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INTRODUCTION 

 
 This book has many uses. Chapters 1,2,3,4,6,7, and 8 provide the basics for a one-term 
introduction to formal logic. But later chapters contain an ample stock of advanced material as well, 
allowing for a variety of two-course sequences.  It may also do duty for a second course alone, in 
which the early chapters provide review and the later chapters a selection of topics. 
 Regardless of how it is used, this book is designed to meet several specific needs.  There is, 
first of all, the need to convey to students some of the diversity of recent developments in logic.  
Logic, as the title is intended to suggest, is no longer just logic but logics  -- a study of a multitude of 
systems developed for an impressive variety of applications.  Though classical predicate logic is still 
the centerpiece, it is no longer possible to pretend that it is all, or even most, of the subject.  From the 
beginning, this book makes the presuppositions of classical logic explicit and points to alternatives. 
 Second, this is a text that seeks to balance the formal and philosophical with the practical.  A 
wide range of formal topics is covered, and there is frequent reference to their philosophical roots.  
But in no case do I treat any system as merely a formal object.  Logic is, first and foremost, the study 
of reasoning, and its lifeblood is the elucidation of particular arguments. Thus, even where this book 
examines exotic formal systems, practical understanding of inference is always the primary concern.   
 Third, to facilitate understanding, each system is introduced, first, by way of concrete 
problems that motivate it and then by an account of its semantics.  Proof theory, though usually 
historically prior, is relegated to third place, since much that is puzzling about proofs can be 
elucidated semantically, whereas relatively little that is puzzling about semantics can be illuminated 
by proofs.  The ultimate step for each system is an ascent to the vantagepoint of metatheory, where 
the deepest understanding may be achieved.   
 In doing semantics, some metatheory is, of course, unavoidable.  The main issue is how 
explicit to be about it.  I have been very explicit.  Metatheory baffles many students chiefly because 
the rules of the game are rarely explained.  In the first five sections of Chapter 5 I have endeavored to 
explain them.   
 With respect to metatheory itself, my aim has been to err, if err I must, on the side of too 
much help, rather than not enough.  Detailed explanations generally precede the more difficult 
metaproofs, but the metaproofs themselves are as simple and nontechnical as I can make them. 
 I would like to thank those students and colleagues at the University of Tennessee, Knoxville, 
who helped to shape this book -- especially Eddy Falls and Scott Nixon, who read nearly the entire 
manuscript, tested numerous exercises, and provided many valuable suggestions, corrections, and 
clarifications.  George Davis, John Fitzpatrick, Betsy Postow, Jack Thompson, and John Zavodny 
also contributed important corrections.  Wadsworth’s careful reviewers caught many a mistake, 
omission, or unclarity; and thoughtful suggestions have made this a better book than I could have 
written alone. 
  



 

 

 

 
CHAPTER 1 

INFORMAL LOGIC 

 
 This chapter introduces logic from an informal point of view.  In later chapters, as we examine 
not specific arguments, but argument forms, we will look back at the concepts introduced here from 
various formal viewpoints.  The informal stance, however, is fundamental.  It is the milieu out of which 
the study of logic emerges, and to which, ultimately, it must return—on pain of losing its roots and 
becoming irrelevant to the concerns that produced it. 
 

1.1 WHAT IS LOGIC? 

 Logic is the study of reasoning.  Reasoning is a process of thought, but there exists no 
uncontroversial method for studying thought.  As a result, contemporary logic, which likes to think of 
itself as founded on hard (though perhaps not empirical) facts, has virtually nothing to say about 
thought.  Instead, logicians study certain excrescences of thought:  verbalized bits of reasoning—
arguments.   
 An argument is a sequence of declarative sentences, one of which is intended as a 
conclusion; the remaining sentences, the premises, are intended to prove or at least provide some 
evidence for the conclusion.  The premises and conclusion express propositions—which may be 
true or false—as opposed to questions, commands or exclamations.  Nondeclarative sentences may 
sometimes suggest premises or conclusions, but they never are premises or conclusions. 
 Declarative sentences are not themselves propositions.  Some theorists have held that 
propositions are assertions made by sentences in particular contexts; others, that they are the 
meanings of sentences or the thoughts sentences express.  But it is generally agreed that between 
sentences and propositions there is an important difference.  The sentence "I am a woman" uttered 
by me expresses a different proposition than the same sentence uttered by you.  When I utter the 
sentence, the proposition I assert is false; if you are a woman, when you utter the sentence you 
assert a true proposition.  Even if you are not a woman, the proposition you assert by uttering this 
sentence is different than the one I assert by uttering it; your proposition is about you, mine about me.   
 Logicians, however, tend in practice to ignore the differences between sentences and 
propositions, studying the former as if they were the latter.  This practice presupposes that each 
argument we study is uttered in a fixed context (a given speaker in a given circumstance), since only 
relative to such a fixed context does each sentence in the argument express a unique proposition.  To 
illustrate, consider the following argument: 
 
  All women are mortal. 
  I am a woman. 

