or FAT32 drive. The information is returned in a standard structure
named ExtGetDskFreSpcStruc, as follows: 

ExtGetDskFreSpcStruc STRUC
    StructSize                WORD  ?
    Level                     WORD  ?
    SectorsPerCluster         DWORD ?
    BytesPerSector            DWORD ?
    AvailableClusters         DWORD ?
    TotalClusters             DWORD ?
    AvailablePhysSectors      DWORD ?
    TotalPhysSectors          DWORD ?

Table 15-7  Selected INT 21h Disk Services.

Function Number Function Name

0Eh
19h

7303h
39h
3Ah
3Bh
41h
43h
47h
4Eh
4Fh
56h
57h
59h

Set default drive
Get default drive 

Get disk free space
Create subdirectory

Remove subdirectory
Set current directory

Delete file
Get/set file attribute

Get current directory path
Find first matching file
Find next matching file

Rename file
Get/set file date and time

Get extended error information 



15.5   System-Level File Functions 15.21

    AvailableAllocationUnits  DWORD ?
    TotalAllocationUnits      DWORD ?
    Rsvd                      DWORD 2 DUP (?)
ExtGetDskFreSpcStruc ENDS

(A copy of this structure is in the Irvine16.inc file.) The following list contains a short description of each field:

• StructSize: A return value that represents the size of the ExtGetDskFreSpcStruc structure in bytes.
When INT 21h Function 7303h (Get_ExtFreeSpace) executes, it places the structure size in this member.

• Level: An input and return level value. This field must be initialized to zero. 
• SectorsPerCluster: The number of sectors inside each cluster. 
• BytesPerSector: The number of bytes in each sector. 
• AvailableClusters: The number of available clusters. 
• TotalClusters: The total number of clusters on the volume. 
• AvailablePhysSectors: The number of physical sectors available on the volume, without adjustment

for compression. 
• TotalPhysSectors: The total number of physical sectors on the volume, without adjustment for

compression.
• AvailableAllocationUnits: The number of available allocation units on the volume, without

adjustment for compression. 
• TotalAllocationUnits: The total number of allocation units on the volume, without adjustment for

compression.
• Rsvd: Reserved member. 

Calling the Function When calling INT 21h Function 7303h, the following input parameters are
required:

• AX must equal 7303h.
• ES:DI must point to a ExtGetDskFreSpcStruc variable.
• CX must contain the size of the ExtGetDskFreSpcStruc variable.
• DS:DX must point to a null-terminated string containing the drive name. You can use the MS-DOS

type of drive specification such as (“C:\”), or you can use a universal naming convention volume
specification such as (“\\Server\Share”). 

If the function executes successfully, it clears the Carry flag and fills in the structure. Otherwise, it
sets the Carry flag. After calling the function, the following types of calculations might be useful:

• To find out how large the volume is in kilobytes, use the formula (TotalClusters * SectorsPerCluster *
BytesPerSector) / 1024.

• To find out how much free space exists in the volume, in kilobytes, the formula is (AvailableClusters *
SectorsPerCluster * BytesPerSector) / 1024.

Disk Free Space Program
The following program uses INT 21h Function 7303h to get free space information on a FAT-type
drive volume. It displays both the volume size and free space. It runs under Windows 95, 98, and Mil-
lenium, but not under Windows NT, 2000, XP, and beyond:

; Disk Free Space (DiskSpc.asm)

INCLUDE Irvine16.inc

.data
buffer ExtGetDskFreSpcStruc <>
driveName BYTE "C:\",0
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str1 BYTE "Volume size (KB): ",0
str2 BYTE "Free space (KB): ",0
str3 BYTE "Function call failed.",0dh,0ah,0

.code
main PROC

mov ax,@data
mov ds,ax
mov es,ax

mov buffer.Level,0 ; must be zero
mov di,OFFSET buffer ; ES:DI points to buffer
mov cx,SIZEOF buffer ; buffer size
mov dx,OFFSET DriveName ; ptr to drive name
mov ax,7303h ; get disk free space
int 21h
jc error ; failed if CF = 1

mov dx,OFFSET str1 ; volume size
call WriteString
call CalcVolumeSize
call WriteDec
call Crlf

mov dx,OFFSET str2 ; free space
call WriteString
call CalcVolumeFree
call WriteDec
call Crlf
jmp quit

error:
mov dx,OFFSET str3
call WriteString

quit:
exit

main ENDP

;------------------------------------------------------------
CalcVolumeSize PROC
;
; Calculate and return the disk volume size, in kilobytes.
; Receives: buffer variable, a ExtGetDskFreSpcStruc structure
; Returns:  EAX = volume size
; Remarks:  (SectorsPerCluster * 512 * TotalClusters) / 1024
;------------------------------------------------------------

mov eax,buffer.SectorsPerCluster
shl eax,9 ; mult by 512
mul buffer.TotalClusters
mov ebx,1024
div ebx ; return kilobytes
ret

CalcVolumeSize ENDP

;------------------------------------------------------------
CalcVolumeFree PROC
;
; Calculate and return the number of available kilobytes 
; on the given volume.
; Receives: buffer variable, a ExtGetDskFreSpcStruc structure
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; Returns:  EAX = available space, in kilobytes
; Remarks: (SectorsPerCluster * 512 * AvailableClusters) / 1024
;-------------------------------------------------------------

mov eax,buffer.SectorsPerCluster
shl eax,9 ; mult by 512
mul buffer.AvailableClusters
mov ebx,1024
div ebx ; return kilobytes
ret

CalcVolumeFree ENDP
END main

15.5.2 Create Subdirectory (39h)
INT 21h Function 39h creates a new subdirectory. It receives a pointer in DS:DX to a null-terminated
string containing a path specification. The following example shows how to create a new subdirectory
called ASM off the root directory of the default drive: 

.data
pathname BYTE "\ASM",0
.code

mov ah,39h ; create subdirectory
mov dx,OFFSET pathname
int 21h
jc display_error

The Carry flag is set if the function fails. The possible error return codes are 3 and 5. Error 3 ( path
not found) means that some part of the pathname does not exist. Suppose we have asked the OS to
create the directory ASM\PROG\NEW, but the path ASM\PROG does not exist. This would generate
Error 3. Error 5 (access denied) indicates that the proposed subdirectory already exists or the first
directory in the path is the root directory and it is already full. 

15.5.3 Remove Subdirectory (3Ah)
INT 21h Function 3Ah removes a directory. It receives a pointer to the desired drive and path in
DS:DX. If the drive name is left out, the default drive is assumed. The following code removes the
\ASM directory from drive C: 

.data
pathname  BYTE 'C:\ASM',0
.code
mov ah,3Ah ; remove subdirectory
mov dx,OFFSET pathname
int 21h
jc display_error

The Carry flag is set if the function fails. The possible error codes are 3 (path not found), 5 (access
denied: the directory contains files), 6 (invalid handle), and 16 (attempt to remove the current directory).

15.5.4 Set Current Directory (3Bh)
INT 21h Function 3Bh sets the current directory. It receives a pointer in DS:DX to a null-terminated
string containing the target drive and path. For example, the following statements set the current
directory to C:\ASM\PROGS:

.data
pathname  BYTE "C:\ASM\PROGS",0
.code
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mov ah,3Bh ; set current directory
mov dx,OFFSET pathname
int 21h
jc display_error

15.5.5 Get Current Directory (47h)
INT 21h Function 47h returns a string containing the current directory. It receives a drive number in
DL (0 = default, 1 = A, 2 = B, etc.) and a pointer in DS:SI to a 64-byte buffer. In this buffer, MS-DOS
places a null-terminated string with the full pathname from the root directory to the current directory
(the drive letter and leading backslash are omitted). If the Carry flag is set when the function returns,
the only possible error return code in AX is 0Fh (invalid drive specification).

In the following example, MS-DOS returns the current directory path on the default drive. Assum-
ing that the current directory is C:\ASM\PROGS, the string returned by MS-DOS is “ASM\PROGS”: 

.data
pathname  BYTE 64 dup(0)  ; path stored here by MS-DOS
.code

mov ah,47h ; get current directory path
mov dl,0 ; on default drive
mov si,OFFSET pathname     
int 21h
jc display_error

15.5.6 Get and Set File Attributes (7143h)
INT 21h Function 7143h retrieves or sets file attributes, among other tasks. (In Windows 9x, it replaces
the older MS-DOS INT 21h Function 39.) Pass the offset of a filename in DX. To set the file attributes,
assign 1 to BL and set CX to one or more attributes listed in Table 15-8. The _A_NORMAL attribute
must be used alone, but the other attributes can be combined using the + operator.

The following code sets the attributes of a file to read-only and hidden:

mov ax,7143h
mov bl,1
mov cx,_A_HIDDEN + _A_RDONLY
mov dx,OFFSET filename
int 21h

To get the current attributes of a file, set BX to 0 and call the same function. The attribute values are
returned in CX as a combination of powers of 2. Use the TEST instruction to evaluate individual
attributes. For example,

Table 15-8  File Attributes (Defined in Irvine16.inc).

Value Meaning

_A_NORMAL (0000h) The file can be read from or written to. This value is valid only if used alone. 

_A_RDONLY (0001h) The file can be read from, but not written to. 

_A_HIDDEN (0002h) The file is hidden and does not appear in an ordinary directory listing. 

_A_SYSTEM (0004h) The file is part of the operating system or is used exclusively by it. 

_A_ARCH (0020h) The file is an archive file. Applications use this value to mark files for backup
or removal. 
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test cx,_A_RDONLY
jnz readOnlyFile ; file is read-only

The _A_ARCH attribute can appear with any of the other attributes.

15.5.7 Section Review
1. Which INT 21h function would you use to get the cluster size of a disk drive?

2. Which INT 21h function would you use to find out how many clusters are free on drive C?

3. Which INT 21h functions would you call if you wanted to create a directory named D:\apps and make
it the current directory?

4. Which INT 21h function would you call if you wanted to make a file read-only?

15.6 Chapter Summary
At the operating system level, it is not useful to know the exact disk geometry (physical locations) or
brand-specific disk information. The BIOS, which in this case amounts to disk controller firmware,
acts as a broker between the disk hardware and the operating system.

The surface of a disk is formatted into concentric bands called tracks, on which data are stored
magnetically. The average seek time measures the average amount of time spent moving from one
track to another. Disk performance can be measured in RPM (revolutions per minute), as well as the
data transfer rate (amount of data transferred to/from the drive in 1 second).

A cylinder refers to all tracks accessible from a single position of the read/write heads. Over time,
as files become more spread out around a disk, they become fragmented and are no longer stored on
adjacent cylinders.

A sector is a 512-byte portion of a track. Physical sectors are magnetically (invisibly) marked on
the disk by the manufacturer, using what is called a low-level format. 

Physical disk geometry describes a disk’s structure to make it readable by the system BIOS. A
single physical hard drive is divided into one or more logical units named partitions, or volumes. A
drive may have multiple partitions. An extended partition can be subdivided into an unlimited num-
ber of logical partitions. Each logical partition appears as a separate drive letter and may have a dif-
ferent file system than other partitions. The primary partitions can each hold a bootable operating
system.

The master boot record (MBR), created when the first partition is created on a hard disk, is located
in the drive’s first logical sector. The MBR contains the following: 

• The disk partition table that describes the sizes and locations of all partitions on the disk. 
• A small program that locates the partition’s boot sector and transfers control to a program in the

boot sector, which in turn loads the operating system.

A file system keeps track of the location, size, and attributes of each disk file. It provides a map-
ping of logical sectors to clusters, the basic unit of storage for all files and directories, and a mapping
of file and directory names to sequences of clusters.

A cluster is the smallest unit of space used by a file; it consists of one or more adjacent disk sectors. A
chain of clusters is referenced by a file allocation table (FAT) that keeps track of all clusters used by a file. 

The following file systems are used in IA-32 Systems:

• The FAT12 file system was first used on IBM-PC diskettes.
• The FAT16 file system is the only available format for hard drives formatted under MS-DOS. 
• The FAT32 file system was introduced with Windows 95 and was refined under Windows 98. 
• The NTFS file system is supported by Windows NT, 2000, XP, and beyond. 
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Every disk in FAT-type and NTFS file systems has a root directory, which is the primary list of files
on the disk. The root directory may also contain the names of other directories, called subdirectories. 

MS-DOS and Windows use a table called the file allocation table (FAT) to keep track of each file’s
location on the disk. The FAT maps specific disk clusters to files. Each entry corresponds to a cluster
number, and each cluster is associated with one or more sectors. 

In real-address mode, INT 21h provides functions (Table 15-7) that create and change directories,
change file attributes, find matching files, and so forth. These functions tend to be less available in
high-level languages.

The Sector Display program reads and displays each sector from the diskette in drive A. 

The Disk Free Space program displays both the size of the selected disk volume and the amount of
free space.

15.7 Programming Exercises
The following exercises must be compiled and run in real-address mode. Be sure to make a backup
copy of any disk affected by these programs, or create a temporary scratch disk to be used while test-
ing them. Under no circumstances should you run the programs on a fixed disk until you have
debugged them carefully! 

1. Set Default Disk Drive
Write a procedure that prompts the user for a disk drive letter (A, B, C, or D), and then sets the default
drive to the user’s choice. 

2. Disk Space
Write a procedure named Get_DiskSize that returns the amount of total data space on a selected disk
drive. Input: AL = drive number (0 = A, 1 = B, 2 = C, ...). Output: DX:AX = data space, in bytes.

3. Disk Free Space
Write a procedure named Get_DiskFreespace that returns the amount of free space on a selected disk
drive. Input: DS:DX points to a string containing the drive specifier. Output: EDX:EAX = disk free
space, in bytes. Write a program that tests the procedure and displays the 64-bit result in hexadecimal.

4. Show File Attributes
Write a procedure named ShowFileAttributes that receives the offset of a filename in DX and dis-
plays the file’s attributes in the console window. Attributes to look for are normal, hidden, read-only,
and system. Hint: Use INT 21h Function 7143h.

Write a program that calls ShowFileAttributes, passing it the name of a file. Before running your
program, set the file attributes from Windows Explorer by right-clicking on the filename, selecting
Properties, and checking the Hidden and Read-Only options. Alternatively, you can run the Attrib
command from the Windows command prompt. Run your program and verify that the attribute dis-
play is correct. Sample output:

5. Disk Free Space, in Clusters
Modify the Disk Free Space program from Section 15.5.1 so that it displays the following information:

Drive specification: "C:\"
Bytes per sector: 512

temp.txt attributes: Hidden Read-only
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Sectors per cluster: 8
Total Number of clusters: 999999
Number of available clusters: 99999

6. Displaying the Sector Number
Using the Sector Display program (Section 15.4.1) as a starting point, display a string at the top of the
screen that indicates the drive specifier and current sector number (in hexadecimal).

7. Hexadecimal Sector Display
Using the Sector Display program (Section 15.4.1) as a starting point, add code that lets the user press
F2 to display the current sector in hexadecimal, with 24 bytes on each line. The offset of the first byte
in each line should be displayed at the beginning of the line. The display will be 22 lines high with a
partial line at the end. The following is a sample of the first two lines, to show the layout:

0000 17311625 25425B75 279A4909 200D0655 D7303825 4B6F9234
0018 273A4655 25324B55 273A4959 293D4655 A732298C FF2323DB

(etc.)

End Note
1. See the DEBUG tutorial on the book’s Web site.
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16.6.2 Mouse Tracking Program 
16.6.3 Section Review 

16.7 Chapter Summary 
16.8 Programming Exercises 

16.1 Introduction
Reading this chapter is like taking a step back in history. When the first IBM-PC appeared, droves of
programmers (including myself) wanted to know how to get inside the box and work directly with the
computer hardware. Peter Norton was quick to discover all sorts of useful and secret information,
leading to his landmark book entitled Inside the IBM-PC. In a fit of generosity, IBM published all the
assembly language source code for the IBM PC/XT BIOS (I still have a copy). Pioneering game
designers such as Michael Abrash (author of Quake and Doom) learned how to optimize graphics and
sound software, using their knowledge of PC hardware.1 Now you can join this esteemed group and

We recommend that you install an early version of Windows such as Windows 95 or Windows 98
to insure full compatibility with the programs in this chapter. You may want to use a software util-
ity to create a virtual machine on your computer, so you can experiment with this software.
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work behind the scenes, below MS-DOS and Windows, at the BIOS (basic input–output system)
level. Is the information obsolete? Absolutely not, if you are working on embedded systems applica-
tions or if you would like to learn how a computer BIOS is designed.

All of the programs in this chapter are 16-bit, real-mode applications. You can develop and run
the programs shown here in any version of Microsoft Windows up to Windows XP. You will learn
such useful things as:

• What happens when a keyboard key is pressed, and where all the characters end up.
• How to check the keyboard buffer to see if characters are waiting, and how to clear old keystrokes

out of the buffer.
• How to read non-ASCII keyboard keys such as function keys and cursor arrows.
• How to display color text, and why colors are based on the video display’s RGB color mixing system.
• How to divide up the screen into color panels and scroll each one separately.
• How to draw bit-mapped graphics in 256 colors.
• How to detect mouse movements and mouse clicks.

16.1.1 BIOS Data Area
The BIOS data area, partially shown in Table 16-1, contains system data used by the ROM BIOS service
routines. For example, the keyboard typeahead buffer (at offset 001Eh) contains the ASCII codes and
keyboard scan codes of keys waiting to be processed by the BIOS. 

Table 16-1  BIOS Data Area, at Segment 0040h.

Hex Offset Description

0000 – 0007 Port addresses, COM1 – COM4

0008 – 000F Port addresses, LPT1 – LPT4

0010 – 0011 Installed hardware list

0012 Initialization flag

0013 – 0014 Memory size, in kilobytes

0015 – 0016 Memory in I/O channel

0017 – 0018 Keyboard status flags

0019 Alternate key entry storage

001A – 001B Keyboard buffer pointer (head)

001C – 001D Keyboard buffer pointer (tail)

001E – 003D Keyboard typeahead buffer

003E – 0048 Diskette data area

0049 Current video mode

004A – 004B Number of screen columns

004C – 004D Regen (video) buffer length, in bytes

004E – 004F Regen (video) buffer starting offset

0050 – 005F Cursor positions, video pages 1 – 8

0060 Cursor end line
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16.2 Keyboard Input with INT 16h
In Section 2.5 we differentiated the various levels of input–output available to assembly language
programs. In this chapter, you are given the opportunity to work directly at the BIOS level by calling
functions that were (for the most part) installed by the computer manufacturer. At this level, you are
only one level above the hardware, so you have a lot of flexibility and control. 

The BIOS handles keyboard input using calls to Interrupt 16h. BIOS routines do not permit redi-
rection, but they make it easy to read extended keyboard keys such as function keys, arrow keys,
PgUp, and PgDn. Each extended key generates an 8-bit scan code, shown on the inside cover of this
book. The scan codes are unique to IBM-compatible computers. All keyboard keys generate scan
codes, but we don’t usually pay attention to scan codes for ASCII characters because ASCII codes are
standardized on nearly all computers. Under MS-Windows, when an extended key is pressed, its
ASCII code is either 00h or E0h, shown in the following table:

16.2.1 How the Keyboard Works
Keyboard input follows an event path beginning with the keyboard controller chip and ending with
characters being placed in an array called the keyboard typeahead buffer (see Fig. 16-1). Up to 15
keystrokes can be held in the buffer because a keystroke generates 2 bytes (ASCII code � scan code).
The following events occur when the user presses a key:

• The keyboard controller chip sends an 8-bit numeric scan code (sc) to the PC’s keyboard input port.
• The input port is designed so that it triggers an interrupt, a predefined signal to the CPU that an

input–output device needs attention. The CPU responds by executing the INT 9h service routine.
• The INT 9h service routine retrieves the keyboard scan code (sc) from the input port and looks up

the corresponding ASCII code (ac), if any. It inserts both the scan code and the ASCII code into
the keyboard typeahead buffer. (If the scan code has no matching ASCII code, the key’s ASCII
code in the typeahead buffer equals zero or E0h.) 

0061 Cursor start line

0062 Currently displayed video page number

0063 – 0064 Active display base address

0065 CRT mode register

0066 Register for color graphics adapter

0067 – 006B Cassette data area

006C – 0070 Timer data area

Keys
ASCII
Code

Ins, Del, PageUp, PageDown, Home, End, Up arrow, Down 
arrow, Left arrow, Right arrow

E0h

Function keys (F1 – F12) 00h

Table 16-1  BIOS Data Area, at Segment 0040h.

Hex Offset Description

(Continued)
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Figure 16–1 Keystroke Processing Sequence.

Once the scan code and ASCII code are safely in the typeahead buffer, they stay there until the
currently running program retrieves them. There are two ways to do this in real-mode applications:

• Call a BIOS-level function using INT 16h that retrieves both the scan code and ASCII code from
the keyboard typeahead buffer. This is useful when processing extended keys such as function
keys and cursor arrows, which have no ASCII codes.

• Call an MS-DOS-level function using INT 21h that retrieves the ASCII code from the input buffer.
If an extended key has been pressed, INT 21h must be called a second time to retrieve the scan
code. INT 21h keyboard input was explained in Section 14.2.3. 

16.2.2 INT 16h Functions
INT 16h has some clear advantages over INT 21h when it comes to keyboard handling. First, INT
16h can retrieve both the scan code and ASCII code in a single step. Second, INT 16h has additional
operations such as setting the typematic rate and retrieving the state of the keyboard flags. The type-
matic rate is the rate at which a keyboard key repeats when you hold it down. When you don’t know
whether the user will press an ordinary key or an extended key, INT 16h is usually the best function
to call.

Set Typematic Rate (03h)
INT 16h Function 03h lets you set the keyboard typematic repeat rate, as illustrated in the following
table. When you hold down a key, there is a delay of 250 to 1000 milliseconds before the key starts to
repeat. The repeat rate can be between 1Fh (slowest) and 0 (fastest).

INT 16h Function 03h

Description Set typematic repeat rate

Receives AH � 3
AL � 5
BH � repeat delay ( 0 � 250 ms; 1 � 500 ms; 2 � 750 ms; 3 � 1000 ms)
BL � repeat rate: 0 � fastest (30/sec), 1Fh � slowest (2/sec)

Returns Nothing

Sample Call mov  ax,0305h
mov  bh,1           ; 500 ms repeat delay
mov  bl,0Fh         ; repeat rate
int  16h

Keyboard

INT 9h handler

INT 16h handler INT 21h handler

typeahead buffer

Input port
sc

sc

sc, ac

sc, ac ac

sc � scan code

as � ASCII code
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Push Key into Keyboard Buffer (05h)
As shown in the next table, INT 16h Function 05h lets you push a key into the keyboard typeahead
buffer. A key consists of two 8-bit integers: the ASCII code and the keyboard scan code.

Wait for Key (10h)
INT 16h Function 10h removes the next available key from the keyboard typeahead buffer. If none is
waiting, the keyboard handler waits for the user to press a key, as shown in the following table:

Sample Program
The following keyboard display program uses a loop with INT 16h to input keystrokes and display
both the ASCII code and scan code of each key. It terminates when the Esc key is pressed:

TITLE Keyboard Display           (Keybd.asm)

; This program displays keyboard scan codes
; and ASCII codes, using INT 16h.

INCLUDE Irvine16.inc
.code
main PROC

mov ax,@data
mov ds,ax
call ClrScr ; clear screen

L1: mov ah,10h ; keyboard input
int 16h ; using BIOS
call DumpRegs ; AH = scan, AL = ASCII

INT 16h Function 05h

Description Push key into keyboard buffer

Receives AH � 5
CH � scan code
CL � ASCII code

Returns If typeahead buffer is full, CF � 1 and AL � 1; otherwise, CF � 0, AL � 0.

Sample Call mov  ah,5
mov  ch,3Bh         ; scan code for F1 key
mov  cl,0           ; ASCII code
int  16h

INT 16h Function 10h

Description Wait for key and scan key from keyboard

Receives AH � 10h

Returns AH � keyboard scan code
AL  � ASCII code

Sample Call mov  ah,10h
int  16h
mov  scanCode,ah
mov  ASCIICode,al

Notes If no key is already in the buffer, the function waits for a key. Replaces INT 16h
Function 00h.
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cmp al,1Bh ; ESC key pressed?
jne L1 ; no: repeat the loop

call ClrScr ; clear screen
exit

main ENDP
END main

The call to DumpRegs displays all the registers, but you need only look at AH (scan code) and AL
(ASCII code). When the user presses the F1 function key, for example, this is the resulting display (3B00h):

Check Keyboard Buffer (11h)
INT 16h Function 11h lets you peek into the keyboard typeahead buffer to see if any keys are waiting.
It returns the ASCII code and scan code of the next available key, if any. You can use this function
inside a loop that carries out other program tasks. Note that the function does not remove the key from
the typeahead buffer. See the following table for details:

Get Keyboard Flags
INT 16h Function 12h returns valuable information about the current state of the keyboard flags. Perhaps,
you have noticed that word-processing programs often display flags or notations at the bottom of the
screen when keys such as CapsLock, NumLock, and Insert are pressed. They do this by continually
examining the keyboard status flag, watching for any changes.

EAX=00003B00  EBX=00000000  ECX=000000FF  EDX=000005D6
ESI=00000000  EDI=00002000  EBP=0000091E  ESP=00002000
EIP=0000000F  EFL=00003202  CF=0  SF=0  ZF=0  OF=0  AF=0  PF=0

INT 16h Function 11h

Description Check keyboard buffer

Receives AH � 11h

Returns If a key is waiting, ZF � 0, AH � scan code, AL � ASCII code; otherwise, ZF � 1.

Sample Call mov  ah,11h
int  16h
jz   NoKeyWaiting          ; no key in buffer
mov  scanCode,ah
mov  ASCIICode,al

Notes Does not remove the key (if any) from the buffer

INT 16h Function 12h

Description Get keyboard flags

Receives AH � 12h

Returns AX � copy of the keyboard flags

Sample Call mov  ah,12h
int  16h
mov  keyFlags,ax

Notes The keyboard flags are located at addresses 00417h – 00418h in the BIOS data area



16.2   Keyboard Input with INT 16h 16.7

The keyboard flags are particularly interesting because they tell you a great deal about what the
user is doing with the keyboard. Is the user holding down the left shift key or the right shift key? Is he
or she also holding down the Alt key? Questions of this type can be answered using INT 16h. Each bit
is a 1 when its matching key is either currently held down or is toggled on (Caps lock, Scroll lock,
Num lock, and Insert). Under Windows 95 and 98, the keyboard flag bytes can also be obtained by
directly reading memory at segment 0040h, offsets 17h 18h. 

Clearing the Keyboard Buffer
Programs often have a processing loop that can only be interrupted by prearranged keys. DOS-based
game programs, for example, often check the keyboard buffer to see if arrow keys and other special
keys have been pressed while at the same time displaying graphic images. The user might press any
number of irrelevant keys that only fill up the keyboard typeahead buffer, but when the right key is
pressed, the program is expected to immediately respond to the command.

Using the INT 16h functions, we know how to check the keyboard buffer to see if keys are waiting
(Function 11h), and we know how to remove a key from the buffer (Function 10h). The following pro-
gram demonstrates a procedure named ClearKeyboard that uses a loop to clear the keyboard buffer
while checking for a particular keyboard scan code. For testing purposes, the program checks for the
ESC key, but the procedure can check for any key:

TITLE Testing ClearKeyboard       (ClearKbd.asm)

; This program shows how to clear the keyboard
; buffer while waiting for a particular key.
; To test it, rapidly press random keys to fill
; up the buffer. When you press Esc, the program 
; ends immediately.

INCLUDE Irvine16.inc
ClearKeyboard PROTO, scanCode:BYTE
ESC_key = 1 ; scan code

.code
main PROC
L1:

; Display a dot, to show program's progress
mov ah,2
mov dl,'.'
int 21h
mov eax,300 ; delay for 300 ms
call Delay

INVOKE ClearKeyboard, ESC_key ; check for Esc key
jnz L1 ; continue loop if ZF=0

quit:
call Clrscr
exit

main ENDP

;---------------------------------------------------
ClearKeyboard PROC,

scanCode:BYTE
;
; Clears the keyboard while checking for a
; particular scan code.
; Receives: keyboard scan code
; Returns: Zero flag set if the ASCII code is
; found; otherwise, Zero flag is clear.
;---------------------------------------------------
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push ax
L1:

mov ah,11h ; check keyboard buffer
int 16h ; any key pressed?
jz noKey ; no: exit now
mov ah,10h ; yes: remove from buffer
int 16h
cmp ah,scanCode ; was it the exit key?
je quit ; yes: exit now (ZF=1)
jmp L1 ; no: check buffer again

noKey: ; no key pressed
or al,1 ; clear zero flag

quit:
pop ax
ret

ClearKeyboard ENDP
END main

The program displays a dot on the screen every 300 milliseconds. When testing it, press any sequence
of random keys, which are ignored and removed from the typeahead buffer. The program stops as
soon as ESC is pressed.

16.2.3 Section Review
1. Which interrupt (16h or 21h) is best for reading user input that includes function keys and other

extended keys?

2. Where in memory are keyboard input characters kept while waiting to be processed by application
programs?

3. What operations are performed by the INT 9h service routine?

4. Which INT 16h function pushes keys into the keyboard buffer?

5. Which INT 16h function removes the next available key from the keyboard buffer?

6. Which INT 16h function examines the keyboard buffer and returns the scan code and ASCII code of
the first available input?

7. Does INT 16h function 11h remove a character from the keyboard buffer?

8. Which INT 16h function gives you the value of the keyboard flag byte?

9. Which bit in the keyboard flag byte indicates that the ScrollLock key has been pressed?

10. Write statements that input the keyboard flag byte and repeat a loop until the Ctrl key is pressed.

11. Challenge: The ClearKeyboard procedure in Section 16.2.2 checks for only a single keyboard
scan code. Suppose your program had to check for multiple scan codes (the four cursor arrows, for
example). Show examples of code modifications you could make to the procedure to make this
possible.

16.3 Video Programming with INT 10h

16.3.1 Basic Background

Three Levels of Access
When an application program needs to write characters on the screen in text mode, it can choose
among three types of output:
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• MS-DOS-level access: Any computer running or emulating MS-DOS can use INT 21h to write
text to the video display. Input/output can easily be redirected to other devices such as a printer or
disk. Output is quite slow, and you cannot control the text color.

• BIOS-level access: Characters are output using INT 10h function, known as BIOS services. They
execute more quickly than INT 21h and let you specify the text color. When filling large screen
areas, a slight delay can usually be detected. Output cannot be redirected.

• Direct video memory access: Characters are moved directly to video RAM, so execution is
instantaneous. Output cannot be redirected. During the MS-DOS era, word processors and elec-
tronic spreadsheet programs all used this method. (Use of this method is restricted to full-screen
mode under Windows NT, 2000, XP, and beyond.)

Application programs vary in their choice of which level of access to use. Those requiring the highest
performance choose direct video access; others choose BIOS-level access. MS-DOS–level access is
used when the output may have to be redirected or when the screen is shared with other programs. It
should be mentioned that MS-DOS interrupts use BIOS-level routines to do their work, and BIOS
routines use direct video access to produce their output. 

Running Programs in Full-Screen Mode
Programs that draw graphics using the Video BIOS should be executed in one of the following
environments:

• Pure MS-DOS 
• A DOS emulator under Linux
• Under MS-Windows in full-screen mode.

In MS-Windows, there are several ways to switch into full-screen mode:

• In Windows XP, create a shortcut to the program’s EXE file. Then open the Properties dialog for
the shortcut, select Options, and select Full-screen mode in the Display Options group. (Note:
Windows Vista does not run 16-bit EXE programs in full-screen mode.)

• Open a Command window from the Start menu, and press Alt-Enter to switch to full screen mode. Using
the CD (change directory) command, navigate to your EXE file’s directory, and run the program by typ-
ing its name. Alt-Enter is a toggle, so if you press it again, it will return the program to Window mode.

Understanding Video Text
There are two basic video modes on Intel-based systems, text mode and graphics mode. A program
can run in one mode or the other, but not both at the same time:

• In text mode, programs write ASCII characters to the screen. The built-in character generator in the
BIOS generates a bit-mapped image for each character. A program cannot draw arbitrary lines and
shapes in text mode.

• In graphics mode, programs control the appearance of each screen pixel. The operation is somewhat
primitive because there are no built-in functions for line and shape drawing. You can use built-in functions
to write text to the screen in graphics mode, and you can substitute different fonts for the built-in fonts.
MS-Windows provides a collection of functions for drawing shapes and lines in graphics mode.

When a computer is booted in MS-DOS, the video controller is set to Video Mode 3 (color text,
defaults to 80 columns by 25 rows). In text mode, rows are numbered from the top of the screen, row
0. Each row is the height of a character cell, using the currently active font. Columns are numbered
from the left side of the screen, column 0. Each column is the width of a character cell. 

Fonts Characters are generated from a memory-resident table of character fonts. The BIOS permits
programs to rewrite the character tables at run time, so custom fonts can be displayed.



16.10 Chapter 16  •  BIOS-Level Programming

Video Text Pages Text mode video memory is divided into multiple separate video pages, each
able to hold a full screen of text. Programs can display one page while writing text to other hidden
pages, and they can rapidly flip back and forth between pages. In the days of high-performance MS-
DOS applications, it was often necessary to keep several text screens in memory at the same time.
With the current popularity of graphical interfaces, this text page feature is no longer important. (INT
10h Function 05h sets the current video page, but we do not cover it in this chapter.) The default video
page is page 0.

Attributes As illustrated in the following diagrams, each screen character is assigned an attribute
byte that controls both the color of the character (called the foreground) and the screen color behind
the character (called the background).

Each position on the video display holds a single character, along with its own attribute (color).
The attribute is stored in a separate byte, following the character in memory. In the following figure,
three positions on the screen contain the letters ABC: 

Blinking Characters on the video display can blink. The video controller does this by reversing the
foreground and background colors of a character at a predetermined rate. By default, when a PC boots
into MS-DOS mode, blinking is enabled. It is possible to turn blinking off using a video BIOS
function. Also, blinking is off by default when you open up an MS-DOS emulation window under
MS-Windows.

16.3.2 Controlling the Color

Mixing Primary Colors
Each color pixel on a CRT video display is generated using three separate electron beams: red,
green, and blue. A fourth channel controls the overall intensity, or brightness of the pixel. All
available text colors can therefore be represented by 4-bit binary values, in the following form (I �
intensity, R � red, G � green, B � blue). The following diagram shows the composition of a
white pixel:

By mixing three primary colors (Table 16-2), new colors can be generated. Furthermore, by turning
on the intensity bit, you can make the mixed colors brighter.

backgroundA
foreground
(character)

'A' nn

char
attribute

'B' nn 'C' nn . . .

char
attribute

char
attribute

1 1 1 1

R G BI
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The MS-DOS–style primary colors and mixed colors are compiled into a list of all possible 4-bit
colors as shown in Table 16-3. Each color in the right-hand column has its intensity bit set.

Attribute Byte
In color text mode, each character is assigned an attribute byte, which consists of two 4-bit color
codes: background and foreground:

Blinking There is one complication to this simple color scheme. If the video adapter currently has
blinking enabled, the high bit of the background color controls the character blinking. When this bit is
set, the character blinks: 

When blinking is enabled, only the low-intensity colors in the left-hand column of Table 16-3 are
available as background colors (black, blue, green, cyan, red, magenta, brown, and light gray). The
default color when MS-DOS boots is 00000111 binary (light gray on black background).

Table 16-2  Color Mixing Example.

Mix These Primary 
Colors . . . To Get This Color Set The Intensity Bit

red � green � blue light gray white

green � blue cyan light cyan

red � blue magenta light magenta

red � green brown yellow

(no colors) black dark gray

Table 16-3  Four-Bit Color Text Encoding.

IRGB Color IRGB Color
0000 black 1000 gray

0001 blue 1001 light blue

0010 green 1010 light green

0011 cyan 1011 light cyan

0100 red 1100 light red

0101 magenta 1101 light magenta

0110 brown 1110 yellow

0111 light gray 1111 white

I R G B I R G B

background foreground

blink R G B I R G B

background foreground

blinking enabled
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Constructing Attribute Bytes To construct a video attribute byte from two colors (foreground and
background), use the assembler’s SHL operator to shift the background color bits four positions to the
left, and OR it with the foreground color. For example, the following statements create an attribute of
light gray text on a blue background:

blue = 1
lightGray = 111b
mov bh,(blue SHL 4) OR lightGray ; 00010111

The following creates white characters on a red background:

white = 1111b
red = 100b
mov bh,(red SHL 4) OR white ; 01001111

The following lines produce blue letters on a brown background:

blue = 1
brown = 110b
mov  bh,((brown SHL 4) OR blue) ; 01100001

16.3.3 INT 10h Video Functions
Table 16-4 lists the most frequently used INT 10h functions. Each will be discussed separately, with
its own short example. The discussion of functions 0Ch and 0Dh will be deferred to the graphics section
(Section 16.4).

Fonts and colors may appear slightly different when running the same program under different
operating systems. For example, in Windows 2000, XP, and beyond, blinking is disabled unless
you switch to full-screen mode. The same is true for displaying graphics with INT 10h.

Table 16-4  Selected INT 10h Functions.

Function
Number

Description

0 Set the video display to one of the text or graphics modes.

1 Set cursor lines, controlling the cursor shape and size.

2 Position the cursor on the screen.

3 Get the cursor’s screen position and size. 

6 Scroll a window on the current video page upward, replacing scrolled lines with blanks. 

7 Scroll a window on the current video page downward, replacing scrolled lines with blanks. 

8 Read the character and its attribute at the current cursor position. 

9 Write a character and its attribute at the current cursor position. 

0Ah Write a character at the current cursor position without changing the color attribute.

0Ch Write a graphics pixel on the screen in graphics mode (see Appendix C).

0Dh Read the color of a single graphics pixel at a given location (see Appendix C).

0Fh Get video mode information.

10h Set blink/intensity modes.

13h Write string in teletype mode.

1Eh Write a string to the screen in teletype mode (see Appendix C).

It’s a good idea to preserve the general-purpose registers (using PUSH) before calling INT 10h
because the different BIOS versions are not consistent in which registers they preserve.
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Set Video Mode (00h)
INT 10h Function 0 lets you set the current video mode to one of the text or graphics modes.
Table 16-5 lists the text modes you are most likely to use:

It’s a good idea to get the current video mode (INT 10h Function 0Fh) and save it in a variable
before setting it to a new value. Then you can restore the original video mode when your program
exits. The following table shows how to set the video mode.

Set Cursor Lines (01h)
INT 10h Function 01h, as shown in the next table, sets the text cursor size. The text cursor is dis-
played using starting and ending scan lines, which make it possible to control its size. Application
programs can do this to show the current status of an operation. For example, a text editor might
increase the cursor size when the NumLock key is toggled on; when it is pressed again, the cursor
returns to its original size.

Table 16-5  Video Text Modes Recognized by INT 10h.

Mode Resolution (columns X rows) Number of Colors

0 40 � 25 16

1 40 � 25 16

2 80 � 25 16

3 80 � 25 16

7a

aMonochrome monitor.

80 � 25 2

14h 132 � 25 16

INT 10h Function 0

Description Set the video mode

Receives AH � 0
AL � video mode

Returns Nothing

Sample Call mov  ah,0
mov  al,3        ; video mode 3 (color text)
int  10h

Notes The screen is cleared automatically unless the high bit in AL is set before calling this
function.

INT 10h Function 01h

Description Set cursor lines

Receives AH � 01h
CH � top line
CL � bottom line

Returns Nothing

Sample Call mov  ah,1
mov  cx,0607h     ; default color cursor size
int  10h

Notes The color video display uses eight lines for its cursor.
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The cursor is described as a sequence of horizontal lines, where line 0 is at the top. The default
color cursor starts at line 6 and ends at line 7, as shown in the following figure:

Set Cursor Position (02h)
INT 10h Function 2 locates the cursor at a specific row and column on the video page of your choice,
as seen in the following table.

Get Cursor Position and Size (03h)
INT 10h Function 3, shown in the next table, returns the row/column position of the cursor as well as
the starting and ending lines that determine the cursor size. This function can be quite useful in pro-
grams where the user is moving the cursor around a menu. Depending on where the cursor is, you
know which menu choice has been selected. 

INT 10h Function 02h

Description Set cursor position

Receives AH � 2
DH, DL � row, column values
BH � video page

Returns Nothing

Sample Call mov  ah,2
mov  dh,10        ; row 10
mov  dl,20        ; column 20
mov  bh,0         ; video page 0
int  10h

Notes For 80 � 25 modes, DH � 0 to 24, DL � 0 to 79

INT 10h Function 03h

Description Get cursor position and size

Receives AH � 3
BH � video page

Returns CH, CL � starting, ending cursor scan lines
DH, DL � row, column of cursor’s location

7

6

5

4

3

2

1

0

Top

Bottom
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Showing and Hiding the Cursor It is useful to be able to temporarily hide the cursor when dis-
playing menus, writing continuously to the screen, or reading mouse input. To hide the cursor, you
can set its top line value to an illegal (large) value. To redisplay the cursor, return the cursor lines to their
defaults (lines 6 and 7):

HideCursor PROC
mov ah,3 ; get cursor size
int 10h
or ch,30h ; set upper row to illegal value
mov ah,1 ; set cursor size
int 10h
ret

HideCursor ENDP

ShowCursor PROC
mov ah,3 ; get cursor size
int 10h
mov ah,1 ; set cursor size
mov cx,0607h ; default size
int 10h
ret

ShowCursor ENDP

We’re ignoring the possibility that the user might have set the cursor to a different size before hiding
the cursor. Here’s an alternate version of ShowCursor that simply clears the high 4 bits of CH without
touching the lower 4 bits where the cursor lines are stored:

ShowCursor PROC
mov ah,3 ; get cursor size
int 10h
mov ah,1 ; set cursor size
and ch,0Fh ; clear high 4 bits
int 10h
ret

ShowCursor ENDP

Unfortunately, this method of hiding the cursor does not always work. An alternative method is to use
INT 10h Function 02h to position the cursor off the edge of the screen (row 25, for example). 

Scroll Window Up (06h)
INT 10h Functions 6 scrolls all text within a rectangular area of the screen (called a window) upward.
A window is defined using row and column coordinates for its upper left and lower right corners. The
default MS-DOS screen has rows numbered 0 to 24 from the top and columns numbered 0 to 79 from
the left. Therefore, a window covering the entire screen would be from 0,0 to 24,79. In Fig. 16-2, the

Sample Call mov  ah,3
mov  bh,0             ; video page 0
int  10h
mov  cursor,CX
mov  position,DX

INT 10h Function 03h
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CH/CL registers define the row and column of the upper left corner and DH/DL define the row and
column of the lower right corner. This function has no predictable effect on the cursor position.

As a window is scrolled up, its bottom line is replaced by a blank line. If all lines are scrolled, the
window is cleared (made blank). Lines scrolled off the screen cannot be recovered. The following
table describes INT 10h Function 6.

Figure 16–2 Defining a Window Using INT 10h.

Example: Writing Text to a Window
When INT 10h Function 6 (or 7) scrolls a window, it sets the attributes of the scrolled lines inside the
window. If you subsequently write text inside the window using a DOS function call, the text will use
the same foreground and background colors. The following program (TextWin.asm) demonstrates this
technique:

TITLE Color Text Window             (TextWin.asm)

; Displays a color window and writes text inside.

INCLUDE Irvine16.inc

INT 10h Function 06h

Description Scroll window up

Receives AH � 6
AL � number of lines to scroll (0 � all)
BH � video attribute for blanked area
CH, CL � row, column of upper left window corner
DH, DL � row, column of lower right window corner

Returns Nothing

Sample Call mov   ah,6      ; scroll window up
mov   al,0      ; entire window
mov   ch,0      ; upper left row
mov   cl,0      ; upper left column 
mov   dh,24     ; lower right row
mov   dl,79     ; lower right column
mov   bh,7      ; attribute for blanked area
int   10h       ; call BIOS

CH

CL

DH

DL
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.data
message BYTE "Message in Window",0

.code
main PROC

mov ax,@data
mov ds,ax

; Scroll a window.
mov ax,0600h ; scroll window
mov bh,(blue SHL 4) OR yellow ; attribute
mov cx,050Ah ; upper-left corner
mov dx,0A30h ; lower-right corner
int 10h

; Position the cursor inside the window.
mov ah,2 ; set cursor position
mov dx,0714h ; row 7, col 20
mov bh,0 ; video page 0
int 10h

; Write some text in the window.
mov dx,OFFSET message
call WriteString

; Wait for a keypress.
mov ah,10h
int 16h
exit

main ENDP
END main

Scroll Window Down (07h)
The scroll window down function is identical to Function 06h, except that the text inside the window
moves downward. It uses the same input parameters. 

Read Character and Attribute (08h)
INT 10h Function 8 returns the character and its attribute at the current cursor position. It can be used
by programs to read text directly off the screen (a technique known as screen scraping). Programs
might convert the text to speech for hearing-impaired users.

INT 10h Function 08h

Description Read character and attribute at current cursor position

Receives AH � 8
BH � video page

Returns AL � ASCII code of the character
AH � attribute of the character

Sample Call mov  ah,8
mov  bh,0           ; video page 0
int  10h
mov  char,al        ; save the character
mov  attrib,ah      ; save the attribute
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Write Character and Attribute (09h)
INT 10h Function 9 writes a character in color at the current cursor position. As can be seen in the
following table, this function can display any ASCII character, including the special BIOS graphics
characters matching ASCII codes 1 to 31. 

The repetition count in CX specifies how many times the character is to be repeated. (The character
should not be repeated beyond the end of the current screen line.) After a character is written, you must
call INT 10h Function 2 to advance the cursor if more characters will be written on the same line. 

Write Character (0Ah)
INT 10h Function 0Ah writes a character to the screen at the current cursor position without changing
the current screen attribute. As shown in the next table, it is identical to Function 9, except that the
attribute is not specified. 

INT 10h Function 09h

Description Write character and attribute

Receives AH � 9
AL � ASCII code of character
BH � video page
BL � attribute
CX � repetition count

Returns Nothing

Sample Call mov  ah,9
mov  al,'A'        ; ASCII character
mov  bh,0          ; video page 0
mov  bl,71h        ; attribute (blue on light gray)
mov  cx,1          ; repetition count
int  10h

Notes Does not advance the cursor after writing the character. Can be called in text and
graphics modes.

INT 10h Function 0Ah

Description Write character

Receives AH � 0Ah
AL � character
BH � video page
CX � repetition count

Returns Nothing
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Get Video Mode Information (0Fh)
INT 10h Function 0Fh returns information about the current video mode, including the mode number, the
number of display columns, and the active video page number, as seen in the following table. This function
is useful at the beginning of a program, when you want to save the current video mode and switch to a new
mode. When the program ends, you can reset the video mode (with INT 10h Function 0) to the saved value.

Set Blink/Intensity Mode (10h; 03h)
INT 10h Function 10h has a number of useful subfunctions, including number 03h, which permits the
highest bit of a color attribute to either control the color intensity or blink the character. See the fol-
lowing table for details:

Sample Call mov  ah,0Ah
mov  al,'A'        ; ASCII character
mov  bh,0          ; video page 0
mov  cx,1          ; repetition count
int  10h

Notes Does not advance the cursor.

INT 10h Function 0Fh

Description Get current video mode information

Receives AH � 0Fh

Returns AL � current display mode
AH � number of columns (characters or pixels)
BH � active video page

Sample Call mov  ah,0Fh
int  10h
mov  vmode,al         ; save the mode
mov  columns,ah       ; save the columns
mov  page,bh          ; save the page

Notes Works in both text and graphics modes.

INT 10h Function 10h, Subfunction 03h

Description Set blink/intensity mode

Receives AH� 10h
AL � 3
BL � blink mode (0 � enable intensity, 1 � enable blinking)

Returns Nothing

Sample Call mov  ah,10h
mov  al,3
mov  bl,1             ; enable blinking
int  10h

INT 10h Function 0Ah
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Write String in Teletype Mode (13h)
INT 10h Function 13h, shown in the following table, writes a string to the screen at a given row and
column location. The string can optionally contain both characters and attribute values. (See the
Colorst2.asm program in the book’s sample programs folder named ch16.) This function can be used
in text mode or graphics mode.

Notes Switches on-screen text between blinking mode and high-intensity mode. Under
MS-Windows, blinking can only occur when running the application in full-screen
mode.

INT 10h Function 13h

Description Write string in teletype mode

Receives AH � 13h
AL � write mode (see notes)
BH � video page
BL � attribute (if AL � 00h or 01h)
CX � string length (character count)
DH, DL � screen row, column
ES:BP � segment:offset of string

Returns Nothing

Sample Call .data
colorString BYTE 'A',1Fh,'B',1Ch,'C',1Bh,'D',1Ch
row    BYTE  10
column BYTE  20
.code
mov  ax,SEG colorString           ; set ES segment
mov  es,ax
mov  ah,13h                       ; write string
mov  al,2                         ; write mode
mov  bh,0                         ; video page
mov  cx,(SIZEOF colorString) / 2  ; string length
mov  dh,row                       ; start row
mov  dl,column                    ; start column
mov  bp,OFFSET colorString        ; string offset
int  10h

Notes Can be called when the display adapter is in text mode or graphics mode.
Write mode values: 

•  00h � string contains only character codes; cursor not updated after write,
and attribute is in BL. 

•  01h � string contains only character codes; cursor is updated after write, and
attribute is in BL.

•  02h � string contains alternating character codes and attribute bytes; cursor
position not updated after write. 

•  03h � string contains alternating character codes and attribute bytes; cursor
position is updated after write.

INT 10h Function 10h, Subfunction 03h
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Example: Displaying a Color String
The following program (ColorStr.asm) displays a string on the console, using a different color for
each character. It must be run in full-screen mode if you want to see characters blink. By default,
blinking is enabled, but you can remove the call to EnableBlinking and see the same string on a dark
gray background:

TITLE Color String Example              (ColorStr.asm)

INCLUDE Irvine16.inc
.data
ATTRIB_HI = 10000000b
string BYTE "ABCDEFGHIJKLMOP"
color  BYTE (black SHL 4) OR blue

.code
main PROC

mov ax,@data
mov ds,ax

call ClrScr
call EnableBlinking ; this is optional
mov cx,SIZEOF string
mov si,OFFSET string

L1: push cx ; save loop counter
mov ah,9      ; write character/attribute
mov al,[si]   ; character to display
mov bh,0      ; video page 0
mov bl,color ; attribute
or bl,ATTRIB_HI ; set blink/intensity bit
mov cx,1     ; display it one time
int 10h
mov cx,1 ; advance cursor to
call AdvanceCursor ; next screen column
inc color ; next color
inc si ; next character
pop cx ; restore loop counter
loop L1

call Crlf
exit

main ENDP

;--------------------------------------------------
EnableBlinking PROC
;
; Enable blinking (using the high bit of color
; attributes). In MS-Windows, this only works if
; the program is running in full screen mode.
; Receives: nothing. Returns: nothing
;--------------------------------------------------

push ax
push bx
mov ax,1003h ; set blink/intensity mode
mov bl,1 ; blinking is enabled
int 10h
pop bx



16.22 Chapter 16  •  BIOS-Level Programming

pop ax
ret

EnableBlinking ENDP

;--------------------------------------------------
AdvanceCursor PROC
;
; Advances the cursor n columns to the right.
; (Cursor does not wrap around to the next line.)
; Receives: CX = number of columns
; Returns: nothing
;--------------------------------------------------

pusha

L1: push cx ; save loop counter
mov ah,3      ; get cursor position
mov bh,0 ; into DH, DL
int 10h ; changes CX register!
inc dl        ; increment column
mov ah,2      ; set cursor position
int 10h
pop cx ; restore loop counter
loop L1 ; next column

popa
ret

AdvanceCursor ENDP
END main

16.3.4 Library Procedure Examples
Let’s take a look at two useful, but simple procedures from the Irvine16 link library, Gotoxy and Clrscr.

Gotoxy Procedure
The Gotoxy procedure sets the cursor position on video page 0:

;---------------------------------------------------
Gotoxy PROC
;
; Sets the cursor position on video page 0.
; Receives: DH,DL = row, column
; Returns: nothing
;---------------------------------------------------

pusha
mov ah,2 ; set cursor position
mov bh,0 ; video page 0
int 10h
popa
ret

Gotoxy ENDP

Clrscr Procedure
The Clrscr procedure clears the screen and locates the cursor at row 0, column 0 on video page 0:

The AdvanceCursor procedure can be used in any program that calls INT 10h text functions.
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;------------------------------------------------------
Clrscr PROC
;
; Clears the screen (video page 0) and locates the
; cursor at row 0, column 0.
; Receives: nothing
; Returns:  nothing
;-------------------------------------------------------

pusha
mov ax,0600h    ; scroll entire window up
mov cx,0        ; upper left corner (0,0)
mov dx,184Fh    ; lower right corner (24,79)
mov bh,7        ; normal attribute
int 10h         ; call BIOS
mov ah,2        ; locate cursor at 0,0
mov bh,0        ; video page 0
mov dx,0 ; row 0, column 0
int 10h
popa
ret

Clrscr ENDP

16.3.5 Section Review
1. What are the three levels of access to the video display mentioned in the beginning of this section?

2. Which level of access produces the fastest output?

3. How do you run a program in full-screen mode?

4. When a computer is booted in MS-DOS, what is the default video mode?

5. Each position on the video display holds what information for a single character?

6. Which electron beams are required to generate any color on a video display?

7. Show the mapping of foreground and background colors in the video attribute byte.

8. Which INT 10h function positions the cursor on the screen?

9. Which INT 10h function scrolls a rectangular window upward?

10. Which INT 10h function writes a character and attribute at the current cursor position?

11. Which INT 10h function sets the cursor size?

12. Which INT 10h function gets the current video mode?

13. What parameters are required when setting the cursor position with INT 10h?

14. How is it possible to hide the cursor?

15. Which parameters are required when scrolling a window upward?

16. Which parameters are required when writing a character and attribute at the current cursor position?

17. Which INT 10h function sets blink/intensity modes?

18. Which values should be moved to AH and AL when clearing the screen using INT 10h function 6?

16.4 Drawing Graphics Using INT 10h
INT 10h Function 0Ch draws a single pixel in graphics mode. You could use it to draw complex
shapes and lines, but it’s unbearably slow. To learn the basics, we will start with this function and later
show how to draw graphics by writing data directly to video RAM.

You can draw text on the screen using INT 10h Function 9h when the video adapter is in graphics
mode.
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Before drawing pixels, you have to put the video adapter into one of the standard graphics modes,
shown in Table 16-6. Each mode can be set using INT 10h function 0 (set video mode).

Coordinates For each video mode, the resolution is expressed as horizontal X vertical, measured
in pixels. The screen coordinates range from x � 0, y � 0 in the upper left corner of the screen, to x �
XMax�1, y � YMax�1 in the lower right corner of the screen.

16.4.1 INT 10h Pixel-Related Functions

Write Graphics Pixel (0Ch)
INT 10h Function 0Ch, as shown in the next table, draws a pixel on the screen when the video con-
troller is in graphics mode. Function 0Ch executes rather slowly, particularly when drawing a lot of
pixels. Most graphics applications write directly into video memory after calculating the number of
colors per pixel, the horizontal resolution, and so on.

Table 16-6  Video Graphics Modes Recognized by INT 10h.

Mode Resolution (Columns X Rows, 
in Pixels)

Number of Colors

6 640 � 200 2

0Dh 320 � 200 16

0Eh 640 � 200 16

0Fh 640 � 350 2

10h 640 � 350 16

11h 640 � 480 2

12h 640 � 480 16

13h 320 � 200 256

6Ah 800 � 600 16

INT 10h Function 0Ch

Description Write graphics pixel

Receives AH � 0Ch
AL � pixel value
BH � video page
CX � x-coordinate
DX � y-coordinate

Returns Nothing

Sample Call mov  ah,0Ch
mov  al,pixelValue
mov  bh,videoPage 
mov  cx,x_coord
mov  dx,y_coord
int  10h

Notes The video display must be in graphics mode. The range of pixel values and the coor-
dinate ranges depend on the current graphics mode. If bit 7 is set in AL, the new pixel
will be XORed with the current contents of the pixel (allowing the pixel to be erased).
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Read Graphics Pixel (0Dh)
Function 0Dh, shown as follows, reads a graphics pixel from the screen at a given row and column
position and returns the pixel value in AL. 

16.4.2 DrawLine Program
The DrawLine program switches into graphics mode using INT 10h, writes the name of the program
in text, and draws a straight horizontal line. If you run it in MS-Windows, switch the console window
to full-screen mode by pressing Alt-Enter.2 Following is the complete program listing:

TITLE DrawLine Program              (DrawLine.asm)

; This program draws text and a straight line in graphics mode.

INCLUDE Irvine16.inc

;------------ Video Mode Constants -------------------
Mode_06 = 6 ; 640 X 200,  2 colors
Mode_0D = 0Dh ; 320 X 200, 16 colors
Mode_0E = 0Eh ; 640 X 200, 16 colors
Mode_0F = 0Fh ; 640 X 350,  2 colors
Mode_10 = 10h ; 640 X 350, 16 colors
Mode_11 = 11h ; 640 X 480,  2 colors
Mode_12 = 12h ; 640 X 480, 16 colors
Mode_13 = 13h ; 320 X 200, 256 colors
Mode_6A = 6Ah ; 800 X 600, 16 colors

.data
saveMode  BYTE  ? ; save the current video mode
currentX  WORD 100 ; column number (X-coordinate)
currentY  WORD 100 ; row number (Y-coordinate)
COLOR = 1001b ; line color (cyan)

progTitle BYTE "DrawLine.asm"
TITLE_ROW = 5
TITLE_COLUMN = 14

; When using a 2-color mode, set COLOR to 1 (white)

.code

INT 10h Function 0Dh

Description Read graphics pixel

Receives AH � 0Dh
BH � video page
CX � x-coordinate
DX � y-coordinate

Returns AL � pixel value

Sample Call mov   ah,0Dh
mov   bh,0               ; video page 0
mov   cx,x_coord
mov   dx,y_coord
int   10h
mov   pixelValue,al

Notes The video display must be in graphics mode. The range of pixel values and the coor-
dinate ranges depend on the current graphics mode. 
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main PROC
mov ax,@data
mov ds,ax

; Save the current video mode.
mov ah,0Fh
int 10h
mov saveMode,al

; Switch to a graphics mode.
mov ah,0   ; set video mode
mov al,Mode_6A
int 10h

; Write the program name, as text.
mov ax,SEG progTitle ; get segment of progTitle
mov es,ax ; store in ES
mov bp,OFFSET progTitle
mov ah,13h ; function: write string
mov al,0 ; mode: only character codes
mov bh,0 ; video page 0
mov bl,7 ; attribute = normal
mov cx,SIZEOF progTitle ; string length
mov dh,TITLE_ROW ; row (in character cells)
mov dl,TITLE_COLUMN ; column (in character cells)
int 10h

; Draw a straight line.
LineLength = 100

mov dx,currentY
mov cx,LineLength ; loop counter

L1:
push cx
mov ah,0Ch  ; write pixel
mov al,COLOR    ; pixel color
mov bh,0 ; video page 0
mov cx,currentX
int 10h
inc currentX
;inc color ; enable to see a multi-color line
pop cx
Loop L1

; Wait for a keystroke.
mov ah,0
int 16h

; Restore the starting video mode.
mov ah,0   ; set video mode
mov al,saveMode   ; saved video mode
int 10h
exit

main ENDP
END main

Changing the Video Mode You can try out different graphics modes by modifying a single pro-
gram statement that currently selects video Mode 6Ah:
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mov  ah,0 ; set video mode
mov  al,Mode_6A ; modify for different modes
int  10h ; call BIOS routine

16.4.3 Cartesian Coordinates Program
The Cartesian Coordinates program draws the X and Y axes of a Cartesian coordinate system, with
the intersection point at screen locations X � 400 and Y � 300. There are two important procedures,
DrawHorizLine and DrawVerticalLine, which could easily be inserted in other graphics programs.
The program sets the video adapter to Mode 6Ah (800 � 600, 16 colors). 

TITLE Cartesian Coordinates                 (Pixel2.asm)

; This program switches into 800 X 600 graphics mode and
; draws the X and Y axes of a Cartesian coordinate system.
; Switch to full-screen mode before running this program.
; Color constants are defined in Irvine16.inc.

INCLUDE Irvine16.inc

Mode_6A = 6Ah ; 800 X 600, 16 colors
X_axisY = 300
X_axisX = 50
X_axisLen = 700

Y_axisX = 400
Y_axisY = 30
Y_axisLen = 540

.data
saveMode BYTE ?

.code
main PROC

mov ax,@data
mov ds,ax

; Save the current video mode
mov ah,0Fh ; get video mode
int 10h
mov saveMode,al

; Switch to a graphics mode
mov ah,0   ; set video mode
mov al,Mode_6A ; 800 X 600, 16 colors
int 10h

; Draw the X-axis
mov cx,X_axisX ; X-coord of start of line
mov dx,X_axisY ; Y-coord of start of line
mov ax,X_axisLen ; length of line
mov bl,white ; line color (see IRVINE16.inc)
call DrawHorizLine ; draw the line now

; Draw the Y-axis
mov cx,Y_axisX ; X-coord of start of line
mov dx,Y_axisY ; Y-coord of start of line
mov ax,Y_axisLen ; length of line
mov bl,white ; line color
call DrawVerticalLine ; draw the line now
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; Wait for a keystroke
mov ah,10h ; wait for key
int 16h

; Restore the starting video mode
mov ah,0   ; set video mode
mov al,saveMode   ; saved video mode
int 10h

exit
main endp

;------------------------------------------------------
DrawHorizLine PROC
;
; Draws a horizontal line starting at position X,Y with
; a given length and color.
; Receives: CX = X-coordinate, DX = Y-coordinate,
;           AX = length, and BL = color
; Returns: nothing
;------------------------------------------------------
.data
currX WORD ?

.code
pusha
mov currX,cx ; save X-coordinate
mov cx,ax ; loop counter

DHL1:
push cx ; save loop counter
mov al,bl ; color
mov ah,0Ch ; draw pixel
mov bh,0 ; video page
mov cx,currX ; retrieve X-coordinate
int 10h
inc currX ; move 1 pixel to the right
pop cx ; restore loop counter
loop DHL1

popa
ret

DrawHorizLine ENDP

;------------------------------------------------------
DrawVerticalLine PROC
;
; Draws a vertical line starting at position X,Y with
; a given length and color.
; Receives: CX = X-coordinate, DX = Y-coordinate,
;           AX = length, BL = color
; Returns: nothing
;------------------------------------------------------
.data
currY WORD ?

.code
pusha
mov currY,dx ; save Y-coordinate
mov currX,cx ; save X-coordinate
mov cx,ax ; loop counter
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DVL1:
push cx ; save loop counter
mov al,bl ; color
mov ah,0Ch ; function: draw pixel
mov bh,0 ; set video page
mov cx,currX ; set X-coordinate
mov dx,currY ; set Y-coordinate
int 10h ; draw the pixel
inc currY ; move down 1 pixel
pop cx ; restore loop counter
loop DVL1

popa
ret

DrawVerticalLine ENDP
END main

16.4.4 Converting Cartesian Coordinates to Screen Coordinates
Points on a Cartesian graph do not correspond to the absolute coordinates used by the BIOS graphics
system. In the preceding two program examples, it was clear that screen coordinates begin at sx = 0, sy =
0 in the upper left corner of the screen. sx values grow to the right, and sy values grow toward the bottom
of the screen. You can use the following formulas to convert Cartesian X, Y to screen coordinates sx, sy:

where sOrigX and sOrigY are the screen coordinates of the origin of the Cartesian coordinate system.
In the Cartesian Coordinates Program (Section 16.4.3), our lines intersected at sOrigX � 400 and
sOrigY = 300, placing the origin in the middle of the screen. If we use the four points in Fig. 16-3 to
test the given conversion formulas, Table 16-7 shows the results of the calculations.

Figure 16–3 Test Coordinates for Conversion Formulas.

sx � (sOrigX � X) sy � (sOrigY � Y)

(0, 100)

(100, 0)

(0, �100)

(�100, 0)
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16.4.5 Section Review
1. Which INT 10h function draws a single pixel on the video display?

2. When using INT 10h to draw a single pixel, what values must be placed in the AL, BH, CX, and DX registers?

3. What is the main disadvantage to drawing pixels using INT 10h?

4. Write ASM statements that set the video adapter to Mode 11h. 

5. Which video mode is 800 � 600 pixels, in 16 colors?

6. What is the formula to convert a Cartesian X-coordinate to screen pixel coordinates? (Use the variable sx for
the screen column, and use sOrigX for the screen column where the Cartesian origin point (0, 0) is located.)

7. If a Cartesian origin point is located at screen coordinates sy � 250, sx � 350, convert the following
Cartesian points in the form (X, Y) into screen coordinates (sx, sy):

a. (0, 100)
b. (25, 25)
c. (�200, �150)

16.5 Memory-Mapped Graphics
We have seen how drawing pixels using INT 10h is unbearably slow except for the most rudimentary
graphics output. Quite a lot of code executes each time the BIOS draws a pixel. Now we can show
you a more efficient way to draw graphics, as done by professional software. We will write graphics
data directly to video RAM (VRAM) via input–output ports.

16.5.1 Mode 13h: 320 X 200, 256 Colors
Video Mode 13h is the easiest mode to use for memory-mapped graphics. Screen pixels are mapped
as a two-dimensional array of bytes, 1 byte per pixel. The array begins with the pixel in the upper left
corner of the screen and continues across the top line for 320 bytes. The byte at offset 320 maps to the
first pixel in the second screen line, which continues sequentially across the screen. The remaining
lines are mapped in a similar fashion. The last byte in the array is mapped to the pixel in the lower
right corner of the screen. Why use a whole byte for each pixel? Because the byte holds a reference to
one of 256 different color values.

OUT Instruction Pixel and color values are transmitted to the video adapter hardware using the
OUT (output to port) instruction. The 16-bit port address is assigned to DX, and the value sent to the port
is in AL, AX, or EAX. For example, the video color palette is located at port address 3C8h. The fol-
lowing instructions send the value 20h to the port:

mov dx,3c8h ; port address
mov al,20h ; value to be output
out dx,al ; send value to port

Table 16-7  Testing the Conversion Formulas.

Cartesian (X, Y) (400 � X, 300 � Y) Screen (sx, sy)

(0, 100) (400 � 0, 300 � 100) (400, 200)

(100, 0) (400 � 100, 300 � 0) (500, 300)

(0, �100) (400 � 0, 300 � (�100)) (400, 400)

(�100, 0) (400 � (�100), 300 � 0) (300, 300)
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Color Indexes The interesting thing about colors in Mode 13h is that each color integer does not
directly indicate a color. Instead, it represents an index into a table of colors called a palette
(Fig. 16-4). Each entry in the palette consists of three integer values (0 to 63) known as RGB (red,
green, blue). Entry 0 in the color palette controls the screen's background color. 

You can create 262,144 different colors (643) with this scheme. Only 256 different colors can be
displayed at a given time, but your program can modify the palette at run time to vary the display col-
ors. Modern operating systems such as Windows and Linux offer (at least) 24-bit color, in which each
RGB value has a range of 0 to 255. That scheme offers 2563 (16.7 million) different colors.

RGB Colors
RGB colors are based on the additive mixing of light, as opposed to the subtractive method one uses
when mixing liquid paint. With additive mixing, for example, you create the color black by keeping
all color intensity levels at zero. White, on the other hand, is created by setting all color levels at 63

Figure 16–4 Converting Pixel Color Indexes to Display Colors.

(the maximum). In fact, as the following table demonstrates, when all three levels are equal, you get
varying shades of gray:

Pure colors are created by setting all but one color level to zero. To get a light color, increase the
other two colors in equal amounts. Here are variations on the color red:

Red Green Blue Color

0 0 0 black

20 20 20 dark gray

35 35 35 medium gray

50 50 50 light gray

63 63 63 white

Red Green Blue Color

63 0 0 bright red

10 0 0 dark red

30 0 0 medium red

63 40 40 pink

00 61 63

112

Cyan

Pallete

Displayed color:

8-bit graphics 
pixel value

255

0

111
112
113
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Bright blue, dark blue, light blue, bright green, dark green, and light green are created in a similar
manner. Of course, you can mix pairs of colors in other amounts to create colors such as magenta and
lavender. Following are examples:

16.5.2 Memory-Mapped Graphics Program
The Memory-Mapped Graphics program introduced next draws a row of 10 pixels on the screen using
direct memory mapping in Mode 13h. The main procedure calls procedures that set the video mode to
Mode 13h, set the screen's background color, draw some color pixels, and restore the video adapter to
its starting mode. Two output ports control the video color palette. The value sent to port 3C8h indicates
which video palette entry you plan to change. Then the color values themselves are sent to port 3C9h.
Here is the program listing:

; Memory Mapped Graphics, Mode 13        (Mode13.asm)

INCLUDE Irvine16.inc

VIDEO_PALLETE_PORT = 3C8h
COLOR_SELECTION_PORT = 3C9h
COLOR_INDEX = 1
PALLETE_INDEX_BACKGROUND = 0
SET_VIDEO_MODE = 0
GET_VIDEO_MODE = 0Fh
VIDE0_SEGMENT = 0A000h
WAIT_FOR_KEYSTROKE = 10h
MODE_13 = 13h

.data
saveMode BYTE ? ; saved video mode
xVal     WORD ? ; x-coordinate
yVal     WORD ? ; y-coordinate
msg      BYTE "Welcome to Mode 13!",0

.code
main PROC

mov  ax,@data
mov  ds,ax

call  SetVideoMode
call  SetScreenBackground

; Display a greeting message.

mov  edx,OFFSET msg
call  WriteString

call  Draw_Some_Pixels
call  RestoreVideoMode
exit

main ENDP

Red Green Blue Color

0 30 30 cyan

30 30 0 yellow

30 0 30 magenta

40 0 63 lavender
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;------------------------------------------------
SetScreenBackground PROC
;
; Sets the screen's background color. Video
; palette index 0 is the background color.
;------------------------------------------------

mov dx,VIDEO_PALLETE_PORT
mov al,PALLETE_INDEX_BACKGROUND
out dx,al

; Set the screen background color to dark blue.

mov dx,COLOR_SELECTION_PORT
mov al,0 ; red
out dx,al
mov al,0 ; green
out dx,al
mov al,35 ; blue (intensity 35/63)
out dx,al

ret
SetScreenBackground endp

;-----------------------------------------------
SetVideoMode PROC
;
; Saves the current video mode, switches to a
; new mode, and points ES to the video segment.
;-----------------------------------------------

mov ah,GET_VIDEO_MODE
int 10h
mov saveMode,al ; save it

mov ah,SET_VIDEO_MODE
mov al,MODE_13 ; to mode 13h
int 10h

push VIDE0_SEGMENT ; video segment address
pop es              ; ES points to video segment

ret
SetVideoMode ENDP

;---------------------------------------------
RestoreVideoMode PROC
;
; Waits for a key to be pressed and restores
; the video mode to its original value.
;----------------------------------------------

mov ah,WAIT_FOR_KEYSTROKE
int 16h
mov ah,SET_VIDEO_MODE   ; reset video mode
mov al,saveMode   ; to saved mode
int 10h
ret

RestoreVideoMode ENDP

;-----------------------------------------------
Draw_Some_Pixels PROC
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;
; Sets individual palette colors and draws 
; several pixels.
;------------------------------------------------

; Change the color at index 1 to white (63,63,63).

mov dx,VIDEO_PALLETE_PORT
mov al,1 ; set palette index 1
out dx,al

mov dx,COLOR_SELECTION_PORT
mov al,63 ; red
out dx,al
mov al,63 ; green
out dx,al
mov al,63 ; blue
out dx,al

; Calculate the video buffer offset of the first pixel.
; Method is specific to mode 13h, which is 320 X 200.

mov xVal,160 ; middle of screen
mov yVal,100
mov ax,320 ; 320 for video mode 13h
mul yVal ; y-coordinate
add ax,xVAl ; x-coordinate

; Place the color index into the video buffer.

mov cx,10 ; draw 10 pixels
mov di,ax ; AX contains buffer offset

; Draw the pixels now. By default, the assembler assumes 
; DI is an offset from the segment address in DS. The 
; segment override ES:[DI] tells the CPU to use the segment 
; address in ES instead. ES currently points to VRAM.

DP1:
mov BYTE PTR es:[di],COLOR_INDEX
add di,5 ; move 5 pixels to the right
loop DP1

ret
Draw_Some_Pixels ENDP
END main

This program is fairly easy to implement because the pixels happen to be on the same screen line.
To draw a vertical line, on the other hand, you could add 320 to each value of DI to move to the next
row of pixels. Or, a diagonal line with slope �1 could be drawn by adding 321 to DI. Drawing arbi-
trary lines between any two points is best handled by Bresenham’s Algorithm, which is well-
explained on many web sites.

16.5.3 Section Review
1. (True/False): Video mode 13h maps screen pixels as a two-dimensional array of bytes, where each

byte corresponds to two pixels.

2. (True/False): In video mode 13h, each screen row uses 320 bytes of storage.
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3. In one sentence, explain how video mode 13h sets the colors of pixels.

4. How is the color index used in video mode 13h?

5. In video mode 13h, what is contained in each element of the color palette?

6. What are the three RGB values for dark gray?

7. What are the three RGB values for white?

8. What are the three RGB values for bright red?

9. Challenge: Show how to set the screen background color in video mode 13h to green.

10. Challenge: Show how to set the screen background color in video mode 13h to white.

16.6 Mouse Programming
The mouse is usually connected to the computer’s motherboard through a PS-2 mouse port, RS-232
serial port, USB port, or wireless connection. Before detecting the mouse, MS-DOS requires a device
driver program to be installed. MS-Windows also has built-in mouse drivers, but for now we will con-
centrate on functions provided by MS-DOS.

Mouse movements are tracked in a unit of measure called mickeys (guess how they came up with
that name?). One mickey represents approximately 1/200 inch of physical mouse travel. The mick-
eys-to-pixels ratio can be set for the mouse, which defaults to 8 mickeys for each 8 horizontal pixels
and 16 mickeys for each 8 vertical pixels.3 There is also a double-speed threshold, which defaults to
64 mickeys per second.

16.6.1 Mouse INT 33h Functions
INT 33h provides information about the mouse, including its current position, last button clicked,
speed, and so on. You can also use it to display or hide the mouse cursor. In this section, we cover a
few of the more essential mouse functions. INT 33h receives the function number in the AX register
rather than AH (which is the norm for BIOS interrupts).

Reset Mouse and Get Status
INT 33h Function 0 resets the mouse and confirms that it is available. The mouse (if found) is centered
on the screen, its display page is set to video page 0, its pointer is hidden, and its mickeys-to-pixels
ratios and speed are set to default values. The mouse’s range of movement is set to the entire screen
area. Details are shown in the following table:

INT 33h Function 0

Description Reset mouse and get status

Receives AX � 0

Returns
If mouse support is available AX � FFFFh and BX � number of mouse buttons;
otherwise, AX � 0.

Sample Call mov  ax,0
int  33h
cmp  ax,0
je   MouseNotAvailable
mov  numberOfButtons,bx

Notes If the mouse was visible before this call, it is hidden by this function.
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Showing and Hiding the Mouse Pointer
INT 33h Functions 1 and 2, shown in the next two tables, display and hide the mouse pointer, respec-
tively. The mouse driver keeps an internal counter, which is incremented (if nonzero) by calls to
Function 1 and decremented by calls to Function 2. When the counter is non-negative, the mouse
pointer is displayed. Function 0 (reset mouse pointer) sets the counter to �1.

Get Mouse Position and Status
INT 33h Function 3 gets the mouse position and mouse status, shown in the following table: 

INT 33h Function 1

Description Show mouse pointer

Receives AX � 1

Returns Nothing

Sample Call mov  ax,1
int  33h

Notes The mouse driver keeps a count of the number of times this function is called. Adds
1 to its internal show/hide counter.

INT 33h Function 2

Description Hide mouse pointer 

Receives AX � 2

Returns Nothing

Sample Call mov  ax,2
int  33h

Notes The mouse driver continues to track the mouse position. Subtracts 1 from its internal
show/hide counter.

INT 33h Function 3

Description Get mouse position and status

Receives AX � 3

Returns BX � mouse button status
CX � X-coordinate (in pixels)
DX � Y-coordinate (in pixels)

Sample Call mov   ax,3
int   33h
test  bx,1
jne   Left_Button_Down
test  bx,2
jne   Right_Button_Down
test  bx,4
jne   Center_Button_Down
mov   Xcoord,cx
mov   yCoord,dx

Notes The mouse button status is returned in BX as follows: If bit 0 is set, the left button is
down; if bit 1 is set, the right button is down; if bit 2 is set, the center button is down.
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Converting Pixel to Character Coordinates Standard text fonts in MS-DOS are 8 pixels wide
and 16 pixels high, so you can convert pixel coordinates to character coordinates by dividing the
former by the character size. Assuming that both pixels and characters start numbering at zero, the fol-
lowing formula converts a pixel coordinate P to a character coordinate C, using character dimension D:

C = int(P / D) 

For example, let’s assume that characters are 8 pixels wide. If the X-coordinate returned by INT 33
Function 3 was 100 (pixels), the coordinate would fall within character position 12: C � int(100 / 8). 

Set Mouse Position
INT 33h Function 4, shown in the following table, moves the mouse position to specified X and Y
pixel coordinates.

Converting Character to Pixel Coordinates You can convert a screen character coordinate to a 
pixel coordinate using the following formula, where C � character coordinate, P � pixel coordinate, 
and D � character dimension:

P � C � D

In the horizontal direction, P will be the pixel coordinate of the left side of the character cell. In the
vertical direction, P will be the pixel coordinate of the top of the character cell. If characters are 8 pix-
els wide, and you want to put the mouse in character cell 12, for example, the X-coordinate of the
leftmost pixel of that cell is 96.

Get Button Presses and Releases
Function 5 returns the status of all mouse buttons, as well as the position of the last button press. In an
event-driven programming environment, a drag event always begins with a button press. Once a call
is made to this function for a particular button, the button’s state is reset, and a second call to the func-
tion returns nothing:

INT 33h Function 4

Description Set mouse position

Receives AX � 4
CX � X-coordinate (in pixels)
DX � Y-coordinate (in pixels)

Returns Nothing

Sample Call mov  ax,4
mov  cx,200               ; X-position
mov  dx,100               ; Y-position
int  33h

Notes If the position lies within an exclusion area, the mouse is not displayed.

INT 33h Function 5

Description Get button press information

Receives AX = 5
BX = button ID (0 = left, 1 = right, 2 = center)

Returns AX = button status
BX = button press counter
CX = X-coordinate of last button press
DX = Y-coordinate of last button press
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Function 6 gets button release information from the mouse, as shown in the following table. In
event-driven programming, a mouse click event occurs when a mouse button is released. Similarly, a
drag event ends when the mouse button is released.

Setting Horizontal and Vertical Limits
INT 33h Functions 7 and 8, as illustrated in the next two tables, let you set limits on where the mouse
pointer can go on the screen. You do this by setting minimum and maximum coordinates for the
mouse cursor. If necessary, the mouse pointer is moved so it lies within the new limits.

Sample Call mov  ax,5
mov  bx,0             ; button ID
int  33h
test ax,1             ; left button down?
jz   skip             ; no - skip
mov  X_coord,cx       ; yes: save coordinates
mov  Y_coord,dx

Notes The mouse button status is returned in AX as follows: If bit 0 is set, the left button is
down; if bit 1 is set, the right button is down; if bit 2 is set, the center button is down.

INT 33h Function 6

Description Get button release information

Receives AX � 6
BX � button ID (0 � left, 1 � right, 2 � center)

Returns AX � button status
BX � button release counter
CX � X-coordinate of last button release
DX � Y-coordinate of last button release

Sample Call mov  ax,6
mov  bx,0             ; button ID
int  33h
test ax,1             ; left button released?
jz   skip             ; no - skip
mov  X_coord,cx       ; yes: save coordinates
mov  Y_coord,dx

Notes The mouse button status is returned in AX as follows: If bit 0 is set, the left button
was released; if bit 1 is set, the right button was released; if bit 2 is set, the center
button was released.

INT 33h Function 7

Description Set horizontal limits

Receives AX � 7
CX � minimum X-coordinate (in pixels)
DX � maximum X-coordinate (in pixels)

Returns Nothing

INT 33h Function 5
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Miscellaneous Mouse Functions
A number of other INT 33h functions are useful for configuring the mouse and controlling its behav-
ior. We don’t have the space to elaborate on these functions, but they are listed in Table 16-8. 

Sample Call mov  ax,7
mov  cx,100          ; set X-range to 
mov  dx,700          ; (100,700)
int  33h

INT 33h Function 8

Description Set vertical limits

Receives AX � 8
CX � minimum Y-coordinate (in pixels)
DX � maximum Y-coordinate (in pixels)

Returns Nothing

Sample Call mov  ax,8
int  33h
mov  cx,100         ; set Y-range to 
mov  dx,500         ; (100,500)
int  33h

Table 16-8  Miscellaneous Mouse Functions.

Function Description Input/Output Parameters

AX � 0Fh Sets the number of mickeys per 8 pixels for
horizontal and vertical mouse motion.

Receives: CX � horizontal mickeys, DX � vertical
mickeys. The defaults are CX � 8, DX � 16.

AX � 10h Set mouse exclusion area (prevents mouse
from entering a rectangle).

Receives: CX, DX � X, Y coordinates of upper
left corner. SI, DI � X, Y coordinates of lower
right corner

AX � 13h Set double speed threshold. Receives: DX � threshold speed in mickeys per
second (the default is 64)

AX � 1Ah Set mouse sensitivity and threshold. Receives: BX � horizontal speed (mickeys per
second), CX � vertical speed (mickeys per sec-
ond), DX � double speed threshold in mickeys
per second

AX � 1Bh Get mouse sensitivity and threshold. Returns: BX � horizontal speed, CX � vertical
speed, DX � double speed threshold 

AX � 1Fh Disable mouse driver. Returns: If unsuccessful, AX � FFFFh

AX � 20h Enable mouse driver. None

AX � 24h Get mouse information. Returns FFFFh on error; otherwise, returns: BH �
major version number, BL � minor version number,
CH � mouse type (1 � bus, 2 � serial, 3 �

InPort, 4 � PS/2, 5 � HP); CL � IRQ number (0
for PS/2 mouse)

INT 33h Function 7
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16.6.2 Mouse Tracking Program
We’ve written a simple mouse tracking program that tracks the movement of the text mouse cursor.
The X and Y coordinates are continually updated in the lower-right corner of the screen, and when the
user presses the left button, the mouse’s position is displayed in the lower left corner of the screen.
Following is the source code:

TITLE Tracking the Mouse                      (mouse.asm)

; Demonstrates basic mouse functions available via INT 33h.
; In Standard DOS mode, each character position in the DOS
; window equals 8 mouse units.

INCLUDE Irvine16.inc

GET_MOUSE_STATUS = 0
SHOW_MOUSE_POINTER = 1
HIDE_MOUSE_POINTER = 2
GET_CURSOR_SIZE = 3
GET_BUTTON_PRESS_INFO = 5
GET_MOUSE_POSITION_AND_STATUS = 3
ESCkey = 1Bh

.data
greeting    BYTE "[Mouse.exe] Press Esc to quit",0
statusLine  BYTE "Left button: "
            BYTE "Mouse position: ",0
blanks      BYTE "                ",0
xCoord WORD 0 ; current X-coordinate
yCoord WORD 0 ; current Y-coordinate
xPress WORD 0 ; X-coord of last button press
yPress WORD 0 ; Y-coord of last button press

; Display coordinates.
statusRow      BYTE ?
statusCol      BYTE 15
buttonPressCol BYTE 20
statusCol2     BYTE 60
coordCol       BYTE 65

.code
main PROC

mov ax,@data
mov ds,ax
call Clrscr

; Get the screen X/Y coordinates.
call GetMaxXY ; DH = rows, DL = columns
dec dh ; calculate status row value
mov statusRow,dh

; Hide the text cursor and display the mouse.
call HideCursor
mov dx,OFFSET greeting
call WriteString
call ShowMousePointer

; Display status information on the bottom screen line.
mov dh,statusRow
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mov dl,0
call Gotoxy
mov dx,OFFSET statusLine
call Writestring

; Loop: show mouse coordinates, check for left mouse
; button press or keypress (Esc key).