  I am mortal. 
 

The symbol '' means "therefore" and is used to mark the conclusion. The speaker might be you 
now, or me at age 13, or Queen Victoria reflecting on her imminent death.  It doesn't matter who the 
speaker is, but we do presuppose that there is a single speaker, not several, so that, for example, 'I' 
in the second premise refers to the same person as 'I' in the conclusion.  We also keep fixed some 
other presuppositions about the context:  that, for example, the speaker is consistently using the 
English language—not some Alice-in-Wonderland tongue in which familiar words have unfamiliar 
meanings—and that demonstrative words like 'this' or 'that' have clear and unambiguous reference.   
 Having by fiat frozen these aspects of context, we have obliterated the difference between 
sentences and propositions and can proceed to treat sentences as if they were the propositions they 
express.  (In this book we shall sometimes use the word 'statement' to designate sentences whose 
context has thus been frozen.)  In this way we shift our focus from such elusive entities as assertions, 
meanings or thoughts, to sentences, which can be pinned down on paper and dissected neatly into 
discrete components. 



 

 

 Contemporary logic thus replaces thoughts, meanings, or acts with symbols—letters, words, 
phrases, and sentences.  Whether that is an illuminating or useful strategy, you will be able to judge 
for yourself by the time you finish this book.  But this much is undeniable:  logicians have learned a 
great deal about systems of symbols—and much that is astonishing, unexpected, or useful, as we 
shall see. 
 Our definition of 'argument' stipulated that an argument's premises must be intended to give 
evidence for the conclusion. But they need not actually give evidence.  There are bad arguments as 
well as good ones.  Consider: 
 
  Humans are the only rational beings. 
  Rationality alone enables a being to make moral judgments. 

  Only humans are ends-in-themselves. 
 
Now this is an argument, but it's bad.  (Of course, no famous Western philosopher would ever really 
have reasoned this way!)  The reason why it's bad is that it doesn’t explain what the capacity for 
moral judgment has to do with being an end-in-itself.  Still, bad as it is, it's an argument; the author 
intended the first two propositions (sentences) to be taken as evidence for or proof of the third, and 
that's all that being an argument requires. 
 Let's now consider a good one.  I'll begin with a claim.  The claim is that in certain matters 
your will is not free.  In fact there is one act you simply cannot initiate no matter how strong your will.  
The act is this:  to criticize all and only those people who are unselfcritical.  For consider yourself.  Are 
you going to criticize yourself or not?  If you do, then you will criticize someone who is self-critical 
(namely you)—and so you're not criticizing only the unselfcritical.  On the other hand, if you don't 
criticize yourself, then you fail to criticize someone who is unselfcritical (namely you again)—and so 

you don't criticize all the unselfcritical.  So either way you fail.1 
 Now consider your thoughts as you read the previous paragraph.  (I assume you read it with 
comprehension; if not, now might be a good time to try again.)  When I first made the claim, unless 
you had read this sort of thing before, you were probably puzzled.  You wondered, among other 
things, what I was up to.  At a certain point (or maybe not a certain point—maybe slowly) a light went 
on and you saw it.  The dawning of that light is insight. 
 A good argument, when it works, gives you insight.  It enables you to see why the conclusion 
is true.  Not "see" in a literal sense, of course, but "in your mind's eye."  What was wrong with the bad 
argument given above was that it didn't yield any insight at all.  It puzzled us and offered no resolution 
to our puzzlement. 
 Here I am talking about thought (insight, puzzlement, dawning lights, and so on), when I said 
just a few paragraphs back that we were going to talk about symbol systems.  That's because I want 
to make vivid a certain contrast.  There is much to be noticed about the experience—the 
phenomenology—of argumentation.  But contemporary logicians try to explain as much as possible of 
what makes an argument good or bad without using mentalistic jargon, which they view with 
suspicion.  They prefer to talk about symbols. 
 The previous argument showed us something about insight, but it's rather flashy for an 
introductory illustration; let's consider a more mundane and time-worn example:   
 
  All men are mortal. 
  Socrates is a man. 

  Socrates is mortal.2 
 
This is good too, if not so good as our last example.  It could, I suppose, convey some insight to a 
sheltered three-year-old.  Its virtues, according to hoary tradition, are these: 

                                                      
1The reasoning here is identical to the reasoning of Russell's barber paradox, and to the core of the argument by which we will 
prove the halting problem unsolvable (see Section 10.5). 
2The origin of this argument is a mystery to me.  It appears in many logic textbooks, going way back in history, so presumably 
it has a classical source.  The obvious source would be Aristotle, since Aristotle invented formal logic, but an Aristotle scholar 
assures me that it is nowhere to be found among the Philosopher's works.   