L1: call ShowMousePosition
call LeftButtonPress ; check for button press
mov ah,11h ; key pressed already?
int 16h
jz L2          ; no, continue the loop
mov ah,10h ; remove key from buffer
int 16h
cmp al,ESCkey   ; yes. Is it the ESC key?
je quit        ; yes, quit the program

L2: jmp L1 ; no, continue the loop

; Hide the mouse, restore the text cursor, clear
; the screen, and wait for a key press.
quit:

call HideMousePointer
call ShowCursor
call Clrscr
call WaitMsg
exit

main ENDP

;---------------------------------------------------------
GetMousePosition PROC USES ax
;
; Gets the current mouse position and button status.
; Receives: nothing
; Returns:  BX = button status (0 = left button down,
;           (1 = right button down, 2 = center button down)
;           CX = X-coordinate
;           DX = Y-coordinate
;---------------------------------------------------------

mov ax,GET_MOUSE_POSITION_AND_STATUS
int 33h
ret

GetMousePosition ENDP

;---------------------------------------------------------
HideCursor PROC USES ax cx
;
; Hide the text cursor by setting its top line
; value to an illegal value.
; Receives: nothing. Returns: nothing
;---------------------------------------------------------

mov ah,GET_CURSOR_SIZE
int 10h
or ch,30h ; set upper row to illegal value
mov ah,1 ; set cursor size
int 10h
ret

HideCursor ENDP
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;---------------------------------------------------------
ShowCursor PROC USES ax cx
;
; Show the text cursor by setting size to default.
; Receives: nothing. Returns: nothing
;---------------------------------------------------------

mov ah,GET_CURSOR_SIZE
int 10h
mov ah,1 ; set cursor size
mov cx,0607h ; default size
int 10h
ret

ShowCursor ENDP

;---------------------------------------------------------
HideMousePointer PROC USES ax
;
; Hides the mouse pointer. 
; Receives: nothing. Returns: nothing
;---------------------------------------------------------

mov ax,HIDE_MOUSE_POINTER
int 33h
ret

HideMousePointer ENDP

;---------------------------------------------------------
ShowMousePointer PROC USES ax
;
; Makes the mouse pointer visible.
; Receives: nothing. Returns: nothing
;---------------------------------------------------------

mov ax,SHOW_MOUSE_POINTER ; make mouse cursor visible
int 33h
ret

ShowMousePointer ENDP

;---------------------------------------------------------
LeftButtonPress PROC
;
; Checks for the most recent left mouse button press
; and displays the mouse location.
; Receives: nothing. Returns: nothing
;---------------------------------------------------------

pusha
mov ax,GET_BUTTON_PRESS_INFO
mov bx,0 ; specify the left button
int 33h

; Exit proc if the coordinates have not changed.
cmp cx,xPress ; same X coordinate?
jne L1 ; no: continue
cmp dx,yPress ; same Y coordinate?
je L2 ; yes: exit

; Coordinates have changed, so save them.
L1: mov xPress,cx

mov yPress,dx
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; Position the cursor, clear the old numbers.
mov dh,statusRow ; screen row
mov dl,statusCol ; screen column
call Gotoxy
push dx
mov dx,OFFSET blanks
call WriteString
pop dx

; Show coordinates where mouse button was pressed.
call Gotoxy
mov ax,xCoord
call WriteDec
mov dl,buttonPressCol
call Gotoxy
mov ax,yCoord
call WriteDec

L2: popa
ret

LeftButtonPress ENDP

;---------------------------------------------------------
SetMousePosition PROC
;
; Set the mouse's position on the screen.
; Receives: CX = X-coordinate
;           DX = Y-coordinate
; Returns:  nothing
;---------------------------------------------------------

mov ax,4
int 33h
ret

SetMousePosition ENDP

;---------------------------------------------------------
ShowMousePosition PROC
;
; Get and show the mouse coordinates at the
; bottom of the screen.
; Receives: nothing
; Returns:  nothing
;---------------------------------------------------------

pusha
call GetMousePosition

; Exit proc if the coordinates have not changed.
cmp cx,xCoord ; same X coordinate?
jne L1 ; no: continue
cmp dx,yCoord ; same Y coordinate?
je L2 ; yes: exit

; Save the new X and Y coordinates.
L1: mov xCoord,cx

mov yCoord,dx
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; Position the cursor, clear the old numbers.
mov dh,statusRow ; screen row
mov dl,statusCol2 ; screen column
call Gotoxy
push dx
mov dx,OFFSET blanks
call WriteString
pop dx

; Show the mouse coordinates.
call Gotoxy
mov ax,xCoord
call WriteDec
mov dl,coordCol ; screen column
call Gotoxy
mov ax,yCoord
call WriteDec

L2: popa
ret

ShowMousePosition ENDP
END main

Varying Behaviors The program’s behavior changes a bit depending on two factors: (1) which ver-
sion of MS-Windows you’re running and (2) whether you run it in a console window or full-screen
mode. In Windows XP and beyond, for example, the console window defaults to 50 vertical text lines.
When you run in full-screen mode, the mouse cursor is a solid block; its coordinates appear to change
one pixel at a time, whereas the mouse cursor jumps from one character to the next only when you
have moved horizontally by 8 pixels or vertically by 16 pixels. In console window mode, the mouse
cursor is a pointer; its coordinates change 8 pixels at a time horizontally and 16 pixels at a time
vertically.

16.6.3 Section Review
1. Which INT 33h function resets the mouse and gets the mouse status?

2. Write ASM statements that reset the mouse and get the mouse status.

3. Which INT 33h function shows and hides the mouse pointer?

4. Write ASM statements that hide the mouse pointer.

5. Which INT 33h function gets the mouse position and status?

6. Write ASM statements that get the mouse position and store it in the variables mouseX and mouseY.

7. Which INT 33h function sets the mouse position?

8. Write ASM statements that set the mouse pointer to X = 100 and Y = 400.

9. Which INT 33h function gets mouse button press information?

10. Write ASM statements that jump to label Button1 when the left mouse button has been pressed.

11. Which INT 33h function gets mouse button release information?

12. Write ASM statements that get the mouse position at the point when the right button was released, and
store the position in the variables mouseX and mouseY.

13. Write ASM statements that set the vertical limits of the mouse to 200 and 400.

14. Write ASM statements that set the horizontal limits of the mouse to 300 and 600.
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15. Challenge: Suppose you want the mouse pointer to point to the upper left corner of the character cell
located at row 10, column 20 in text mode. What X and Y values will you have to pass to INT 33h
Function 4, assuming 8 horizontal pixels per character and 16 vertical pixels per character?

16. Challenge: Suppose you want the mouse pointer to point to the middle of the character cell located at
row 15, column 22 in text mode. What X and Y values will you have to pass to INT 33h Function 4,
assuming 8 horizontal pixels per character and 16 vertical pixels per character?

17. Challenge: Who invented the computer mouse, in what year, and at what location?

16.7 Chapter Summary
Working at the BIOS level gives you more control over the computer’s input–output devices than you
would have at the MS-DOS level. This chapter shows how to program the keyboard using INT 16h,
the video display using INT 10h, and the mouse, using INT 33h.

INT 16h is particularly useful for reading extended keyboard keys such as function keys and cursor
arrow keys.

Keyboard hardware works with the INT 9h, INT 16h, and INT 21h handlers to make keyboard
input available to programs. The chapter contains a program that polls the keyboard and breaks out of
a loop when the Esc key is pressed.

Colors are produced on the video display using additive synthesis of primary colors. The color bits
are mapped to the video attribute byte.

A wide range of useful INT 10h functions can control the video display at the BIOS level.
The chapter contains an example program that scrolls a color window and writes text in the
middle of it.

You can draw color graphics using INT 10h. The chapter contains two example programs that
show how to do this. A simple formula can be used to convert Cartesian coordinates to screen coordi-
nates (pixel locations).

An example program with documentation shows how to draw high-speed color graphics by writing
directly to video memory.

Numerous INT 33h functions manipulate and read the mouse. An example program tracks both
mouse movements and mouse button clicks.

For More Information Digging up information on BIOS functions is not easy because many of the
good reference books have gone out of print. Here are my favorites:

• Ralf, Brown, and Jim Kyle, PC Interrupts. A Programmer’s Reference to BIOS, DOS, and Third-
Party Calls, Addison-Wesley, 1991.

• Ray, Duncan. IBM ROM BIOS, Microsoft Press, 1998.
• Ray, Duncan. Advanced MS-DOS Programming, 2nd ed., Microsoft Press, 1988.
• Frank van, Gilluwe. The Undocumented PC: A Programmer’s Guide to I/O, CPUs, and Fixed

Memory Areas, Addison-Wesley, 1996. 
• Thom, Hogan. Programmer’s PC Sourcebook: Reference Tables for IBM PCs and Compatibles,

Ps/2 Systems, Eisa-Based Systems, Ms-DOS Operating System Through Version, Microsoft Press, 1991.
• Jim, Kyle. DOS 6 Developer's Guide, SAMS, 1993.
• Muhammad Ali, Mazidi, and Janice Gillispie Mazidi, The 80x86 IBM PC & Compatible Computers,

4th Ed.,Volumes. I and II, Prentice-Hall, 2002.

This book’s web site (www.asmirvine.com) has links to many additional sources of information,
including Ralf Brown’s current list of MS-DOS and BIOS interrupts.

www.asmirvine.com
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16.8 Programming Exercises
The following exercises must be done in real-address mode:

1. ASCII Table
Using INT 10h, display all 256 characters from the IBM Extended ASCII character set (inside back
cover of the book). Display 32 columns per line, with a space following each character.

2. Scrolling Text Window
Define a text window that is approximately three fourths of the size of the video display. Let the program
carry out the following actions, in sequence:

• Draw a string of random characters on the top line of the window. (You can call Random_range
from the Irvine16 library.)

• Scroll the window down one line.
• Pause the program for approximately 200 milliseconds. (You can call the Delay function from the

Irvine16 library.)
• Draw another line of random text.
• Continue scrolling and drawing until 50 lines have been displayed.

3. Scrolling Color Columns
Using the Scrolling Text Window exercise as a starting point, make the following changes:

• The random string should only have characters in columns 0, 3, 6, 9, . . ., 78. The other columns
should be blank. This will create the effect of columns as it scrolls downward.

• Each column should be in a different color.

4. Scrolling Columns in Different Directions
Using the Scrolling Text Window exercise as a starting point, make the following change: Before the
loop starts, randomly choose each column to scroll either up or down. It should continue in the same
direction for the duration of the program. Hint: Define each column as a separately scrolling window.

5. Drawing a Rectangle Using INT 10h
Using the pixel-drawing capabilities of INT 10h, create a procedure named DrawRectangle that
takes input parameters specifying the location of the upper left corner and the lower right corner, and
the color. Write a short test program that draws several rectangles of different sizes and colors.

6. Plotting a Function Using INT 10h
Using the pixel-drawing capabilities of INT 10h, plot the line determined by the equation Y = 2(X2).

7. Mode 13 Line
Modify the Memory-Mapped Graphics program in Section 16.5.2 so that it draws a single vertical line.

8. Mode 13, Multiple Lines
Modify the Memory-Mapped Graphics program in Section 16.5.2 so that it draws a series of 10 vertical
lines, each in a different color.

This program and its various enhancements were given a nickname by my assembly language stu-
dents based on a popular movie in which characters interact in a virtual world. (I can’t mention the
name of the movie here, but you will probably figure it out by the time you complete the program.)

★★

★★★

★★★

★★★★

★

★★★

★★★

★★★
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9. Box-Drawing Program
MS-DOS applications in the 1980s and early 1990s usually displayed boxes and frames using line-
drawing characters in text mode. This programming exercise will reproduce those techniques. Write a
procedure that draws a single-line frame anywhere on the screen. Use the following extended ASCII
codes from the table on the inside back cover of this book: C0h, BFh, B3h, C4h, D9h, and DAh. The
procedure’s only input parameter should be a pointer to a FRAME structure:

FRAME STRUCT
Left BYTE ? ; left side
Top  BYTE ? ; top line
Right BYTE ? ; right side
Bottom BYTE ? ; bottom line
FrameColor BYTE ? ; box color

FRAME ENDS

Write a program that tests your procedure, passing it pointers to various FRAME objects.

End Notes
1. A prime example is Michael Abrash, The Zen of Code Optimization, Coriolis Group Books, 1994.

2. You may have trouble running Pixel1.asm and Pixel2.asm under MS-Windows on computers having a relatively low
amount of video RAM. If this is a problem, switch to another mode or boot into pure MS-DOS mode.

★★★
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17.1 Introduction
This is a good chapter to read if you’re planning to be an engineer who works at the hardware level on
Intel processors. It’s also a good chapter if you want to understand the amazing things MS-DOS
experts were able to do with very limited resources a few years ago. It will give you some useful
background if you plan to become a systems-level programmer. It is a chapter on MS-DOS system
resources and programming. Here’s what we’re going to do:

• Show you how to get as much flexibility as possible from the .MODEL, .CODE, .STACK, and
related directives.

• Show you how to define segments from scratch, using explicit segment directives.

We recommend that you install an early version of Windows such as Windows 95 or Windows 98
to insure full compatibility with the programs in this chapter. You may want to use a software util-
ity to create a virtual machine on your computer, so you can experiment with this software.
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• Demonstrate a large memory model program that has multiple code and data segments.
• Explain the runtime structure of COM and EXE programs, including EXE headers.
• Map out the Program Segment Prefix (PSP) and show how you can find the MS-DOS environment string.
• Show you how to replace existing interrupt handlers with your own. We will demonstrate this by

writing a Ctrl-Break interrupt handler (also called an interrupt service routine, or ISR).
• Explain how hardware interrupts work and list the various interrupt request (IRQ) levels used by

the Intel 8259 Programmable Interrupt Controller (PIC).
• Write a terminate and stay resident (TSR) program that intercepts the Ctrl-Alt-Del key combination.

If you learn to do this, you can join the ranks of MS-DOS experts.
• Show how to write hardware data directly to output ports and how to use ports to monitor the status

of hardware, control the behavior of hardware, and read input data from hardware devices.

If you’ve been around experienced programmers for a few years, you’ve probably heard a lot of
the terms from the foregoing list. Notice how the old-time experts seem to drop terms like IRQ,
TSR, PSP, and 8259 into their conversations? Now you can find out what they’ve been talking
about.

17.2 Defining Segments
Programs written for the early versions of MASM had to create rather elaborate definitions for code,
data, and stack segments. Instructors all breathed a sigh of relief when simplified segment directives
(.code, .stack, .data) came along because they made the first week of class go much more smoothly. It
was also clear, however, that expert programmers would probably prefer flexibility over simplicity
and would stick with the traditional way of doing things. If you’ve reached this chapter (and under-
stood all preceding chapters), you are now ready to master the arcane details of explicit segment
directives. 

First, however, we’re going to explore the various ways the simplified directives can be used, just
in case they satisfy your needs.

17.2.1 Simplified Segment Directives
When you use the .MODEL directive, the assembler automatically defines DGROUP for your near
data segment. The segments in DGROUP form near data, which can normally be accessed directly
through DS or SS.

The .DATA and .DATA? directives both create a near data segment, which can be as large as
64Kb when running in real-address mode. It is placed in a special group identified as DGROUP,
which is also limited to 64Kb. When .FARDATA and .FARDATA? are used in the small and
medium memory models, the assembler creates far data segments named FAR_DATA and FAR_BSS,
respectively.

Identifying a Variable’s Segment Some BIOS and DOS functions require you to use a particular
segment register when passing argument data. You can assign a segment’s address to a segment register
using the SEG operator. The following, for example, sets DS to the segment containing farvar:

mov ax,SEG farvar
mov ds,ax

Code Segments Code segments are defined, as you know, by the .CODE directive. In a small
memory model program, the .CODE directive causes the assembler to generate a segment named
_TEXT. You can see this in the Segments and Groups section of a listing file:

_TEXT . . . . .16 Bit 0009  Word Public 'CODE'
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(This entry indicates that a 16-bit segment named _TEXT is 9 bytes long. It is aligned on an even
word boundary, it is a public segment, and its segment class is ‘CODE’.)

In medium, large, and huge model programs, each source code module is assigned a different seg-
ment name. The name consists of the module name followed by _TEXT. For example, in a program
named MyProg.asm that uses the .MODEL, LARGE directive, the listing file generates the following
code segment entry:

MYPROG_TEXT  . . . . .16 Bit 0009  Word Public 'CODE'

You can also declare multiple code segments within the same module, regardless of the
memory model. Do this by adding an optional segment name to the .CODE directive:

.code MyCode

Keep this in mind: If you call the book’s 16-bit link library procedures, your code must be located
inside a segment named _TEXT. The following excerpt, for example, would cause the linker to gen-
erate a fixup overflow message:

.code MyCode
mov dx,offset msg
call Writestring

Multiple Code Segment Program The following MultCode.asm program contains two code segments.
By not including the Irvine16.inc file, we can show you all the MASM directives being used in the program:

TITLE Multiple Code Segments      (MultCode.asm)

; This small model program contains multiple
; code segments.

.model small,stdcall

.stack 100h
WriteString PROTO

.data
msg1 db "First Message",0dh,0ah,0
msg2 db "Second Message",0dh,0ah,"$"

.code
main PROC

mov ax,@data
mov ds,ax

mov dx,OFFSET msg1
call WriteString ; NEAR call
call Display ; FAR call
.exit

main ENDP

.code OtherCode
Display PROC FAR

mov ah,9
mov dx,offset msg2
int 21h
ret

Display ENDP
END main

In the foregoing example, the _TEXT segment contains the main procedure, and the OtherCode seg-
ment contains the Display procedure. Notice that the Display procedure must have a FAR modifier to
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tell the assembler to generate the type of call instruction that saves both the current segment and offset on
the stack. For confirmation, we can see the names of the two code segments in the MultCode.lst listing file:

OtherCode . . . .16 Bit 0008  Word  Public 'CODE'
_TEXT . . . . . .16 Bit 0014  Word  Public 'CODE'

17.2.2 Explicit Segment Definitions
There are a few occasions when you may prefer to create explicit segment definitions. You may want
to define multiple data segments with extra memory buffers, for instance. Or, you may be linking your
program to an object library that uses its own proprietary segment names. Finally, you may be writing a
procedure to be called from a high-level language compiler that does not use Microsoft’s segment names. 

A program with explicit segment definitions has two tasks to perform: First, a segment register
(DS, ES, or SS) must be set to the location of each segment before it may be used. Second, the assem-
bler must be told how to calculate the offsets of labels within the correct segments. 

The SEGMENT and ENDS directives define the beginning and end of a segment, respectively. A
program may contain almost any number of segments, each with a unique name. Segments can also
be grouped together (combined). The syntax is

name SEGMENT [align] [combine] ['class']
statement-list

name ENDS

• name identifies the segment; it can be unique or it can be the name of an existing segment. 
• align can be BYTE, WORD, DWORD, PARA, or PAGE.
• combine can be PRIVATE, PUBLIC, STACK, COMMON, MEMORY, or AT address.
• class is an identifier enclosed in single quotes that is used when identifying a particular type of

segment such as CODE or STACK.

For example, here is how a segment called ExtraData could be defined:

ExtraData SEGMENT PARA PUBLIC 'DATA'
var1 BYTE 1
var2 WORD 2

ExtraData ENDS

Align Type 
When two or more segments are to be combined, their align types tell the linker how to align their
starting addresses. The default is PARA, which indicates that the segment must begin on an even
16-byte boundary. Here are examples of 20-bit hexadecimal addresses that fall on paragraph bound-
aries. Notice that the last digit is always zero:

0A150 81B30 07460

To create the specified alignment, the assembler inserts bytes at the end of any existing segment
until the correct starting address for the new segment is reached. The extra bytes are called slack
bytes. This only affects segments that are joined to an existing segment because the first segment in a
group always begins on a paragraph boundary. (Recall from Chapter 2 that segment addresses always
contain four implied low-order zero bits.) The following align types are available:

• The BYTE align type starts the segment on the next byte following the preceding segment.
• The WORD align type starts the segment at the next 16-bit boundary.
• DWORD starts the segment at the next 32-bit boundary. 
• PARA starts the segment at the next 16-byte boundary. 
• PAGE starts the segment at the next 256-byte boundary. 
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If a program will likely be run on an 8086 or 80286 processor, a WORD align type (or larger)
is best for data segments because the processors have a 16-bit data bus. Such processors always
move 2 bytes, the first of which has an even-numbered address. Therefore, a variable on an even
boundary requires one memory fetch, whereas a variable on an odd boundary requires two. An
x86 processor, on the other hand, fetches 32 bits at a time, and should use the DWORD align
type.

Combine Type 
A segment’s combine type tells the linker how to combine segments having the same name. The
default type is PRIVATE, indicating that such a segment will not be combined with any other segment. 

The PUBLIC and MEMORY combine types cause a segment to be combined with all other public
or memory segments by the same name; in effect, they become a single segment. The offsets of all
labels are adjusted so they are relative to the start of the same segment.

The STACK combine type resembles the PUBLIC type, in that all other stack segments will be
combined with it. MS-DOS automatically initializes SS to the start of the first segment that it finds
with a combine type of STACK; MS-DOS sets SP to the segment’s length (minus 1) when the pro-
gram is loaded. In an EXE program, there should be at least one segment with a STACK combine
type; otherwise, the linker displays a warning message. 

The COMMON combine type makes a segment begin at the same address as any other COMMON
segments with the same name. In effect, the segments overlay each other. All offsets are calculated
from the same starting address, and variables can overlap. 

The AT address combine type lets you create a segment at an absolute address; it is often used for
data whose location is predefined by the hardware or operating system. No variables or data may be
initialized, but you can create variable names that refer to specific offsets. For example,

bios SEGMENT AT 40h
  ORG 17h
  keyboard_flag  BYTE ? ; MS-DOS keyboard flag
bios ENDS

.code
mov ax,bios ; point to BIOS segment
mov ds,ax
and ds:keyboard_flag,7Fh ; clear high bit

In this example, a segment override (DS:) was required because keyboard_flag is not in the standard
data segment. We will explain segment overrides in Section 17.2.3.

Class Type
A segment’s class type provides another way of combining segments, in particular, those with different
names. The class type is a case-sensitive string enclosed in single quotes. Segments with the same
class type are loaded together, though they may be in a different order in the original program. One stan-
dard type, CODE, is recognized by the linker and should be used for segments containing instruc-
tions. You must include this type of label if you plan to use a debugger.

ASSUME Directive
The ASSUME directive tells the assembler how to calculate offsets of code and data labels at assem-
bly time. It is usually placed directly after the SEGMENT directive in the code segment. Its syntax
requires the name of a segment register, followed by a colon, followed by the name of a segment:

ASSUME segreg : segname
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ASSUME does not actually change the value of a segment register. That must be done at run time,
using instructions that assign segment values to segment registers. Your code may contain multiple
ASSUME directives. When a new one is encountered, the assembler modifies the way it calculates
addresses from that point on.

The following ASSUME tells the assembler to use DS as the default register for the data1 segment:

ASSUME ds:data1

The following statement associates CS with myCode and SS is associated with myStack:

ASSUME cs:myCode, ss:myStack

Example: Multiple Data Segments
Earlier in this section we showed a program having two code segments. Let’s now create a program
(MultData.asm) containing two data segments named data1 and data2. Both are declared with class
name DATA. The ASSUME directive associates DS with data1 and ES with data2:

ASSUME cs:cseg, ds:data1, es:data2, ss:mystack
data1 SEGMENT 'DATA'
data2 SEGMENT 'DATA'

The following is a complete program listing: 

TITLE Multiple Data Segments               (MultData.asm)

; This program shows how to explicitly declare
; multiple data segments.

cseg  SEGMENT 'CODE'
      ASSUME cs:cseg, ds:data1, es:data2, ss:mystack

main PROC
mov ax,data1 ; point DS to data1 segment
mov ds,ax
mov ax,SEG val2        ; point ES to data2 segment
mov es,ax

mov ax,val1 ; data1 segment assumed
mov bx,val2 ; data2 segment assumed

mov ax,4C00h ; exit program
int 21h

main ENDP
cseg  ENDS

data1 SEGMENT 'DATA'
val1  WORD 1001h

data1 ENDS

data2 SEGMENT 'DATA'
val2  WORD 1002h

data2 ENDS

mystack SEGMENT para STACK 'STACK'
BYTE 100h dup('S')

mystack ENDS
END main

Two ways of setting segment register values at run time were used. The first used a segment name (data1):

mov ax,data1 ; point DS to data1 segment
mov ds,ax
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The second method was to use the SEG operator to obtain the segment address of val2:

mov ax,SEG val2        ; point ES to data2 segment
mov es,ax

The listing file created by the assembler shows two variables val1 and val2 having the same values
(starting offsets) but different segment attributes:

Name                       Type  Value Attr
val1 . . . . . . . . . . . Word  0000  data1
val2 . . . . . . . . . . . Word  0000  data2

17.2.3 Segment Overrides  
A segment override is a one-byte prefix that makes the current instruction use a different segment reg-
ister from the one specified by the ASSUME directive when calculating the effective address. It can
be used, for example, to access a variable in a segment other than the one currently associated with
CS or DS: 

mov al,cs:var1   ; segment pointed to by CS
mov al,es:var2 ; segment pointed to by ES

It should be noted here that in real-address mode, you can place variables in the code segment. You
could never get away with that in protected mode!

The following instruction obtains the offset of a variable in a segment not currently ASSUME’d by
DS or ES:

mov bx,OFFSET AltSeg:var2

Multiple references to variables can be more easily handled by inserting an ASSUME to
temporarily change the default segment references: 

ASSUME ds:AltSeg ; use AltSeg for a while
mov ax,AltSeg 
mov ds,ax
mov al,var1
.
.
ASSUME ds:data ; use the default data segment
mov ax,data 
mov ds,ax

17.2.4 Combining Segments
Large programs should be divided into separate modules to simplify editing and debugging. Even
source code located in different modules can be combined into the same segment. Just use the same
segment name in each module and specify a PUBLIC combine type. That’s exactly what happens
when you link a 16-bit program with the book’s Irvine16 link library, using simplified segment
directives.

If you use a BYTE align type, each segment immediately follows the preceding one. If a WORD
align type is used, a segment will follow another segment at the next even word boundary. The align
type defaults to PARA, in which each segment follows at the next paragraph boundary. 

Program Example Let’s look at a two-module program containing one code segment (CSEG), one
data segment (DSEG), and one stack segment (SSEG). The main module contains all three segments;
CSEG and DSEG have a PUBLIC combine type. A BYTE align type is used for CSEG to avoid
creating a gap between code from the two modules.
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Main Module: TITLE Segment Example           (main module, Seg2.asm)

EXTRN var2:WORD, subroutine_1:PROC

cseg SEGMENT BYTE PUBLIC 'CODE'
ASSUME cs:cseg,ds:dseg, ss:sseg

main PROC
mov ax,dseg        ; initialize DS
mov ds,ax

mov ax,var1        ; local variable
mov bx,var2        ; external variable
call subroutine_1   ; external procedure

mov ax,4C00h ; exit to OS
int 21h

main ENDP
cseg ENDS

dseg SEGMENT WORD PUBLIC 'DATA' ; local data segment
var1 WORD 1000h

dseg ends

sseg SEGMENT STACK 'STACK' ; stack segment
BYTE 100h dup('S')

sseg ENDS
END main

Submodule: TITLE Segment Example           (submodule, Seg2a.ASM)

PUBLIC subroutine_1, var2

cseg SEGMENT BYTE PUBLIC 'CODE'
ASSUME cs:cseg, ds:dseg

subroutine_1 PROC ; called from MAIN
mov ah,9
mov dx,OFFSET msg
int 21h
ret

subroutine_1 ENDP
cseg ENDS

dseg SEGMENT WORD PUBLIC 'DATA'

var2 WORD 2000h ; accessed by MAIN
msg  BYTE 'Now in Subroutine_1'
     BYTE 0Dh,0Ah,'$'

dseg ENDS
END

Linkers have the option of creating a MAP file, which lists all segments in the program. The follow-
ing MAP file for this program shows one code segment, one data segment, and one stack segment:

Start  Stop   Length Name Class
00000H 0001BH 0001CH CSEG CODE
0001CH 00035H 0001AH DSEG DATA
00040H 0013FH 00100H SSEG STACK

Program entry point at 0000:0000
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17.2.5 Section Review
1. What is the purpose of the SEGMENT and ENDS directives?

2. What value does the SEG operator return?

3. Explain the function of the ASSUME directive.

4. In a segment definition, what are the possible align types?

5. In a segment definition, what are the possible combine types?

6. Which align type is most efficient for an x86 processor?

7. What is the purpose of the combine type in a segment definition?

8. How do you define a segment at an absolute address such as 40h?

9. What is the purpose of the class type option in a segment definition?

10. Write an instruction that uses a segment override.

11. In the following example, assume that segA begins at address 1A060h. What will be the starting
address of the third segment, also called segA?
segA SEGMENT COMMON
  var1  WORD  ?
  var2  BYTE  ?
segA ends

stack SEGMENT STACK
  BYTE 100h dup(0)
stack ends

segA SEGMENT COMMON
  var3  WORD  3000h
  var4  BYTE  40h
segA ends

17.3 Runtime Program Structure
An effective assembly language programmer needs to know a lot about MS-DOS. This section
describes command.com, the Program Segment Prefix, and the structure of COM and EXE programs.
The command.com program supplied with MS-DOS and Windows 95 and 98 is called the command
processor. From Windows 2000 onward, it is named cmd.exe. It interprets each command typed at a
prompt. The following sequence takes place when you type a command:

1. MS-DOS checks to see if the command is internal, such as DIR, REN, or DEL (delete). If it is, the
command is immediately executed by a memory-resident MS-DOS routine. 

2. MS-DOS looks for a matching file with an extension of COM. If the file is in the current directory,
it is executed. 

3. MS-DOS looks for a matching file with an extension of EXE. If the file is in the current directory,
it is executed. 

4. MS-DOS looks for a matching file with an extension of BAT. If the file is in the current direc-
tory, it is executed. A file with an extension of BAT is called a batch file, which is a text file
containing MS-DOS commands to be executed as if the commands had been typed at the
console.

5. If MS-DOS is unable to find a matching COM, EXE, or BAT file in the current directory, it
searches the first directory in the current path. If it fails to find a match there, it proceeds to the
next directory in the path, and continues this process until either a matching file is found or the
path search is exhausted.
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Application programs with extensions of COM and EXE are called transient programs. In gen-
eral, they are loaded into memory long enough to be executed; when they finish, the memory they
occupy is released. Transient programs can, if needed, leave a portion of their code in memory
when they exit; these are called memory-resident programs, or terminate and stay resident (TSR)
programs.

17.3.1 Program Segment Prefix
MS-DOS creates a special 256-byte block at the beginning of a program as it is loaded into memory
called the Program Segment Prefix. The structure of the Program Segment Prefix (PSP) is shown in
Table 17-1.

17.3.2 COM Programs
There are two types of transient programs, identified by their filename extension (COM or EXE). A
COM program is an unmodified binary image of a machine-language program. It is loaded into memory
by MS-DOS at the lowest available segment address, and a PSP is created at offset 0. The code, data,
and stack are stored in the same physical (and logical) segment. The program may be as large as 64K,
minus the size of the PSP and two reserved bytes at the end of the stack. As illustrated in the follow-
ing diagram, all segment registers are set to the base address of the PSP. The code area begins at offset
100h, and the data area immediately follows the code. The stack area is at the end of the segment
because MS-DOS initializes SP to FFFEh:

Let’s look at a simple program written in COM format. MASM requires a COM program to use
the tiny memory model. Also, the ORG directive must be used to set the starting location counter for

Table 17-1  The Program Segment Prefix (PSP).

Offset Comments

00–15 MS-DOS pointers and vector addresses

16–2B Reserved by MS-DOS

2C–2D Segment address of the current environment string

2E–5B Reserved by MS-DOS

5C–7F File control blocks 1 and 2, used mainly by pre-MS-DOS 2.0 programs

80–FF Default disk transfer area and a copy of the current MS-DOS command tail

PSP Data - - - - - - - - - - - - - - - - - - - - - - - - - Stack

0000

Code

0100 (FFFE)

CS,     DS,
ES,      SS

SP
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program code to offset 100h. This leaves 100h bytes available for the PSP, which occupies locations 0
through 0FFh:

TITLE Hello Program in COM format   (HelloCom.asm)

.model tiny

.code
org 100h       ; must be before main
main PROC

mov ah,9
mov dx,OFFSET hello_message
int 21h
mov ax,4C00h
int 21h

main ENDP

hello_message BYTE 'Hello, world!',0dh,0ah,'$'
END main

Variables are usually located after the main procedure because there is no separate segment for data.
If we put the data at the top of the program, the CPU would try to execute the data. An alternative is to
place a JMP instruction at the beginning that jumps over the data to the first actual instruction:

TITLE Hello Program in COM format      (HelloCom.asm)

.model tiny

.code
org 100h       ; must be before entry point
main proc

jmp start ; skip over the data
hello_message BYTE 'Hello, world!',0dh,0ah,'$'

start:
mov ah,9
mov dx,OFFSET hello_message
int 21h
mov ax,4C00h
int 21h

main ENDP
END main

The Microsoft linker requires the /T parameter to tell it to create a COM file rather than an EXE
file. COM programs are always smaller than their EXE counterparts—HelloCom.asm, for example, is
only 17 bytes long when stored on disk. When in memory, however, a COM program eats up an entire
64K memory segment, whether it needs the space or not. COM programs were not designed to run in
a multitasking environment.

17.3.3 EXE Programs
An EXE program is stored on disk with an EXE header followed by a load module containing the
program itself. The program header is not actually loaded into memory; instead, it contains information
used by MS-DOS to load and execute the program. 

When MS-DOS loads an EXE program, a program segment prefix (PSP) is created at the first
available address, and the program is placed in memory just above it. As MS-DOS decodes the program
header, it sets DS and ES to the program’s load address, also known as the Program Segment Prefix
(PSP). CS and IP are set to the entry point of the program code, from where the program begins executing.
SS is set to the beginning of the stack segment, and SP is set to the stack size. Here is a diagram showing
overlapping code, data, and stack segments:
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In this program, the code area is 20h bytes, the data area is 10h bytes, and the stack area is 100h bytes.

An EXE program may contain up to 65,535 segments, although it would be unusual to have that
many. If a program has multiple data segments, the programmer usually has to manually set DS or ES
to each new segment. 

Memory Usage
The amount of memory an EXE program uses is specified by its program header—in particular, the
values for the minimum and maximum number of paragraphs (16 bytes each) needed in memory follow-
ing the code area, to handle variables and the stack at run time. By default, the linker sets the maximum
value to 65,535 paragraphs, which is more memory than could be available under MS-DOS. When the
program is loaded, therefore, MS-DOS automatically allocates whatever memory is available.

The maximum allocation may be set when a program is linked, using the /CP option. This is
shown here for a program named prog1.obj. The number 1024 refers to the number of 16-byte para-
graphs, expressed in decimal:

 link16 /cp:1024 prog1;

The EXE header values can be modified after an EXE program is compiled, using the exehdr program
supplied with the Microsoft assembler. For example, the command to set the maximum allocation to
400h paragraphs (16,384 bytes) for a program named prog1.exe is 

exehdr prog1 /max 400

Exehdr can display important statistics about a program. Sample output is shown here describing the
prog1.exe program after it was linked with the maximum allocation set at 1024 paragraphs: 

PROG1 (Hex) (Dec)
EXE size (bytes)  876 2166
Minimum load size (bytes)  786 1926
Overlay number    0 0
Initial CS:IP 0000:0010 16
Initial SS:SP 0068:0100 256
Minimum allocation (para)   11 17
Maximum allocation (para)  400 1024
Header size (para)  20 32
Relocation table offset   1E 30
Relocation entries  1 1

EXE Header
The header area of an EXE program is used by MS-DOS to correctly calculate the addresses of seg-
ments and other components. The header contains information such as the following:

• A relocation table, containing addresses to be calculated when the program is loaded.
• The file size of the EXE program, measured in 512-byte units. 
• Minimum allocation: the minimum number of memory paragraphs to reserve following the pro-

gram code area. Some of this storage could be used for a runtime heap that holds dynamic data. 

(64K)

(64K)

(64K)Stack

Data

Code

00 20 30 130

Offset
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• Maximum allocation: the maximum number of paragraphs needed above the program. 
• Starting values to be given to the IP and SP registers.
• Displacement (measured in 16-byte paragraphs) of the stack and code segments from the begin-

ning of the load module.
• A checksum of all words in the file, used in catching data errors when loading the program into

memory.

17.3.4 Section Review
1. When a command is typed at the MS-DOS prompt, what happens if the command is not an internal

MS-DOS command?

2. Does MS-DOS look for BAT files before EXE files in the current directory when executing a command?

3. What are transient programs?

4. What is the name of the 256-byte area at the beginning of a transient program?

5. Where does a transient program keep the segment address of the current environment string?

6. What is a COM program?

7. Which memory model(s) are used by COM programs?

8. Which linker command-line switch is required when creating a COM program?

9. What is the memory limitation of a COM program?

10. When running, how efficient is a COM program’s use of memory?

11. How many program segments can a COM program contain?

12. What are the starting values of all segment registers in a COM program?

13. What is the purpose of the ORG directive?

14. When stored on disk, the two main parts of an EXE program are the header and the ________ module.

15. Where do DS and ES point when an EXE program is loaded?

16. What determines the amount of memory allocated to an EXE program?

17. What is the purpose of the exehdr program?

18. If you wanted to know the number of relocation entries in an EXE file, where would you look?

17.4 Interrupt Handling
In this section we discuss ways to customize the BIOS and MS-DOS by installing interrupt handlers
(interrupt service routines). As we saw in earlier chapters, the BIOS and MS-DOS contain interrupt
handlers that simplify input/output as well as basic system tasks. We saw many of these—the INT
10h routines for video manipulation, the INT 16h keyboard routines, the INT 21h MS-DOS services,
and so on. But an equally important part of the operating system is its set of interrupt handlers that
respond to hardware interrupts. MS-DOS allows you to replace any of these service routines with one
of your own. 

An interrupt handler might be written for a variety of reasons. You might want your program to
activate when a hot key is pressed, even when the user is running another application. Borland’s

Limitations: The interrupt handlers presented in this chapter work only when your computer is
booted to MS-DOS mode. You can do this using Windows 95 and 98, but not in any of the more
recent versions of Windows. The latter operating systems mask the system hardware from applica-
tion programs to achieve greater system stability and security. If the OS were to allow two simulta-
neously running programs to modify internal settings on the same hardware device, the results
would be unpredictable at best.
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SideKick, for example, was one of the first programs that was able to pop up a notepad or calcula-
tor whenever a special combination of hot keys was pressed. 

You can replace one of MS-DOS’s default interrupt handlers in order to provide more complete
services. For example, the divide by zero interrupt activates when the CPU tries to divide a number by
zero, but there is no standard way for a program to recover. 

You can replace the MS-DOS critical error handler or the Ctrl-Break handler with one of your
own. MS-DOS’s default critical error handler causes a program to abort and return to MS-DOS. Your
own handler could recover from an error and let the user continue to run the current application program.

A user-written interrupt service routine can handle hardware interrupts more effectively than MS-
DOS. For example, the PC’s asynchronous communication handler (INT 14h) performs no input/
output buffering. This means that an input character is lost if it is not copied from the port before
another character arrives. A memory-resident program can wait for an incoming character to gener-
ate a hardware interrupt, input the character from the port, and store it in a circular buffer. This frees
an application program from having to take valuable time away from other tasks to repeatedly check
the serial port.

Interrupt Vector Table The key to MS-DOS’s flexibility lies in the interrupt vector table located in
the first 1024 bytes of RAM (locations 0:0 through 0:03FF). Table 17-2 contains a short sample of
vector table entries. Each entry in the table (called an interrupt vector) is a 32-bit segment-offset
address that points to one of the existing service routines. 

On any given computer, the vector values will vary because of different versions of the BIOS and
MS-DOS. Each interrupt vector corresponds to an interrupt number. In the table, the address of the
INT 0 handler (divide by zero) is 02C1:5186h. The offset of any interrupt vector may be found by
multiplying its interrupt number by 4. Thus, the offset of the vector for INT 9h is 9 * 4, or 0024 hexadecimal.

Executing Interrupt Handlers An interrupt handler may be executed in one of two ways: (1) An
application program containing an INT instruction could cause a call to the routine, which is called a
software interrupt; (2) a hardware interrupt occurs when a hardware device (asynchronous port,
keyboard, timer, and so on) sends a signal to the Programmable Interrupt Controller chip.

17.4.1 Hardware Interrupts
A hardware interrupt is generated by the Intel 8259 Programmable Interrupt Controller (PIC), which
signals the CPU to suspend execution of the current program and execute an interrupt service routine.
For example, a keyboard character waiting at the input port would be lost if not saved by the CPU, or
characters received from the serial port would be lost if not for an interrupt-driven routine that stores
them in a buffer.

Table 17-2  Interrupt Vector Table Example.

Interrupt
Number

Offset Interrupt Vectors

00-03 0000 02C1:5186 0070:0C67 0DAD:2C1B 0070:0C67

04-07 0010 0070:0C67 F000:FF54 F000:837B F000:837B

08-0B 0020 0D70:022C 0DAD:2BAD 0070:0325 0070:039F

0C-0F 0030 0070:0419 0070:0493 0070:050D 0070:0C67

10-13 0040 C000:0CD7 F000:F84D F000:F841 0070:237D
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Occasionally, programs must disable hardware interrupts when performing sensitive operations on
segment registers and the stack. The CLI (clear interrupt flag) instruction disables interrupts, and the
STI (set interrupt flag) instruction enables interrupts.

IRQ Levels Interrupts can be triggered by a number of different devices on a PC, including those listed
in Table 17-3. Each device has a priority, based on its interrupt request level (IRQ). Level 0 has the highest
priority, and level 15 has the lowest. A lower-level interrupt cannot interrupt a higher-level one still in
progress. For instance, if communications port 1 (COM1) tried to interrupt the keyboard interrupt handler,
it would have to wait until the latter was finished. Also, two or more simultaneous interrupt requests are
processed according to their priority levels. The scheduling of interrupts is handled by the 8259 PIC. 

Let’s use the keyboard as an example: When a key is pressed, the 8259 PIC sends an INTR signal
to the CPU, passing it the interrupt number; if external interrupts are not currently disabled, the CPU
does the following, in sequence:

1. Pushes the Flags register on the stack. 
2. Clears the Interrupt flag, preventing any other hardware interrupts.
3. Pushes the current CS and IP on the stack.
4. Locates the interrupt vector table entry for INT 9 and places this address in CS and IP.

Next, the BIOS routine for INT 9 executes, and it does the following in sequence:

1. Reenables hardware interrupts so the system timer is not affected. 
2. Inputs a scan code from the keyboard port, attempts to convert it to an ASCII character, or assigns

an ASCII code equal to zero. It then stores the scan code and ASCII code in the keyboard buffer, a
32-byte circular buffer in the BIOS data area. 

Table 17-3  IRQ Assignments (ISA Bus).

IRQ Interrupt
Number

Description

0 8 System timer (18.2 times/second)

1 9 Keyboard

2 0Ah Programmable Interrupt Controller 

3 0Bh COM2 (serial port 2)

4 0Ch COM1 (serial port 1)

5 0Dh LPT2 (parallel port 2)

6 0Eh Floppy disk controller

7 0Fh LPT1 (parallel port 1)

8 70h CMOS real-time clock

9 71h (Redirected to INT 0Ah)

10 72h (Available) sound card

11 73h (Available) SCSI card

12 74h PS/2 mouse

13 75h Math coprocessor

14 76h Hard disk controller

15 77h (Available)
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3. Executes an IRET (interrupt return) instruction, which pops IP, CS, and the Flags register off the
stack. Control returns to the program that was executing when the interrupt occurred. 

17.4.2 Interrupt Control Instructions
The CPU has a flag called the Interrupt flag (IF) that controls the way the CPU responds to external
(hardware) interrupts. If the Interrupt flag is set (IF � 1), we say that interrupts are enabled; if the flag
is clear (IF � 0), then interrupts are disabled.

STI Instruction The STI instruction enables external interrupts. For example, the system responds to key-
board input by suspending a program in process and doing the following: It calls INT 9, which stores the
keystroke in a buffer and then returns to the current program. Normally, the Interrupt flag is enabled. Other-
wise, the system timer would not calculate the time and date properly, and input keystrokes would be lost.

CLI Instruction The CLI instruction disables external interrupts. It should be used sparingly—only
when a critical operation is about to be performed, one that cannot be interrupted. Suppose, for exam-
ple, your code was interrupted while in the process of changing the values of SS and SP. Your SS reg-
ister might point to a new stack segment, whereas your stack pointer has yet to be updated:

mov   ax,mystack   ; reset SS
mov   ss,ax
; INTERRUPTED HERE!!!
mov   sp,100h ; reset SP

To be on the safe side, disable interrupts by clearing the Interrupt flag (CLI), and enable interrupts
using STI:

cli                ; disable interrupts
mov   ax,mystack   ; reset SS
mov   ss,ax
mov   sp,100h      ; reset SP
sti                ; reenable interrupts

Interrupts should not be disabled for more than a few milliseconds at a time, or you may lose key-
strokes and slow down the system timer. When the CPU responds to an interrupt handler, other inter-
rupts are immediately disabled. MS-DOS and BIOS interrupt service routines reenable interrupts as
soon as they begin to execute.