 

 

 
 1 Its premises are true. 
 2 Its reasoning is valid. 
 
Now obviously, these virtues don't by themselves add up to a prize-winning argument.  There are 
other things we'd like—such as significance, substance, relevance to some larger context—but they 
are virtues.  Arguments that lack them are not likely to convey insight into true conclusions.  So they 
are as good a place as any to start if we want to understand what makes an argument good. 
 Virtue 1, however, is the business of just about everybody but the logician.  To tell whether or 
not a given premise is true (except for logically true or logically false propositions, cases to which we 
will later return), we must turn to science, conscience, or common sense—not to logic. 
 

1.2  VALIDITY AND COUNTEREXAMPLES 
 That leaves us with virtue 2, the one that generally interests logicians.  Most logicians have 
belonged to a school of thought known as the classical tradition.  In the first four parts of this book 
we will consider logic from the classical perspective, though in the fifth we shall step outside of it.  To 
say that an argument is valid is, according to the classical tradition, to say that there is no way for the 
conclusion not to be true while the premises are true.  We'll sometimes put this in terms of "possible 
situations":  there is no possible situation in which the premises are true but the conclusion isn't.     
 The Socrates argument is valid, for there is no possible situation in which all men are mortal, 
Socrates is a man, and Socrates is not mortal; we can't even coherently think such a thing. 
 The end-in-itself argument is invalid (i.e., not valid), for there is a possible situation in which 
the premises are true and the conclusion isn't.  That is, it is possible that humans are the only rational 
beings and that rationality alone enables a being to make moral judgments but that humans are not 
the only ends-in-themselves.  One way in which this is possible is if being an end-in-itself has nothing 
to do with the ability to make moral judgements, but rather is linked to some more general capacity, 
such as sentience or the ability to live and flourish.  Thus perhaps other critters are also ends-in-
themselves even if the argument's premises are true. 
 A possible situation in which an argument's premises are true and its conclusion is not true, is 
called a counterexample to the argument.  We may define validity more briefly simply by saying that 
a valid argument is one without a counterexample. 
 When we speak of possible situations, the term 'possible' is to be understood in a very wide 
sense.  To be possible, a situation need not be something we can bring about; it doesn't even have to 
obey the laws of physics.  It just has to be something we can coherently conceive—that is, it has to 
be thinkable and describable without self-contradiction. 
 Thus to tell whether or not an argument is valid, we try to conceive or imagine a possible 
situation in which its premises are true and conclusion is untrue.  If we succeed (i.e., if we can 
describe a counterexample), the argument is invalid.  If we fail, then either we have not been 
imaginative enough or the argument is valid.  This makes logicians nervous; they'd like to have a test 
that doesn't rely on human ingenuity; much of this book will be devoted to explaining what they do 
about this anxiety and how their efforts fare. 
 But most people are not so skittish.  We appeal to counterexamples almost unconsciously in 
everyday life.  Consider this mundane argument: 
 
  They said on the radio that it's going to be a beautiful day today. 

  It is going to be beautiful today. 
 
One natural (albeit cynical) reply is, "they could be wrong."  This reply demonstrates the invalidity of 
the argument by describing a counterexample—that is, a possible situation in which the conclusion 
('It's going to be a beautiful day today) is untrue even though the premise ('They said so on the radio) 
is true:  namely the situation in which the forecasters are simply wrong.   
 A counterexample need not be an actual situation, though it might; it is enough that the 
situation be conceptually possible.  Thus, it need not be true that the forecasters are wrong; to see 
the invalidity of the argument, we need only realize that this is possible.   
 To give a counterexample, then, is merely to tell a kind of story.  The story needn't be true, 



 

 

but it must be conceptually coherent.  The cynical respondent to our argument above hints at such a 
story with the remark "they could be wrong." 
 That's enough for casual conversation.  But for logical analysis it's useful to be a little more 
explicit.  A well-stated description of a counterexample should contain three elements: 
 
  1     Affirmations of all the argument's premises. 
  2     A denial of the argument's conclusion. 
  3     An explanation of how this can be, i.e., how the conclusion  
   can still be untrue while the premises are all true. 
 
If we flesh out the cynic's counterexample to make all these elements explicit, the result might be 
something like this: 
 
  They said on the radio that it's going to be a beautiful day today.   
  But they are wrong.  A cold front is moving in unexpectedly and  
  will bring rain instead of a beautiful day. 
 
All three elements are now present.  The first sentence of this "story" affirms the premise.  The 
second denies the conclusion.  The third explains how the conclusion could be untrue even though 
the premise is true. 
 This is not, of course, the only possible situation that would make the premises but not the 
conclusion true.  I made up the idea of an unexpected cold front more or less arbitrarily.  There are 
other counterexamples as well.  Maybe an unexpected warm front will bring rain.  Or maybe there will 
be an unexpected dust storm.  Or maybe the radio announcer knew it was going to be an awful day 
and flat out lied.  Each of these scenarios is a counterexample.  This is typical; invalid arguments 
usually have indefinitely many counterexamples, each of which is by itself sufficient to show that the 
argument is invalid.   
 Let's consider another example.  Is the following argument valid or invalid? 
 
  All philosophers are freethinkers. 
  Al is not a philosopher. 

  Al is not a freethinker. 
 
To answer, we try to imagine a counterexample.  Is there a way for the conclusion not to be true while 
the premises are true?  (To say that the conclusion is not true, of course, is to say that Al is a 
freethinker.)  A moment's thought should reveal that this is quite possible.  Here's one 
counterexample: 
 
  All philosophers are freethinkers and Al is not a philosopher, 
  but Al is nevertheless a freethinker, because there are some  
  freethinking bricklayers who are not philosophers, and Al is  
  one of these. 
 
Again all three elements of a well-described counterexample are present.  The statement 'All 
philosophers are freethinkers and Al is not a philosopher' affirms both the premises.  The statement 
'Al is nevertheless a freethinker' denies the conclusion.  And the remainder of the story explains how 
this can be so.  The story is perfectly coherent, and thus it shows us how the conclusion could be 
untrue even if the premises were true.  
 Notice again that the counterexample need not be an actual situation.  It's just a story, a 
scenario, a fiction.  In fact, it isn't true that all philosophers are freethinkers, and maybe it isn't true 
that Al (whoever Al is) is a freethinker, either.  That doesn't matter; our story still provides a 
counterexample, and it shows that the argument is invalid, by showing how it could be that the 
conclusion is untrue while the premises are true. 
 Notice, further, that we needn't have said that Al is a bricklayer; for purposes of the example, 
he could have been an anarcho-communist or some other species of freethinker—or an unspecified 



 

 

kind of freethinker.  The details are flexible; what counts, however we formulate the details, is that our 
"story" is coherent and that it makes the premises true and the conclusion untrue. 
 Let's consider another argument: 
 
  All philosophers are freethinkers. 
  Al is a philosopher. 

  Al is a freethinker. 
 
This has no counterexample.  If we affirm the premises, then we cannot without lapsing into 
incoherence deny the conclusion.  If all philosophers are freethinkers and Al is one of the 
philosophers, then he must be a freethinker.  This argument is valid.   
 That, of course, doesn't mean it's a good argument in all respects.  On the contrary: some 
philosophers are dogmatically religious, so the first premise is false, which makes the argument 
unconvincing.  But still the reasoning is valid. 
 Sometimes what appears to be a counterexample turns out on closer examination not to be.  
Unless the mistake is trivial (e.g., the story fails to make all the premises true or fails to make the 
conclusion untrue)  the problem is often that the alleged counterexample is subtly incoherent and 
hence impossible.  To return to the argument about Socrates, suppose someone said: 
  The argument is invalid because we can envision a situation  
  in which all men are mortal and Socrates is a man, but Socrates  
  is nevertheless immortal because he has an immortal soul. 
This story does seem to make the premises of the argument true and the conclusion false.  But is it 
really intelligible?  If having an immortal soul makes one immortal and the man Socrates has an 
immortal soul, then not all men are mortal.  The story is simply incoherent; it contradicts itself.  It is 
therefore not a genuine counterexample, since a counterexample is a possible situation; that is, its 
description must be conceptually coherent. 
 Some additional invalid arguments with accompanying counterexamples are listed below.  
Keep in mind that invalid arguments generally have many counterexamples, so that the 
counterexamples presented here are not the only ones.  Note also that each counterexample 
contains all three elements (though sometimes more than one element may be expressed by the 
same sentence).  The three elements, once again, are: 
 
  1     Affirmations of all the argument's premises. 
  2     A denial of the argument's conclusion. 
  3     An explanation of how this can be, i.e., how the conclusion  
   can be untrue while the premises are all true. 
 
In each case, the counterexample is a logically coherent story (not an argument) that shows how the 
conclusion could be untrue while the premises are true, thus proving that the argument is invalid. 
 
INVALID ARGUMENT:  Sandy is not a man. 

    Sandy is a woman 
 
COUNTEREXAMPLE:  Sandy is neither a man nor a woman but a hamster. 
 
 
INVALID ARGUMENT:  If the TV is unplugged, it doesn't work. 
    The TV is not working. 

    It's unplugged. 
 
COUNTEREXAMPLE:  If the TV is unplugged it doesn't work, and it's not  
    working.  However, it is plugged in.  The reason it's  
    not working is that there's a short in the circuitry. 
     
 



 

 

INVALID ARGUMENT:  All charged particles have mass. 
    Neutrons are particles that have mass. 