17.4.3 Writing a Custom Interrupt Handler
One might ask why the interrupt vector table exists at all. We could, of course, call specific proce-
dures in ROM to process interrupts. The designers of the IBM-PC wanted to be able to make modifi-
cations and corrections to the BIOS routines without having to replace the ROM chips. By having an
interrupt vector table, it was possible to replace addresses in the interrupt vector table so they would
point to procedures in RAM. 

Each address in the interrupt vector table points to a procedure called an interrupt handler or inter-
rupt service routine (ISR). Application programs can replace an address in the table with a new one
that points to a new interrupt handler. For example, one could write a custom keyboard interrupt han-
dler. There would have to be a compelling reason to do so because of the effort involved. A more
likely alternative would be for an interrupt handler to directly call the default INT 9 keyboard to read
a keystroke from the keyboard port. Once the key was placed in the keyboard typeahead buffer, one
could manipulate its contents.

INT 21h Functions 25h and 35h make it possible to install interrupt handlers. Function 35h (get
interrupt vector) returns the segment-offset address of an interrupt vector. Call the function with the



17.4   Interrupt Handling 17.17

desired interrupt number in AL. The 32-bit vector is returned by MS-DOS in ES:BX. The following
statements would retrieve the INT 9 vector, for example:

.data
int9Save LABEL WORD
DWORD ?      ; store old INT 9 address here

.code
mov ah,35h      ; get interrupt vector
mov al,9        ; for INT 9
int 21h         ; call MS-DOS
mov int9Save,BX ; store the offset
mov int9Save+2,ES  ; store the segment

INT 21h Function 25h (set interrupt vector) lets you replace an existing interrupt handler with a
new handler. Call it with the interrupt number in AL and the segment-offset address of your own
interrupt handler in DS:DX. For example,

mov ax,SEG kybd_rtn ; keyboard handler
mov ds,ax ; segment
mov dx,OFFSET kybd_rtn ; offset
mov ah,25h             ; set Interrupt vector
mov al,9h              ; for INT 9h
int 21h 
.
.

kybd_rtn PROC       ; (new INT 9 interrupt handler begins here) 

Ctrl-Break Handler Example
If Ctrl-Break is pressed by the user when an MS-DOS program is waiting for input, control passes to
the default INT 23h interrupt handler procedure. The default Ctrl-Break handler terminates the cur-
rently running program. This can leave the current program in an unstable state because files might be
left open, memory not released, and so on. It is possible, however, to substitute your own code into
the INT 23h handler and prevent the program from halting. The following program installs a simple
Ctrl-Break handler:

TITLE Control-Break Handler             (Ctrlbrk.asm)

; This program installs its own Ctrl-Break handler and
; prevents the user from using Ctrl-Break (or Ctrl-C)
; to halt the program. The program inputs and echoes
; keystrokes until the Esc key is pressed.

INCLUDE Irvine16.inc

.data
breakMsg BYTE "BREAK",0
msg BYTE "Ctrl-Break demonstration."

BYTE  0dh,0ah
BYTE "This program disables Ctrl-Break (Ctrl-C). Press any"
BYTE  0dh,0ah
BYTE "keys to continue, or press ESC to end the program."
BYTE  0dh,0ah,0

.code
main PROC

mov ax,@data
mov ds,ax
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mov dx,OFFSET msg ; display greeting message
call Writestring

install_handler:
push ds          ; save DS
mov ax,@code    ; initialize DS to code segment
mov ds,ax
mov ah,25h      ; set interrupt vector
mov al,23h      ; for interrupt 23h
mov dx,OFFSET break_handler
int 21h
pop ds          ; restore DS

L1: mov ah,1        ; wait for a key, echo it
int 21h
cmp al,1Bh      ; ESC pressed?
jnz L1          ; no: continue

exit
main ENDP

; The following procedure executes when Ctrl-Break is 
; pressed. All registers must be preserved.

break_handler PROC
push ax
push dx
mov dx,OFFSET breakMsg
call WriteString
pop dx
pop ax
iret

break_handler ENDP
END main

The main procedure initializes the interrupt vector for INT 23h. The required input parameters for
INT 21h function 25h are

• AH = 25h
• AL = interrupt vector to be handled (23h)
• DS:DX = segment/offset address of the new Ctrl-Break handler

The program’s main loop simply inputs and echoes keystrokes until the Esc key is pressed. 

The break_handler procedure executes when Ctrl-Break is pressed; it displays a message by
calling WriteString and immediately returns to the calling program. When IRET (return from inter-
rupt) executes at the end of break_handler, control returns to the main program. Whichever MS-
DOS function was in progress when Ctrl-Break was pressed is restarted. In general, you can call any
MS-DOS interrupts from inside a Ctrl-Break handler. You must preserve all registers in an interrupt
handler.

You do not have to restore the INT 23h vector because MS-DOS automatically does it when a
program ends. The original vector is stored by MS-DOS at offset 000Eh in the program segment
prefix.

On some systems, you may have to press Ctrl-C rather than Ctrl-Break to activate the Ctrl-Break
handler message.
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17.4.4 Terminate and Stay Resident Programs
A terminate and stay resident (TSR) program is installed in memory and stays there until it is either
removed by special removal utility software or the computer is rebooted. A TSR remains dormant
until activated by some event such as pressing a key.

In the early days of TSRs, compatibility problems would arise when two or more programs
replaced the same interrupt vector. Older programs would make the vector point to their own program
and provide no forward chain to other programs using the same vector. Later, to remedy this problem,
TSR authors would save the existing vector for the interrupt they were replacing, and forward-chain
to the original interrupt handler after their own procedure was finished dealing with the interrupt.
This, of course, was an improvement over the old method, but it meant that the last TSR to be
installed automatically had top priority in handling the interrupt. It meant that users sometimes had to
be careful to load TSR programs in a particular order. When MS-DOS applications were widespread,
commercial programming tools existed to manage multiple memory-resident programs.

Keyboard Example
Suppose we write an interrupt service routine that can inspect each character typed at the keyboard
and store it at location 10B2:0020. To install the ISR, we fetch the current INT 9 vector from the
interrupt vector table, save it, and replace the table entry with the address of our ISR. 

When a keyboard key is pressed, a single byte is transferred by the keyboard controller to the com-
puter’s keyboard port, and a hardware interrupt is triggered. The 8259 PIC passes the interrupt number
to the CPU, and the latter jumps to the INT 9 address in the interrupt vector table, the address of our
ISR. Our procedure gets an opportunity to inspect the keyboard byte. When our keyboard handler
exits, it executes a jump to the original BIOS keyboard handler procedure.

This chaining process is shown in Fig. 17-1. The addresses are hypothetical. When the BIOS INT
9h routine finishes, the IRET instruction pops the Flags register from the stack and returns control to
the program that was executing when the character was pressed. 

Figure 17–1 Vectoring an interrupt.

17.4.5 Application: The No_Reset Program
A simple type of memory-resident program is one that prevents the system from being rebooted by
the Ctrl-Alt-Delete keys. Once our program is installed in memory, the system may only be rebooted
by pressing a special combination of keys: Ctrl-Alt-RightShift-Del. (The only other way to deactivate
the program is to turn off and restart the computer.) This program only works if you boot the com-
puter in MS-DOS. All recent versions of Microsoft Windows prevent a TSR program from intercept-
ing keyboard keys. 

The MS-DOS Keyboard Status Byte One bit of information we need before we start is the location
of the keyboard status byte kept by MS-DOS in low memory, shown in Fig. 17-2. Our program will

10B2:0020

(our program) (Bios INT 9
service routine)
.

.

.

IRET

.

.

.

jmp 0DAD:2BAD

Interrupt
vector table

(INT 9)

10B2:0020 0DAD:2BAD
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inspect this flag to see if the Ctrl, Alt, Del, and RightShift keys are held down. The keyboard status flag
is stored in RAM at location 0040:0017h. The label on the right side of the diagram shows what each
bit means when it equals 1. 

Figure 17–2 Keyboard status flag byte.

An additional keyboard status byte, located at 0040:0018, duplicates the preceding flags, except that
bit 3 shows when Ctrl-NumLock is currently active. 

Installing the Program The memory-resident code must be installed in memory before it will
work. From that point on, all keyboard input is filtered through the program. If the routine has any
bugs, the keyboard will probably lock up and require us to cold-start the machine. Keyboard interrupt
handlers are particularly hard to debug because we use the keyboard constantly when debugging programs.
Professionals who regularly write TSR programs usually invest in hardware-assisted debuggers that
maintain a trace buffer in protected memory. Often the most elusive bugs appear only when a program
is running in real time, not when you are single-stepping through it. Note: You must boot the computer
in MS-DOS mode before installing this program.

Program Listing In the following program listing, the installation code is located at the end
because it will not remain resident in memory. The resident portion, beginning with the label
int9_handler, is left in memory and pointed to by the INT 9h vector: 

TITLE Reset-Disabling program              (No_Reset.asm)

; This program disables the usual DOS reset command
; (Ctrl-Alt-Del), by intercepting the INT 9 keyboard
; hardware interrupt. It checks the shift status bits
; in the MS-DOS keyboard flag and changes any Ctrl-Alt-Del
; to Alt-Del. The computer can only be rebooted by
; typing Ctrl+Alt+Right shift+Del. Assemble, link,
; and convert to a COM program by including the /T
; command on the Microsoft LINK command line.
; Boot into pure MS-DOS mode before running this program.

.model tiny

.386

.code

1 1 1 1 1 11

7 6 5 4 3 2 1

1

0 (Bit position)

Insert mode on

Caps lock is on

Num lock is on

Scroll lock is on

ALT key held down

CTRL key held down

Left shift key held down

Right shift key held down
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rt_shift   EQU 01h ; Right shift key: bit 0
ctrl_key   EQU 04h ; CTRL key: bit 2
alt_key    EQU 08h ; ALT key: bit 3
del_key    EQU 53h ; scan code for DEL key
kybd_port  EQU 60h ; keyboard input port

ORG   100h       ; this is a COM program
start:

jmp   setup      ; jump to TSR installation

;   Memory-resident code begins here
int9_handler PROC FAR

sti               ; enable hardware interrupts
pushf ; save regs & flags
push es
push ax
push di

;   Point ES:DI to the DOS keyboard flag byte:
L1: mov ax,40h             ; DOS data segment is at 40h

mov es,ax
mov di,17h             ; location of keyboard flag
mov ah,es:[di]         ; copy keyboard flag into AH

;   Test for the CTRL and ALT keys:
L2: test ah,ctrl_key        ; CTRL key held down?

jz L5                 ; no: exit
test ah,alt_key         ; ALT key held down?
jz L5                 ; no: exit

;   Test for the DEL and Right-shift keys:
L3: in al,kybd_port       ; read keyboard port

cmp al,del_key         ; DEL key pressed?
jne L5                 ; no: exit
test ah,rt_shift        ; right shift key pressed?
jnz L5                 ; yes: allow system reset

L4: and ah,NOT ctrl_key    ; no: turn off bit for CTRL
mov es:[di],ah         ; store keyboard_flag

L5: pop di                 ; restore regs & flags
pop ax
pop es
popf
jmp cs:[old_interrupt9] ; jump to INT 9 routine

old_interrupt9 DWORD ?

int9_handler ENDP
end_ISR label BYTE

; --------------- (end of TSR program) ------------------
;   Save a copy of the original INT 9 vector, and set up
;   the address of our program as the new vector. Terminate
;   this program and leave the int9_handler procedure in memory.

setup:
mov ax,3509h        ; get INT 9 vector
int 21h
mov word ptr old_interrupt9,bx ; save INT 9 vector
mov word ptr old_interrupt9+2,es
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mov ax,2509h           ; set INT 9 vector
mov dx,offset int9_handler
int 21h

mov ax,3100h ; terminate and stay resident
mov dx,OFFSET end_ISR  ; point to end of resident code
shr dx,4 ; divide by 16
inc dx ; round upward to next paragraph
int 21h               ; execute MS-DOS function

END start

First let’s look at the instructions that install the program. At the label called setup, we call INT
21h Function 35h to get the current INT 9h vector, which is then stored in old_interrupt9. This is
done so the program will be able to forward-chain to the existing keyboard handler procedure. In the
same part of the program, INT 21h Function 25h sets interrupt vector 9h to the address of the resident
portion of this program. At the end of the program, the call to INT 21h Function 31h exits to MS-
DOS, leaving the resident program in memory. The function automatically saves everything from the
beginning of the PSP to the offset placed in DX. 

The Resident Program The memory-resident interrupt handler begins at the label named
int9_handler. It is executed every time a keyboard key is pressed. We reenable interrupts as soon as
the handler gets control because the 8259 PIC has automatically disabled interrupts:

int9_handler PROC far
    sti ; enable hardware interrupts
    pushf ; save registers and status flags
    (etc...)

Bear in mind that a keyboard interrupt often occurs while another program is executing. If we modi-
fied the registers or status flags here, we would cause unpredictable results in an application program. 

The following statements locate the keyboard flag byte stored at address 0040:0017 and copy it
into AH. The byte must be tested to see which keys are currently being held down:

L1: mov ax,40h ; MS-DOS data segment is at 40h
mov es,ax             
mov di,17h ; location of keyboard flag
mov ah,es:[di] ; copy keyboard flag into AH

The following statements check for both the Ctrl and Alt keys. If both are not currently held down,
we exit:

L2: test ah,ctrl_key ; CTRL key held down?
jz L5 ; no: exit
test ah,alt_key ; ALT key held down?
jz L5 ; no: exit

If the Ctrl and Alt keys are both held down, someone may be trying to boot the computer. To find
out which character was pressed, we input the character from the keyboard port and compare it to the
Del key:

L3: in al,kybd_port ; read keyboard port
cmp al,del_key ; Del key pressed?
jne L5 ; no: exit
test ah,rt_shift ; Right-Shift key pressed?
jnz L5 ; yes: allow system reset
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If the user has not pressed the Del key, we simply exit and let INT 9h process the keystroke. If the
Del key is held down, we know that Ctrl-Alt-Del was pressed; we only allow the system to be reset if
the user is also holding down the Right Shift key. Otherwise, the Ctrl key bit in the keyboard flag byte
is cleared, effectively disabling the user’s attempt to reboot the computer:

L4: and ah,NOT ctrl_key ; no: turn off bit for CTRL
mov es:[di],ah ; store keyboard_flag

Finally, we execute a far jump to the existing BIOS INT 9h routine, stored in the variable
old_interrupt9. This allows all normal keystrokes to be processed, which is vital to the computer’s
basic operation:

jmp cs:[old_interrupt9]  ; jump to INT 9 routine

17.4.6 Section Review
1. What default action is carried out by the critical error handler?

2. What is contained in each entry of the interrupt vector table?

3. At which address is the interrupt vector for INT 10h stored?

4. Which controller chip generates hardware interrupts?

5. Which instruction disables hardware interrupts?

6. Which instruction enables hardware interrupts?

7. Which IRQ level has the highest priority, 0 or 15?

8. Based on what you know about IRQ levels, if a program is in the process of creating a disk file and
you press a key on the keyboard, when do you think the key will be placed in the keyboard buffer—
before or after the file has been created?

9. When a key is pressed on the keyboard, which hardware interrupt is executed?

10. When an interrupt handler finishes, how does the CPU resume execution wherever it was before the
interrupt was triggered?

11. Which MS-DOS functions get and set interrupt vectors?

12. Explain the difference between an interrupt handler and a memory-resident program.

13. Describe a TSR program. 

14. How can a TSR program be removed from memory?

15. If a memory-resident program replaces one of the interrupt vectors, how can it still take advantage of
some functions in the interrupt’s existing handler?

16. Which MS-DOS function terminates a program and leaves part of the program resident in memory?

17. In the No_reset program, what key combination will actually boot the computer?

17.5 Hardware Control Using I/O Ports
x86 systems offer two types of hardware input–output: memory-mapped and port-based. When
memory-mapped I/O is used, a program can write data to a particular memory address, and the
data is transferred to the output device. Similarly, data can be read from an input device by copy-
ing data from a predefined memory address. The text video display is an example of a memory-
mapped device. When you place characters in the video segment, they immediately appear on the
display. 

Port-based I/O requires the IN and OUT instructions to read and write data to specific numbered
locations called ports. Ports are connections, or gateways, between the CPU and other devices, such
as the keyboard, speaker, modem, and sound card.
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17.5.1 Input–Output Ports
Each input–output port has a specific number between 0 and FFFFh. A port is used when controlling
the speaker, for example, by rapidly toggling the speaker cone in and out. You can communicate
directly with the asynchronous adapter through a serial port by setting the port parameters (baud rate,
parity, and so on) and by sending data through the port. 

The keyboard port is a good example of an input–output port. When a key is pressed, the keyboard
controller chip sends an 8-bit scan code to port 60h. The keystroke triggers a hardware interrupt,
which prompts the CPU to call INT 9 in the ROM BIOS. INT 9 inputs the scan code from the port,
looks up the key’s ASCII code, and stores both values in the keyboard input buffer. In fact, it would be
possible to bypass the operating system completely and read characters directly from port 60h.

In addition to ports that transfer data, most hardware devices have ports that let you monitor the
device status and control the device behavior.

IN and OUT Instructions The IN instruction inputs a byte, word, or doubleword from a port. Con-
versely, the OUT instruction outputs a value to a port. The syntax for both instructions is

IN accumulator,port
OUT port,accumulator

Port may be a constant in the range 0 to FFh, or it may be a value in DX between 0 and FFFFh. Accumulator
must be AL for 8-bit transfers, AX for 16-bit transfers, and EAX for 32-bit transfers. Examples are as follows:

in al,3Ch ; input byte from port 3Ch
out 3Ch,al ; output byte to port 3Ch
mov dx, portNumber ; DX can contain a port number
in ax,dx  ; input word from port named in DX
out dx,ax ; output word to the same port
in eax,dx ; input doubleword from port
out dx,eax ; output doubleword to same port

17.5.2 PC Sound Program
We can write a program that uses the IN and OUT instructions to generate sound through the PC’s
built-in speaker. The speaker control port (number 61h) turns the speaker on and off by manipulating
the Intel 8255 Programmable Peripheral Interface chip. To turn the speaker on, input the current
value in port 61h, set the lowest 2 bits, and output the byte back through the port. To turn off the
speaker, clear bits 0 and 1 and output the status again. 

The Intel 8253 Timer chip controls the frequency (pitch) of the sound being generated. To use it,
we send a value between 0 and 255 to port 42h. The Speaker Demo program shows how to generate
sound by playing a series of ascending notes:

TITLE Speaker Demo Program               (Spkr.asm)

; This program plays a series of ascending notes on
; an IBM-PC or compatible computer.

INCLUDE Irvine16.inc

speaker  EQU 61h ; address of speaker port
timer    EQU 42h ; address of timer port
delay1   EQU 500

Our sound program will not produce sound on a laptop computer if its speaker is directly con-
nected to the sound card rather than the speaker port (61h).
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delay2   EQU 0D000h ; delay between notes

.code
main PROC

in al,speaker ; get speaker status
push ax             ; save status
or al,00000011b   ; set lowest 2 bits
out speaker,al     ; turn speaker on
mov al,60          ; starting pitch

L2: out timer,al       ; timer port: pulses speaker

; Create a delay loop between pitches.

mov cx,delay1
L3: push cx ; outer loop

mov cx,delay2
L3a: ; inner loop

loop L3a
pop cx
loop L3
sub al,1           ; raise pitch
jnz L2             ; play another note

pop ax              ; get original status
and al,11111100b    ; clear lowest 2 bits
out speaker,al ; turn speaker off
exit

main ENDP
END main

First, the program turns the speaker on using port 61h by setting the lowest 2 bits in the speaker status byte:

or al,00000011b ; set lowest 2 bits
out speaker,al    ; turn speaker on

Then it sets the pitch by sending 60 to the timer chip:

mov al,60          ; starting pitch
L2: out timer,al       ; timer port: pulses speaker

A delay loop makes the program pause before changing the pitch again. The amount of delay will
vary between computers because of differing processor speeds. You may have to adjust the values of
delay1 and delay2:

mov cx,delay1
L3: push cx ; outer loop

mov cx,delay2
L3a: ; inner loop

loop L3a
pop cx
loop L3

After the delay, the program subtracts 1 from the period (1/frequency), which raises the pitch. The
new frequency is output to the timer when the loop repeats. This process continues until the frequency
counter in AL equals 0. Finally, the program pops the original status byte from the speaker port and
turns the speaker off by clearing the lowest 2 bits:

pop ax             ; get original status
and al,11111100b   ; clear lowest 2 bits
out speaker,al ; turn speaker off
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17.6 Chapter Summary
There are a few occasions when programmers need to create explicit segment definitions, particularly
when adapting to existing code libraries that use their own segment names. The SEGMENT and
ENDS directives define the beginning and end of a segment, respectively. When the segment being
defined is combined with another segment, its align type tells the linker how many bytes to skip. The
combine type tells the linker how to combine segments having the same name. A segment’s class type
provides yet another way of combining segments. Multiple segments may be combined by giving
them the same name and specifying a PUBLIC combine type. 

The ASSUME directive makes it possible for the assembler to calculate the offsets of labels and
variables at assembly time. A segment override prefix instructs the processor to use a different seg-
ment register from the default segment for the current instruction.

The MS-DOS command processor interprets each command typed at a command prompt. Pro-
grams with extensions of COM and EXE are called transient programs. They are loaded into memory
and executed, and then the memory they occupy is released. MS-DOS creates a special 256-byte
block at the beginning of a transient program named the Program Segment Prefix.

There are two types of transient programs, identified by the extension used: COM and EXE. A
COM program is an unmodified binary image of a machine-language program. An EXE program is
stored on disk with an EXE header followed by a load module containing the program itself. The
header area of an EXE program is used by MS-DOS to correctly calculate the addresses of segments
and other components. 

Interrupt handlers (interrupt service routines) simplify input/output as well as basic system tasks.
You can also replace the default interrupt handlers with your own code to provide more complete or
customized services. The interrupt vector table is located in the first 1024 bytes of RAM (locations
0:0 through 0:03FF). Each entry in the table is a 32-bit segment-offset address that points to an inter-
rupt service routine.

A hardware interrupt is generated by the 8259 Programmable Interrupt Controller (PIC), which
signals the CPU to suspend execution of the current program and execute an interrupt service routine.
Hardware interrupts allow important events in the background to be noticed by the CPU before essential
data are lost. Interrupts can be triggered by a number of different devices, each having a priority
based on its interrupt request level (IRQ).

The Interrupt flag controls the way the CPU responds to external (hardware) interrupts. If the
Interrupt flag is set, interrupts are enabled; if the flag is clear, interrupts are disabled. The STI (set
interrupt) instruction enables interrupts; the CLI (clear interrupt) instruction disables interrupts.

A terminate and stay resident (TSR) program leaves part of itself in memory. The most common
use for TSR programs is for installed interrupt handlers that remain in memory until the computer is
rebooted or the TSR is removed by a special uninstaller.

The No_reset program presented in this chapter is a TSR program that prevents the system from
being rebooted by the usual Ctrl-Alt-Delete keys. 

x86 systems offer two types of hardware input–output: memory-mapped and port-based. When
memory-mapped I/O is used, a program can write data to a particular memory address, and the data is
transferred to the output device. Port-based I/O requires the IN and OUT instructions to read and
write data to specific numbered locations called ports.

The speaker control port (number 61h) turns the speaker on and off by manipulating the Intel 8255
Programmable Peripheral Interface chip. The Speaker Demo program shows how to generate sound
by playing a series of ascending notes. 



587

A
MASM Reference

A.1 Introduction 
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A.5 MASM Directives 
A.6 Symbols 
A.7 Operators 
A.8 Runtime Operators 

A.1 Introduction
The Microsoft MASM 6.11 manuals were last printed in 1992, and consisted of three volumes:

• Programmers Guide
• Reference
• Environment and Tools

Unfortunately, the printed manuals have not been available for many years, but Microsoft sup-
plies electronic copies of the manuals (MS-Word files) in its Platform SDK package. The printed
manuals are definitely collectors’ items.

The information in this chapter was excerpted from Chapters 1 to 3 of the Reference manual,
with updates from the MASM 6.14 readme.txt file. The Microsoft license agreement supplied
with this book entitles the reader to a single copy of the software and accompanying documenta-
tion, which we have, in part, printed here. 

Syntax Notation Throughout this appendix, a consistent syntax notation is used. Words in all
capital letters indicate a MASM reserved word that may appear in your program in either upper-
case or lowercase letters. In the following example, DATA is a reserved word:

.DATA
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Words in italics indicate a defined term or category. In the following example, number refers to
an integer constant:

ALIGN [[ number ]]

When double brackets [[  ..  ]] surround an item, the item is optional. In the following example, text
is optional:

[[ text ]]

When a vertical separator | appears between items in a list of two or more items, you must select
one of the items. The following example indicates a choice between NEAR and FAR:

NEAR | FAR

An ellipsis (. . . ) indicates repetition of the last item in a list. In the next example, the comma
followed by an initializer may repeat multiple times:

[[ name ]] BYTE initializer [[ , initializer ]] . . . 

A.2 MASM Reserved Words

$ PARITY?

? PASCAL

@B QWORD

@F REAL4

ADDR REAL8

BASIC REAL10

BYTE SBYTE

C SDWORD

CARRY? SIGN?

DWORD STDCALL

FAR SWORD

FAR16 SYSCALL

FORTRAN TBYTE

FWORD VARARG

NEAR WORD

NEAR16 ZERO? 

OVERFLOW?

A.3 Register Names

AH CR0 DR1 EBX SI

AL CR2 DR2 ECX SP

AX CR3 DR3 EDI SS

BH CS DR6 EDX ST

BL CX DR7 ES TR3
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A.4 Microsoft Assembler (ML)
The ML program (ML.EXE) assembles and links one or more assembly language source files.
The syntax is

ML [[ options ]] filename [[ [[ options ]] filename ]] . . . [[ /link linkoptions ]]

The only required parameter is at least one filename, the name of a source file written in assem-
bly language. The following command, for example, assembles the source file AddSub.asm and
produces the object file AddSub.obj:

ML -c AddSub.asm

The options parameter consists of zero or more command-line options, each starting with a slash
(/) or dash (–). Multiple options must be separated by at least one space. Table A-1 lists the com-
plete set of command-line options. The command-line options are case sensitive.

Table A-1  ML Command-Line Options.

BP DH DS ESI TR4

BX DI DX ESP TR5

CH DL EAX FS TR6

CL DR0 EBP GS TR7

Option Action

/AT Enables tiny-memory-model support. Enables error messages for code constructs that
violate the requirements for .COM format files. Note that this is not equivalent to the
.MODEL TINY directive.

/Blfilename Selects an alternate linker.

/c Assembles only. Does not link.

/coff Generates an object file in Microsoft Common Object File Format. Usually required
for 32-bit assembly language, but not supported by the 64-bit assembler.

/Cp Preserves case of all user identifiers.

/Cu Maps all identifiers to uppercase. Not supported by the 64-bit assembler.

/Cx Preserves case in public and external symbols (default).

/Dsymbol [ [=value]] Defines a text macro with the given name. If value is missing, it is blank. Multiple
tokens separated by spaces must be enclosed in quotation marks.

/EP Generates a preprocessed source listing (sent to STDOUT). See /Sf.

/ERRORREPORT 
[NONE|PROMPT|
QUEUE|SEND]

If the assembler fails at runtime, send diagnostic information to Microsoft.

/Fhexnum Sets stack size to hexnum bytes (this is the same as /link /STACK:number). The value
must be expressed in hexadecimal notation. There must be a space between /F and
hexnum.

/Fefilename Names the executable file.

/Fl[[ filename]] Generates an assembled code listing. See /Sf.
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/Fm[[filename]] Creates a linker .MAP file.

/Fofilename Names an object file.

/FPi Generates emulator fixups for floating-point arithmetic (mixed-language only). Not
supported by the 64-bit assembler.

/Fr[[filename]] Generates a Source Browser .SBR file.

/FR[[filename]] Generates an extended form of a Source Browser .SBR file.

/Gc Specifies use of FORTRAN- or Pascal-style function calling and naming conventions.
Not supported by the 64-bit assembler.

/Gd Specifies use of C-style function calling and naming conventions. Not supported by
the 64-bit assembler.

/Gz Use STDCALL calling connections. Not supported by the 64-bit assembler.

/H number Restricts external names to number significant characters. The default is 31 characters.
Not supported by the 64-bit assembler.

/help Calls QuickHelp for help on ML.

/I pathname Sets path for include file. A maximum of 10 /I options is allowed.

/link Linker options and libraries.

/nologo Suppresses messages for successful assembly.

/omf Generate an OMF (Microsoft Object Module Format) file. This format is required by the
older 16-bit Microsoft Linker (LINK16.EXE). Not supported by the 64-bit assembler.

/Sa Turns on listing of all available information.

/safeseh Marks the object as either containing no exception handlers or containing exception
handlers that are all declared with .SAFESEH. (In 32-bit assembly language, set this
to :NO.) Not available in ml64.exe.

/Sf Adds first-pass listing to listing file.

/Sl width Sets the line width of source listing in characters per line. Range is 60 to 255 or 0.
Default is 0. Same as PAGE width.

/Sn Turns off symbol table when producing a listing.

/Sp length Sets the page length of source listing in lines per page. Range is 10 to 255 or 0. Default
is 0. Same as PAGE length.

/Ss text Specifies text for source listing. Same as SUBTITLE text.

/St text Specifies title for source listing. Same as TITLE text.

/Sx Turns on false conditionals in listing.

/Ta filename Assembles source file whose name does not end with the .ASM extension.

/w Same as /W0.

/Wlevel Sets the warning level, where level = 0, 1, 2, or 3.

/WX Returns an error code if warnings are generated.

Option Action

Table A-1  (Continued)
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A.5 Microsoft Assembler Directives
name � expression

Assigns the numeric value of expression to name. The symbol may be redefined later. 

.386
Enables assembly of nonprivileged instructions for the 80386 processor; disables assembly of
instructions introduced with later processors. Also enables 80387 instructions.

.386P
Enables assembly of all instructions (including privileged) for the 80386 processor; disables
assembly of instructions introduced with later processors. Also enables 80387 instructions.

.387
Enables assembly of instructions for the 80387 coprocessor. 

.486
Enables assembly of nonprivileged instructions for the 80486 processor.

.486P
Enables assembly of all instructions (including privileged) for the 80486 processor.

.586
Enables assembly of nonprivileged instructions for the Pentium processor.

.586P
Enables assembly of all instructions (including privileged) for the Pentium processor.

.686
Enables assembly of nonprivileged instructions for the Pentium Pro processor.

.686P
Enables assembly of all instructions (including privileged) for the Pentium Pro processor.

.8086
Enables assembly of 8086 instructions (and the identical 8088 instructions); disables assem-
bly of instructions introduced with later processors. Also enables 8087 instructions. This is
the default mode for processors.

/X Ignore INCLUDE Environment path.

/Zd Generates line-number information in object file.

/Zf Makes all symbols public.

/Zi Generates CodeView information in object file. (For 16-bit programming only.)

/Zm Enables M510 option for maximum compatibility with MASM 5.1.

/Zp[[alignment]] Packs structures on the specified byte boundary. The alignment may be 1, 2, or 4.

/Zs Performs a syntax check only.

/? Displays a summary of ML command-line syntax.

Option Action

Table A-1  (Continued)
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.8087
Enables assembly of 8087 instructions; disables assembly of instructions introduced with
later coprocessors. This is the default mode for coprocessors.

ALIAS  <alias> � <actual-name>
Maps an old function name to a new name. Alias is the alternate or alias name, and actual-
name is the actual name of the function or procedure. The angle brackets are required. The
ALIAS directive can be used for creating libraries that allow the linker (LINK) to map an old
function to a new function. 

ALIGN [[ number ]]
Aligns the next variable or instruction on a byte that is a multiple of number.

.ALPHA
Orders segments alphabetically.

ASSUME segregister:name [[ , segregister:name ]]. . . 
ASSUME dataregister:type [[ , dataregister:type ]]. . . 
ASSUME register:ERROR [[ , register:ERROR ]]. . . 
ASSUME [[ register: ]] NOTHING [[ , register:NOTHING ]]. . . 
Enables error-checking for register values. After an ASSUME is put into effect, the assem-
bler watches for changes to the values of the given registers. ERROR generates an error if
the register is used. NOTHING removes register error-checking. You can combine different
kinds of assumptions in one statement.

.BREAK [[ .IF condition ]]
Generates code to terminate a .WHILE or .REPEAT block if condition is true.

[[ name ]] BYTE initializer [[ , initializer ]] . . . 
Allocates and optionally initializes a byte of storage for each initializer. Can also be used as a
type specifier anywhere a type is legal.

name CATSTR [[ textitem1 [[ , textitem2 ]] . . .  ]]
Concatenates text items. Each text item can be a literal string, a constant preceded by a %, or
the string returned by a macro function.

.CODE [[ name ]]
When used with .MODEL, indicates the start of a code segment called name (the default segment
name is _TEXT for tiny, small, compact, and flat models, or module_TEXT for other models).

COMM definition [[ , definition ]] . . . 
Creates a communal variable with the attributes specified in definition. Each definition has the
following form:

[[ langtype ]] [[ NEAR | FAR ]] label:type[[ :count ]]

The label is the name of the variable. The type can be any type specifier (BYTE, WORD, and
so on) or an integer specifying the number of bytes. The count specifies the number of data
objects (one is the default). 

COMMENT delimiter [[ text ]]

[[ text ]]

[[ text ]] delimiter [[ text ]]
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Treats all text between or on the same line as the delimiters as a comment.

.CONST
When used with .MODEL, starts a constant data segment (with segment name CONST).
This segment has the read-only attribute.

.CONTINUE [[ .IF condition ]]
Generates code to jump to the top of a .WHILE or .REPEAT block if condition is true.

.CREF
Enables listing of symbols in the symbol portion of the symbol table and browser file.

.DATA 
When used with .MODEL, starts a near data segment for initialized data (segment name _DATA).

.DATA? 
When used with .MODEL, starts a near data segment for uninitialized data (segment name
_BSS).

.DOSSEG
Orders the segments according to the MS-DOS segment convention: CODE first, then seg-
ments not in DGROUP, and then segments in DGROUP. The segments in DGROUP follow
this order: segments not in BSS or STACK, then BSS segments, and finally STACK seg-
ments. Primarily used for ensuring CodeView support in MASM stand-alone programs.
Same as DOSSEG.

DOSSEG
Identical to .DOSSEG, which is the preferred form.

DB
Can be used to define data like BYTE.

DD
Can be used to define data like DWORD.

DF
Can be used to define data like FWORD.

DQ
Can be used to define data like QWORD.

DT
Can be used to define data like TBYTE.

DW
Can be used to define data like WORD.

[[ name ]] DWORD initializer [[ , initializer ]]. . . 
Allocates and optionally initializes a doubleword (4 bytes) of storage for each initializer. Can
also be used as a type specifier anywhere a type is legal.

ECHO message
Displays message to the standard output device (by default, the screen). Same as %OUT.

.ELSE
See .IF.
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ELSE
Marks the beginning of an alternate block within a conditional block. See IF.

ELSEIF
Combines ELSE and IF into one statement. See IF.

ELSEIF2
ELSEIF block evaluated on every assembly pass if OPTION:SETIF2 is TRUE.

END [[ address ]]
Marks the end of a module and, optionally, sets the program entry point to address.

.ENDIF
See .IF.

ENDIF
See IF.

ENDM
Terminates a macro or repeat block. See MACRO, FOR, FORC, REPEAT, or WHILE.

name ENDP
Marks the end of procedure name previously begun with PROC. See PROC.

name ENDS
Marks the end of segment, structure, or union name previously begun with SEGMENT,
STRUCT, UNION, or a simplified segment directive.

.ENDW
See .WHILE.

name EQU expression
Assigns numeric value of expression to name. The name cannot be redefined later.

name EQU <text>
Assigns specified text to name. The name can be assigned a different text later. See
TEXTEQU.

.ERR [[ message ]]
Generates an error.

.ERR2 [[ message ]]
.ERR block evaluated on every assembly pass if OPTION:SETIF2 is TRUE.

.ERRB <textitem> [[ , message ]]
Generates an error if textitem is blank. 

.ERRDEF name [[ , message ]]
Generates an error if name is a previously defined label, variable, or symbol.

.ERRDIF[[ I ]] <textitem1>, <textitem2> [[ , message ]]
Generates an error if the text items are different. If I is given, the comparison is case
insensitive.

.ERRE expression [[ , message ]]
Generates an error if expression is false (0). 
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.ERRIDN[[ I ]] <textitem1>, <textitem2> [[ , message ]]
Generates an error if the text items are identical. If I is given, the comparison is case
insensitive.

.ERRNB <textitem> [[ , message ]]
Generates an error if textitem is not blank. 

.ERRNDEF name [[ , message ]]
Generates an error if name has not been defined.

.ERRNZ expression [[ , message ]]
Generates an error if expression is true (nonzero).

EVEN
Aligns the next variable or instruction on an even byte. 

.EXIT [[ expression ]]
Generates termination code. Returns optional expression to shell.

EXITM [[ textitem ]]
Terminates expansion of the current repeat or macro block and begins assembly of the next
statement outside the block. In a macro function, textitem is the value returned.

EXTERN [[ langtype ]] name [[ (altid) ]] :type [[ , [[ langtype ]] name [[ (altid) ]] :type ]]. . . 
Defines one or more external variables, labels, or symbols called name whose type is type.
The type can be ABS, which imports name as a constant. Same as EXTRN.

EXTERNDEF [[ langtype ]] name:type [[ , [[ langtype ]] name:type ]]. . . 
Defines one or more external variables, labels, or symbols called name whose type is type. If
name is defined in the module, it is treated as PUBLIC. If name is referenced in the module,
it is treated as EXTERN. If name is not referenced, it is ignored. The type can be ABS, which
imports name as a constant. Normally used in include files.

EXTRN
See EXTERN.

.FARDATA [[ name ]]
When used with .MODEL, starts a far data segment for initialized data (segment name
FAR_DATA or name).

.FARDATA? [[ name ]]
When used with .MODEL, starts a far data segment for uninitialized data (segment name
FAR_BSS or name).

FOR parameter [[ :REQ | :=default ]] , <argument [[ , argument ]]. . . >
statements
ENDM

Marks a block that will be repeated once for each argument, with the current argument
replacing parameter on each repetition. Same as IRP.

FORC
parameter, <string> statements
ENDM
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Marks a block that will be repeated once for each character in string, with the current char-
acter replacing parameter on each repetition. Same as IRPC.

[[ name ]] FWORD initializer [[ , initializer ]]. . .
Allocates and optionally initializes 6 bytes of storage for each initializer. Also can be used as
a type specifier anywhere a type is legal.

GOTO macrolabel
Transfers assembly to the line marked :macrolabel. GOTO is permitted only inside
MACRO, FOR, FORC, REPEAT, and WHILE blocks. The label must be the only directive
on the line and must be preceded by a leading colon.

name GROUP segment [[ , segment ]]. . .
Add the specified segments to the group called name. This directive has no effect when used in 32-
bit flat-model programming and will result in error when used with the /coff command-line option.

.IF condition1
statements

[[ .ELSEIF condition2
statements ]]

[[ .ELSE
statements ]]

.ENDIF
Generates code that tests condition1 (for example, AX > 7) and executes the statements if
that condition is true. If an .ELSE follows, its statements are executed if the original con-
dition was false. Note that the conditions are evaluated at runtime.

IF expression1
ifstatements
[[ ELSEIF expression2

elseifstatements ]]
[[ ELSE

elsestatements ]]
ENDIF

Grants assembly of ifstatements if expression1 is true (nonzero) or elseifstatements if expression1
is false (0) and expression2 is true. The following directives may be substituted for ELSEIF:
ELSEIFB, ELSEIFDEF, ELSEIFDIF, ELSEIFDIFI, ELSEIFE, ELSEIFIDN, ELSE-
IFIDNI, ELSEIFNB, and ELSEIFNDEF. Optionally, assembles elsestatements if the
previous expression is false. Note that the expressions are evaluated at assembly time.

IF2 expression
IF block is evaluated on every assembly pass if OPTION:SETIF2 is TRUE. See IF for
complete syntax.

IFB textitem
Grants assembly if textitem is blank. See IF for complete syntax.

IFDEF name
Grants assembly if name is a previously defined label, variable, or symbol. See IF for com-
plete syntax.
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IFDIF[[ I ]] textitem1, textitem2
Grants assembly if the text items are different. If I is given, the comparison is case insensi-
tive. See IF for complete syntax.

IFE expression
Grants assembly if expression is false (0). See IF for complete syntax.

IFIDN[[ I ]] textitem1, textitem2
Grants assembly if the text items are identical. If I is given, the comparison is case insensi-
tive. See IF for complete syntax.

IFNB textitem
Grants assembly if textitem is not blank. See IF for complete syntax.

IFNDEF name
Grants assembly if name has not been defined. See IF for complete syntax.

INCLUDE filename
Inserts source code from the source file given by filename into the current source file during
assembly. The filename must be enclosed in angle brackets if it includes a backslash, semi-
colon, greater-than symbol, less-than symbol, single quotation mark, or double quotation
mark.

INCLUDELIB libraryname
Informs the linker that the current module should be linked with libraryname. The
libraryname must be enclosed in angle brackets if it includes a backslash, semicolon, greater-
than symbol, less-than symbol, single quotation mark, or double quotation mark.

name INSTR [[ position, ]] textitem1, textitem2
Finds the first occurrence of textitem2 in textitem1. The starting position is optional. Each text
item can be a literal string, a constant preceded by a %, or the string returned by a macro
function.

INVOKE expression [[ , arguments ]]
Calls the procedure at the address given by expression, passing the arguments on the stack or
in registers according to the standard calling conventions of the language type. Each argu-
ment passed to the procedure may be an expression, a register pair, or an address expression
(an expression preceded by ADDR).

IRP
See FOR.

IRPC
See FORC.

name LABEL type
Creates a new label by assigning the current location-counter value and the given type to
name.

name LABEL [[ NEAR | FAR | PROC ]] PTR [[ type ]]
Creates a new label by assigning the current location-counter value and the given type to name.

.K3D
Enables assembly of K3D instructions.
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.LALL
See .LISTMACROALL.

.LFCOND
See .LISTIF.

.LIST
Starts listing of statements. This is the default.

.LISTALL
Starts listing of all statements. Equivalent to the combination of .LIST, .LISTIF, and .LIST-
MACROALL.

.LISTIF
Starts listing of statements in false conditional blocks. Same as .LFCOND.

.LISTMACRO
Starts listing of macro expansion statements that generate code or data. This is the default.
Same as .XALL.

.LISTMACROALL
Starts listing of all statements in macros. Same as .LALL.

LOCAL localname [[ , localname ]]. . . 
Within a macro, LOCAL defines labels that are unique to each instance of the macro.

LOCAL label [[  [count ]  ]] [[ :type ]] [[ , label [[  [count]  ]] [[ type ]]  ]]. . . 
Within a procedure definition (PROC), LOCAL creates stack-based variables that exist for the
duration of the procedure. The label may be a simple variable or an array containing count elements.

name MACRO [[ parameter [[ :REQ | :=default | :VARARG ]] ]]. . .
statements
ENDM [[ value ]]

Marks a macro block called name and establishes parameter placeholders for argu-
ments passed when the macro is called. A macro function returns value to the calling
statement.