    Neutrons are charged particles. 
 
COUNTEREXAMPLE:  All charged particles have mass, but so do some  
    uncharged particles, including neutrons. 
 
 
INVALID ARGUMENT:  The winning ticket is number 540. 
    Beth holds ticket number 539. 

    Beth does not hold the winning ticket. 
 
COUNTEREXAMPLE:     The winning ticket is number 540; Beth is  
    holding both ticket 539 and ticket 540. 
 
 
INVALID ARGUMENT:  There is nobody in this room taller than Amy. 
    Bill is in this room. 

    Bill is shorter than Amy. 
 
COUNTEREXAMPLE:     Bill and Amy are the only ones in this room and they 
    are the same height. 
 
 
INVALID ARGUMENT:  Sally does not believe that Eve ate the apple. 

    Sally believes that Eve did not eat the apple. 
 
COUNTEREXAMPLE:     Sally has no opinion about the story of Eve.  She  
    doesn't believe that Eve ate the apple, but she  
    doesn't disbelieve it either. 
 
 
INVALID ARGUMENT:  Some people smoke cigars. 
    Some people smoke pipes. 

    Some people smoke both cigars and pipes. 
 
COUNTEREXAMPLE:  There are pipe-smokers and cigar-smokers, but  
    nobody smokes both pipes and cigars, so that the  
    two groups don't have any members in common. 
 
 
INVALID ARGUMENT:  Some people smoke cigars. 

    Some people do not smoke cigars. 
 
COUNTEREXAMPLE:     There are people, and all of them smoke cigars.   
    (If everybody does, then some people do and so  
    the premise is true!) 
 
 
INVALID ARGUMENT:  We need to raise some money for our club. 
    Having a bake sale would raise money. 

    We should have a bake sale. 
 
COUNTEREXAMPLE      We need to raise money for the club, and having a  
    bake sale would raise money, but so would other  



 

 

    kinds of events, like a holding a car wash or a  
    telethon.  Some of these alternative fund-raising ideas  
    better suit the needs of the club and the abilities of  
    its members, and so they are what should be done  
    instead of a bake sale. 
 
 
INVALID ARGUMENT:  Kate hit me first. 

    I had to hit her back. 
 
COUNTEREXAMPLE:     Kate hit the (obviously immature) arguer first.  But  
    the arguer could have turned the other cheek, or  
    simply walked away; there was no need to hit back. 
  
 Let's take stock.  What launched our discussion of counterexamples was talk of validity, and 
what led us to validity was a look at the two virtues of a good argument, namely: 
 
 1 The premises are true. 
 2 The reasoning is valid. 
 
Logicians sometimes suggest that these two virtues are sufficient for a good argument.  I have 
already expressed doubts about this.  But we can see why someone might believe it if we consider 
the two virtues together.  To say that the reasoning is valid is to say that there is no counterexample, 
i.e. there is no way for the conclusion not to be true while the premises are true.  Now if we add virtue 
1—namely that the premises are true—we see that the two virtues together add up to a guarantee of 
the truth of the conclusion.  An argument which has both the virtues—true premises and valid 
reasoning—is said to be sound.  Sound reasoning certifies that its conclusion is true. 
 If that's all we want from reasoning, then virtues 1 and 2 are all we need.  In the classical 
logical tradition, it has been customary to ask for no more.  But I think we generally want more.  We 
want insight, significance, cogency ... well, at least we want relevance.  Virtues 1 and 2 don't even 
give us that—as we shall see in the next section. 
 
EXERCISE 1.2:  Classify the following arguments as valid or invalid.  For those that are invalid, 
describe a counterexample, making sure that your description includes all three elements of a well-
described counterexample.  Take each argument as it stands; that is, don't alter the problem by, for 
example, adding premises. 
 
1  No plants are sentient. 
  All morally considerable things are sentient. 

  No plants are morally considerable. 
 
2  All mathematical truths are knowable. 
  All mathematical truths are eternal. 

  All that is knowable is eternal. 
 
3  Most geniuses have been close to madness. 
  Blake was a genius. 

  Blake was close to madness. 
 
4  Most of the sentences in this book are true. 
  Most of the sentences in this book are about logic. 

  There are true sentences about logic in this book. 
 
5  A high gasoline tax is the most effective way to reduce the  
   trade deficit. 
  We need to reduce the trade deficit. 



 

 

  We need a high gasoline tax. 
 
6  Some angels are fallen. 

  Some angels are not fallen. 
 
7  To know something is to be certain of it. 
  We cannot be certain of anything. 

  We cannot know anything. 
 
8  The surface area of China is smaller than the surface area of Russia. 

  The surface area of Russia is larger than the surface area of China. 
 
9  Some men are mortal. 

  Some mortals are men. 
 
10  The witnesses said that either one or two shots were fired  
   at the vicitm. 
  Two bullets were found in the victim's body. 

  Two shots were fired at the victim. 
 
11  People do climb Mount Everest without oxygen tanks. 

  It is possible to climb Mount Everest without oxygen tanks. 
 
12  Some fools are greedy. 
  Some fools are lecherous. 

  There are some fools who are both lecherous and greedy. 
 
13  No one has ever lived for 200 years. 

  No one ever will. 
 
14  DNA contains the code of life. 
  Life is sacred. 

  It is wrong to manipulate DNA. 
 
15  There are fewer than a billion people in the whole United States. 
  New York is only a part of the United States. 

  There aren't a billion people in New York. 
 
 

1.3  RELEVANCE 

 Consider the following rather lyrical argument: 
 
  I've heard of Wartburg, Tennessee. 

  There's no tree that's not a tree. 
 
Pretty bad—but it has both the virtues discussed in the last section:  the premise is true and the 
reasoning is valid.  Of course the conclusion doesn't follow from the premise.  But that wasn't how we 
defined validity—following from the premises.  We defined it as the absence of a counterexample.  
And there is no counterexample here. 
 The queerness resides in the conclusion:  'There's no tree that's not a tree'.  This conclusion 
can't be untrue; it's true in any possible situation, no matter what the world is like.  Hence there is no 
possible situation in which the premise is true and the conclusion is not (simply because, regardless 
of the premises, there is no possible situation in which the conclusion is not true).  So the argument 
has no counterexample; it is valid.  Furthermore, since the premise is true, it is sound.  Still, it is a 
dumb argument. 



 

 

 Not that it leads to an incorrect conclusion.  The conclusion can't be untrue; it's true in all 
possible situations.  So here as elsewhere, soundness guarantees truth.  What's wrong is that the 
conclusion derives no support from the premise.  The premise is irrelevant; the conclusion could 
stand on its own. 
 The conclusion is a logical truth, a statement true in all possible situations.  And the 
argument is an illustration of the general rule that any argument whose conclusion is logically true is 
automatically valid, no matter what the premises.  A logical truth must be true no matter what we 
assume; so it is a valid conclusion from anything. 
 But since this argument is bad nevertheless, we may infer that at least one additional virtue is 
required for good reasoning:  relevance.  But what is relevance?  In recent years a whole field of 
logic, relevance logic, has emerged to attempt to answer this question.  We shall consider it in some 
detail in Section 16.3.  Unfortunately, there seem to be as many relevance logics as relevance 
logicians, so the discipline is somewhat in disarray.  But the need for relevance is clear. 
 There is another kind of inference in which the need for relevance stands out starkly:  an 
argument with inconsistent premises.  A set of propositions (or a single proposition) is inconsistent if 
there is no possible situation in which they are all true (or in which it is true).  The proposition: 
 
   There is a tree that's not a tree 
 
is inconsistent.  So is the set of propositions: 
 
   Albert is a pirate, 
   Albert is not a pirate, 
 
and the more complex set: 
 
   He's either here or in Chicago, 
   He's not here, 
   He's not in Chicago. 
 
Including any such inconsistent proposition or set of propositions among the premises of an argument 
makes the argument automatically valid.  For example, the argument: 
 
   Albert is a pirate. 
   Albert is not a pirate 

   Albert plays golf. 
 
is valid.  Since there is no possible situation in which the premises are both true, there is no possible 
situation in which the premises are both true and the conclusion is not true; hence there is no 
counterexample.  Any attempt to describe a situation in which both premises are true will result in 
incoherence.  More generally, any argument with inconsistent premises is valid. 
 This sounds disasterous, but it isn't.  It doesn't mean you can prove whatever you want just 
by assuming an inconsistency.  To prove in the fullest sense means (at least) to have a sound 
argument—to reason validly from true premises.  But inconsistent premises cannot all be true.  So 
arguments with inconsistent premises never prove anything and are therefore harmless.   Yet they 
are odd, because, though valid, they may utterly lack relevance.   
 Relevance logicians reject the classical tradition's definition of validity, arguing that validity 
should by definition imply relevance, so that we can reject such perverse examples as those recently 
contemplated.  This is an appealing idea.  The problem comes, as I noted before, in the attempt to 
work out the details.  No one has hit upon a relevance-preserving definition of validity that has gained 
widespread acceptance.   
 It might be useful, however, to take a stab at saying what relevance is.  One criterion that 
might be taken as an indicator of relevance is this:  any idea that occurs in the conclusion also occurs 
in at least one of the premises. 
 In other words, every idea in a conclusion must "come from" somewhere, i.e., from one or 
more of the premises.  Conclusions should be "summations" of the premises.  They should consist of 



 

 

elements of the premises recombined in a way that, ideally, produces insight.  Consider, for example, 
this rather typical deductive argument: 
 
  All courses numbered less than 400 are undergraduate courses. 
  No undergraduate course can be taken for graduate credit. 