.MMX
Enables assembly of MMX instructions.

.MODEL memorymodel [[ , langtype ]] [[ , stackoption ]]
Initializes the program memory model. The memorymodel can be TINY, SMALL, COMPACT,
MEDIUM, LARGE, HUGE, or FLAT. The langtype can be C, BASIC, FORTRAN,
PASCAL, SYSCALL, or STDCALL. The stackoption can be NEARSTACK or FARSTACK.

NAME modulename
Ignored.

.NO87
Disallows assembly of all floating-point instructions.

.NOCREF [[ name[[ , name ]]. . .  ]]
Suppresses listing of symbols in the symbol table and browser file. If names are specified,
only the given names are suppressed. Same as .XCREF.
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.NOLIST
Suppresses program listing. Same as .XLIST.

.NOLISTIF
Suppresses listing of conditional blocks whose condition evaluates to false (0). This is the
default. Same as .SFCOND.

.NOLISTMACRO
Suppresses listing of macro expansions. Same as .SALL.

OPTION optionlist
Enables and disables features of the assembler. Available options include CASEMAP, DOTNAME,
NODOTNAME, EMULATOR, NOEMULATOR, EPILOGUE, EXPR16, EXPR32, LAN-
GUAGE, LJMP, NOLJMP, M510, NOM510, NOKEYWORD, NOSIGNEXTEND, OFFSET,
OLDMACROS, NOOLDMACROS, OLDSTRUCTS, NOOLDSTRUCTS, PROC, PRO-
LOGUE, READONLY, NOREADONLY, SCOPED, NOSCOPED, SEGMENT, and SETIF2.

ORG expression
Sets the location counter to expression.

%OUT
See ECHO.

[[ name ]] OWORD initializer [[ , initializer ]]. . . 
Allocates and optionally initializes an octalword (16 bytes) of storage for each initializer. Can
also be used as a type specifier anywhere a type is legal. This data type is used primarily by
Streaming SIMD instructions; it holds an array of four 4-byte reals.

PAGE [[ [[ length ]], width ]]
Sets line length and character width of the program listing. If no arguments are given, gener-
ates a page break. 

PAGE+

Increments the section number and resets the page number to 1.

POPCONTEXT context
Restores part or all of the current context (saved by the PUSHCONTEXT directive). The
context can be ASSUMES, RADIX, LISTING, CPU, or ALL.

label PROC [[ distance ]] [[ langtype ]] [[ visibility ]] [[ <prologuearg> ]]
[[ USES reglist ]] [[ , parameter [[ :tag ]] ]]. . .
statements
label ENDP

Marks start and end of a procedure block called label. The statements in the block can be
called with the CALL instruction or INVOKE directive.

label PROTO [[ distance ]] [[ langtype ]] [[ , [[ parameter ]]:tag ]]. . . 
Prototypes a function.

PUBLIC [[ langtype ]] name [[ , [[ langtype ]] name ]]. . . 
Makes each variable, label, or absolute symbol specified as name available to all other mod-
ules in the program. 
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PURGE macroname [[ , macroname ]]. . . 
Deletes the specified macros from memory. 

PUSHCONTEXT context
Saves part or all of the current context: segment register assumes, radix value, listing and cref
flags, or processor/coprocessor values. The context can be ASSUMES, RADIX, LISTING,
CPU, or ALL.

[[ name ]] QWORD initializer [[ , initializer ]]. . . 
Allocates and optionally initializes 8 bytes of storage for each initializer. Can also be used as
a type specifier anywhere a type is legal.

.RADIX expression
Sets the default radix, in the range 2 to 16, to the value of expression.

name REAL4 initializer [[ , initializer ]]. . . 
Allocates and optionally initializes a single-precision (4-byte) floating-point number for each
initializer.

name REAL8 initializer [[ , initializer ]]. . . 
Allocates and optionally initializes a double-precision (8-byte) floating-point number for
each initializer.

name REAL10 initializer [[ , initializer ]]. . . 
Allocates and optionally initializes a 10-byte floating-point number for each initializer.

recordname RECORD fieldname:width [[ = expression ]]
[[ , fieldname:width [[ = expression ]] ]]. . . 

Declares a record type consisting of the specified fields. The fieldname names the field,
width specifies the number of bits, and expression gives its initial value.

.REPEAT
statements
.UNTIL condition

Generates code that repeats execution of the block of statements until condition becomes
true. .UNTILCXZ, which becomes true when CX is zero, may be substituted for
.UNTIL. The condition is optional with .UNTILCXZ.

REPEAT expression
statements
ENDM

Marks a block that is to be repeated expression times. Same as REPT.

REPT
See REPEAT.

.SALL
See .NOLISTMACRO.

name SBYTE initializer [[ , initializer ]]. . . 
Allocates and optionally initializes a signed byte of storage for each initializer. Can also be
used as a type specifier anywhere a type is legal.
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name SDWORD initializer [[ , initializer ]]. . . 
Allocates and optionally initializes a signed doubleword (4 bytes) of storage for each initial-
izer. Can also be used as a type specifier anywhere a type is legal.

name SEGMENT [[ READONLY ]] [[ align ]] [[ combine ]] [[ use ]] [[ ‘class’ ]]
statements
name ENDS

Defines a program segment called name having segment attributes align (BYTE, WORD,
DWORD, PARA, PAGE), combine (PUBLIC, STACK, COMMON, MEMORY, AT
address, PRIVATE), use (USE16, USE32, FLAT), and class.

.SEQ
Orders segments sequentially (the default order).

.SFCOND
See .NOLISTIF.

name SIZESTR textitem
Finds the size of a text item.

.STACK [[ size ]]
When used with .MODEL, defines a stack segment (with segment name STACK). The
optional size specifies the number of bytes for the stack (default 1024). The .STACK direc-
tive automatically closes the stack statement.

.STARTUP
Generates program startup code.

STRUC
See STRUCT.

name STRUCT [[ alignment ]] [[ , NONUNIQUE ]]
fielddeclarations
name ENDS

Declares a structure type having the specified fielddeclarations. Each field must be a valid
data definition. Same as STRUC.

name SUBSTR textitem, position [[ , length ]]
Returns a substring of textitem, starting at position. The textitem can be a literal string, a con-
stant preceded by a %, or the string returned by a macro function.

SUBTITLE text
Defines the listing subtitle. Same as SUBTTL.

SUBTTL
See SUBTITLE.

name SWORD initializer [[ , initializer ]]. . . 
Allocates and optionally initializes a signed word (2 bytes) of storage for each initializer. Can
also be used as a type specifier anywhere a type is legal.
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[[ name ]] TBYTE initializer [[ , initializer ]]. . . 
Allocates and optionally initializes 10 bytes of storage for each initializer. Can also be used
as a type specifier anywhere a type is legal.

name TEXTEQU [[ textitem ]]
Assigns textitem to name. The textitem can be a literal string, a constant preceded by a %, or
the string returned by a macro function.

.TFCOND
Toggles listing of false conditional blocks. 

TITLE text
Defines the program listing title.

name TYPEDEF type
Defines a new type called name, which is equivalent to type.

name UNION [[ alignment ]] [[ , NONUNIQUE ]]
fielddeclarations

[[ name ]] ENDS
Declares a union of one or more data types. The fielddeclarations must be valid data defini-
tions. Omit the ENDS name label on nested UNION definitions.

.UNTIL
See .REPEAT.

.UNTILCXZ
See .REPEAT.

.WHILE condition
statements
.ENDW

Generates code that executes the block of statements while condition remains true.

WHILE expression
statements
ENDM

Repeats assembly of block statements as long as expression remains true.

[[ name ]] WORD initializer [[ , initializer ]]. . . 
Allocates and optionally initializes a word (2 bytes) of storage for each initializer. Can also
be used as a type specifier anywhere a type is legal.

.XALL
See .LISTMACRO.

.XCREF
See .NOCREF.

.XLIST
See .NOLIST.

.XMM
Enables assembly of Internet Streaming SIMD Extension instructions.
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A.6 Symbols
$

The current value of the location counter.

?
In data declarations, a value that the assembler allocates but does not initialize.

@@:
Defines a code label recognizable only between label1 and label2, where label1 is either start
of code or the previous @@: label, and label2 is either end of code or the next @@: label.
See @B and @F.

@B
The location of the previous @@: label.

@CatStr( string1 [[, string2. . . ]] )
Macro function that concatenates one or more strings. Returns a string.

@code
The name of the code segment (text macro).

@CodeSize
0 for TINY, SMALL, COMPACT, and FLAT models, and 1 for MEDIUM, LARGE, and
HUGE models (numeric equate).

@Cpu
A bit mask specifying the processor mode (numeric equate).

@CurSeg
The name of the current segment (text macro).

@data
The name of the default data group. Evaluates to DGROUP for all models except FLAT.
Evaluates to FLAT under the FLAT memory model (text macro).

@DataSize
0 for TINY, SMALL, MEDIUM, and FLAT models, 1 for COMPACT and LARGE mod-
els, and 2 for HUGE model (numeric equate).

@Date
The system date in the format mm/dd/yy (text macro).

@Environ( envvar )
Value of environment variable envvar (macro function).

@F
The location of the next @@: label.

@fardata
The name of the segment defined by the .FARDATA directive (text macro).

@fardata?
The name of the segment defined by the .FARDATA? directive (text macro).

@FileCur
The name of the current file (text macro).
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@FileName
The base name of the main file being assembled (text macro).

@InStr( [[ position ]], string1, string2 )
Macro function that finds the first occurrence of string2 in string1, beginning at position
within string1. If position does not appear, search begins at start of string1. Returns a position
integer or 0 if string2 is not found.

@Interface
Information about the language parameters (numeric equate).

@Line
The source line number in the current file (numeric equate).

@Model
1 for TINY model, 2 for SMALL model, 3 for COMPACT model, 4 for MEDIUM model,
5 for LARGE model, 6 for HUGE model, and 7 for FLAT model (numeric equate).

@SizeStr( string )
Macro function that returns the length of the given string. Returns an integer.

@stack
DGROUP for near stacks or STACK for far stacks (text macro).

@SubStr( string, position [[, length ]] )
Macro function that returns a substring starting at position.

@Time
The system time in 24-hour hh:mm:ss format (text macro).

@Version
610 in MASM 6.1 (text macro).

@WordSize
Two for a 16-bit segment or 4 for a 32-bit segment (numeric equate).

A.7 Operators
expression1 � expression2

Returns expression1 plus expression2.

expression1 � expression2
Returns expression1 minus expression2.

expression1 * expression2

Returns expression1 times expression2.

expression1 / expression2
Returns expression1 divided by expression2.

–expression
Reverses the sign of expression.

expression1 [expression2]
Returns expression1 plus [expression2].
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segment: expression
Overrides the default segment of expression with segment. The segment can be a segment reg-
ister, group name, segment name, or segment expression. The expression must be a constant.

expression. field [[ . field ]] . . . 
Returns expression plus the offset of field within its structure or union.

[register]. field [[ . field ]] . . . 
Returns value at the location pointed to by register plus the offset of field within its structure
or union.

<text>
Treats text as a single literal element.

“text”
Treats “text” as a string.

‘text’
Treats ‘text’ as a string.

!character
Treats character as a literal character rather than as an operator or symbol.

;text
Treats text as a comment.

;;text
Treats text as a comment in a macro that appears only in the macro definition. The listing
does not show text where the macro is expanded. 

%expression
Treats the value of expression in a macro argument as text.

&parameter&
Replaces parameter with its corresponding argument value. 

ABS
See the EXTERNDEF directive.

ADDR
See the INVOKE directive.

expression1 AND expression2
Returns the result of a bitwise AND operation for expression1 and expression2.

count DUP (initialvalue [[ , initialvalue ]] . . . )
Specifies count number of declarations of initialvalue.

expression1 EQ expression2
Returns true (�1) if expression1 equals expression2 and returns false (0) if it does not. 

expression1 GE expression2
Returns true (�1) if expression1 is greater than or equal to expression2 and returns false (0) if
it is not.

expression1 GT expression2
Returns true (�1) if expression1 is greater than expression2 and returns false (0) if it is not. 
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HIGH expression
Returns the high byte of expression.

HIGHWORD expression
Returns the high word of expression.

expression1 LE expression2
Returns true (�1) if expression1 is less than or equal to expression2 and returns false (0) if it
is not. 

LENGTH variable
Returns the number of data items in variable created by the first initializer.

LENGTHOF variable
Returns the number of data objects in variable.

LOW expression
Returns the low byte of expression.

LOWWORD expression
Returns the low word of expression.

LROFFSET expression
Returns the offset of expression. Same as OFFSET, but it generates a loader resolved offset,
which allows Windows to relocate code segments.

expression1 LT expression2
Returns true (�1) if expression1 is less than expression2 and returns false (0) if it is not. 

MASK { recordfieldname | record }

Returns a bit mask in which the bits in recordfieldname or record are set and all other bits are
cleared.

expression1 MOD expression2
Returns the integer value of the remainder (modulo) when dividing expression1 by expression2.

expression1 NE expression2
Returns true (�1) if expression1 does not equal expression2 and returns false (0) if it does. 

NOT expression
Returns expression with all bits reversed. 

OFFSET expression
Returns the offset of expression.

OPATTR expression
Returns a word defining the mode and scope of expression. The low byte is identical to the
byte returned by .TYPE. The high byte contains additional information.

expression1 OR expression2
Returns the result of a bitwise OR operation for expression1 and expression2.

type PTR expression
Forces the expression to be treated as having the specified type.

[[ distance ]] PTR type
Specifies a pointer to type.
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SEG expression
Returns the segment of expression.

expression SHL count
Returns the result of shifting the bits of expression left count number of bits. 

SHORT label
Sets the type of label to short. All jumps to label must be short (within the range –128 to
+127 bytes from the jump instruction to label).

expression SHR count
Returns the result of shifting the bits of expression right count number of bits. 

SIZE variable
Returns the number of bytes in variable allocated by the first initializer.

SIZEOF {variable | type}
Returns the number of bytes in variable or type.

THIS type
Returns an operand of specified type whose offset and segment values are equal to the current
location-counter value.

.TYPE expression
See OPATTR.

TYPE expression
Returns the type of expression.

WIDTH {recordfieldname | record}
Returns the width in bits of the current recordfieldname or record.

expression1 XOR expression2
Returns the result of a bitwise XOR operation for expression1 and expression2.

A.8 Runtime Operators
The following operators are used only within .IF, .WHILE, or .REPEAT blocks and are evalu-
ated at runtime, not at assembly time:

expression1 �� expression2
Is equal to.

expression1 !� expression2
Is not equal to.

expression1 � expression2
Is greater than.

expression1 �� expression2
Is greater than or equal to.

expression1 
 expression2
Is less than.

expression1 
� expression2
Is less than or equal to.
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expression1 || expression2
Logical OR.

expression1 && expression2
Logical AND.

expression1 & expression2
Bitwise AND.

!expression
Logical negation.

CARRY?
Status of Carry flag.

OVERFLOW?
Status of Overflow flag.

PARITY?
Status of Parity flag.

SIGN?
Status of Sign flag.

ZERO?
Status of Zero flag.
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B
The x86 Instruction Set 

B.1 Introduction
B.1.1 Flags
B.1.2 Instruction Descriptions and Formats

B.2 Instruction Set Details (Non Floating-Point)
B.3 Floating-Point Instructions

B.1 Introduction
This appendix is a quick guide to the most commonly used 32-bit x86 instructions. It does not
cover system-mode instructions or instructions typically used only in operating system kernel
code or protected-mode device drivers.

B.1.1 Flags (EFlags)
Each instruction description contains a series of boxes that describe how the instruction will
affect the CPU status flags. Each flag is identified by a single letter:

Inside the boxes, the following notation shows how each instruction will affect the flags:

O Overflow S Sign P Parity

D Direction Z Zero C Carry

I Interrupt A Auxiliary Carry

1 Sets the flag.

0 Clears the flag.

? May change the flag to an undetermined value.  

(blank) The flag is not changed.

* Changes the flag according to specific rules associated with the flag.
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For example, the following diagram of the CPU flags is taken from one of the instruction
descriptions:

From the diagram, we see that the Overflow, Sign, Zero, and Parity flags will be changed to
unknown values. The Auxiliary Carry and Carry flags will be modified according to rules associ-
ated with the flags. The Direction and Interrupt flags will not be changed.

B.1.2 Instruction Descriptions and Formats
When a reference to source and destination operands is made, we use the natural order of oper-
ands in all x86 instructions, in which the first operand is the destination and the second is the
source. In the MOV instruction, for example, the destination will be assigned a copy of the data
in the source operand:

MOV destination, source

There may be several formats available for a single instruction. Table B-1 contains a list of
symbols used in instruction formats. In the descriptions of individual instructions, we use the
notation “x86” to indicate that an instruction or one of its variants is only available on processors
in the 32-bit x86 family (Intel386 onward). Similarly, the notation “(80286)” indicates that at
least an Intel 80286 processor must be used.

Register notations such as (E)CX, (E)SI, (E)DI, (E)SP, (E)BP, and (E)IP differentiate between
x86 processors that use the 32-bit registers and all earlier processors that used 16-bit registers.

Table B-1  Symbols Used in Instruction Formats.

Symbol Description

reg An 8-, 16-, or 32-bit general register from the following list: AH, AL, BH, BL, CH, CL,
DH, DL, AX, BX, CX, DX, SI, DI, BP, SP, EAX, EBX, ECX, EDX, ESI, EDI, EBP,
and ESP.

reg8, reg16, reg32 A general register, identified by its number of bits.

segreg A 16-bit segment register (CS, DS, ES, SS, FS, GS).

accum AL, AX, or EAX.

mem A memory operand, using any of the standard memory-addressing modes.

mem8, mem16, mem32 A memory operand, identified by its number of bits.

shortlabel A location in the code segment within �128 to �127 bytes of the current location.

nearlabel A location in the current code segment, identified by a label.

farlabel A location in an external code segment, identified by a label.

? ? ? * ?

O D I S CA PZ

*
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imm An immediate operand.

imm8, imm16, imm32 An immediate operand, identified by its number of bits.

instruction An 80x86 assembly language instruction.

Symbol Description

Table B-1  (Continued)

B.2 Instruction Set Details (Non Floating-Point)

AAA ASCII Adjust After Addition

Adjusts the result in AL after two ASCII digits have been added together. If AL � 9, the high
digit of the result is placed in AH, and the Carry and Auxiliary Carry flags are set.
Instruction format:

AAA

AAD ASCII Adjust Before Division

Converts unpacked BCD digits in AH and AL to a single binary value in preparation for the DIV
instruction.
Instruction format:

AAD

AAM ASCII Adjust After Multiply

Adjusts the result in AX after two unpacked BCD digits have been multiplied together. 
Instruction format:

AAM

? ? ? * ?

O D I S CA PZ

*

? * * ?

O D I S CA PZ

* ?

? * * ? * ?

O D I S CA PZ
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AAS ASCII Adjust After Subtraction

Adjusts the result in AX after a subtraction operation. If AL � 9, AAS decrements AH and sets
the Carry and Auxiliary Carry flags. 
Instruction format:

AAS

ADC Add Carry

Adds both the source operand and the Carry flag to the destination operand. Operands must be
the same size. 
Instruction formats:

ADC reg,reg ADC reg,imm
ADC mem,reg ADC mem,imm
ADC reg,mem ADC accum,imm

ADD Add

A source operand is added to a destination operand, and the sum is stored in the destination.
Operands must be the same size.
Instruction formats:

ADD reg,reg ADD reg,imm
ADD mem,reg ADD mem,imm
ADD reg,mem ADD accum,imm

AND Logical AND

Each bit in the destination operand is ANDed with the corresponding bit in the source operand.
Instruction formats:

AND reg,reg AND reg,imm
AND mem,reg AND mem,imm
AND reg,mem AND accum,imm

? ? ? * ?

O D I S CA PZ

*

* * * * * *

O D I S CA PZ

* * * * * *

O D I S CA PZ

* * * ? * 0

O D I S CA PZ
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BOUND Check Array Bounds (80286)

Verifies that a signed index value is within the bounds of an array. On the 80286 processor, the
destination operand can be any 16-bit register containing the index to be checked. The source
operand must be a 32-bit memory operand in which the high and low words contain the upper
and lower bounds of the index value. On the x86 processor, the destination can be a 32-bit regis-
ter and the source can be a 64-bit memory operand. 
Instruction formats:

BOUND reg16,mem32 BOUND r32,mem64

BSF, 
BSR

Bit Scan (x86)

Scans an operand to find the first set bit. If the bit is found, the Zero flag is cleared, and the destination
operand is assigned the bit number (index) of the first set bit encountered. If no set bit is found, ZF �
1. BSF scans from bit 0 to the highest bit, and BSR starts at the highest bit and scans toward bit 0. 
Instruction formats (apply to both BSF and BSR):

BSF reg16,r/m16 BSF reg32,r/m32

BSWAP Byte Swap (x86)

Reverses the byte order of a 32-bit destination register. 
Instruction format:

BSWAP reg32

BT, 
BTC, 
BTR, 
BTS

Bit Tests (x86)

Copies a specified bit (n) into the Carry flag. The destination operand contains the value in
which the bit is located, and the source operand indicates the bit’s position within the destination.
BT copies bit n to the Carry flag. BTC copies bit n to the Carry flag and complements bit n in the
destination operand. BTR copies bit n to the Carry flag and clears bit n in the destination. BTS
copies bit n to the Carry flag and sets bit n in the destination. 
Instruction formats:

BT r/m16,imm8 BT r/m16,r16
BT r/m32,imm8 BT r/m32,r32

O D I S CA PZ

? ? ? ? ?

O D I S CA PZ

?

O D I S CA PZ

? ? ? ??

O D I S CA PZ

*
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CALL Call a Procedure

Pushes the location of the next instruction on the stack and transfers to the destination location.
If the procedure is near (in the same segment), only the offset of the next instruction is pushed;
otherwise, both the segment and the offset are pushed. 
Instruction formats:

CALL nearlabel CALL mem16
CALL farlabel CALL mem32
CALL reg

CBW Convert Byte to Word

Extends the sign bit in AL throughout the AH register. 
Instruction format:

CBW

CDQ Convert Doubleword to Quadword (x86)

Extends the sign bit in EAX throughout the EDX register.
Instruction format:

CDQ

CLC Clear Carry Flag

Clears the Carry flag to zero.
Instruction format:

CLC

O D I S CA PZ

O D I S CA PZ

O D I S CA PZ

O D I S C

0

A PZ
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CLD Clear Direction Flag

Clears the Direction flag to zero. String primitive instructions will automatically increment
(E)SI and (E)DI.
Instruction format:

CLD

CLI Clear Interrupt Flag

Clears the Interrupt flag to zero. This disables maskable hardware interrupts until an STI instruc-
tion is executed.
Instruction format:

CLI

CMC Complement Carry Flag

Toggles the current value of the Carry flag.
Instruction format:

CMC

CMP Compare

Compares the destination to the source by performing an implied subtraction of the source
from the destination.
Instruction formats:

CMP reg,reg CMP reg,imm
CMP mem,reg CMP mem,imm
CMP reg,mem CMP accum,imm

O D I S C

0

A PZ

O D I S C

0

A PZ

O D I S CA PZ

*

* * * * * *

O D I S CA PZ
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CMPS, 
CMPSB, 
CMPSW, 
CMPSD

Compare Strings

Compares strings in memory addressed by DS:(E)SI and ES:(E)DI. Carries out an implied sub-
traction of the destination from the source. CMPSB compares bytes, CMPSW compares
words, and CMPSD compares doublewords (on x86 processors). (E)SI and (E)DI are increased
or decreased according to the operand size and the status of the Direction flag. If the Direction
flag is set, (E)SI and (E)DI are decreased; otherwise (E)SI and (E)DI are increased. 
Instruction formats (formats using explicit operands have intentionally been omitted):

CMPSB CMPSW
CMPSD

CMPXCHG Compare and Exchange

Compares the destination to the accumulator (AL, AX, or EAX). If they are equal,
the source is copied to the destination. Otherwise, the destination is copied to the
accumulator.
Instruction formats:

CMPXCHG reg,reg CMPXCHG mem,reg

CWD Convert Word to Doubleword 

Extends the sign bit in AX into the DX register.
Instruction format:

CWD

DAA Decimal Adjust After Addition

Adjusts the binary sum in AL after two packed BCD values have been added. Converts the sum
to two BCD digits in AL.
Instruction format:

DAA

* * * * * *

O D I S CA PZ

* * * * * *

O D I S CA PZ

O D I S CA PZ

? * * * * *

O D I S CA PZ
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DAS Decimal Adjust After Subtraction

Converts the binary result of a subtraction operation to two packed BCD digits in AL. 
Instruction format:

DAS

DEC Decrement

Subtracts 1 from an operand. Does not affect the Carry flag.
Instruction formats:

DEC reg DEC mem

DIV Unsigned Integer Divide

Performs either 8-, 16-, or 32-bit unsigned integer division. If the divisor is 8 bits, the dividend is AX,
the quotient is AL, and the remainder is AH. If the divisor is 16 bits, the dividend is DX:AX, the
quotient is AX, and the remainder is DX. If the divisor is 32 bits, the dividend is EDX:EAX, the
quotient is EAX, and the remainder is EDX.
Instruction formats:

DIV reg DIV mem

ENTER Make Stack Frame (80286)

Creates a stack frame for a procedure that receives stack parameters and uses local stack variables.
The first operand indicates the number of bytes to reserve for local stack variables. The second
operand indicates the procedure nesting level (must be set to 0 for C, Basic, and FORTRAN).
Instruction format:

ENTER imm16,imm8

? * * * * *

O D I S CA PZ

** * * *

O D I S CA PZ

? ? ? ? ?

O D I S CA PZ

?

O D I S CA PZ
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HLT Halt

Stops the CPU until a hardware interrupt occurs. (Note: The Interrupt flag must be set with the
STI instruction before hardware interrupts can occur.)
Instruction format:

HLT

IDIV Signed Integer Divide

Performs a signed integer division operation on EDX:EAX,  DX:AX, or AX. If the divisor is
8 bits, the dividend is AX, the quotient is AL, and the remainder is AH. If the divisor is 16 bits,
the dividend is DX:AX, the quotient is AX, and the remainder is DX. If the divisor is 32 bits, the
dividend is EDX:EAX, the quotient is EAX, and the remainder is EDX. Usually the IDIV oper-
ation is prefaced by either CBW or CWD to sign-extend the dividend.
Instruction formats:

IDIV reg IDIV mem

IMUL Signed Integer Multiply

Performs a signed integer multiplication on AL, AX, or EAX. If the multiplier is 8 bits, the mul-
tiplicand is AL and the product is AX. If the multiplier is 16 bits, the multiplicand is AX and the
product is DX:AX. If the multiplier is 32 bits, the multiplicand is EAX and the product is
EDX:EAX. The Carry and Overflow flags are set if a 16-bit product extends into AH, or a 32-bit
product extends into DX, or a 64-bit product extends into EDX.
Instruction formats:
Single operand: 

IMUL r/m8 IMUL r/m16
IMUL r/m32

Two operands:

IMUL r16,r/m16 IMUL r16,imm8
IMUL r32,r/m32 IMUL r32,imm8
IMUL r16,imm16 IMUL r32,imm32

Three operands:

IMUL r16,r/m16,imm8 IMUL r16,r/m16,imm16
IMUL r32,r/m32,imm8 IMUL r32,r/m32,imm32

O D I S CA PZ

? ? ? ? ?

O D I S CA PZ

?

* ? ? ? ?

O D I S CA PZ

*
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IN Input From Port

Inputs a byte or word from a port into AL or AX. The source operand is a port address,
expressed as either an 8-bit constant or a 16-bit address in DX. On x86 processors, a doubleword
can be input from a port into EAX. 
Instruction formats:

IN accum,imm IN accum,DX

INC Increment

Adds 1 to a register or memory operand.
Instruction formats:

INC reg INC mem

INS, 
INSB, 
INSW, 
INSD

Input from Port to String (80286)

Inputs a string pointed to by ES:(E)DI from a port. The port number is specified in DX. For each
value received, (E)DI is adjusted in the same way as LODSB and similar string primitive
instructions. The REP prefix may be used with this instruction.
Instruction formats:

INS dest,DX REP INSB dest,DX
REP INSW dest,DX REP INSD dest,DX

INT Interrupt

Generates a software interrupt, which in turn calls an operating system subroutine. Clears the
Interrupt flag and pushes the flags, CS, and IP on the stack before branching to the interrupt routine.
Instruction formats:

INT imm INT  3 
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INTO Interrupt on Overflow

Generates internal CPU Interrupt 4 if the Overflow flag is set. No action is taken by MS-DOS if
INT 4 is called, but a user-written routine may be substituted instead.
Instruction format:

INTO

IRET Interrupt Return

Returns from an interrupt handling routine. Pops the stack into (E)IP, CS, and the flags.
Instruction format:

IRET

Jcondition Conditional Jump

Jumps to a label if a specified flag condition is true. When using a processor earlier than
the x86, the label must be in the range of �128 to �127 bytes from the current location.
On x86 processors, the label’s offset can be a positive or negative 32-bit value. See
Table B-2 for a list of mnemonics. 
Instruction format:

Jcondition label

Table B-2  Conditional Jump Mnemonics.

Mnemonic Comment Mnemonic Comment

JA Jump if above JE Jump if equal 

JNA Jump if not above JNE Jump if not equal 

JAE Jump if above or equal JZ Jump if zero

JNAE Jump if not above or equal JNZ Jump if not zero

JB Jump if below JS Jump if sign

**
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JNB Jump if not below JNS Jump if not sign

JBE Jump if below or equal  JC Jump if carry 

JNBE Jump if not below or equal JNC Jump if no carry

JG Jump if greater JO Jump if overflow

JNG Jump if not greater JNO Jump if no overflow 

JGE Jump if greater or equal JP Jump if parity

JNGE Jump if not greater or equal JPE Jump if parity equal

JL Jump if less JNP Jump if no parity 

JNL Jump if not less JPO Jump if parity odd

JLE Jump if less or equal JNLE Jump if not less than or equal

JCXZ, 
JECXZ

Jump If CX Is Zero

Jump to a short label if the CX register is equal to zero. The short label must be in the range
�128 to �127 bytes from the next instruction. On x86 processors, JECXZ jumps if ECX equals
zero.
Instruction formats:

JCXZ shortlabel JECXZ shortlabel

JMP Jump Unconditionally to Label

Jump to a code label. A short jump is within −128 to +127 bytes from the current location. A 
near jump is within the same code segment, and a far jump is outside the current segment. 
Instruction formats:

JMP shortlabel JMP  reg16
JMP nearlabel JMP mem16
JMP farlabel JMP mem32

Table B-2  Conditional Jump Mnemonics.

Mnemonic Comment Mnemonic Comment
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LAHF Load AH from Flags

The following flags are copied to AH: Sign, Zero, Auxiliary Carry, Parity, and Carry.
Instruction format:

LAHF

LDS, 
LES, 
LFS, 
LGS, 
LSS

Load Far Pointer

Loads the contents of a doubleword memory operand into a segment register and the specified
destination register. When using processors prior to the x86, LDS loads into DS, LES loads into
ES. On the x86, LFS loads into FS, LGS loads into GS, and LSS loads into SS.
Instruction format (same for LDS, LES, LFS, LGS, LSS):

LDS reg,mem

LEA Load Effective Address

Calculates and loads the 16-bit or 32-bit effective address of a memory operand. Similar to
MOV..OFFSET, except that only LEA can obtain an address that is calculated at runtime.
Instruction format:

LEA reg,mem

LEAVE High-Level Procedure Exit

Terminates the stack frame of a procedure. This reverses the action of the ENTER instruction at
the beginning of a procedure by restoring (E)SP and (E)BP to their original values.
Instruction format:

LEAVE
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LOCK Lock the System Bus

Prevents other processors from executing during the next instruction. This instruction is used
when another processor might modify a memory operand that is currently being accessed by the CPU.
Instruction format:

LOCK instruction

LODS, 
LODSB, 
LODSW, 
LODSD

Load Accumulator from String

Loads a memory byte or word addressed by DS:(E)SI into the accumulator (AL, AX, or
EAX). If LODS is used, the memory operand must be specified. LODSB loads a byte into
AL, LODSW loads a word into AX, and LODSD on the x86 loads a doubleword into EAX.
(E)SI is increased or decreased according to the operand size and the status of the direction
flag. If the Direction flag (DF) � 1, (E)SI is decreased; if DF � 0, (E)SI is increased.
Instruction formats:

LODS mem LODSB
LODS segreg:mem LODSW
LODS

LOOP Loop

Decrements ECX and jumps to a short label if ECX is not equal to zero. The destination must
be �128 to �127 bytes from the current location.
Instruction formats:

LOOP shortlabel LOOPW shortlabel

LOOPD Loop (x86)

Decrements ECX and jumps to a short label if ECX is not equal to zero. The destination must
be �128 to �127 bytes from the current location.
Instruction format:

LOOPD shortlabel
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LOOPE, 
LOOPZ

Loop If Equal (Zero)

Decrements (E)CX and jumps to a short label if (E)CX > 0 and the Zero flag is set.
Instruction formats: 

LOOPE shortlabel LOOPZ shortlabel

LOOPNE, 
LOOPNZ

Loop If Not Equal (Zero)

Decrements (E)CX and jumps to a short label if (E)CX � 0 and the Zero flag is clear.
Instruction formats:

LOOPNE shortlabel LOOPNZ shortlabel

LOOPW Loop with 16-bit Counter

Decrements CX and jumps to a short label of CX is not equal to zero. The destination must
be �128 to +127 bytes from the current location. 
Instruction format:

LOOPW shortlabel

MOV Move

Copies a byte or word from a source operand to a destination operand.
Instruction formats:

MOV reg,reg MOV reg,imm
MOV mem,reg MOV mem,imm
MOV reg,mem MOV mem16,segreg
MOV reg16,segreg MOV segreg,mem16
MOV segreg,reg16
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MOVS, 
MOVSB, 
MOVSW, 
MOVSD

Move String

Copies a byte or word from memory addressed by DS:(E)SI to memory addressed by
ES:(E)DI.  MOVS requires both operands to be specified.  MOVSB copies a byte, MOVSW
copies a word, and on the x86, MOVSD copies a doubleword. (E)SI and (E)DI are increased
or decreased according to the operand size and the status of the direction flag. If the Direction
flag (DF) � 1, (E)SI and (E)DI are decreased; if DF � 0, (E)SI and (E)DI are increased.
Instruction formats:

MOVSB
MOVSW
MOVSD
MOVS dest, source
MOVS ES:dest, segreg:source

MOVSX Move with Sign-Extend

Copies a byte or word from a source operand to a destination register and sign-extends into the
upper bits of the destination. This instruction is used to copy an 8-bit or 16-bit operand into a
larger destination.
Instruction formats:

MOVSX reg32,reg8
MOVSX reg32,reg16 MOVSX reg32,mem16
MOVSX reg16,reg8 MOVSX reg16,m8

MOVZX Move with Zero-Extend

Copies a byte or word from a source operand to a destination register and zero-extends into the
upper bits of the destination. This instruction is used to copy an 8-bit or 16-bit operand into a
larger destination.
Instruction formats:

MOVZX reg32,reg8
MOVSX reg32,reg16 MOVSX reg32,mem16
MOVSX reg16,reg8 MOVSX reg16,m8
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MUL Unsigned Integer Multiply

Multiplies AL, AX, or EAX by a source operand. If the source is 8 bits, it is multiplied by AL
and the product is stored in AX. If the source is 16 bits, it is multiplied by AX and the product is
stored in DX:AX. If the source is 32 bits, it is multiplied by EAX and the product is stored in
EDX:EAX.
Instruction formats: 

MUL reg MUL mem

NEG Negate

Calculates the twos complement of the destination operand and stores the result in the destination.
Instruction formats: 

NEG reg NEG mem

NOP No Operation

This instruction does nothing, but it may be used inside a timing loop or to align a subsequent
instruction on a word boundary.
Instruction format:

NOP

NOT Not

Performs a logical NOT operation on an operand by reversing each of its bits.
Instruction formats:

NOT reg NOT mem

* ? ? ? ?
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OR Inclusive OR

Performs a boolean (bitwise) OR operation between each matching bit in the destination operand
and each bit in the source operand.
Instruction formats:

OR reg,reg OR reg,imm
OR mem,reg OR mem,imm
OR reg,mem OR accum,imm

OUT Output to Port

When using processors prior to the x86, this instruction outputs a byte or word from the accu-
mulator to a port. The port address may be a constant if in the range 0−FFh, or DX may contain
a port address between 0 and FFFFh. On an x86 processor, a doubleword can be output to a port.
Instruction formats:

OUT imm8,accum OUT  DX,accum

OUTS, 
OUTSB, 
OUTSW, 
OUTSD

Output String to Port (80286)

Outputs a string pointed to by ES:(E)DI to a port. The port number is specified in DX. For each
value output, (E)DI is adjusted in the same way as LODSB and similar string primitive instruc-
tions. The REP prefix may be used with this instruction.
Instruction formats:

OUTS dest,DX REP OUTSB dest,DX
REP OUTSW dest,DX REP OUTSD dest,DX

POP Pop from Stack

Copies a word or doubleword at the current stack pointer location into the destination operand
and adds 2 (or 4) to (E)SP.
Instruction formats:

POP reg16/r32 POP segreg
POP mem16/mem32

0 * * ? * 0
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POPA, 
POPAD

Pop All

Pops 16 bytes from the top of the stack into the eight general-purpose registers, in the following
order: DI, SI, BP, SP, BX, DX, CX, AX. The value for SP is discarded, so SP is not reassigned.
POPA pops into 16-bit registers, and POPAD on an x86 pops into 32-bit registers.
Instruction formats:

POPA POPAD

POPF, 
POPFD

Pop Flags from Stack

POPF pops the top of the stack into the 16-bit FLAGS register. POPFD on an x86 pops the top
of the stack into the 32-bit EFLAGS register.
Instruction formats:

POPF POPFD

PUSH Push on Stack

If a 16-bit operand is pushed, 2 is subtracted from ESP. If a 32-bit operand is pushed, 4 is sub-
tracted from ESP. Next, the operand is copied into the stack at the location pointed to by ESP.
Instruction formats:

PUSH reg16/reg32 PUSH  segreg
PUSH mem16/mem32 PUSH  imm16/imm32

PUSHA, 
PUSHAD

Push All (80286)

Pushes the following 16-bit registers on the stack, in order: AX, CX, DX, BX, SP, BP, SI, and
DI. The PUSHAD instruction for the x86 processor pushes EAX, ECX, EDX, EBX, ESP,
EBP, ESI, and EDI.
Instruction formats:

PUSHA PUSHAD
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PUSHF, 
PUSHFD

Push Flags

PUSHF pushes the 16-bit FLAGS register onto the stack. PUSHFD pushes the 32-bit
EFLAGS onto the stack (x86).
Instruction formats:

PUSHF PUSHFD

PUSHW, 
PUSHD

Push on Stack

PUSHW pushes a 16-bit word on the stack, and on the x86, PUSHD pushes a 32-bit double-
word on the stack.
Instruction formats:

PUSH reg16/reg32 PUSH segreg
PUSH mem16/mem32 PUSH imm16/imm32

RCL Rotate Carry Left

Rotates the destination operand left, using the source operand to determine the number of rota-
tions. The Carry flag is copied into the lowest bit, and the highest bit is copied into the Carry
flag. The imm8 operand must be a 1 when using the 8086/8088 processor.
Instruction formats:

RCL reg,imm8 RCL mem,imm8
RCL reg,CL RCL  mem,CL

RCR Rotate Carry Right

Rotates the destination operand right, using the source operand to determine the number of rota-
tions. The Carry flag is copied into the highest bit, and the lowest bit is copied into the Carry
flag. The imm8 operand must be a 1 when using the 8086/8088 processor.
Instruction formats:

RCR reg,imm8 RCR  mem,imm8
RCR reg,CL RCR  mem,CL
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REP Repeat String

Repeats a string primitive instruction, using (E)CX as a counter. (E)CX is decremented each
time the instruction is repeated, until (E)CX � 0.
Format (shown with MOVS): 

REP MOVS dest,source

REPcondition Repeat String Conditionally

Repeats a string primitive instruction until (E)CX � 0 and while a flag condition is
true. REPZ (REPE) repeats while the Zero flag is set, and REPNZ (REPNE) repeats
while the Zero flag is clear. Only SCAS and CMPS should be used with REP condi-
tion, because they are the only string primitives that modify the Zero flag.
Formats used with SCAS:  

REPZ  SCAS dest REPNE  SCAS dest
REPZ  SCASB REPNE  SCASB
REPE  SCASW REPNZ  SCASW

RET, 
RETN, 
RETF

Return from Procedure

Pops a return address from the stack. RETN (return near) pops only the top of the stack into
(E)IP. In real-address mode, RETF (return far) pops the stack first into (E)IP and then into CS.
RET may be either near or far, depending on the attribute specified or implied by the PROC
directive. An optional 8-bit immediate operand tells the CPU to add a value to (E)SP after pop-
ping the return address.
Instruction formats: 

RET RET   imm8
RETN RETN  imm8
RETF RETF  imm8
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ROL Rotate Left

Rotates the destination operand left, using the source operand to determine the number of rota-
tions. The highest bit is copied into the Carry flag and moved into the lowest bit position. The
imm8 operand must be a 1 when using the 8086/8088 processor.
Instruction formats:

ROL reg,imm8 ROL  mem,imm8
ROL reg,CL ROL  mem,CL

ROR Rotate Right

Rotates the destination operand right, using the source operand to determine the number of rota-
tions. The lowest bit is copied into both the Carry flag and the highest bit position. The imm8
operand must be a 1 when using the 8086/8088 processor.
Instruction formats:

ROR reg,imm8 ROR  mem,imm8
ROR reg,CL ROR  mem,CL

SAHF Store AH into Flags

Copies AH into bits 0 through 7 of the Flags register.
Instruction format:

SAHF

SAL Shift Arithmetic Left

Shifts each bit in the destination operand to the left, using the source operand to determine the
number of shifts. The highest bit is copied into the Carry flag, and the lowest bit is filled with a
zero. The imm8 operand must be a 1 when using the 8086/8088 processor.
Instruction formats:

SAL reg,imm8 SAL  mem,imm8
SAL reg,CL SAL  mem,CL

* *
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SAR Shift Arithmetic Right

Shifts each bit in the destination operand to the right, using the source operand to determine the 
number of shifts. The lowest bit is copied into the Carry flag, and the highest bit retains its previ-
ous value. This shift is often used with signed operands because it preserves the number’s sign. 
The imm8 operand must be a 1 when using the 8086/8088 processor.
Instruction formats:

SAR reg,imm8 SAR  mem,imm8
SAR reg,CL SAR  mem,CL

SBB Subtract with Borrow

Subtracts the source operand from the destination operand and then subtracts the Carry flag from
the destination.
Instruction formats:

SBB reg,reg SBB reg,imm
SBB mem,reg SBB mem,imm
SBB reg,mem

SCAS, 
SCASB, 
SCASW, 
SCASD

Scan String

Scans a string in memory pointed to by ES:(E)DI for a value that matches the accumulator.
SCAS requires the operands to be specified. SCASB scans for an 8-bit value matching AL,
SCASW scans for a 16-bit value matching AX, and SCASD scans for a 32-bit value matching
EAX. (E)DI is increased or decreased according to the operand size and the status of the direc-
tion flag. If DF = 1, (E)DI is decreased; if DF = 0, (E)DI is increased.
Instruction formats:

SCASB SCASW
SCASD
SCAS dest
SCAS ES:dest

* * * ? * *
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SETcondition Set Conditionally

If the given flag condition is true, the byte specified by the destination operand is
assigned the value 1. If the flag condition is false, the destination is assigned a value
of 0. The possible values for condition were listed in Table B-2.
Instruction formats: 

SETcond reg8 SETcond mem8

SHL Shift Left

Shifts each bit in the destination operand to the left, using the source operand to determine
the number of shifts. The highest bit is copied into the Carry flag, and the lowest bit is filled
with a zero (identical to SAL). The imm8 operand must be a 1 when using the 8086/8088
processor.
Instruction formats: 

SHL reg,imm8 SHL  mem,imm8
SHL reg,CL SHL  mem,CL

SHLD Double-Precision Shift Left (x86)

Shifts the bits of the second operand into the first operand. The third operand indicates the num-
ber of bits to be shifted. The positions opened by the shift are filled by the most significant bits
of the second operand. The second operand must always be a register, and the third operand may
be either an immediate value or the CL register.
Instruction formats:

SHLD reg16,reg16,imm8 SHLD mem16,reg16,imm8
SHLD reg32,reg32,imm8 SHLD mem32,reg32,imm8
SHLD reg16,reg16,CL SHLD mem16,reg16,CL
SHLD reg32,reg32,CL SHLD mem32,reg32,CL
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SHR Shift Right

Shifts each bit in the destination operand to the right, using the source operand to determine the
number of shifts. The highest bit is filled with a zero, and the lowest bit is copied into the Carry
flag. The imm8 operand must be a 1 when using the 8086/8088 processor.
Instruction formats:

SHR reg,imm8 SHR  mem,imm8
SHR reg,CL SHR  mem,CL

SHRD Double-Precision Shift Right (x86)

Shifts the bits of the second operand into the first operand. The third operand indicates the num-
ber of bits to be shifted. The positions opened by the shift are filled by the least significant bits of
the second operand. The second operand must always be a register, and the third operand may be
either an immediate value or the CL register.
Instruction formats: 

SHRD reg16,reg16,imm8 SHRD mem16,reg16,imm8
SHRD reg32,reg32,imm8 SHRD mem32,reg32,imm8
SHRD reg16,reg16,CL SHRD mem16,reg16,CL
SHRD reg32,reg32,CL SHRD mem32,reg32,CL

STC Set Carry Flag

Sets the Carry flag.
Instruction format:

STC

STD Set Direction Flag

Sets the Direction flag, causing (E)SI and/or (E)DI to be decremented by string primitive
instructions. Thus, string processing will be from high addresses to low addresses.
Instruction format:

STD
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STI Set Interrupt Flag

Sets the Interrupt flag, which enables maskable interrupts. Interrupts are automatically disabled when
an interrupt occurs, so an interrupt handler procedure immediately reenables them, using STI.
Instruction format:

STI

STOS, 
STOSB, 
STOSW, 
STOSD

Store String Data

Stores the accumulator in the memory location addressed by ES:(E)DI. If STOS is used, a des-
tination operand must be specified. STOSB copies AL to memory,  STOSW copies AX to
memory, and STOSD for the x86 processor copies EAX to memory. (E)DI is increased or
decreased according to the operand size and the status of the direction flag. If DF = 1, (E)DI is
decreased; if DF = 0, (E)DI is increased.
Instruction formats:

STOSB STOSW
STOSD
STOS mem
STOS ES:mem

SUB Subtract

Subtracts the source operand from the destination operand.
Instruction formats:

SUB reg,reg SUB reg,imm
SUB mem,reg SUB mem,imm
SUB reg,mem SUB accum,imm

TEST Test

Tests individual bits in the destination operand against those in the source operand. Performs a
logical AND operation that affects the flags but not the destination operand.
Instruction formats:

TEST reg,reg TEST reg,imm
TEST mem,reg TEST mem,imm
TEST reg,mem TEST accum,imm

O D I S C

1

A PZ

O D I S CA PZ

* * * * * *

O D I S CA PZ

* * ? * 00

O D I S CA PZ



636 Appendix B  •  The x86 Instruction Set

WAIT Wait for Coprocessor

Suspends CPU execution until the coprocessor finishes the current instruction.
Instruction format:

WAIT

XADD Exchange and Add (Intel486)

Adds the source operand to the destination operand. At the same time, the original destination
value is moved to the source operand.
Instruction formats: 

XADD reg,reg XADD mem,reg

XCHG Exchange

Exchanges the contents of the source and destination operands.
Instruction formats:

XCH reg,reg XCH mem,reg
XCH reg,mem

XLAT,
XLATB

Translate Byte

Uses the value in AL to index into a table pointed to by DS:BX. The byte pointed to by the index
is moved to AL. An operand may be specified in order to provide a segment override. XLATB may
be substituted for XLAT.
Instruction formats:

XLAT XLAT  segreg:mem
XLAT mem XLATB
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B.3 Floating-Point Instructions
Table B-3 contains a list of all x86 floating-point instructions, with brief descriptions and oper-
and formats. Instructions are usually grouped by function rather than strict alphabetical order.
For example, the FIADD instruction immediately follows FADD and FADDP because it per-
forms the same operation with integer conversion.