  No course numbered less than 400 can be taken for graduate credit. 
 
The fundamental ideas in the conclusion are "course numbered less than 400" and "being taken for 
graduate credit".  The first of these ideas comes from the first premise and the second from the 
second.  Each has its origin in a premise, and this accounts, at least in part, for the conclusion's 
relevance.   
 Notice that I did not list the terms "no" and "can" as expressing ideas.  These terms represent 
logical relationships, and they belong to a class of words which we shall call logical operators.  
(Some authors call them syncategorematic terms.)  Roughly, a word is a logical operator if it 
expresses, not a specific idea itself, but a way of modifying or combining ideas.  Some common 
logical operators are "all", "some", "most", "no", "not", "if...then", "or", "unless", and "and".  Thus, 
though a relevant conclusion may not introduce ideas not contained in the premises, it may use 
logical operators to recombine the premises' ideas in new ways.  (Precisely which such combinations 
preserve relevance is one of the controversial issues in relevance logic.) 
    Contrast the previous relevant and valid argument with this argument, which is both fallacious 
and irrelevant: 
 
  Smoking is harmful. 

  Smoking should be illegal. 
 
There are two fundamental ideas in the conclusion—and perhaps a third.  The two obvious ones are 
"smoking" and the notion of being "illegal".  Depending on how we count, we might also treat "should" 
as an idea, though some logicians would consider it a logical operator.  No matter.  The inference is 
clearly irrelevant, because although the term "smoking" in the conclusion has its origin in the premise, 
the term "illegal" comes from nowhere—and that's a hallmark of irrelevance. 
 Notice that we could make the inference relevant by adding a premise connecting the idea of 
harm to the idea of illegality: 
 
  Anything that is harmful should be illegal. 
  Smoking is harmful. 

  Smoking should be illegal. 
 
The conclusion is now relevantly drawn.  The terms "illegal" and "should" (if we want to count the 
latter as expressing an idea) come from the first premise, and the term "smoking" comes from the 
second.  We have also strenghtened the reasoning; the argument is now valid.  The added premise, 
however, is very strong—too strong to be true.  And so, though valid, the argument is unsound.   
 Arguments with logically true conclusions or inconsistent sets of premises provide the most 
glaring examples of validity (in the classical sense) without relevance.  But logically true statements 
and inconsistent premise sets are relatively rare in actual reasoning.  Most of the statements with 
which we reason are contingent—that is, true in some possible situations and false in others.  When 
we reason with contingent statements, there is less dissonance between classical logic and relevance 
logic.  Still, differences remain, as we shall see in Section 16.3. 
   
EXERCISE 1.3:  Classify the following arguments as valid or invalid, using the informal concept of 
validity.  For those that are invalid, describe a counterexample.  Then discuss whether or not the 
argument's premises are relevant to its conclusion. 
 
1  Joe is a mathematician. 

  Joe is a mathematician. 
 
2  Joe is a mathematician. 



 

 

  Joe is not a mathematician. 

  Joe is weird. 
 
3  Joe is a mathematician. 

  Joe is not both a mathematician and not a mathematician. 
 
4  Olaf has been vaporized into incandescent plasma. 

  Olaf is dead. 
 
5  All men are mortal. 
  Socrates is Greek. 
  Socrates is a man. 

  Socrates is mortal. 
 
 

1.4  ARGUMENT INDICATORS 

 We have defined an argument as a sequence of declarative sentences, one of which is 
intended as a conclusion which the others, the premises, are intended to support.  In this section we 
consider the grammatical cues by which speakers of English communicate such intentions.  The most 
important of these are argument indicators, words or phrases that signal the presence and 
communicate the structure of arguments.  These fall into two classes:  premise indicators and 
conclusion indicators.  A premise indicator is an expression such as 'for', 'since' and 'because' which 
connects two statements, signifying that the one to which it is immediately attached is a premise from 
which the other is inferred as a conclusion.  So, for example, in the sentence: 
 
  The soul is indestructible because it is indivisible. 
 
the premise indicator 'because' signals that the statement 'it is indivisible' (where 'it' refers to the soul) 
is a premise supporting the conclusion 'the soul is indestructible'.  Premise indicators can also occur 
at the beginnings of sentences, but the rule still holds:  the statement to which the premise indicator is 
attached is the premise; the other is the conclusion.  Hence, for example, in the sentence: 
 
  Since numbers are nonphysical, nonphysical objects exist 
 
the word 'since' shows that the statement 'numbers are nonphysical' is a premise leading to the 
conclusion 'nonphysical objects exist'. 
 Conclusion indicators are words or phrases that signify that the statement to which they are 
attached is a conclusion that follows from previously stated premises.  English is rich in conclusion 
indicators.  Some of the most common are 'therefore', 'thus', 'so', 'hence', 'then', 'it follows that', 'in 
conclusion', 'accordingly', and 'consequently'.  In the following argument, for example, 'hence' 
indicates that the third statement 'God exists' is a conclusion from the first two: 
 
   Without God, there can be no morality.  Yet 

   morality exists.  Hence God exists. 