For complete information about floating-point instructions, consult the Intel Architecture Manu-
als. The word stack in this table refers to the FPU register stack. (Table B-1 lists many of the
symbols used when describing the formats and operands of floating-point instructions.)

Table B-3  Floating-Point Instructions. 

XOR Exclusive OR

Each bit in the source operand is exclusive ORed with its corresponding bit in the destination.
The destination bit is a 1 only when the original source and destination bits are different.
Instruction formats:

XOR reg,reg XOR reg,imm
XOR mem,reg XOR mem,imm
XOR reg,mem XOR accum,imm

Instruction Description

F2XM1 Compute 2x � 1. No operands.

FABS Absolute value. Clears sign bit of ST(0). No operands.

FADD Add floating-point. Adds destination and source operands, stores sum in destination operand.
Formats:

FADD Add ST(0) to ST(1), and pop stack
FADD m32fp Add m32fp to ST(0)
FADD m64fp Add m64fp to ST(0)
FADD ST(0),ST(i) Add ST(i) to ST(0)
FADD ST(i),ST(0) Add ST(0) to ST(i)

FADDP Add floating-point and pop. Performs the same operation as FADD, then pops the stack. Format:

FADDP ST(i),ST(0) Add ST(0) to ST(i)

FIADD Convert integer to floating-point and add. Adds destination and source operands, stores sum in
destination operand. Formats:

FIADD m32int Add m32int to ST(0)
FIADD m16int Add m16int to ST(0)

FBLD Load binary-coded decimal. Converts BCD source operand into double extended-precision
floating-point format and pushes it on the stack. Format:

FBLD m80bcd Push m80bcd onto register stack

* * ? * 00
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FBSTP Store BCD integer and pop. Converts the value in the ST(0) register to an 18-digit packed BCD
integer, stores the result in the destination operand, and pops the register stack. Format:

FBSTP m80bcd Store ST(0) into m80bcd, and pop stack

FCHS Change sign. Complements the sign of ST(0). No operands.

FCLEX Clear exceptions. Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the
exception summary status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU sta-
tus word. No operands. FNCLEX performs the same operation without checking for pending
unmasked floating-point exceptions.

FCMOVcc Floating-point conditional move. Tests status flags in EFLAGS, moves source operand (second
operand) to the destination operand (first operand) if the given test condition is true. Formats:

FCMOVB ST(0),ST(i) Move if below
FCMOVE ST(0),ST(i) Move if equal
FCMOVBE ST(0),ST(i) Move if below or equal
FCMOVU ST(0),ST(i) Move if unordered
FCMOVNB ST(0),ST(i) Move if not below
FCMOVNE ST(0),ST(i) Move if not equal
FCMOVNBE ST(0),ST(i) Move if not below or equal
FCMOVNU ST(0),ST(i) Move if not unordered

FCOM Compare floating-point values. Compares ST(0) to the source operand and sets condition code
flags C0, C2, and C3 in the FPU status word according to the results. Formats:

FCOM m32fp Compare ST(0) to m32fp
FCOM m64fp Compare ST(0) to m64fp
FCOM ST(i) Compare ST(0) to ST(i)
FCOM Compare ST(0) to ST(1)

FCOMP performs the same operation as FCOM and then pops the stack. FCOMPP does the same
task as FCOM and then pops the stack twice. FUCOM, FUCOMP, and FUCOMPP are the same
as FCOM, FCOMP, and FCOMPP, respectively, except that they check for unordered values. 

FCOMI Compare floating-point values and set EFLAGS. Performs an unordered comparison of regis-
ters ST(0) and ST(i) and sets the status flags (ZF, PF, CF) in the EFLAGS register according to the
results. Format:

FCOMI ST(0),ST(i) Compare ST(0) to ST(i)

FCOMIP does the same task as FCOMI and then pops the stack. FUCOMI and FUCOMIP check
for unordered values.

FCOS Cosine. Computes the cosine of ST(0) and stores the result in ST(0). Input must be in radians. No
operands.

FDECSTP Decrement stack-top pointer. Subtracts 1 from the TOP field of the FPU status word, effectively
rotating the stack. No operands.

FDIV Divide floating-point and pop. Divides the destination operand by the source operand and stores
the result in the destination location. Formats:

FDIV ST(1) = ST(1) / T(0), and pop stack
FDIV m32fp ST(0) = ST(0) / m32fp
FDIV m64fp ST(0) = ST(0) / m64fp
FDIV ST(0),ST(i) ST(0) = ST(0) / ST(i)
FDIV ST(i),ST(0) ST(i) = ST(i) / ST(0)

Instruction Description
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FDIVP Divide floating-point and pop. Same as FDIV, then pops from the stack. Format:

FDIVP ST(i),ST(0) ST(i) = ST(i) / ST(0), and pop stack

FIDIV Convert integer to floating-point and divide. After converting, performs the same operation as
FDIV. Formats:

FIDIV m32int ST(0) = ST(0) / m32int
FIDIV m16int ST(0) = ST(0) / m16int

FDIVR Reverse divide. Divides the source operand by the destination operand and stores the result in the
destination location. Formats:

FDIVR ST(0) = ST(0) / ST(1), and pop stack
FDIVR m32fp ST(0) = m32fp / ST(0)
FDIVR m64fp ST(0) = m64fp / ST(0)
FDIVR ST(0),ST(i) ST(0) = ST(i) / ST(0)
FDIVR ST(i),ST(0) ST(i) = ST(0) / ST(i)

FDIVRP Reverse divide and pop. Performs the same operation as FDIVR, then pops from the stack.
Format:

FDIVRP ST(i),ST(0)  ST(i) = ST(0) / ST(i), and pop stack

FIDIVR Convert integer to float and perform reverse divide. After converting, performs the same oper-
ation as FDIVR. Formats:

FIDIVR m32int ST(0) = m32int / ST(0)
FIDIVR m16int ST(0) = m16int / ST(0)

FFREE Free floating-point register. Sets the register to empty, using Tag word. Format:

FFREE ST(i) ST(i) = empty

FICOM Compare integer. Compares the value in ST(0) with an integer source operand and sets the condi-
tion code flags C0, C2, and C3 according to the results. The integer source operand is converted to
floating-point before the comparison. Formats:

FICOM m32int Compare ST(0) to m32int
FICOM m16int Compare ST(0) to m16int

FICOMP performs the same operation as FICOM, then pops from the stack.

FILD Convert integer to float and load onto register stack. Formats:

FILD m16int Push m16int onto register stack
FILD m32int Push m32int onto register stack
FILD m64int Push m64int onto register stack

FINCSTP Increment stack-top pointer. Adds 1 to the TOP field of the FPU status word. No operands.

FINIT Initialize floating-point unit. Sets the control, status, tag, instruction pointer, and data pointer
registers to their default states. The control word is set to 037FH (round to nearest, all excep-
tions masked, 64-bit precision). The status word is cleared (no exception flags set, TOP � 0).
The data registers in the register stack are unchanged, but they are tagged as empty. No oper-
ands. FNINIT performs the same operation without checking for pending unmasked floating-
point exceptions.

Instruction Description
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FIST Store integer in memory operand. Stores ST(0) in a signed integer memory operand, rounding
according to the RC field in the FPU control word. Formats:

FIST m16int Store ST(0) in m16int
FIST m32int Store ST(0) in m32int

FISTP performs the same operation as FIST, then pops the register stack. It has one additional format:

FISTP m64int Store ST(0) in m64int, and pop stack

FISTTP Store integer with truncation. Performs same operation as FIST, but automatically truncates the
integer and pops the stack. Formats:

FISTTP m16int Store ST(0) in m16int, and pop stack
FISTTP m32int Store ST(0) in m32int, and pop stack
FISTTP m64int Store ST(0) in m64int, and pop stack

FLD Load floating-point value onto register stack. Formats:

FLD m32fp Push m32fp onto register stack
FLD m64fp Push m64fp onto register stack
FLD m80fp Push m80fp onto register stack
FLD ST(i) Push ST(i) onto register stack

FLD1 Load +1.0 onto register stack. No operands.

FLDL2T Load log2 10 onto register stack. No operands.

FLDL2E Load log2 e onto register stack. No operands.

FLDPI Load pi onto register stack. No operands.

FLDLG2 Load log10 2 onto register stack. No operands.

FLDLN2 Load loge 2 onto register stack. No operands.

FLDZ Load �0.0 onto register stack. No operands.

FLDCW Load FPU control word from 16-bit memory value. Format:

FLDCW m2byte Load FPU control word from m2byte

FLDENV Load FPU environment from memory into the FPU. Format:

FLDENV m14/28byte Load FPU environment from memory

FMUL Multiply floating-point. Multiplies the destination and source operands and stores the product in
the destination location. Formats:

FMUL ST(1) = ST(1) * ST(0), and pop stack
FMUL m32fp ST(0) = ST(0) * m32fp
FMUL m64fp ST(0) = ST(0) * m64fp
FMUL ST(0),ST(i) ST(0) = ST(0) * ST(i)
FMUL ST(i),ST(0) ST(i) = ST(i) * ST(0)

FMULP Multiply floating-point and pop. Performs the same operation as FMUL, then pops the stack.
Format:

FMULP ST(i),ST(0) ST(i) = ST(i) * ST(0), and pop stack

Instruction Description
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FIMUL Convert integer and multiply. Converts the source operand to floating-point, multiplies it by 
ST(0), and stores the product in ST(0). Formats:

FIMUL m16int
FIMUL m32int

FNOP No operation. No operands.

FPATAN Partial arctangent. Replaces ST(1) with arctan(ST(1)/ST(0)) and pops the register stack. No operands.

FPREM Partial remainder. Replaces ST(0) with the remainder obtained from dividing ST(0) by ST(1).
No operands. FPREM1 is similar, replacing ST(0) with the IEEE remainder obtained from divid-
ing ST(0) by ST(1).

FPTAN Partial tangent. Replaces ST(0) with its tangent and pushes 1.0 onto the FPU stack. Input must
be in radians. No operands.

FRNDINT Round to integer. Rounds ST(0) to the nearest integer value. No operands.

FRSTOR Restore x87 FPU State. Loads the FPU state (operating environment and register stack) from the
memory area specified by the source operand. Format:

FRSTOR m94/108byte

FSAVE Store x87 FPU State. Stores the current FPU state (operating environment and register stack) in
memory specified by the destination operand and then reinitializes the FPU. Format:

FSAVE m94/108byte

FNSAVE performs the same operation without checking for pending unmasked floating-point exceptions.

FSCALE Scale. Truncates the value in ST(1) to an integral value and adds that value to the exponent of the
destination operand ST(0). No operands.

FSIN Sine. Replaces ST(0) with its sine. Input must be in radians. No operands.

FSINCOS Sine and cosine. Computes the sine and cosine of ST(0). Input must be in radians. Replaces ST(0)
with the sine and pushes the cosine on the register stack. No operands.

FSQRT Square root. Replaces ST(0) with its square root. No operands.

FST Store floating-point value. Formats:

FST m32fp Copy ST(0) to m32fp
FST m64fp Copy ST(0) to m64fp
FST ST(i) Copy ST(0) to ST(i)

FSTP performs the same operation as FST, then pops the stack. It has one additional format:

FSTP m80fp Copy ST(0) to m80fp, and pop stack

FSTCW Store FPU control word. Format:

FLDCW m2byte Store FPU control word to m2byte

FNSTCW performs the same operation without checking for pending unmasked floating-point
exceptions.

FSTENV Store FPU environment. Stores the FPU environment in a m14byte or m28byte structure,
depending on whether the processor is in real mode or protected mode. Format:

FSTENV memop Store FPU environment to memop

FNSTENV performs the same operation without checking for pending unmasked floating-point
exceptions.

Instruction Description
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FSTSW Store FPU status word. Formats:

FSTSW m2byte Store FPU status word to m2byte
FSTSW AX Store FPU status word to AX register

FNSTSW performs the same operation without checking for pending unmasked floating-point
exceptions.

FSUB Subtract floating-point. Subtracts the source operand from the destination operand and stores the
difference in the destination location. Formats:

FSUB ST(0) = ST(1) – ST(0), and pop stack
FSUB m32fp ST(0) = ST(0) – m32fp
FSUB m64fp ST(0) = ST(0) – m64fp
FSUB ST(0),ST(i) ST(0) = ST(0) – ST(i)
FSUB ST(i),ST(0) ST(i) = ST(i) – ST(0)

FSUBP Subtract floating-point and pop. The FSUBP instruction performs the same operation as FSUB,
then pops the stack. Format:

FSUBP ST(i),ST(0) ST(i) = ST(i) – ST(0), and pop stack

FISUB Convert integer to floating-point and subtract. Converts source operand to floating-point, sub-
tracts it from ST(0), and stores the result in ST(0). Formats:

FISUB m16int ST(0) = ST(0) – m16int
FISUB m32int ST(0) = ST(0) – m32int

FSUBR Reverse subtract floating-point. Subtracts the destination operand from the source operand and
stores the difference in the destination location. Formats:

FSUBR ST(0) = ST(0) – ST(1), and pop stack
FSUBR m32fp ST(0) = m32fp – ST(0)
FSUBR m64fp ST(0) = m64fp – ST(0)
FSUBR ST(0),ST(i) ST(0) = ST(i) – ST(0)
FSUBR ST(i),ST(0) ST(i) = ST(0) – ST(i)

FSUBRP Reverse subtract floating-point and pop. The FSUBRP instruction performs the same operation
as FSUB, then pops the stack. Format:

FSUBRP ST(i),ST(0) ST(i) = ST(0) – ST(i), and pop stack

FISUBR Convert integer and reverse subtract floating-point. After converting to floating-point, per-
forms the same operation as FSUBR. Formats:

FISUBR m16int
FISUBR m32int

FTST Test. Compares ST(0) to 0.0 and sets condition code flags in the FPU status word. No operands.

FWAIT Wait. Waits for all pending floating-point exception handlers to complete. No operands.

FXAM Examine. Examines ST(0) and sets condition code flags in the FPU status word. No operands.

FXCH Exchange register contents. Formats:

FXCH ST(i) Exchange ST(0) and ST(i)
FXCH Exchange ST(0) and ST(1)

Instruction Description
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FXRSTOR Restore x87 FPU, MMX Technology, SSE, and SSE2 State. Reloads the FPU, MMX technology,
XMM, and MXCSR registers from the memory image specified in the source operand. Format:

FXRSTOR m512byte

FXSAVE Save x87 FPU, MMX Technology, SSE, and SSE2 State. Saves the current state of the FPU,
MMX technology, XMM, and MXCSR registers to the memory image specified in the destination
operand. Format:

FXRSAVE m512byte

FXTRACT Extract exponent and significand. Separates the source in ST(0) into its exponent and signifi-
cand, stores the exponent in ST(0), and pushes the significand on the register stack. No operands.

FYL2X Compute y * log2x. Register ST(1) holds the value of y, and ST(0) holds the value of x. Stack is
popped, so the result is left in ST(0). No operands.

FYL2XP1 Compute y * log2(x � 1). Register ST(1) holds the value of y, and ST(0) holds the value of x.
Stack is popped, so the result is left in ST(0). No operands.

Instruction Description
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C
Answers to Section Review 
Questions

The answers given here refer to Section Review questions, which are found at the end of each
major section within the chapters. These are not answers to the Chapter Review questions, which
appear only at the end of each chapter. Those answers may be found in the Instructor Supple-
ments for this book, available at the Pearson Education web site.

1 Basic Concepts

1.1 Welcome to Assembly Language
1. An assembler converts source-code programs from assembly language into machine lan-

guage. A linker combines individual files created by an assembler into a single executable
program.

2. Assembly language is a good tool for learning how application programs communicate
with the computer’s operating system via interrupt handlers, system calls, and common
memory areas. Assembly language programming also helps when learning how the operat-
ing system loads and executes application programs.

3. In a one-to-many relationship, a single statement expands into multiple assembly language
or machine instructions.

4. A language whose source programs can be compiled and run on a wide variety of com-
puter systems is said to be portable.

5. No. Each assembly language is based on either a processor family or a specific computer. 

6. Some examples of embedded systems applications are automobile fuel and ignition sys-
tems, air-conditioning control systems, security systems, flight control systems, hand-held
computers, modems, printers, and other intelligent computer peripherals.
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7. Device drivers are programs that translate general operating system commands into specific
references to hardware details that only the manufacturer knows. 

8. C++ does not allow a pointer of one type to be assigned to a pointer of another type.
Assembly language has no such restriction regarding pointers.

9. Applications suited to assembly language: hardware device driver and embedded systems
and computer games requiring direct hardware access.

10. A high-level language may not provide for direct hardware access. Even if it does, awk-
ward coding techniques must often be used, resulting in possible maintenance problems.

11. Assembly language has minimal formal structure, so structure must be imposed by programmers
who have varying levels of experience. This leads to difficulties maintaining existing code.

12. Code for the expression X � (Y * 4) � 3:

mov eax,Y ; move Y to EAX
mov ebx,4 ; move 4 to EBX
imul ebx ; EAX = EAX * EBX
add eax,3 ; add 3 to EAX
mov X,eax ; move EAX to X

1.2 Virtual Machine Concept
1. Virtual machine concept: Computers are constructed in layers, so that each layer repre-

sents a translation layer from a higher-level instruction set to a lower-level instruction set.

2. A translated program is often faster because it is coded in a language that can be directly
executed on the target machine. This is not the case with interpreted programs, since they
must be translated while they are running.

3. True.

4. An entire L1 program is converted into an L0 program by an L0 program specifically
designed for this purpose. Then the resulting L0 program is executed directly on the com-
puter hardware.

5. Assembly language appears at Level 3.

6. The Java virtual machine (JVM) allows compiled Java programs to run on almost any
computer.

7. Digital logic, instruction set architecture, assembly language, high-level language.

8. Machine language is difficult for humans to understand, since it provides no visual clues
relating to the instruction syntax.

9. Instruction set architecture.

10. Level 2 (Instruction Set Architecture).

1.3 Data Representation
1. The Least Significant Bit is position 0, having the value of 2 to the zero power.

2. (a) 248    (b) 202    (c) 240

3. (a) 00010001    (b) 101000000    (c) 00011110
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4. (a) 2    (b) 4    (c) 8    (d) 16

5. (a) decimal 65 requires 7 bits    (b) decimal 409 requires 9 bits
(c) decimal 16,385 requires 15 bits

6. (a) 35DA    (b) CEA3    (c) FEDB

7. (a) A4693FBC = 1010 0100 0110 1001 0011 1111 1011 1100    
(b) B697C7A1 = 1011 0110 1001 0111 1100 0111 1010 0001
(c) 2B3D9461 = 0010 1011 0011 1101 1001 0100 0110 0001

1.4 Boolean Expressions
1. (NOT X) OR Y

2. X AND Y

3. T

4. F

5. T

2 x86 Processor Architecture Details

2.1 General Concepts
1. Control Unit, Arithmetic Logic Unit, and the clock.

2. Data, Address, and Control buses.

3. Conventional memory is outside the CPU and it responds more slowly to access requests.
Registers are hard-wired inside the CPU. 

4. Fetch, decode, execute.

5. Fetch memory operands, store memory operands.

2.2 x86 Architecture Details
1. Real-address mode, Protected mode, and System Management mode.

2. EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP.

3. CS, DS, SS, ES, FS, GS.

4. Loop counter.

2.3 64-Bit x86-64 Processors
No review questions.

2.4 Components of a Typical x86 Computer
1. SRAM is an acronym for Static RAM, used in CPU cache memory.

2. VRAM (video ram) holds displayable video data. When CRT monitors are used, VRAM is
dual ported, allowing one port to continuously refresh the display while another port
writes data to the display.
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3. Select any two features from the following list: (1) Intel Fast Memory Access uses an
updated Memory Controller Hub (MCH). (2) I/O Controller Hub (Intel ICH8/R/DH) that
supports serial ATA devices (disk drives). (3) Support for 10 USB ports, 6 PCI express
slots, networking, and Intel Quiet System technology. (4) High definition audio chip.

4. Dynamic RAM, Static RAM, Video RAM, and CMOS RAM.

5. The 8259A PIC controller handles external interrupts from hardware devices such as the
keyboard, system clock, and disk drives. 

2.5 Input–Output System
1. The application program level.

2. BIOS functions communicate directly with the system hardware. They are independent of
the operating system.

3. New devices are invented all the time with capabilities that were often not anticipated
when the BIOS was written. 

4. The BIOS level.

5. No. The same BIOS would work for both operating systems. Many computer owners
install two or three operating systems on the same computer. They would certainly not
want to change the system BIOS every time they rebooted the computer!

3 Assembly Language Fundamentals

3.1 Basic Language Elements
1. �35d, DDh, 335o, 11011101b

2. No (a leading zero is required).

3. No (they have the same precedence)

4. Expression: 30 MOD (3 * 4) + (3 – 1) / 2 = 20

5. Real number constant: �6.2E+04

6. No, they can also be enclosed in double quotes.

7. Directives

8. 247 characters

3.2 Example: Adding and Subtracting Integers
1. The INCLUDE directive copies necessary definitions and setup information from the

Irvine32.inc text file. The data from this file are inserted into the data stream read by the
assembler.

2. The .CODE directive marks the beginning of the code segment.

3. Code and data.

4. EAX.

5. INVOKE ExitProcess,0.
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3.3 Assembling, Linking, and Running Programs
1. Object (.OBJ) and listing (.LST) files

2. True

3. True

4. Loader

5. Executable (.EXE)

3.4 Defining Data
1. var1 SWORD ?

2. var2 BYTE ?

3. var3 SBYTE ?

4. var4 QWORD ?

5. SDWORD

3.5 Symbolic Constants
1. BACKSPACE � 08h

2. SecondsInDay � 24 * 60 * 60

3. ArraySize � ($ � myArray)

4. ArraySize � ($ � myArray) / 4

5. PROCEDURE TEXTEQU <PROC>

6. Code example:

Sample TEXTEQU <"This is a string">
MyString BYTE Sample

7. SetupESI TEXTEQU <mov esi, OFFSET myArray>

3.6 64-Bit Programming
No review questions.

4 Data Transfers, Addressing, and Arithmetic

4.1 Data Transfer Instructions
1. Register, immediate, and memory.

2. False.

3. False.

4. True.

5. A 32-bit register or memory operand

6. A 16-bit immediate (constant) operand
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4.2 Addition and Subtraction
1. inc val2

2. sub eax,val3

3. Code:

mov ax,val4
sub val2,ax

4. CF � 0, SF � 1

5. OF � 1, SF � 1

6. Write down the following flag values:
(a) CF � 1, SF � 0, ZF � 1, OF � 0
(b) CF � 0, SF � 1, ZF � 0, OF � 1
(c) CF � 0, SF � 1, ZF � 0, OF � 0

4.3 Data-Related Operators and Directives
1. False

2. False

3. True

4. False

5. True

4.4 Indirect Addressing
1. True

2. False

3. True (the PTR operator is required)

4. True

5. (a) 10h  (b) 40h  (c) 003Bh  (d) 3  (e) 3  (f) 2

6. (a) 2010h  (b) 003B008Ah  (c) 0  (d) 0  (e) 0044h

4.5 JMP and LOOP Instructions
1. True

2. False

3. 4,294,967,296 times

4. False

5. True

6. CX

7. ECX

8. False (�128 to �127 bytes from the current location)
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9. This is a trick! The program does not stop, because the first LOOP instruction decrements ECX to
zero. The second LOOP instruction decrements ECX to FFFFFFFFh, causing the outer loop
to repeat.

10. Insert the following instruction at label L1: push ecx. Also insert the following instruc-
tion before the second LOOP instruction: pop ecx. (Once you have added these instruc-
tions, the final value of eax is 1Ch.)

4.6 64-Bit Programming
1. True (bits 8-63 are cleared)

2. False (64-bit constants are allowed)

3. RCX = 12345678FFFFFFFF hexadecimal

4. RCX = 12345678ABABABAB hexadecimal

5. AL = 1F hexadecimal

6. RCX = DF02 hexadecimal

5 Procedures

5.1 Stack Operations
1. ESP

2. The runtime stack is the only type of stack that is managed directly by the CPU. For exam-
ple, it holds the return addresses of called procedures.

3. LIFO stands for “last in, first out.” The last value pushed into the stack is the first value
popped out from the stack.

4. ESP is decremented by 4.

5. True

6. False

5.2 Defining and Using Procedures
1. True

2. False

3. Execution would continue beyond the end of the procedure, possibly into the beginning of
another procedure. This type of programming bug is often difficult to detect!

4. Receives indicates the input parameters given to the procedure when it is called. Returns
indicates what value, if any, the procedure produces when it returns it to its caller.

5. False (it pushes the offset of the instruction following the call).

6. True
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5.3 Linking to an External Library
1. False (it contains object code).

2. Code example:

MyProc PROTO

3. Code example:

call MyProc

4. Irvine32.lib

5. Kernel32.dll is a dynamic link library that is a fundamental part of the MS-Windows
operating system.

5.4 The Irvine32 Library
1. RandomRange procedure

2. WaitMsg procedure

3. Code example:

mov  eax,700
call Delay

4. WriteDec procedure

5. Gotoxy procedure

6. INCLUDE Irvine32.inc

7. PROTO statements (procedure prototypes) and constant definitions. (There are also text
macros, but they are not mentioned in this chapter.)

8. ESI contains the data’s starting address, ECX contains the number of data units, and EBX
contains the data unit size (byte, word, or doubleword).

9. EDX contains the offset of an array of bytes, and ECX contains the maximum number of
characters to read.

10. Carry, Sign, Zero, Overflow, Auxiliary carry, and Parity.

11. Code example:

.data
str1 BYTE "Enter identification number: ",0
idStr BYTE 15 DUP(?)
.code

mov  edx,OFFSET str1
call WriteString
mov  edx,OFFSET idStr
mov  ecx,(SIZEOF idStr) - 1
call ReadString

5.5 64-Bit Assembly Programming
No review questions.
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6 Conditional Processing

6.1 Conditional Branching
No review questions.

6.2 Boolean and Comparison Instructions
1. and ax,00FFh

2. or ax,0FF00h

3. xor eax,0FFFFFFFFh

4. test eax,1        ; (low bit set if eax is odd)

5. or al,00100000b

6.3 Conditional Loops
1. JA, JNBE, JAE, JNB, JB, JNAE, JBE, JNA

2. JG, JNLE, JGE, JNL, JL, JNGE, JLE, JNG

3. JB is equivalent to JNAE.

4. JBE

5. JL

6. No (8109h is negative and 26h is positive).

6.4 Conditional Loop Instructions
1. False

2. True

3. True

4. Code example:

.data
array SWORD 3,5,14,-3,-6,-1,-10,10,30,40,4
sentinel SWORD 0
.code
main PROC

mov esi,OFFSET array
mov ecx,LENGTHOF array

next:
test WORD PTR [esi],8000h ; test sign bit
pushfd ; push flags on stack
add esi,TYPE array
popfd ; pop flags from stack
loopz next ; continue loop while ZF=1
jz    quit ; none found
sub   esi,TYPE array ; ESI points to value
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5. If a matching value were not found, ESI would end up pointing beyond the end of the
array. By pointing at an undefined memory location, a program runs the risk of causing a
runtime error.

6.5 Conditional Structures
We will assume that all values are unsigned in this section.

1. Code example:

cmp ebx,ecx
jna next
mov X,1

next:

2. Code example:

cmp  edx,ecx
jnbe L1
mov  X,1
jmp  next

L1: mov  X,2
next:

3. Future changes to the table will alter the value of NumberOfEntries. We might forget to
update the constant manually, but the assembler can correctly adjust a calculated value.

4. Code example:

.data
sum DWORD 0
sample DWORD 50
array DWORD 10,60,20,33,72,89,45,65,72,18
ArraySize = ($ - Array) / TYPE array
.code

mov eax,0 ; sum
mov edx,sample
mov esi,0 ; index
mov ecx,ArraySize

L1: cmp esi,ecx
jnl L5
cmp array[esi*4],edx
jng L4
add eax,array[esi*4]

L4: inc esi
jmp L1

L5: mov sum,eax

6.6 Application: Finite-State Machines
1. A directed graph.

2. Each node is a state.
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3. Each edge is a transition from one state to another, caused by some input.

4. State C.

5. An infinite number of digits.

6. The FSM enters an error state.

7. No. The proposed FSM would permit a signed integer to consist of only a plus (�) or
minus (�) sign. The FSM in Section 6.6.2 would not permit that.

6.7 Conditional Control Flow Directives
No review questions.

7 Integer Arithmetic

7.1 Shift and Rotate Instructions
1. ROL

2. RCR

3. RCL

4. The Carry flag receives the lowest bit of AX (before the shift).

5. Code example:

shr ax,1 ; shift AX into Carry flag
rcr bx,1 ; shift Carry flag into BX

; Using SHRD:
shrd bx,ax,1

6. Code example:

mov ecx,32 ; loop counter
mov bl,0 ; counts the '1' bits

L1: shr eax,1 ; shift into Carry flag
jnc L2 ; Carry flag set?
inc bl ; yes: add to bit count

L2: loop L1 ; continue loop
; if BL is odd, clear the parity flag
; if BL is even, set the parity flag

shr bl,1
jc  odd
mov bh,0
or  bh,0 ; PF = 1
jmp next

odd:
mov bh,1
or  bh,1 ; PF = 0

next:
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7.2 Shift and Rotate Applications
1. We can factor the expression into (EAX * 16) � (EAX * 8).

mov ebx,eax ; save a copy of eax
shl eax,4 ; multiply by 16
shl ebx,3 ; multiply by 8
add eax,ebx ; add the products

2. As the hint explains, we can express this as (EAX * 16) � (EAX * 4) � EAX.

mov ebx,eax ; save a copy of eax
mov ecx,eax ; save another copy of eax
shl eax,4 ; multiply by 16
shl ebx,2 ; multiply by 4
add eax,ebx ; add the products
add eax,ecx ; add original value of eax

3. Change the instruction at label L1 to shr eax,1.

4. We will assume that the time stamp word is in the DX register:

shr dx,5
and dl,00111111b ; (leading zeros optional)
mov bMinutes,dl ; save in variable

7.3 Multiplication and Division Instructions
1. The product is stored in registers that are twice the size of the multiplier and multiplicand.

If you multiply 0FFh by 0FFh, for example, the product (FE01h) easily fits within 16 bits.

2. When the product fits completely within the lower register of the product, IMUL sign-
extends the product into the upper product register. MUL, on the other hand, zero-extends
the product.

3. With IMUL, the Carry and Overflow flags are set when the upper half of the product is not
a sign extension of the lower half of the product.

4. EAX

5. AX

6. AX

7. Code example:

mov ax,dividendLow
cwd ; sign-extend dividend
mov bx,divisor
idiv bx

7.4 Extended Addition and Subtraction
1. The ADC instruction adds both a source operand and the Carry flag to a destination

operand.

2. The SBB instruction subtracts both a source operand and the Carry flag from a destination
operand.
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3. EAX � C0000000h, EDX � 00000010h

4. EAX � F0000000h, EDX � 000000FFh

5. DX � 0016h

7.5 ASCII and Unpacked Decimal Arithmetic
1. Code example:

or ax,3030h

2. Code example:

and ax,0F0Fh

3. Code example:

and ax,0F0Fh ; convert to unpacked
aad

4. Code example:

aam

7.6 Packed Decimal Arithmetic
1. When the sum of a packed decimal addition is greater than 99, DAA sets the Carry flag.

For example,

mov al,56h
add al,92h ; AL = E8h
daa ; AL = 48h, CF=1

2. When a larger packed decimal integer is subtracted from a small one, DAS sets the Carry
flag. For example,

mov al,56h
sub al,92h ; AL = C4h
das ; AL = 64h, CF=1

3. n � 1 bytes

8 Advanced Procedures

8.1 Introduction
No review questions.

8.2 Stack Frames
1. True

2. True

3. True

4. False

5. True
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6. True

7. Value parameters and Reference parameters

8.3 Recursion
1. False

2. It terminates when n equals zero.

3. The following instructions execute after each recursive call has finished:

ReturnFact:
mov ebx,[ebp+8]
mul ebx

L2: pop ebp
ret 4

4. The calculated value would exceed the range of an unsigned doubleword, and would roll
past zero. The output would appear to be smaller than 12 factorial.

5. 12! uses 156 bytes of stack space. Rationale: When n � 0, 12 stack bytes are used (3 stack
entries, each equal to 4 bytes). When n � 1, 24 bytes are used. When n � 2, 36 bytes are
used. Therefore, the amount of stack space required for n! is (n � 1) � 12.

8.4 INVOKE, ADDR, PROC, and PROTO
1. True

2. False

3. False

4. True

8.5 Creating Multimodule Programs
1. True

2. False

3. True

4. False

8.6 Advanced Use of Parameters
No review questions.

8.7 Java Bytecodes
No review questions.

9 Strings and Arrays

9.1 Introduction
No review questions.
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9.2 String Primitive Instructions
1. EAX

2. SCASD

3. EDI

4. LODSW

5. Repeat while ZF � 1

9.3 Selected String Procedures
1. False (it stops when the null terminator of the shorter string is reached)

2. True

3. False

4. False

9.4 Two-Dimensional Arrays
1. Any general-purpose 32-bit registers.

2. 16.

3. No. EBP should be reserved as a base pointer for the current procedure's stack
frame.

9.5 Searching and Sorting Integer Arrays
1. n � 1 times

2. n � 1 times

3. No. It decreases by 1 each

4. T(5000) � 0.5 * 102 seconds

9.6 Java Bytecodes: String Processing (Optional Topic)
No review questions.

10 Structures and Macros

10.1 Structures
1. temp1 MyStruct <>

2. temp2 MyStruct <0>

3. temp3 MyStruct <, 20 DUP(0)>

4. array MyStruct 20 DUP(<>)

5. mov ax,array.field1
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6. Code example:

mov esi,OFFSET array
add esi,3 * (TYPE myStruct)
mov (MyStruct PTR[esi]).field1.ax

7. 82

8. 82

9. TYPE MyStruct.field2 (or: SIZEOF Mystruct.field2)

10.2 Macros
1. False

2. True

3. Macros with parameters can be reused more easily.

4. False

5. True

6. False

10.3 Conditional-Assembly Directives
1. The IFB directive is used to check for blank macro parameters.

2. The IFIDN directive compares two text values and returns true if they are identical. It per-
forms a case-sensitive comparison.

3. EXITM

4. IFIDNI is the case-insensitive version of IFIDN.

5. The IFDEF returns true if a symbol has already been defined.

10.4 Defining Repeat Blocks
1. The WHILE directive repeats a statement block based on a boolean expression.

2. The REPEAT directive repeats a statement block based on the value of a counter.

3. The FOR directive repeats a statement block by iterating over a list of symbols.

4. The FORC directive repeats a statement block by iterating over a string of characters.

5. FORC

6. Code example:

BYTE 0,0,0,100
BYTE 0,0,0,20
BYTE 0,0,0,30

7. Code example:

mRepeat MACRO 'X',50
mov cx,50

??0000: mov ah,2
mov dl,'X'
int 21h
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loop ??0000
mRepeat MACRO AL,20

mov cx,20
??0001: mov ah,2

mov dl,AL
int 21h
loop ??0001

mRepeat MACRO byteVal,countVal
mov cx,countVal

??0002: mov ah,2
mov dl,byteVal
int 21h
loop ??0002

8. If we examine the linked list data (in the listing file), it is apparent that the NextPtr field of
each ListNode always equals 00000008 (the address of the second node):

Offset    ListNode
-----------------------------
00000000  00000001  NodeData
          00000008  NextPtr

00000008  00000002  NodeData
          00000008  NextPtr

00000010  00000003  NodeData
          00000008  NextPtr

00000018  00000004  NodeData
          00000008  NextPtr

00000020  00000005  NodeData
          00000008  NextPtr

00000028  00000006  NodeData
          00000008  NextPtr

We hinted at this in the text when we said “the location counter’s value ($) remains fixed at the
first node of the list.”

11 MS-Windows Programming

11.1 Win32 Console Programming
1. /SUBSYSTEM:CONSOLE

2. True

3. False

4. False

5. True

11.2 Writing a Graphical Windows Application
Note: Most of these questions can be answered by looking in GraphWin.inc, the include file supplied 

with this book’s sample programs. 
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1. A POINT structure contains two fields, ptX and ptY, that describe the X- and Y-coordinates
(in pixels) of a point on the screen.

2. The WNDCLASS structure defines a window class. Each window in a program must
belong to a class, and each program must define a window class for its main window.
This class is registered with the operating system before the main window can be
shown.

3. lpfnWndProc is a pointer to a function in an application program that receives and pro-
cesses event messages triggered by the user.

4. The style field is a combination of different style options, such as WS_CAPTION and
WS_BORDER, that control a window’s appearance and behavior.

5. hInstance holds a handle to the current program instance. Each program running under
MS-Windows is automatically assigned a handle by the operating system when the pro-
gram is loaded into memory.

11.3 Dynamic Memory Allocation
1. Dynamic memory allocation

2. Returns a 32-bit integer handle to the program’s existing heap area in EAX. 

3. Allocates a block of memory from a heap.

4. HeapCreate example:

HEAP_START =   2000000 ;   2 MB
HEAP_MAX  =  400000000 ; 400 MB
.data
hHeap HANDLE ? ; handle to heap
.code
INVOKE HeapCreate, 0, HEAP_START, HEAP_MAX

5. Pass a pointer to the memory block (along with the heap handle).

11.4 x86 Memory Management
1. (a) Multitasking permits multiple programs (or tasks) to run at the same time. The proces-

sor divides up its time between all of the running programs.
(b) Segmentation provides a way to isolate memory segments from each other. This
permits multiple programs to run simultaneously without interfering with each other.

2. (a) A segment selector is a 16-bit value stored in a segment register (CS, DS, SS, ES, FS,
or GS).
(b) A logical address is a combination of a segment selector and a 32-bit offset.

3. True

4. True

5. False

6. False
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12 Floating-Point Processing and Instruction Encoding

12.1 Floating-Point Binary Representation
1. Because the reciprocal of �127 is �127, which would generate an overflow. 

2. Because adding �128 to the exponent bias (127) would generate a negative value.

3. 52 bits

4. 8 bits

12.2 Floating-Point Unit
1. fld st(0)

2. R0

3. Choose from opcode, control, status, tag word, last instruction pointer, last data pointer.

4. Binary-coded decimal

5. None

12.3 x86 Instruction Encoding
1. (a) 8E (b) 8B (c) 8A (d) 8A (e) A2 (f) A3

2. (a) D8 (b) D3 (c) 1D (d) 44 (e) 84 (f) 85

13 High-Level Language Interface

13.1 Introduction
1. The naming convention used by a language refers to the rules or characteristics regarding

the naming of variables and procedures.

2. Tiny, small, compact, medium, large, huge

3. No, because the procedure name will not be found by the linker.

13.2 Inline Assembly Code
1. Inline assembly code is assembly language source code that is inserted directly into high-

level language programs. The inline qualifier in C++, on the other hand, asks the C++
compiler to insert the body of a function directly into the program’s compiled code to
avoid the extra execution time it would take to call and return from the function. (Note:
Answering this question requires some knowledge of the C++ language that is not covered
in this book.)

2. The primary advantage to writing inline code is simplicity because there are no external
linking issues, naming problems, and parameter passing protocols to worry about. Second-
arily, inline code can execute more quickly because it avoids the extra execution time typi-
cally required by calling and returning from an assembly language procedure.
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3. Examples of comments (select any two):

mov esi,buf ; initialize index register
mov esi,buf // initialize index register
mov esi,buf /* initialize index register */

4. Yes

13.3 Linking 32-Bit Assembly Language Code to C/C++
1. The extern and “C” keywords must be used.

2. The Irvine32 library uses STDCALL, which is not the same as the C calling convention
used by C and C++. The important difference is in how the stack is cleaned up after a func-
tion call.

3. Floating-point values are usually pushed on the processor’s floating-point stack before
returning from the function.

4. A short int is returned in the AX register.
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D
BIOS and MS-DOS 
Interrupts

D.1 Introduction 
D.2 PC Interrupts
D.3 Interrupt 21H Functions (MS-DOS Services) 
D.4 Interrupt 10H Functions (Video BIOS) 
D.5 Keyboard BIOS INT 16h Functions 
D.6 Mouse Functions (INT 33h) 

D.1 Introduction
This appendix lists some of the more commonly used interrupt numbers, in groups:

• General list of PC interrupts, which correspond to the Interrupt vector table stored in the first 1024
bytes of memory. 

• INT 21h MS-DOS functions
• INT 10h Video BIOS functions
• INT 16h Keyboard BIOS functions
• INT 33h Mouse functions

Documenting PC interrupts is a huge task, due to the many different versions of MS-DOS, as well as
various DOS extenders and PC hardware controllers. The definitive source for interrupts is Ralf
Brown’s Interrupt List, available in various forms on the web. My personal favorite is the HTML
version, of which one version is currently available at http://www.ctyme.com/rbrown.htm. Web URLs
change often, so check our book’s web site for up-to-date links to the Ralf Brown Interrupt List and
other assembly language web sites. 

http://www.ctyme.com/rbrown.htm
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D.2 PC Interrupts

Table D-1  General List of PC Interrupt Numbers.a

Number Description

0 Divide Error. CPU-generated: activated when attempting to divide by zero.

1 Single Step. CPU-generated: active when the CPU Trap flag is set.

2 Nonmaskable Interrupt. External hardware: activated when a memory error occurs. 

3 Breakpoint. CPU-generated: activated when the 0CCh (INT 3) instruction is executed. 

4 INTO Detected Overflow. CPU-generated: Activated when the INTO instruction is executed and the
Overflow flag is set. 

5 Print Screen. Activated either by the INT 5 instruction or pressing the Shift-PrtSc keys.

6 Invalid OpCode (80286+)

7 Processor Extension Not Available (80286+)

8 IRQ0: System Timer Interrupt. Updates the BIOS clock 18.2 times per second. For your own pro-
gramming, see INT 1Ch. 

9 IRQ1: Keyboard Hardware Interrupt. Activated when a key is pressed. Reads the key from the key-
board port and stores it in the keyboard typeahead buffer. 

0A IRQ2: Programmable Interrupt Controller

0B IRQ3: Serial Communications (COM2)

0C IRQ4: Serial Communications (COM1)

0D IRQ5: Fixed Disk

0E IRQ6: Diskette Interrupt. Activated when a disk seek is in progress. 

0F IRQ7: Parallel Printer

10 Video Services. Routines for manipulating the video display (see the complete list in Table D-3). 

11 Equipment Check. Return a word showing all the peripherals attached to the system. 

12 Memory Size. Return the amount of memory (in 1024-byte blocks) in AX. 

13 Floppy Disk Services. Reset the disk controller, get the status of the most recent disk access, read and
write physical sectors, and format a disk. 

14 Asynchronous (Serial) Port Services. Initialize and read or write the asynchronous communications
port, and return the port’s status. 

15 Cassette Controller.

16 Keyboard Services. Read and inspect keyboard input (see the complete list in Table D-4). 

17 Printer Services. Initialize, print, and return the status of the printer. 

18 ROM BASIC. Execute cassette BASIC in ROM.
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19 Bootstrap Loader. Reboot MS-DOS.

1A Time of Day. Get the number of timer ticks since the machine was turned on, or set the counter to a
new value. Ticks occur 18.2 times per second. 

1B Keyboard Break. This interrupt handler is executed by INT 9h when CTRL-BREAK is pressed. 

1C User Timer Interrupt. Empty routine, executed 18.2 times per second. May be used by your own pro-
gram.

1D Video Parameters. Point to a table containing initialization and information for the video controller
chip.

1E Diskette Parameters. Point to a table containing initialization information for the diskette controller. 

1F Graphics Table. 8 � 8 Graphics font. Table kept in memory of all extended graphics characters with
ASCII codes higher than 127. 

20 Terminate Program. Terminate a COM program (INT 21h Function 4Ch should be used instead). 

21 MS-DOS Services (see the complete list in Table D-2). 

22 MS-DOS Terminate Address. Point to the address of the parent program or process. When the current
program ends, this will be the return address. 

23 MS-DOS Break Address. MS-DOS jumps here when CTRL-BREAK is pressed. 

24 MS-DOS Critical Error Address. DOS jumps to this address when there is a critical error in the cur-
rent program, such as a disk media error. 

25 Absolute Disk Read (obsolete). 

26 Absolute Disk Write (obsolete). 

27 Terminate and Stay Resident (obsolete).

28–FF (Reserved)

33 Microsoft Mouse. Functions that track and control the mouse.

34–3E Floating-Point Emulation.

3F Overlay manager.

40–41 Fixed Disk Services. Fixed disk controller.

42–5F Reserved: specialized uses

60–6B Available for application programs to use.

6C–7F Reserved: specialized uses

80–F0 Reserved: used by ROM BASIC.

F1–FF Available for application programs.

aSources: Ray Duncan, Advanced MS-DOS, 2nd ed., Microsoft Press, 1998; Ralf Brown’s Interrupt List, available on the web.

Table D-1  General List of PC Interrupt Numbers.a

Number Description

(Continued)
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D.3 Interrupt 21H Functions (MS-DOS Services)
There are so many MS-DOS services available through INT 21h that we could not possibly document
them all here. Instead, Table D-2 is simply a brief overview of functions that are commonly used.

Table D-2  Interrupt 21h Functions (MS-DOS Services).

Function Description

1 Read character from standard input. If no character is ready, wait for input. Returns: AL � character.

2 Write character to standard output. Receives: DL � character.

3 Read character from standard auxiliary input (serial port).

4 Write character to standard auxiliary output (serial port).

5 Write character to printer. Receives: DL � character.

6 Direct console input/output. If DL � FFh, read a waiting character from standard input. If DL is any
other value, write the character in DL to standard output.

7 Direct character input without echo. Wait for a character from standard input. Returns: AL � character.

8 Character input without echo. Wait for a character from the standard input device. Returns: AL �
character. Character not echoed. May be terminated by Ctrl-Break.

9 Write string to standard output. Receives: DS:DX � address of string.

0A Buffered keyboard input. Read a string of characters from the standard input device. Receives:
DS:DX points to a predefined keyboard structure.

0B Check standard input status. Check to see if an input character is waiting. Returns: AL � 0FFh if
the character is ready; otherwise, AL � 0.

0C Clear keyboard buffer and invoke input function. Clear the console input buffer, and then execute an
input function. Receives: AL � desired function (1, 6, 7, 8, or 0Ah).

0E Select default drive. Receives: DL � drive number (0 � A, 1 � B, etc.).

0F–18 FCB file functions (obsolete).

19 Get current default drive. Returns: AL � drive number (0 � A, 1 � B, etc.)

1A Set disk transfer address. Receives: DS:DX contains address of disk transfer area.

25 Set interrupt vector. Set an entry in the Interrupt Vector Table to a new address. Receives: DS:DX
points to the interrupt-handling routine that is inserted in the table; AL � the interrupt number.

26 Create new program segment prefix. Receives: DX � segment address for new PSP.

27–29 FCB file functions (obsolete).

2A Get system date. Returns: AL � Day of the week (0–6, where Sunday � 0), CX � year, DH �
month, and DL � day.

2B Set system date. Receives: CX � year, DH � month, and DL � day. Returns: AL � 0 if the date is valid.

2C Get system time. Returns: CH � hour, CL � minutes, DH � seconds, and DL � hundredths of seconds.

2D Set system time. Receives: CH � hour, CL � minutes, DH � seconds, and DL � hundredths of seconds.
Returns: AL � 0 if the time is valid.

2E Set Verify flag. Receives: AL � new state of MS-DOS Verify flag (0 � off, 1 � on), and DL � 00h.
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2F Get disk transfer address (DTA). Returns: ES:BX � address.

30 Get MS-DOS version number. Returns: AL � major version number, AH � minor version number,
BH � OEM serial number, and BL:CX � 24-bit user serial number.

31 Terminate and stay resident. Terminate the current program or process, leaving part of itself in
memory. Receives: AL � return code, and DX � requested number of paragraphs.

32 Get MS-DOS drive parameter block. Receives: DL � drive number. Returns: AL � status; DS:BX
points to drive parameter block.

33 Extended break checking. Indicates whether or not MS-DOS is checking for Ctrl-Break.

34 Get address of INDOS flag. (Undocumented)

35 Get interrupt vector. Receives: AL � interrupt number. Returns: ES:BX � segment/offset of the
interrupt handler.

36 Get disk free space. (FAT16 only) Receives: DL � drive number (0 � default, 1 � A, etc.). Returns:
AX � sectors per cluster, or FFFFh if the drive number is invalid; BX � number of available clus-
ters, CX � bytes per sector, and DX � clusters per drive.

37 Get switch character. (Undocumented)

38 Get or set country information.a

39 Create subdirectory. Receives: DS:DX points to an ASCIIZ string with the path and directory name.
Returns: AX � error code if the Carry flag is set.

3A Remove subdirectory. Receives: DS:DX points to an ASCIIZ string with the path and directory
name. Returns: AX � error code if the Carry flag is set.

3B Change current directory. Receives: DS:DX points to an ASCIIZ string with the new directory path.
Returns: AX � error code if the Carry flag is set.

3C Create or truncate file. Create a new file or truncate an old file to zero bytes. Open the file for out-
put. Receives: DS:DX points to an ASCIIZ string with the file name, and CX � file attribute.
Returns: AX � error code if the Carry flag is set; otherwise AX � the new file handle.

3D Open existing file. Open a file for input, output, or input–output. Receives: DS:DX points to an
ASCIIZ string with the filename, and AL � the access code (0 � read, 1 � write, 2 � read/write).
Returns: AX � error code if the Carry flag is set, otherwise AX � the new file handle.

3E Close file handle. Close the file or device specified by a file handle. Receives: BX � file handle from
previous open or create. Returns: If the Carry Flag is set, and AX � error code.

3F Read from file or device. Read a specified number of bytes from a file or device. Receives: BX � file
handle, DS:DX points to an input buffer, and CX � number of bytes to read. Returns: If the Carry
flag is set, AX � error code; otherwise, AX � number of bytes read.

40 Write to file or device. Write a specified number of bytes to a file or device. Receives: BX � file
handle, DS:DX points to an output buffer, and CX � the number of bytes to write. Returns: If the
Carry flag is set, AX � error code; otherwise, AX � number of bytes written.

41 Delete file. Remove a file from a specified directory. Receives: DS:DX points to an ASCIIZ string
with the filename. Returns: AX � error code if the Carry flag is set.

Function Description

Table D-2  (Continued)
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42 Move file pointer. Move the file read/write pointer according to a specified method. Receives:
CX:DX � distance (bytes) to move the file pointer, AL � method code, and BX � file handle. The
method codes are as follows: 0 � move from beginning of file, 1 � move to the current location
plus an offset, and 2 � move to the end of file plus an offset. Returns: AX � error code if the Carry
flag is set.

43 Get/Set file attribute. Get or set the attribute of a file. Receives: DS:DX � pointer to an ASCIIZ path
and filename, CX � attribute, and AL � function code (1 � set attribute, 0 � get attribute).
Returns: AX � error code if the Carry flag is set.

44 I/O control for devices. Get or set device information associated with an open device handle, or send
a control string to the device handle, or receive a control string from the device handle.

45 Duplicate file handle. Return a new file handle for a file that is currently open. Receives: BX � file
handle. Returns: AX � error code if the Carry flag is set.

46 Force duplicate file handle. Force the handle in CX to refer to the same file at the same position as
the handle in BX. Receives: BX � existing file handle and CX � second file handle. Returns: AX �
error code if the Carry flag is set.

47 Get current directory. Get the full path name of the current directory. Receives: DS:SI points to a
64-byte area to hold the directory path, and DL � drive number. Returns: A buffer at DS:SI is filled
with the path, and AX � error code if the Carry flag is set.

48 Allocate memory. Allocate a requested number of paragraphs of memory, measured in 16-byte
blocks. Receives: BX � number of paragraphs requested. Returns: AX � segment of the allocated
block and BX � size of the largest block available (in paragraphs), and AX � error code if the
Carry flag is set.

49 Free allocated memory. Free memory that was previously allocated by Function 48h. Receives: ES �
segment of the block to be freed. Returns: AX � error code if the Carry flag is set.

4A Modify memory blocks. Modify allocated memory blocks to contain a new block size. The block will
shrink or grow. Receives: ES � segment of the block and BX � requested number of paragraphs.
Returns: AX � error code if the Carry flag is set and BX � maximum number of available blocks.

4B Load or execute program. Create a program segment prefix for another program, load it into memory,
and execute it. Receives: DS:DX points to an ASCIIZ string with the drive, path, and filename of the
program; ES:BX points to a parameter block and AL � function value. Function values in AL:0 �
load and execute the program; 3 � load but do not execute (overlay program). Returns: AX � error
code if the Carry flag is set.

4C Terminate process. Usual way to terminate a program and return to either MS-DOS or a calling pro-
gram. Receives: AL � 8-bit return code, which can be queried by DOS function 4Dh or by the
ERRORLEVEL command in a batch file.

4D Get return code of process. Get the return code of a process or program, generated by either function
call 31h or function call 4Ch. Returns: AL � 8-bit code returned by the program, AH � type of exit
generated: 0 � normal termination, 1 � terminated by CTRLBREAK, 2 � terminated by a critical
device error, and 3 � terminated by a call to function call 31h.

4E Find first matching file. Find the first filename that matches a given file specification. Receives:
DS:DX points to an ASCIIZ drive, path, and file specification; CX � file attribute to be used when
searching. Returns: AX � error code if the Carry flag is set; otherwise, the current DTA is filled
with the filename, attribute, time, date, and size. DOS function call 1Ah (set DTA) is usually called
before this function.

Function Description

Table D-2  (Continued)
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4F Find next matching file. Find the next filename that matches a given file specification. This is always
called after DOS function 4Eh. Returns: AX � error code if the Carry flag is set; otherwise, the cur-
rent DTA is filled with the file’s information.

54 Get Verify flag. Returns: AH � Verify flag for disk I/O (0 � off; 1 � on).

56 Rename/move file. Rename a file or move it to another directory. Receives: DS:DX points to an
ASCIIZ string that specifies the current drive, path, and filename; ES:DI points to the new path and
filename. Returns: AX � error code if the Carry flag is set.

57 Get/Set file date/time. Get or set the date and time stamp for a file. Receives: AL � 0 to get the date/
time or AL � 1 to set the date/time; BX � file handle, CX � new file time, and DX � new file date.
Returns: AX � error code if the Carry flag is set; otherwise, CX � current file time and DX �
current file date.

58 Get or set memory allocation strategy.a

59 Get extended error information. Return additional information about an MS-DOS error, including
the error class, locus, and recommended action. Receives: BX � MS-DOS version number (zero for
version 3.xx). Returns: AX � extended error code, BH � error class, BL � suggested action, and
CH � locus.

5A Create temporary file. Generate a unique filename in a specified directory. Receives: DS:DX points
to an ASCIIZ pathname, ending with a backslash (\); CX � desired file attribute. Returns: AX �
error code if the Carry flag is set; otherwise, DS:DX points to the path with the new filename
appended.

5B Create new file. Try to create a new file, but fail if the filename already exists. This prevents you
from overwriting an existing file. Receives: DS:DX points to an ASCIIZ string with the path and
filename. Returns: AX � error code if the Carry flag is set.

5C–61 Omitted.

62 Get program segment prefix (PSP) address. Returns: BX � the segment value of the current pro-
gram’s PSP.

 7303h Get disk free space. Fills a structure containing detailed disk space information. Receives: AX � l
7303h, ES:DI points to a ExtGetDskFreSpcStruc structure, CX � size of the ExtGetDskFreSpc-
Struc structure, and DS:DX points to a null-terminated string containing the drive name. Returns:
The ExtGetDskFreSpcStruc is filled in with disk information. See Section 15.5.1 for details.

7305h Absolute disk read and write. Reads individual disk sectors or groups of sectors. Does not work
under Windows NT, 2000, and XP. Receives: AX � 7305h, DS:BX � segment/offset of a DISKIO
structure variable, CX � 0FFFFh, DL � drive number (0 � default, 1 � A, 2 � B, 3 � C, etc.), and
SI � Read/write flag. See Section 15.4 for details.

aFor details see Ray Duncan, Advanced MS-DOS, 2nd ed., Microsoft Press, 1998; Ralf Brown’s Interrupt List, available
on the web.

Function Description

Table D-2  (Continued)
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D.4 Interrupt 10H Functions (Video BIOS)

Table D-3  Interrupt 10h Functions (Video BIOS).

Function Description

0 Set video mode. Set the video display to monochrome, text, graphics, or color mode. Receives: AL �
display mode.

1 Set cursor lines. Identify the starting and ending scan lines for the cursor. Receives: CH � cursor
starting line, and CL � cursor ending line. 

2 Set cursor position. Position the cursor on the screen. Receives: BH � video page, DH � row, and
DL � column. 

3 Get cursor position. Get the cursor’s screen position and its size. Receives: BH � video page.
Returns: CH � cursor starting line, CL � cursor ending line, DH � cursor row, and DL � cursor column. 

4 Read light pen. Read the position and status of the light pen. Returns: CH � pixel row, BX � pixel
column, DH � character row, and DL � character column. 

5 Set display page. Select the video page to be displayed. Receives: AL � desired page number. 

6 Scroll window up. Scroll a window on the current video page upward, replacing scrolled lines with
blanks. Receives: AL � number of lines to scroll, BH � attribute for scrolled lines, CX � upper left
corner row and column, and DX � lower right row and column. 

7 Scroll window down. Scroll a window on the current video page downward, replacing scrolled lines
with blanks. Receives: AL � number of lines to scroll, BH � attribute for scrolled lines, CX �
upper left corner row and column, and DX � lower right row and column. 

8 Read character and attribute. Read the character and its attribute at the current cursor position.
Receives: BH � display page. Returns: AH � attribute byte and AL � ASCII character code. 

9 Write character and attribute. Write a character and its attribute at the current cursor position.
Receives: AL � ASCII character, BH � video page, and CX � repetition factor. 

0A Write character. Write a character only (no attribute) at the current cursor position. Receives: AL �
ASCII character, BH � video page, BL � attribute, and CX � replication factor. 

0B Set color palette. Select a group of available colors for the color or EGA adapter. Receives: AL �
display mode and BH � active display page. 

0C Write graphics pixel. Write a graphics pixel when in color graphics mode. Receives: Al � pixel
value, CX � X-coordinate, and DX � Y-coordinate. 

0D Read graphics pixel. Read the color of a single graphics pixel at a given location. Receives: CX �
X-coordinate, and DX � Y-coordinate. 

0E Write character. Write a character to the screen and advance the cursor. Receives: AL � ASCII
character code, BH � video page, BL � attribute or color. 

0F Get current video mode. Get the current video mode. Returns: AL � video mode and BH � active
video page. 

10 Set video palette. (EGA only) Set the video palette register, border color, or blink/intensity bit.
Receives: AL � function code (00 � set palette register, 01 � set border color, 02 � set palette and
border color, 03 � set/reset blink/intensity bit), BH � color, and BL � palette register to set. If AL �
2, ES:DX points to a color list. 

11 Character generator. Select the character size for the EGA display. For example, an 8 by 8 font is
used for the 43-line display, and an 8 by 14 font is used for the 25-line display. 

12 Alternate select function. Return technical information about the EGA display. 

13 Write string. (PC/AT only) Write a string of text to the video display. Receives: AL � mode, BH �
page, BL � attribute, CX � length of string, DH � row, DL � column, and ES:BP points to the
string (will not work on the IBM-PC or PC/XT). 



D.5 Keyboard BIOS INT 16h Functions 

D.6 Mouse Functions (INT 33h)
INT 33h mouse functions receive their function number in the AX register. For more information
about these functions, see Section 16.6. For additional mouse functions, see Table 16-9. 

Table D-4  Keyboard BIOS Interrupt 16h Functions.

Function Description

03h Set typematic repeat rate. Receives: AH � 03h, AL � 5, BH � repeat delay, and BL � repeat rate.
The delay values in BH are 0 � 250 ms; 1 � 500 ms; 2 � 750 ms; and 3 � 1000 ms. The repeat
rate in BL varies from 0 (fastest) to 1Fh (slowest). Returns: nothing.

05h Push key into buffer. Pushes a keyboard character and corresponding scan code into the keyboard
typeahead buffer. Receives: AH � 05h, CH � scan code, and CL � character code. If the typea-
head buffer is already full, the Carry flag will be set, and AL � 1. Returns: nothing

10 Wait for key. Wait for an input character and keyboard scan code. Receives: AH � 10h. Returns:
AH � scan code, and AL � ASCII character. (Function 00h duplicates this function, using an
older type of keyboard.)

11 Check keyboard buffer. Find out if a character is waiting in the keyboard typeahead buffer. Receives:
AH � 01h. Returns: If a key is waiting, its scan code is returned in AH and its ASCII code is
returned in AL, and the Zero flag is cleared (the character will remain in the input buffer). If no key is
waiting, the Zero flag is set. (Function 01h duplicates this function, using an older type of keyboard.)

12 Get keyboard flags. Return the Keyboard Flag byte stored in low RAM. Receives: AH � 12h. Returns:
Keyboard flags in AX. (Function 02h duplicates this function, using an older type of keyboard.)

Table D-5  INT 33h Mouse Functions.

Function Description

0000h Reset mouse and get status. Receives: AX � 0000h. Resets the mouse and confirms that it is avail-
able. The mouse (if found) is centered on the screen, its display page is set to video page 0, its
pointer is hidden, and its mickeys-to-pixels ratios and speed are set to default values. The mouse’s
range of movement is set to the entire screen area.

0001h Show mouse pointer. Receives: AX � 0001h. Returns: nothing. The mouse driver keeps a count of
the number of times this function is called.

0002h Hide mouse pointer. Receives: AX � 0002h. Returns: nothing. The mouse position is still tracked
when it is invisible. 

0003h Get mouse position and status. Receives: AX � 0003h. Returns: BX � mouse button status, CX �
X-coordinate (in pixels), and DX � Y-coordinate (in pixels).

0004h Set mouse position. Receives: AX � 0004h, CX � X-coordinate (in pixels), and DX � Y-coordinate
(in pixels). Returns: nothing.

0005h Get button press information. Receives: AX � 0005h, and BX � button ID (0 � left, 1 � right,
2 � center). Returns: AX � button status, BX � button press counter, CX � X-coordinate of last
button press, and DX � Y-coordinate of last button press.

0006h Get button release information. Receives: AX � 0006h, and BX � button ID (0 � left, 1 � right,
2 � center). Returns: AX � button status, BX � button release counter, CX � X-coordinate of last
button release, and DX � Y-coordinate of last button release.

0007h Set horizontal limits. Receives: AX � 0007h, CX � minimum X-coordinate (in pixels), and DX �
maximum X-coordinate (in pixels). Returns: nothing.

0008h Set vertical limits. Receives: AX � 0008h, CX � minimum Y-coordinate (in pixels), and DX �
maximum Y-coordinate (in pixels). Returns: nothing.

D.6 Mouse Functions (INT 33h) D.9
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E
Answers to Review Questions 
(Chapters 14–17)
14 16-Bit MS-DOS Programming

14.1 MS-DOS and the IBM-PC
1. 9FFFFh.

2. Interrupt vector table.

3. 00400h.

4. The BIOS.

5. Suppose a program was named myProg.exe. The following would redirect its output to the
default printer:
myProg > prn

6. LPT1.

7. An interrupt service routine (also called an interrupt handler) is an operating system procedure
that (1) provides basic services to application programs, and (2) handles hardware events. 

8. Push the flags on the stack.

9. See the four steps in Section 14.1.4.

10. The interrupt handler executes an IRET instruction.

11. 10h.

12. 1Ah.

13. 21h * 4 = 0084h.

14.2 MS-DOS Function Calls (INT 21h)
1. AH.

2. Function 4Ch.

3. Functions 2 and 6 both write a single character.

4. Function 9.
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5. Function 40h.

6. Functions 1 and 6.

7. Function 3Fh.

8. Functions 2Ah and 2Bh. To display the time, you would call the WriteDec procedure from the
book’s library. That procedure uses Function 2 to output digits to the console. (Look in the
Irvine16.asm file for details, located in the \Examples\Lib16 directory.)

9. Functions 2Bh (set system date) and 2Dh (set system time).

10. Function 6.

14.3 Standard MS-DOS File I/O Services
1. Device handles:  0 = Keyboard (standard input), 1 = Console (standard output), 2 = Error out-

put, 3 = Auxiliary device (asynchronous), and 4 = Printer.

2. Carry flag.

3. Parameters for function 716Ch:
AX = 716Ch
BX = access mode (0 = read, 1 = write, 2 = read/write)
CX = attributes (0 = normal, 1 = read only, 2 = hidden,

  3 = system, 8 = volume ID, 20h = archive)
DX = action (1 = open, 2 = truncate, 10h = create)
DS:SI = segment/offset of filename
DI = alias hint (optional)

4. Opening an existing file for input:
.data
infile BYTE "myfile.txt",0
inHandle WORD ?
.code
mov ax,716Ch ; extended create or open
mov bx,0 ; mode = read-only
mov cx,0 ; normal attribute
mov dx,1 ; action: open
mov si,OFFSET infile
int 21h ; call MS-DOS
jc quit ; quit if error
mov inHandle,ax

5. Reading a binary array from a file is best done with INT 21h Function 3Fh. The following
parameters are required:
AH = 3Fh
BX = open file handle
CX = maximum bytes to read
DS:DX = address of input buffer

6. After calling INT 21h, compare the return value in AX to the value that was placed in CX
before the function call. If AX is smaller, the end of the file must have been reached. 

7. The only difference is the value in BX. When reading from the keyboard, BX is set to the key-
board handle (0). When reading from a file, BX is set to the handle of the open file.

8. Function 42h.

9. Code example (BX already contains the file handle):
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mov ah,42h ; move file pointer
mov al,0 ; method: offset from beginning
mov cx,0 ; offset Hi
mov dx,50 ; offset Lo
int 21h

15 Disk Fundamentals

15.1 Disk Storage Systems
1. True.

2. False.

3. Cylinder.

4. True.

5. 512.

6. For faster access because the closer are the cylinders, the smaller is the distance that the read/
write heads must travel.

7. The read/write heads must jump over other cylinders, wasting time and increasing the probabi-
lility that errors will occur.

8. Volume.

9. The average amount of time required to move the read/write heads between tracks.

10. The marking of physical sectors on the disk surfaces.

11. The master boot record contains the disk partition table and a program that locates a single par-
tition’s boot sector and runs another program that loads the operating system.

12. One partition.

13. System.

15.2 File Systems
1. True.

2. No. It is in the disk directory.

3. False (all systems, including NTFS, require at least one cluster to store a file).

4. False.

5. False.

6. 4 GByte (shown in Table 15-1).

7. FAT32 and NTFS.

8. NTFS.

9. NTFS.

10. NTFS.

11. NTFS.

12. 8 GByte.

13. Boot record, file allocation table, root directory, and the data area. 

14. This information is at offset 0Dh in the boot record.
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15. Two 8 KByte clusters would be required, for a total of 16,384 bytes. The number of wasted
bytes would be (16,384 � 8,200), or 8,184 bytes. 

16. (This one is up to you!)

15.3 Disk Directory
1. True.

2. False (it is called the root directory).

3. False (it contains the starting cluster number).

4. True.

5. 32 bytes.

6. Filename, extension, attribute, time stamp, date stamp, starting cluster number, and file size.

7. The status bytes and their descriptions are listed in Table 15-5.

8. Bits 0 to 4 � seconds; bits 5 to 10 � minutes; and bits 11 to 15 � hours.

9. The first byte of the entry is 4xh, where x indicates the number of long filename entries to be
used for the file.

10. Two filename entries.

11. There are three new fields: last access date, create date, and create time.

12. File allocation table links:

15.4 Reading and Writing Disk Sectors
1. True.

2. False (the function runs in real-address mode).

3. Parameters:
AX: 7305h
DS:BX: Segment/offset of a DISKIO structure variable
CX: 0FFFFh
DL: Drive number (0 = default, 1 = A, 2 = B, 3 = C, etc.)
SI: Read/write flag

4. INT 10h displays special ASCII graphics characters without trying to interpret them as control
codes (such as Tab and Carriage return).

5. The Carry flag is set if function 7305h cannot read the requested sector, and the program displays
an error message. (Remember that you cannot test this program under Windows NT, 2000, XP,
and beyond.)

15.5 System-Level File Functions
1. Function 7303h.

2. Function 7303h.

3. Function 39h (create subdirectory) and Function 3Bh (set current directory).

4. Function 7143h (get and set file attributes). 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 7 8 4 6 eof
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16 BIOS-Level Programming

16.1 Introduction
No review questions.

16.2 Keyboard Input with INT 16h
1. INT 16h is best.

2. In the keyboard typeahead buffer, at location 0040:001E.

3. INT 9h reads the keyboard input port, retrieves the keyboard scan code, and produces the
corresponding ASCII code. It inserts both in the keyboard typeahead buffer.

4. Function 05h.

5. Function 10h.

6. Function 11h examines the buffer and lets you know which key, if any, is waiting.

7. No.

8. Function 12h.

9. Bit 4.

10. Code example:
L1: mov ah,12h ; get keyboard flags

int 16h
test al,100h ; Ctrl key down?
jz L1 ; no: repeat the loop 

; At this point, the Ctrl key has been pressed

11. To check for other keyboard keys, add more CMP and JE instructions after the existing ones
currently in the loop. Suppose we wanted to check for the ESC, F1, and Home keys:
L1: .

.
cmp ah,1 ; ESC key's scan code?
je  quit ; yes: quit
cmp ah,3Bh ; F1 function key?
je  quit ; yes: quit
cmp ah,47h ; Home key?
je  quit ; yes: quit
jmp L1 ; no: check buffer again

16.3 Video Programming with INT 10h
1. MS-DOS level, BIOS level, and Direct video level.

2. Direct video.

3. In MS-Windows, there are two ways to switch into full-screen mode:

• Create a shortcut to the program’s EXE file. Then open the Properties dialog for the short-
cut, select the Screen properties, and select Full-screen mode.

• Open a Command window from the Start menu, then press Alt-Enter to switch to full-
screen mode. Using the CD (change directory) command, navigate to your EXE file’s
directory, and run the program by typing its name. Alt-Enter is a toggle, so if you press it
again, it will return the program to Window mode.
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4. Mode 3 (color, 80 � 25).

5. ASCII code and attribute (2 bytes).

6. Red, green, blue, and intensity.

7. Background: bits 4 to 7. Foreground: bits 0 to 3.

8. Function 02h.

9. Function 06h.

10. Function 09h.

11. Function 01h.

12. Function 00h.

13. AH � 2, DH � row, DL � column, and BH � video page.

14. There are two ways: (1) use INT 10h Function 01h to set the cursor’s top line to an illegal
value, or (2) use INT 10h Function 02h to position the cursor outside the displayable range of
rows and columns.

15. AH � 6, AL � number of lines to scroll, BH � attribute of scrolled lines, CH & CL � upper left
window corner, and DH & DL � lower right window corner.

16. AH � 9, AL � ASCII code of character, BH � video page, BL � attribute, and CX � repetition
count.

17. Function 10h, Subfunction 03h (set AH to 10h and AL to 03h).

18. AH � 06h, and AL � 0.

16.4 Drawing Graphics Using INT 10h
1. Function 0Ch.

2. AH � 0Ch, AL � pixel value, BH � video page, CX � X-coordinate, and DX � Y-coordinate.

3. It’s very slow.

4. Code example:
mov ah,0 ; set video mode
mov al,11h ; to mode 11h
int 10h ; call the BIOS

5. Mode 6Ah.

6. Formula: sx � (sOrigX � X).

7. a. (350,150)     b. (375,225)   c. (150,400).

16.5 Memory-Mapped Graphics
1. False (each byte corresponds to 1 pixel).

2. True.

3. Mode 13h maps each pixel’s integer value into a table of colors called a palette. 

4. The color index of a pixel identifies which color in the palette is to be used when drawing the
pixel on the screen.

5. Each entry in the palette consists of three separate integer values (0 to 63) known as RGB (red,
green, blue). Entry 0 in the color palette controls the screen’s background color.

6. (20,20,20).
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7. (63,63,63).

8. (63,0,0).

9. Code example:

; Set screen background color to bright green.
mov dx,3c8h ; video paletter port
mov al,0 ; index 0 (background color)
out dx,al
mov dx,3c9h ; colors go to port 3C9h
mov al,0  ; red
out dx,al
mov al,63 ; green (intensity = 63)
out dx,al
mov al,0 ; blue
out dx,al

10. Code example:

; Set screen background color to white
mov dx,3c8h ; video paletter port
mov al,0 ; index 0 (background color)
out dx,al
mov dx,3c9h ; colors go to port 3C9h
mov al,63 ; red = 63
out dx,al
mov al,63 ; green = 63
out dx,al
mov al,63 ; blue = 63
out dx,al

(The last two MOV statements can be eliminated if you want to reduce the amount of code
in this example.)

16.6 Mouse Programming
1. Function 0.

2. Code example:
mov ax,0 ; reset mouse
int 33h ; call the BIOS
cmp ax,0 ; mouse not available?
je MouseNotAvailable ; yes: show error message

3. Functions 1 and 2.

4. Code example:
mov ax,2 ; hide mouse pointer
int 33h

5. Function 3.

6. Code example:
mov ax,3 ; get mouse position and status
int 33h
mov mouseX,cx
mov mouseY,dx

7. Function 4.
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8. Code example:
mov ax,4 ; set mouse position
mov cx,100 ; X-value
mov dx,400 ; Y-value
int 33h

9. Function 5.

10. Code example:
mov ax,5 ; get button press information
mov bx,0 ; button ID for left button
int 33h
test ax,1 ; left button currently down?
jne Button1 ; yes: jump to label

Implementation note: This function will tell you if a certain button is currently being pressed. 
But if you just want the coordinates of the last button press, there is no need for the TEST 
instruction used in our example.

11. Function 6.

12. Code example:
mov ax,6 ; get button release information
mov bx,1 ; button ID 
int 33h
test ax,2 ; right button released?
jz skip ; no - skip
mov mouseX,cx ; yes: save coordinates
mov mouseY,dx

skip:

13. Code example:
mov ax,8 ; set vertical limits
mov cx,200 ; lower limit
mov dx,400 ; upper limit
int 33h

14. Code example:
mov ax,7 ; set horizontal limits
mov cx,300 ; lower limit
mov dx,600 ; upper limit
int 33h

15. Assuming that character cells are 8 pixels by 8 pixels, the X, Y-coordinates values would be
(8 * 20), (8 * 10). The cell will be at position 160, 80. 

16. The upper left corner of the cell will be at (8 * 22), (8 * 15). If we add 4 to each of these values
to bring the mouse to the center of the cell, the answer is 180, 124.

17. The mouse was invented by Douglas Engelbart in 1963 at the Stanford Research Institute.
(Source: http://en.wikipedia.org/wiki/Computer_mouse).

17 Expert MS-DOS Programming

17.1 Introduction
No review questions.

http://en.wikipedia.org/wiki/Computer_mouse


17   Expert MS-DOS Programming E.9

17.2 Defining Segments
1. SEGMENT declares the beginning of a segment, and ENDS declares the end of a segment.

2. Returns the segment address of a data label or code label.

3. The ASSUME directive makes it possible for the assembler to calculate the offsets of labels
and variables at assembly time. A directive such as

assume DS:myData

says to the assembler, “assume that from this point on, all references to data labels (via
DS) will be located in the segment named myData.”

4. BYTE, WORD, DWORD, PARA, and PAGE.

5. PRIVATE, PUBLIC, MEMORY, STACK, COMMON, and AT.

6. DWORD.

7. The combine type tells the linker how to combine segments having the same name.

8. Use the AT combine type. The following defines a segment with value 0040h:
bios SEGMENT AT 40h

9. A segment’s class type provides another way of combining segments, in particular, those with
different names. Segments having the same class type are loaded together, although they may
be listed in a different order in the program source code.

10. Code example:
mov al,es:[di]

11. The third segment will also begin at address 1A060h.

17.3 Runtime Program Structure
1. The command processor checks to see if there is filename with extension COM in the current

directory. If a file is found, it is executed. If a matching file is not found, see Section 17.3 for a
description of the subsequent steps.

2. No.

3. Application programs loaded into the lowest 640K of memory. They are transient because
when they finish executing, they are automatically unloaded from memory.

4. Program segment prefix.

5. At offset 2Ch inside the program segment prefix area.

6. A COM program is a single-segment MS-DOS program. When stored on disk as a COM file, it
is simply a binary image of the program when loaded into memory.

7. Tiny.

8. /T.

9. 64 KByte.

10. Not efficient because even the smallest COM program uses an entire 64K memory segment.

11. One.

12. All segment registers are set to offset zero within the program. The program, in turn, is loaded
into memory at the first available segment location following other programs still in memory.

13. The ORG directive assigns a specific offset to the very next label or instruction following the
directive. The addresses of all subsequent labels are calculated from that point onward. COM
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programs, for example, always have ORG 100h at the beginning of the program code, so the
first executable instruction will be located at offset 100h.

14. Load module.

15. DS and ES point to the program segment prefix area of the program.

16. MS-DOS automatically allocates all of available memory to a program when it is first loaded,
unless the program’s EXE header specifically limits its maximum memory allocation size.

17. The EXEMOD program displays statistics about a program’s memory usage, and also permits
many settings in the EXE header to be modified.

18. Run the EXEMOD program, passing it the name of the EXE file. The last line of the display
will show the number of relocation entries.

17.4 Interrupt Handling
1. It displays a message on the screen “Abort, retry, or ignore?” and terminates the current program. 

2. A 32-bit segment/offset address pointing to an interrupt handler.

3. At address 0000:0040h because 0040h equals 10h * 4.

4. The 8259 Programmable Interrupt Controller chip.

5. The CLI (clear interrupt flag) instruction.

6. The STI (set interrupt flag) instruction.

7. IRQ 0 has highest priority.

8. Before the file has been created because the keyboard (IRQ 1) is at a higher priority than the
disk drive (IRQ 14). 

9. INT 9h.

10. An IRET instruction at the end of the interrupt handler returns control to the code that was run-
ning when the interrupt occurred.

11. Functions 25h and 35h.

12. An interrupt handler is any procedure that takes over processing an interrupt. It might be loaded
when an application starts and then be unloaded when the application ends. A memory-resident
program, on the other hand, remains in memory even after the program that installed it has
ended. A memory-resident program does not necessarily have to be an interrupt handler.

13. A terminate and stay resident (TSR) program leaves part of itself in the memory when it exits.
This is accomplished by calling INT 21h function 31h.

14. The computer can be rebooted, or a special utility program can remove the TSR.

15. Rather than executing an IRET instruction when it finishes, it can instead execute a JMP to the
address that was previously stored in the interrupt vector. 

16. A terminate and stay resident (TSR) program.

17. Ctrl � Alt � Right shift � Del.
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Index

A

__asm Directive (Visual 
C++), 564–566

AAA (ASCII adjust after 
addition) instruction, 
274, 280

AAD (ASCII adjust before 
division) instruction, 
276, 280

AAM (ASCII adjust after 
multiplication) instruction,
276, 280

AAS (ASCII adjust after 
subtraction) instruction, 
276, 280

ADC (add with carry) 
instruction, 269–270, 280

ADD instruction, 105–106, 
109, 112

AddTwo program, 63–64
adding a variable, 75–76
listing file for, 71–73
running and debugging, 

65–70
64-bit programming, 

88–90
Addition and subtraction, 

105–112
ADD instruction, 105–106
arithmetic expressions, 

implementing,
106–107

example program 
(AddSub Test), 111

flags affected by, 
107–110

INC and DEC instruc-
tion, 105

NEG instruction, 106
SUB instruction, 106

Addition test, 110
Address bus, 34
Address space, 38
ADDR operator, 312
AddTwo procedure, 293, 

314, 336
Advanced Micro Devices 

(AMD) Athlon, 33
Advanced procedures, 

286–347
recursion, 302–311
stack frames, 287–302

ALIGN directive, 113–114
AllocConsole function, 450
American National Standards 

Institute (ANSI), 19
American Standard Code for 

Information Interchange. 
See ASCII

AND instruction, 191–192
AND (boolean operator), 

22–23
Application Programming 

Interface (API), 47, 
179, 445

Arithmetic expressions, 
implementing, 106–107, 
267–268

Arithmetic instructions, 
526–530

Arithmetic logic unit (ALU), 
33

Arithmetic operators, 56
Arithmetic shifts versus 

logical shifts, 243–244
ArrayFill procedure, 297
ArraySum, 150–151

procedure, 151–152, 317, 
319, 556

program, 315
Arrays

calculating the sizes, 
85–86

indirect operands, 
117–118

looping through, 395
The Art of Computer 

Programming (Knuth), 2
ASCII, 19

control characters, 20, 
14–9

decimal and unpacked 
decimal, 274

string, 20
unpacked decimal 

arithmetic and, 
273–277

askForInteger function, 574
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Assemble-link-execute cycle, 
71

Assemblers, 2, 71
Assembly code, 215–216

generating, 215
versus compiler 

optimization, 565
versus nonoptimized 

C++ code, 569
Assembly language, 1–9, 26, 

33, 49, 53–94
access levels, 49
applications of, 5–6
definition, 2
elements of, 54–63
high-level languages 

and, 6
to optimize C++ code, 

565
reasons for learning, 5
relationship between 

machine and, 4
Assembly language module, 

574–575
Auxiliary carry flag (AC), 41, 

107, 283

B

Base address, 503
Base-index-displacement

operands, 371–372
Base-index operands, 

369–371
calculating a Row Sum, 

370–371
scale factors, 371
two-dimensional array, 

372
Base-offset addressing, 291

Basic Input-Output System 
(BIOS), 44, 47, 16.2

Binary addition, 12
Binary bits, displaying, 168
Binary file, creating, 

14.30–14.33
Binary floating-point 

numbers, normalized, 514
Binary integer, 9

signed, 10
translating unsigned 

binary integers to 
decimal, 11

translating unsigned 
decimal integers to 
binary, 11–12

unsigned, 10
Binary multiplication, 253
Binary subtraction, 18–19
Binary reals, converting 

decimal fraction to, 
516–518

Binary search
algorithm, 375–376
test program for, 

378–382
BIOS (Basic Input-Output 

System), 44, 47, 16.2
Bit-mapped sets, 194–195
Bit masking, 192
Bit strings, 254
Bitwise instructions, 232
Block comments, 62
Block-structured IF 

statements, 210–213
Boolean algebra, 22
Boolean and comparison 

instructions, 190–199
AND instruction, 

191–192

bit-mapped sets, 194–195
CMP instruction, 197–198
CPU flags, 191
NOT instruction, 196
OR instruction, 192–193
setting and clearing 

individual CPU flags, 
198–199

in 64-bit mode, 199
TEST instruction, 196–197
XOR instruction, 195–196

Boolean expression, 22–26, 
423

Boolean operations, 22–26
boolean expression, 

22–24
boolean operations, truth 

tables for, 24–26
operator precedence, 24

Branching instructions, 341
.BREAK condition, 225
Brink, James, 322, 533
Bubble sort, 373–375

assembly language, 375
pseudocode, 374–375
test program, 378–382

BubbleSort procedure, 300
Bus, 45
BYTE, 76–78
Byte, 77

C

C++, 5
assembly language and, 4
module, 567–568
startup program, 567, 581
stub module, 582

Cache memory, 36
CalcSum procedure, 303
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Calling convention, 556
CALL instruction, 147–148, 

153–154, 174, 177
C and C++ compilers, 559
C and C++ functions, 

calling, 574
assembly language 

module, 574–575
function prototypes, 574
function return values, 

575
Carry flag, 40, 106

addition and, 107–108
subtraction and, 108

CBW (convert byte to word) 
instruction, 264

C language calling convention, 
577

CDQ (convert doubleword to 
quadword) instruction, 
265, 280

Central Processor Unit 
(CPU), in microcomputer, 
34

Character constant, 57–58
Character set, 19
Character storage, 19–21
Chipset, motherboard, 45–46
C language specifier, 559
C library functions, calling, 

579–581
Clock, 33–34
Clock cycle, 34
Close file handle (3Eh), 

14.23
CloseFile procedure, 158
CloseHandle function, 466
Clrscr procedure, 159, 171
CMOS RAM, 44, 46, 50
CMP instruction, 197–198
CMPSB instruction, 355
CMPSD instruction, 355

CMPSW instruction, 355
.CODE directive, 59, 65
Code examples

array dot product, 536
expression, 535–536
sum of an array, 536
sum of square roots, 536

Code label, 60
Code segment, 55, 72
Command processor, 

14.2–14.3
Command tail, MS-DOS, 

14.27–14.30
Comments, 62
Comparison instructions, 341
Compiler-generated code, 

559–563
Complex Instruction Set 

Computer (CISC) design, 
539

Compound expressions, 
213–216, 228–231

Conditional and loop 
instructions, 209–210

LOOPE (loop if equal) 
instruction, 209

LOOPNE (loop if not 
equal) instruction, 
209

LOOPNZ (loop if not 
zero) instruction, 209

LOOPZ (loop if zero) 
instruction, 209

Conditional-assembly
directives, 420–433

boolean expressions, 423
default argument 

initializers, 422–423
IF, ELSE, and ENDIF 

directives, 423–424
IFIDN and IFIDNI 

directive, 424–425

macro functions, 
431–433

missing arguments, 
checking for, 421–422

special operators, 
428–431

Conditional branching, 190
Conditional control flow 

directives, 225–232
compound expressions, 

228–231
IF statements, creating, 

226–227
.REPEAT and .WHILE 

directives, 231–232
signed and unsigned 

comparisons, 227–228
Conditional jump, 199–208

applications, 204–208
conditional structures, 

199–200
Jcond instruction, 

200–201
types of, 201–204

Conditional structures, 
210–219

block-structured IF 
statements, 210–213

compound expressions, 
213–214

definition, 210
WHILE loops, 214–216

Conditional transfer, 123
Condition codes (floating 

point), 530–531
Console input, 455–461

console input buffer, 
455–459

getting keyboard state, 
460–461

single-character input, 
459–460
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Console output, 461–463
data structures, 461–462
WriteConsole function, 

462–463
WriteConsoleOutput

Character function, 463
Console Window, 157, 473
.CONTINUE directive, 225
Control bus, 33–34, 36
Control flags, 40
Control unit (CU), 33
COORD structure, 391, 438, 461
Copying a string, 127–128
CPU flags, 104, 201, 14.33

display in Visual Studio 
Debugger, 104

CreateConsoleScreenBuffer
function, 450

CreateFile function, 463
CreateFile parameters, 464
CreateFile program example, 

470–471
Create or open file (716Ch), 

14.22–14.23
CreateOutputFile procedure, 

159
Crlf procedure, 159
CR/LF (carriage-return 

line-feed), 78
Current location counter, 85
CWD (convert word to 

doubleword) instruction, 
264

D

DAA (decimal adjust after 
addition) instruction, 
277–278

DAS (decimal adjust after 
subtraction) instruction, 
279

Data bus, 33–35
Data definition statement, 

74–75
BYTE and SBYTE data, 

74
data types in, 74–75
defining strings, 77–78
DUP operator DWORD 

and SDWORD data, 
78–79

initializer, 75
little endian order, 82–83
multiple initializers, 77
packed binary coded dec-

imal (BCD), 80
real number data, 81
WORD and SWORD 

data, 74–75
.DATA directive, 59, 83
Data label, 60
Data-related operators and 

directives, 112–117
align directive, 113–114
offset operator, 112–113

Data representation, 9–21
binary addition, 12
binary integers, 11–12
character storage, 19–21
hexadecimal integers, 

13–15
integer storage sizes, 13
signed integers, 16–19

Data segment, 55, 77, 83, 90
Data transfer, 96–132

direct memory operands, 
96–97

direct-offset operands, 
102–103

example program, 
103–104

LAHF and SAHF 
instructions, 101

MOV instruction, 98–99
operand types, 96
XCHG instruction, 102
zero/sign extension of 

integers, 99–101
Debugger, 15, 54
Debugging tips

argument size mismatch, 
321

passing immediate 
values, 321–322

passing wrong type of 
pointer, 321

Decimal real, 57
Declaring and using unions, 

403–405
declaring and using union 

variables, 404–405
structure containing 

union, 404
Default argument initializers, 

422
Delay procedure, 159
Descriptor table, 37, 40, 

502
Destination operand, 61, 98
Device drivers, 5, 47–48
Direct addressing, 

117Directed graph, 219
Direction flags, 40, 69, 354
Directives, 59
Direct memory operands, 

96–97
Direct-offset operands, 

102–103
Directory listing program

ASM module, 582–583
C++ stub module, 582

DisplaySum procedure, 
328, 332

Display_Sum procedure, 271
DIV instruction, 262–264
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Doubleword (4bytes), 13, 
593, 601

DRAM. See Dynamic 
random-access memory 
(DRAM)

“Drunkard’s Walk” exercise, 
399

DumpMem procedure, 159, 
171, 178, 349, 413

DumpRegs procedure, 160, 
178

DUP operator, 78–79, 85, 91
DWORD, 74, 79
Dynamic link library, 154
Dynamic memory allocation, 

492–499
Dynamic random-access 

memory (DRAM), 46

E

EBP register, 290
ECHO directive, 409
EFLAGS register, 40, 44
.ELSE directive, 225, 423
.ELSEIF condition, 225, 226
Embedded programs, 5
Encoded reals, 55, 57
END directive marks, 65
.ENDIF directive, 225, 226, 

233, 423
ENDP directive marks, 65
.ENDW directive, 225
ENTER instruction, 298–300
EPROM. See Erasable 

programmable read-only 
memory (EPROM)

Equal-sign directive, 84–85
EQU directive, 86–87
Erasable programmable 

read-only memory 
(EPROM), 46

ErrorHandler procedure, 488
Exception synchronization, 

534–535
Executable file, 71
EXITM (exit macro) 

directive, 421
ExitProcess function, 64
Expansion operator (%), 

429–430
Explicit stack parameters, 291
Extended addition and 

subtraction, 269–273
ADC instruction, 

269–270
extended addition 

example, 270–272
SBB instruction, 272

Extended addition example, 
270–272

Extended_Add procedure, 
270–271

Extended Physical 
Addressing, 38

External identifiers, 556
External library, linking to, 

153–155
EXTERNDEF directive, 325
EXTERN directive, 323–326

F

FABS (absolute value) 
instruction, 527

Factorial, calculating, 
304–310

Factorial procedure, 305–306, 
308

FADD (add) instruction, 
526–527

FADDP (add with pop) 
instruction, 526–527

Fast division (SHR), 246

Fast multiplication (SHL), 251
FCHS (change sign) 

instruction, 526–527
FCOM (compare 

floating-point values) 
instruction, 530–533

FDIV instruction, 526, 
529–530

FIADD (add integer) 
instruction, 526–527

Fibonacci Generator, 188
Field initializers, 391–392
FILD (load integer) 

instruction, 525
File/device handles, 

14.20–14.21
File encryption example, 

566–569
File I/O

in the Irvine32 Library, 
468–470

testing procedures of, 
470–473

FillArray procedure, 312, 315
FillConsoleOutputAttribute

function, 450
FillConsoleOutputCharacter

function, 450
FindArray

code generated by Visual 
C++, 537

Finite-state machine (FSM), 
219

FINIT instruction, 524
FISUB (subtract integer) 

instruction, 528–529
Flags

addition and subtraction, 
105–112

attribute values and, 463
setting and clearing CPU, 

198–199
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Flat memory model, 64, 
557–558, 564

Floating-point binary 
representation,
511–518

converting decimal 
fractions to binary 
reals, 516–518

creating IEEE 
representation,
514–516

IEEE binary floating-
point representation, 
512–513

normalized binary 
floating-point
numbers, 514

single-precision
exponents, 485–486

Floating-point data type, 
524

Floating-point decimal 
number, 511

Floating-point exceptions, 523
Floating-point instruction set, 

523–526
Floating-point unit (FPU), 39, 

40, 48, 518–539
arithmetic instructions, 

526–530
code examples, 535–536
comparing floating-point 

values, 530–533
exception synchronization, 

534–535
floating-point

exceptions, 523
instruction set, 523–526
masking and unmasking 

exceptions, 538–539
mixed-mode arithmetic, 

537–538

reading and writing 
floating-point values, 
533–534

register stack, 519–521
rounding, 521–522

Flowcharts, 233
FlushConsoleInputBuffer

function, 450
FMUL instruction, 526, 529
FMULP (multiply with pop) 

instruction, 529
FORC directive, 435–436
FOR directive, 434–435
FPU stack, 519–521
FreeConsole function, 450
FST (store floating-point 

value) instruction, 526
FSTP (store floating-point 

value and pop) instruction, 
526

FSUB instruction, 528–529
FSUBP (subtract with pop) 

instruction, 528–529
Function prototypes, 574
Function return values, 575

G

General protection (GP) fault, 
322

General-purpose registers, 
38–39

GenerateConsoleCtrlEvent,
451

GetCommandTail procedure, 
156, 160, 14.28

GetConsoleCP function, 451
GetConsoleCursorInfo

function, 451, 476–477
GetConsoleMode function, 451
GetConsoleOutputCP

function, 451

GetConsoleScreenBufferInfo
function, 451, 474

GetConsoleTitle function, 
451

GetConsoleWindow function, 
451

GetDateTime procedure, 
481–482

Get file creation date and 
time, 14.24

GetKeyState function, 460
GetLargestConsole

WindowSize function, 451
GetLastError API function, 

457
GetLocalTime function, 

479–480
GetMaxXY procedure, 

160
GetMseconds procedure, 161, 

175, 260
GetNumberOfConsoleIn-

putEvents function, 451
GetNumberOfConsole

MouseButtons function, 
451

GetProcessHeap, 493–494
GetStdHandle function, 397, 

450–451
GetTickCount function, 

479–481
Gigabyte, 13
Global descriptor table 

(GDT), 502, 504, 506
GNU assembler, 2
Gotoxy procedure, 161, 349, 

15.19, 16.23
Granularity flag, 503
Graphical windows 

application, 484–492
ErrorHandler procedure, 

488
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MessageBox function, 
486

program listing, 488–492
WinMain procedure, 

486–487
WinProc procedure, 487

H

Hardware, detecting 
overflow, 110

HeapAlloc, 493–494
Heap allocation, 492, 

494–495
HeapCreate, 493–494
HeapDestroy, 493–494
HeapFree, 493, 495
Heap-related functions, 493
HeapTest programs, 

496–499
Hello World program 

example, 14.11–14.12
Hexadecimal addition, 15–16
Hexadecimal integers, 13–15

converting unsigned 
hexadecimal to 
decimal, 14–15

converting unsigned 
decimal to 
hexadecimal, 15

High-level console functions, 
448

High-level language, 4–7, 9, 
47, 214

assembly language and, 6
functions, 47

High-level language 
interface, 555–583

general convention, 
556–557

inline assembly code, 
564–570

linking to C/C++ in 
protected mode, 
570–583

.MODEL directive, 
557–559

I

IA-32e mode
compatibility mode, 43
64-bit mode, 43

IA-32 processor family (x86), 
42–44

IBM-PC and MS-DOS, 
14.1–14.7

coding for 16.bit 
programs, 14.6–14.7

INT instruction, 
14.5–14.6

memory organization, 
14.2–14.3

redirecting input-output, 
14.3–14.4

software interrupts, 14.4
IBM’s PC-DOS, 14.1
Identification number 

(process ID), 37
Identifier, 58–59
IDIV instruction, 

265–266
IEEE floating-point binary 

formats, 512
IEEE representation, 

514–516
IEEE single-precision (SP), 

518
.IF condition, 225, 226
IF directive, 227–228, 423, 

432
IFIDN directive, 424, 433

IFIDNI directive, 424
IF statements

creating, 226–227
loop containing, 216
nested in loop, 214–215

IMUL instruction, 257–263
bit string and, 254
examples, 259–260
one-operand formats, 

257–258
three-operand formats, 

258
two-operand formats, 

258
unsigned multiplication, 

259
INC and DEC instruction, 105
INC instruction, 61
INCLUDE directive, 325, 

330, 406
Indexed operands, 119–121, 

395
displacements, adding, 

120
scale factors in, 120–121
16-bit registers in, 120

IndexOf module, 570–573
Indirect addressing, 117–122

arrays, 118–119
indexed operands, 

119–121
indirect operands, 

117–118
pointers, 121–122

Indirect operands, 117–118, 
120, 297–298, 346, 395

Infix expression, 519
Inline assembly code, 

564–569
__asm directive in 

Microsoft Visual C++, 
564–566

Graphical windows 
application (continued)
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file encryption example, 
566–569

Inline expansion, 406
Input functions, MS-DOS, 

14.12–14.16
Input-output parameter, 

320–321
Input-output system, 47–49
Input parameter, 366
Input string, validating, 

219–220
Instruction, 60–62

comments, 62
instruction mnemonic, 61
label, 60
operands, 61–62, 546

Instruction execution cycle, 
34–36

Instruction mnemonic, 61
Instruction operand notation, 

97
Instruction pointer (EIP), 39
Instruction set architecture 

(ISA), 8
INT (call to interrupt 

procedure) instruction, 
14.5–14.6

common interrupts, 14.6
interrupt vectoring, 14.5

INT 1Ah time of day, 14.6
INT 1Ch user timer interrupt, 

14.6
INT 10h video services, 14.6
INT 16h keyboard services, 

14.6
INT 17h printer services, 14.6
INT 21h function 0Ah, 14.13
INT 21h function 0Bh, 14.14
INT 21h function 1, 14.12
INT 21h function 2, 14.9
INT 21h function 2Ah, 

14.16–14.17

INT 21h function 2Bh, 14.16, 
14.17

INT 21h function 2Ch, 14.16,
14.17

INT 21h function 2Dh, 14.16, 
14.18

INT 21h function 3Eh, 14.23
INT 21h function 3Fh, 

14.15–14.16, 14.25
INT 21h function 4Ch, 14.6, 

14.8
INT 21h function 5, 

14.9–14.10
INT 21h function 6, 

14.9, –14.10, 14.12–14.14
INT 21h function 9, 14.9, 

14.10
INT 21h function 40h, 14.9, 

14.11, 14.26
INT 21h function 42h, 

14.23–14.24
INT 21h function 5706h, 

14.24
INT 21h function 716Ch, 

14.22
INT 21h MS-DOS function 

calls, 14.7–14.20
INT 21h MS-DOS services, 

14.6, 14.34
Integer arithmetic, 242–279

ASCII and unpacked 
decimal arithmetic, 
273–277

extended addition and 
subtraction, 269–272

multiplication and 
division instructions, 
255–268

packed decimal 
arithmetic, 277–279

shift and rotate 
applications, 251–255

shift and rotate 
instructions, 243–251

Integer arrays, searching and 
sorting, 373–382

binary search, 375–378
bubble sort, 372–375
test program, 378–382

Integer arrays, summing, 
126–127

Integer constant, 55
Integer expressions, 56–57
Integer literals, 55–57
Integers, adding and 

subtracting, 63–70
Integer storage sizes, 13
Integer summation program, 

329, 333
Intel64, 50

execution environment, 
43–44

operations mode, 43
Intel486, 41, 518
Intel 8086 processor, 518, 539
Intel 8088 processor, 14.1
Intel 80286 processor, 610
Intel microprocessors, 14.2
Intel P965 Express chipset, 

45–47
Intel Pentium, 33, 564
Intel Pentium Core Duo, 33, 

176, 572
Intel processor families, 2, 41, 

43
Interrupt flags, 40
Interrupt handler, 

14.4–14.5
Interrupts

BIOS 16h functions, D.9
mouse functions, D.9
PC, D.2–D.3
10h functions, D.8
21h functions, D.4–D.7
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Interrupt service routines 
(ISRs), 14.6. See also
Interrupt handler

Interrupt vectoring, 14.5
Interrupt vector table, 14.2
Intrinsic data types, 74
INVOKE directive, 72, 

89–90, 311–312, 599
I/O access, levels of, 

47–49
BIOS, 47
high-level language 

functions, 47
operating system, 47

Irvine16.lib, 14.7
Irvine32.lib, 153–154, 456
Irvine32 Library, 155

overview, 157–158
procedures in, 156–157
test programs, 170–177

Irvine64 library, 153, 
178–180, 294

string-handling
procedures, 365–368

IsDefined macro, 432
IsDigit procedure, 162, 221, 

223–224

J

Java, 3–6, 8
assembly language and, 4
virtual machine concept 

and, 8
Java bytecodes, 339–340

instruction set 340–341
Java disassembly 

examples, 341–345
Java virtual machine 

(JVM), 339–340
string processing and, 

382–383

Java Development Kit (JDK), 
340

Java disassembly examples, 
341–345

adding two doubles, 
343–344

adding two integers, 
341–343

conditional branch, 
344–345

Java HashSet, 194
Java primitive data types, 

340–341
Java virtual machine (JVM), 

8, 339–340
Jcond (conditional jump) 

instruction, 200–201
conditional jump 

applications, 204–208
equality comparisons, 

201–202
signed comparisons, 

202–204
unsigned comparisons, 

202
JMP instruction, 123–124

K

Keyboard definition, 85
Kilobyte, 13
Knuth, Donald, 2

L

Label, 60
code, 60
data, 60
directive, 116–117

LAHF (load status flags into 
AH) instruction, 101

LEA instruction, 298

Least significant bit (LSB), 
10, 245

LEAVE instruction, 298–300
LENGTHOF operator, 116, 

138
Library procedures, 

MS-DOS, 14.24–14.25
Library test program, 

170–177
performance timing, 

175–177
random integers, 

174–175
LIFO (Last-In, First-Out) 

structure, 144
Linear addresses, translating 

logical addresses to, 
500–503

Linked list, 510
Linker command options, 154
Linkers, 3
Linking 32-bit programs, 154
Link library, procedures in, 

154
.LIST, 598
Listing file, 71–73
ListSize, 85–86
Literal-text operator (<>), 

430–431
Literal-character operator (!), 

431
Little-endian order, 91, 252
Load and execute process, 

36–37
Loader, 71
Load floating-point value 

(FLD), 524–525
Local descriptor table (LDT), 

502
LOCAL directive, 300–301, 

409–410
Local variables, 295–296
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LODSB instruction, 353, 
356–357

LODSD instruction, 353, 
356–357

LODSW instruction, 353, 
356–357

Logical AND operator, 213
Logical OR operator, 214
Logical shifts versus 

arithmetic shifts, 243–244
Loop instruction, 123–128
LOOPE (loop if equal) 

instruction, 209, 624
LOOPNE (loop if not equal) 

instruction, 209–210, 624
LOOPNZ (loop if not zero) 

instruction, 209–210, 624
LOOPZ (loop if zero) 

instruction, 209, 624

M

Machine language, 
relationship between 
assembly and, 4, 8

Macros
additional features of, 

408–412
code and data in, 

410–411
comments in macros, 409
debugging program that 

contains, 408
declaring, 406
defining, 406–407
functions, 431–433
invoking, 407–408
in library, 412–419
nested, 411–412
parameters, 407
macro procedure, 

405–406

Wrappers example 
program, 419–420

Macros.inc library
mDump, 414
mDumpMem, 412–414
mGotoxy, 414–415
mReadString, 415–416
mShow, 416–417
mShowRegister, 417
mWriteSpace, 418
mWriteString, 418–419
makeString macro, 

409–410
Masking and unmasking 

exceptions, 538–539
MASM

code generation, 301
Matrix row, summing, 

425–428
mDump macro, 414
mDumpMem macro, 

412–414
Megabyte, 13
Memory, 46

CMOS RAM, 46
DRAM, 46
dynamic allocation, 506
EPROM, 46
management, 499–505
models, 557
operands, 96–97
physical, 501–502
reading from, 36
ROM, 46
segmented model, 499
storage unit, 33
SRAM, 46
virtual, 501–502
VRAM, 46

Memory-mode instructions, 
544–547

Merge procedure, 301

Message box display in 
Win32 application, 
452–455

contents and behavior, 
452–453

demonstration program, 
453–454

program listing, 454–455
MessageBox function, 486
mGotoxyConst macro, 423, 

429
mGotoxy macro, 414–415
Microcode, 5
Microcomputer, 33–34
Microsoft Macro Assembler 

(MASM), 2–3, 54–55
Microsoft x64 calling 

convention, 287, 301–302
Mixed-mode arithmetic, 

537–538
MMX registers, 41
Mnemonic, 61
.MODEL directive, 64, 

558–559, 575, 582
C language specifier, 559
language specifiers, 

558
STDCALL, 558–559

Most significant bit (MSB), 
10, 107, 245

Motherboard, 44–46
chipset, 45–46

MOV instruction, 98–99, 
128–129

opcodes, 544–546
Move file pointer function, 

14.23–14.24
MOVSB instruction, 353–355
MOVSD instruction, 

353–355
MOVSW instruction, 

353–355
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MOVSX (move with 
sign-extend) instruction, 
100–101, 625

MOVZX (move with 
zero-extend) instruction, 
99–100, 625

mPutchar macro, 406
mReadBuf macro, 424
mReadString macro, 415–416
MS-DOS

device names, 14.4
extended error codes, 

14.21
file date fields, 254–255
function calls (INT 21h), 

14.7–14.20
IBM-PC and, 14.1–14.7
memory map, 14.3

MS-DOS file I/O services, 
14.20–14.33

close file handle (3Eh), 
14.23

creating binary file, 
14.30–14.33

create or open file 
(716Ch), 14.22–14.23

get file creation date and 
time, 14.24

move file pointer (42h), 
14.23–14.24

read and copy a text file, 
14.25–14.27

reading MS-DOS 
command tail, 
14.27–14.30

selected library 
procedures,
14.24–14.25

MsgBoxAsk procedure, 156, 
162–163

MsgBox procedure, 156, 162
mShow macro, 416–417

mShowRegister macro, 417, 
428

MS-Windows virtual machine 
manager, 504

MUL (unsigned multiply) 
instruction, 253, 255–257

bit shifting and, 261–262
examples, 256–257
operands, 256

Mul32 macro, 430
Multimodule programs, 323

ArraySum program, 326
calling external 

procedures, 324–325
creating modules using 

INVOKE and 
PROTO, 330–333

creating modules using 
EXTERN directive, 
326–330

hiding and exporting 
procedure names, 
323–324

module boundaries, 
variables and symbols 
in, 325–326

Multiple shifts
in SHL instruction, 245
in SHR instruction, 245

Multiplexer, 26
Multiplication and division 

instructions in integer 
arithmetic, 255–268

arithmetic expressions, 
implementing,
267–268

DIV instruction, 
262–264

IMUL instruction, 
257–260

MUL instruction, 
255–257

signed integer division, 
264–267

Multiplication table example, 
576

assembly language 
module, 576–577

C++ startup program, 
577–578

visual studio project 
properties, 578–579

Multitasking, 499–500, 502
mWrite macro, 411–412
mWriteln macro, 411–412, 

422
mWriteSpace macro, 412, 

418
mWriteString macro, 406, 

412, 418–419

N

Name decorations in C++ 
programs, 557, 570

Naming conventions, 
556–557

NaNs (floating point), 516
Negative infinity, 516
NEG instruction, 106, 

109–110
Nested loops, 125
Nested macros, 411–412
Nested procedure call, 

148–149
Netwide Assembler (NASM), 2
Non-doubleword local 

variables, 337–339
NOP (No Operation) 

instruction, 62
Normalized finite numbers, 

515
NOT (boolean operator), 22
NOT instruction, 194, 196
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Null-terminated string, 19, 77, 
160, 168–169, 178, 
357, 359, 452, 486, 
14.24–14.25, 15.23–15.24

Numeric data representation, 
terminology for, 20–21

O

Object file, 71
OFFSET operator, 112–113, 

121, 129, 395, 399, 402, 
565

One’s complement, 196
OpenInputFile procedure, 

156, 158, 163
Operands, 60–62

direct memory, 96–97
direct-offset, 102–103
floating-point instruction 

set, 523–526
instruction, 61–62, 97
types, 61, 90, 96

Operating system (OS), 32, 
36–38, 42, 44, 47–49

Operator precedence, 24
Opteron processor, 33, 43
OPTION PROC:PRIVATE 

directive, 323–324
OR (boolean operator), 

22–24
OR instruction, 192–193
OS. See Operating system (OS)
Output functions, MS-DOS, 

14.9–14.11
filing control characters, 

14.9–14.11(filtering)
Output parameter, 319
Overflow flag, 40, 69, 107, 

109–110, 164, 166, 191, 
193, 198, 249, 256, 258–
260, 267

P

Packed binary coded decimal 
(BCD), 80

Packed decimal arithmetic, 
277–279

DAA instructions, 
277–278

DAS instruction, 279
Page fault, 501
Paging, 446, 501
Page translation, 500–501, 

503–504
Parallel port, 45
Parameter classifications, 

319–320
Parity flag, 41, 69, 105–107, 

109, 132, 160, 191–193, 
195–197, 226, 531

ParseDecimal32 procedure, 
156, 163

ParseInteger32 procedure, 
156, 164

Passing arrays, 290
Passing by reference, 290
Passing by value, 289
Passing register arguments, 

150
PCI (Peripheral Component 

Interconnect) bus, 45
PC interrupts, D.2–D.3
PeekConsoleInput function, 

451
Pentium processor, 564, 591
Pixels, 48, 484
Pointers, 121–122
POINT structure, 484–485, 

661
POPAD instruction, 143
POPA instruction, 143
POPFD instruction, 142–143
POP instruction, 142

Pop operation, 141–142
Positive infinity, 516, 522
Preemptive multitasking, 504

printf function, 579–581
displaying formatted 

reals with, 580
PrintX macro, 406
PROC directive, 145–147, 

152, 313–316, 330–333
parameter lists, 313–316
parameter passing 

protocol, 316
RET instruction modified 

by, 316
syntax of, 314

Procedure call overhead, 
568–569

Procedures
checking for missing 

arguments, 421–422
defining, 145
calling external, 324–325
labels in, 146
linking to an external 

library, 153–154
nested procedure calls, 

148–149
overhead of, 568–569

Processor operand-size 
prefix, 543–544

Process return code, 14.8
Program execution times, 

measuring, 260–262
Programmable Interrupt 

Controller (PIC), 45
Programmable Interval 

Timer/Counter, 45
Programmable Parallel Port, 45
Programming at multiple 

levels, 48
Program segment prefix 

(PSP), 14.28
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PromptForIntegers procedure, 
326–327, 331

Protected mode, 3, 38, 40–42, 
64, 74, 335, 398, 432, 493, 
502, 557, 564, 584, 14.2, 
15.15

in indirect operands, 
117–118

PROTO directive, 154, 179, 
316–319, 323–324, 
330–333, 574

assembly time argument 
checking, 317–319

PTR operator, 96, 112, 
114–115, 118

PUSHA instruction, 143
PUSHAD instruction, 143
PUSHFD instruction, 

142–143
PUSH instruction, 142
Push operations, 141

Q

Quadword (8 bytes), 132
Quiet NaN (floating point), 

516
QWORD data type, 74, 79–80

R

Radix, 55–56, 77
Ralf Brown’s Interrupt List, 

14.8, D.1
Random32 procedure, 156, 164
Randomize procedure, 156, 

164, 178
RandomRange procedure, 

156, 164–165
Range checking, 102, 229, 

423
Raster scanning, 48

RCL (rotate carry left) 
instruction, 248–249

RCR (rotate carry right) 
instruction, 248–249

ReadChar procedure, 156
ReadConsole function, 451, 

455–456
ReadConsoleInput function, 

451
ReadConsoleOutput function, 

451
ReadConsoleOutputAttribute

function, 451
ReadConsoleOutput

Character function, 451
ReadDec procedure, 156
ReadFile function, 466–467
ReadFile program example, 

471–473
Read_File procedure, 315
ReadFloat procedure, 

533–534
ReadFromFile procedure, 

156, 165–166
ReadHex procedure, 156, 166
ReadInt procedure, 157, 166
ReadKey procedure, 157, 

166–167, 205, 459–460
Read-only memory (ROM), 

46, 14.2
ReadSector example, 15.19
ReadString procedure, 157, 

167, 178, 415, 456, 
14.24–14.25

REAL4 data type, 74, 81
REAL8 data type, 74, 81
REAL10 data type, 74, 81
Real-address mode programs, 

38, 42, 124, 14.2, 
14.6–14.8, 14.28, 14.34, 
15.15–15.16, 15.20, 
15.26, 17.2, 17.7

Real number data, 81
Rect (rectangle) structure, 

485
Recursion, 302–310

factorial calculation, 
304–310

recursively calculating a 
sum, 303–304

Recursive procedure, 188
Reduced instruction set 

computer (RISC), 346, 
539–540, 564

References to named 
structure, 394–395

References to structure 
variables, 394–396

Register mode instructions, 
542–543

Register parameters, 179, 
287–290

Registers, 38–41
comparing, 228
saving and restoring, 

152–153, 294–295
Register stack, 519–521

64-bit, 89–90
Repeat blocks, defining, 

433–437
REPEAT directive, 434
.REPEAT directive, 225, 

231–232
Repeat prefix, 353–355
Reserved words, 58
RET (return from procedure) 

instruction, 147–148, 
181–182, 290, 292–294, 
296, 303–304, 314, 316, 
321, 331, 363, 558, 572

Reversing a string, 144–145
REX (register extension) 

prefix, 43–44
ROL instruction, 247
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ROM. See Read-only memory 
(ROM)

ROM BIOS, 14.3, 16.2, 17.24
ROR instruction, 247–248
Rounding in FPU, 521–522
Runtime relational and logical 

operators, 226–227
Runtime stack, 140–142

S

SAHF (store AH into status 
flags) instruction, 101

SAL (shift arithmetic left) 
instruction, 246

SAR (shift arithmetic right) 
instruction, 246

SBB (subtract with borrow) 
instruction, 272

SBYTE data type, 74–77
Scale factors, 120–121, 371, 

426
scanf function, 30, 580–583
SCASB instruction, 353, 356
SCASD instruction, 353, 356
SCASW instruction, 353, 356
ScrollConsoleScreenBuffer

function, 451, 473
SDWORD data type, 74, 79, 

314, 325, 392, 449
Segment, 40, 55, 59
Segment descriptor details, 

502–503
Segment descriptor table, 40
Segment limit, 502–503
Segment names, 556–557
Segment present flag, 503
Segment registers, 38, 40
Selected string procedures, 

357–368
Sequential search of array, 

205–206

Serial port, 49, 14.4, 16.36, 
17.14–17.15, 17.24

Set complement, 194
Set operations

intersection, 194
union, 194–195

SetConsoleActiveScreen
Buffer function, 451

SetConsoleCP function, 451
SetConsoleCtrlHandler

function, 451
SetConsoleCursorInfo

function, 451, 477
SetConsoleCursorPosition

function, 398–399, 451, 
473, 477

SetConsoleMode function, 
452

SetConsoleOutputCP
function, 452

SetConsoleScreenBufferSize
function, 452, 476

SetConsoleTextAttribute
function, 452, 477

SetConsoleTitle function, 
452, 473

SetConsoleWindowInfo
function, 452, 473–476

SetCursorPosition procedure, 
229–230

SetFilePointer function, 
467–468

SetLocalTime function, 
479–480

SetStdHandle function, 452
SetTextColor procedure, 157
Shift and rotate applications, 

251–255
binary multiplication, 253
displaying binary bits, 254
isolating MS-DOS file 

data fields, 254–255

shifting multiple 
doublewords, 252–253

Shift and rotate instructions, 
243–251

Shifting multiple 
doublewords, 252–253

SHL (shift left) instruction, 
243–245

SHLD (shift left double) 
instruction, 243, 249–251

SHR (shift right) instruction, 
243, 245–246

SHRD (shift right double) 
instruction, 243, 249–251

Signed and unsigned 
comparisons, 227–228

Signed division in SAL and 
SAR instruction, 246

Signed integer, 16
comparing, 228
converting signed binary 

to decimal, 17
converting signed 

decimal to binary, 17
converting signed decimal 

to hexadecimal, 17
converting signed 

hexadecimal to 
decimal, 17

maximum and minimum 
values, 18

two’s complement of 
hexadecimal value, 16

two’s complement 
notation, 16

validating, 212–216
Signed integer division, 

264–267
divide overflow, 266–267
IDIV instruction, 265–266
sign extension instruc-

tions, 264–265
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Signed overflow, 110, 249
Sign flag (SF), 40, 107, 109, 

191, 193, 198, 201, 206
Significand (floating point), 

512–513
precision, 513

SIMD (Single-Instruction, 
Multiple-Data), 41

Single-byte instructions, 541
Single-character input, 

459–460
Single-line comments, 62
Single-precision bit 

encodings, 515
Single-precision exponents, 

514
16-bit argument, 335–336
16-bit parity, 196
16-bit programs, coding for, 

14.6–14.7
16-bit real-address mode 

programs, 3
64-bit operation modes, 43

Boolean instructions in, 
199

using IMUL, 258–259
using MUL, 257

64-bit programming, 88–90, 
128–131

assembly programming, 
178–181

SIZEOF operator, 112, 116
SMALL_RECT structure, 

461–462
SmallWin.inc (include file), 

397–398, 405, 447–450, 
453, 466, 581

Software Development Kit 
(SDK), 154

Software interrupts, 14.2, 14.4
Source operand, 61–62, 

98–99

Special operators, 428–431
Special-purpose registers, 521
SRAM. See Static RAM 

(SRAM)
Stack abstract data type, 

140–141
Stack applications, 142
Stack data structure, 140
.STACK directive, 59, 64, 

326, 14.6, 14.54
Stack frames, 287–302
Stack parameters, 287–290

accessing, 290–292
Stack operations, 140–145

affected by USES 
operator, 333–334

defining and using 
procedures, 145–153

passing stack arguments 
to procedures, 
335–337

POP instruction, 142
PUSH instruction, 142
runtime stack, 140–142

Stack segment, 40, 503, 17.5
Static RAM (SRAM), 36, 46, 50
Status flags, 40–41
STC (set carry flag) 

instruction, 198, 634
STDCALL calling 

convention, 293–294, 
408, 590

STDCALL language 
specifier, 558–559, 574

STOSB instruction, 353, 356, 
635

STOSD instruction, 353, 356, 
635

STOSW instruction, 353, 356, 
635

Str_compare procedure, 157, 
358–359, 366

Str_copy procedure, 
157, 357, 359–360, 
366–367

String, 19
calculating the size of, 

85–86
copying a string, 

127–128, 353–354
defining, 77–78
encryption, 206–208
reversing, 144–145

String encryption program, 
14.14–14.16

String library demo program, 
364–365

String primitive instructions, 
353–357

StrLength procedure, 157
Str_length procedure, 178, 

357, 359, 366–367
Str_trim procedure, 157, 358, 

360–363
Str_ucase procedure, 157, 

358, 363
Structure, 390–405

aligning structure fields, 
392

aligning structure 
variables, 394

containing other 
structures, 399

declaring variables, 
393–394

defining, 391–392
indirect and index 

operands, 395–396
performance of aligned 

members, 396
references to members, 

394–396
referencing, 370–372

Structure chart, 326
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Structured Computer 
Organization
(Tanenbaum), 7

SUB instruction, 67, 106
Substitution operator, 414, 428
SumOf procedure, 146–147, 

153
SwapFlag, 300, 338
Swap procedure, 290, 312, 

315, 320–321
SWORD data type, 74–75, 

78–79, 115, 314, 392
Symbolic constant, 84–88
System management mode 

(SMM), 38
SYSTEMTIME structure, 

397, 440, 479–480, 482, 
505

System time, displaying, 
397–399

T

Table-driven selection, 
216–219

TBYTE data type, 74, 80, 
115–116, 314, 524, 593, 
602

Terabyte, 13
Terminal state, 219–221
Testing status bits, 204
TEST instruction, 190, 

196–197
Text editor, 64, 71, 16.14
TEXTEQU directive, 

87–88
Text macro, 87, 429–430
32-bit integers, adding, 119
32-bit protected mode 

programs, 3
Three integers, smallest of, 

204–205

Time and data functions, 
14.16–14.20

Transfer control, 123
Translate buffer function, 568
Two-dimensional arrays

base-index displacement 
operands, 371–372

base-index operands, 
369–373

ordering of rows and 
columns, 368–369

Two integers
exchanging, 320–321
larger of, 204

TYPEDEF operator, 
121–122, 314

TYPE operator, 112, 115, 
120–121

U

Unconditional transfer, 123
Unicode standard, 19
Uninitialized data, declaring, 

83
Unsigned integers, ranges of, 

13
.UNTIL condition, 225, 231
.UNTILCXZ condition, 225
Uppercase procedure, 

335–336
USES operator, 152–153, 

317, 333–335

V

Variables, adding, 81–82
Video memory area, 14.3
Video RAM (VRAM), 

46, 646–647
Virtual-8086 mode, 38, 40, 

42–43, 504

Virtual machine concept, 7–9
Virtual memory, 501–502
Visual C++ command-line 

options, 559
Visual Studio Debugger

arrays, displaying, 
125–126

CPU flags in, 104
Visual studio project 

properties, 578–579

W

WaitMsg procedure, 157, 
159, 168, 172

Wait states, 34
.WHILE condition, 225, 

231–232
WHILE directive, 433–434
WHILE loops, 214–216, 232
White box testing, 212–213
Win32 API Reference 

Information, 447
Win32 console functions, 

450–452
Win32 console programming, 

445–446
background information, 

446–450
console input, 455–461
console output, 461–463
console window 

manipulation,
473–476

controlling cursor, 
476–477

controlling text color, 
477–478

displaying message box, 
452–455

file I/O in Irvine32 
library, 468–470
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reading and writing files, 
463–468

testing file I/O 
procedures, 470–473

time and date functions, 
479–482

Win32 console functions, 
450–452

Win32 date time functions, 
479

Win32 Platform SDK, 446
Windows API functions

character sets and, 447
64-bit functions, 

482–484
Windows data types, 448
WinMain procedure, 486–487
WNDCLASS structure, 

485–486, 506
WORD data type, 58, 78
Word (2 bytes), 13

arrays of, 86, 103
WriteBinB procedure, 157, 

168
WriteBin procedure, 157, 

168, 172
WriteChar procedure, 157, 

169, 406–407
WriteColors program, 478
WriteConsole function, 452, 

462
WriteConsoleInput function, 

452
WriteConsoleOutputAt-

tribute function, 452, 477
WriteConsoleOutput

Character function, 452, 
461, 463

WriteConsoleOutput
function, 452

WriteDec procedure, 157, 169

WriteFile function, 467
WriteFloat, 533–534
WriteHex procedure, 157, 

169, 172
WriteHexB procedure, 157, 

169, 179
WriteHex64 procedure, 179, 

336–337
WriteInt procedure, 155, 157, 

169, 172, 443
WriteStackFrame procedure, 

157, 322–323
WriteString procedure, 154, 

157, 169, 172–173, 461, 
14.25

WriteToFile procedure, 157, 
169–170

WriteWindowsMsg
procedure, 157, 165–166, 
170, 458, 494–495

X

x86 computer, components 
of, 44

memory, 46
motherboard, 44–46

x86 instruction coding
instruction format, 

540–541
memory-mode

instructions, 544–547
move immediate to 

register, 541–542
processor operand-size 

prefix, 543–544
register-mode

instructions, 542–543, 
610

single-byte instructions, 
541

x86 instruction format, 
540–541

x86 memory management, 
41–42, 446, 499–504

linear addresses, 
500–503

page transition 
(translation),
503–504

protected mode, 42
real-address mode, 42

x86 processor, 1, 4, 16, 29, 62, 
82, 96, 155, 243, 261, 346, 
512, 17.5, 610

x86 processor architecture, 
32–50

execution environment, 
38–41, 43–44

floating-point unit, 41
modes of operation, 

37–38
XCHG instruction, 102
XMM registers, 41, 43
XOR instruction, 195–196, 

206, 14.14

Y

Yottabyte, 13

Z

Zero flag, 40, 69, 107–108, 
132, 162, 166, 191–194, 
198, 200, 205, 209, 221, 
223, 358, 386–387, 459, 
531, 14.12, 608

Zero/sign extension of 
integers, 99

copying smaller values to 
larger ones, 99

MOVSX instruction, 
100–101

MOVZX instruction, 
99–100

Win32 console 
programming (continued)
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