 
But the same thing can be signalled by a premise indicator: 
 

   God exists, for without God there can be no morality,  

   and morality exists. 
 
or by a mix of premise and conclusion indicators: 
 

   Without God there can be no morality.  Then God 

   exists, since morality exists. 

 



 

 

These are three different expressions of the same argument.  There are many others.  Notice that the 
conclusion (in this case 'God exists) may occur either at the end, at the beginning, or in the middle of 
the argument, depending on the arrangement of argument indicators.  All three positions are common 
in ordinary speech and writing.  But for logical analysis it is customary to list the premises first and the 

conclusion, prefixed by '', last, as we have been doing.  This is called standard form. 
 Arguments may also be stated without indicators, in which case we must rely on subtler clues 
of context, intonation, or order to discern their structure.  Most often when argument indicators are 
lacking the conclusion is given first, followed by the premises.  Here is an example: 
 
   There is no truth without thought.  Truth is a 
   correspondence between thought and reality. 
   And a correspondence between two things cannot  
   exist unless the things themselves exist. 
 
Here the first statement is a conclusion from the remaining two. 
 Like most English words, many of the terms we use for argument indicators have more than 
one meaning.  So not every occurence of 'since', 'because', 'thus', and so on, is an argument 
indicator.  If someone says "I got down on my hand and knees and thus I escaped beneath the 
smoke," it is unlikely that they are offering an argument.  'Thus' here means "in this way", not "it 
follows that."  The speaker is not attempting to prove that she escaped.  Similarly, in the sentence 
'Since the summer began, there hasn't been a drop of rain', the word 'since' indicates temporal 
duration, not a logical relationship between premise and conclusion.  Neither sentence is an 
argument. 
 Sometimes arguments are not completely stated.  A premise may be omitted because it is so 
obvious that it need not be stated (or, more sinisterly, because the arguer is trying to get listeners to 
take it for granted without thinking).  Likewise, a conclusion may be omitted because it is very 
obvious, or because the arguer wants listeners to draw it for themselves, and thus perhaps be more 
inclined to accept it.  This argument, for example, has an implicit premise: 
 
  The moon has no atmosphere and therefore cannot support life. 
 
The unstated premise is, of course, that an atmosphere is needed to support life.  (Notice also that 
the conclusion is only partly stated; its subject, having been mentioned already in the premise, is not 
repeated.)  The argument, stated in full, is: 
 
  An atmosphere is needed to support life. 
  The moon has no atmosphere. 

  The moon cannot support life. 
 
Here is an argument with an implicit conclusion: 
 
  Ailanthus trees have smooth bark, but the bark of this tree is rough. 
 
The full argument is: 
 
  Ailanthus trees have smooth bark. 
  The bark of this tree is rough. 

  This tree is not an ailanthus tree. 
 
 Arguments are sometimes confused with conditional statements.  A conditional statement 
is an assertion that one thing is the case if another thing is, for example:   
 
  If three is an even number, then it is divisible by two. 
 



 

 

A conditional asserts neither of its components.  This statement, for example, asserts neither that 
three is even nor that it is divisible by two, but the latter is the case if the former is.  In this way it 
differs significantly from this argument, which is formed from the same components: 
 
  Since three is an even number, it is divisible by two. 
 
In an argument, both the premises and the conclusion are categorically asserted.  A person who 
utters these words is saying (absurdly) that three is even and that three is divisible by two. 
 The point here is that 'if' and certain related terms, such as 'unless' and 'only if', are not 
premise indicators.  Instead, they form compounds which function as single statements.  We shall 
have more to say about them in the next chapter. 
 
EXERCISE 1.4:  Some of the following passages are arguments, some are not.  Some of the 
arguments are incomplete, lacking either a premise or a conclusion, or both.  Rewrite each argument 
in standard form, supplying implicit premises or conclusions.  For those passages that are not 
arguments, write 'not an argument'. 
 
1 Uranium is heavier than iron, because gold is heavier than iron and  
 uranium is heavier than gold. 
2 Since anyone under 18 is a juvenile and juveniles are not allowed  
 on the premises, Sally is not allowed on the premises. 
3 If there is a storm warning the siren sounds.  So there is no storm  
 warning, since the siren is not sounding. 
4 Savage could not have been the thief.  The thief was over six feet tall.   
 But Savage is only 5'8".   
5 We went to Indianapolis; then we went to Chicago. 
6 The water froze, and when water freezes the temperature must be at  
 or below zero degrees Centigrade 
7 Different cultures have different conceptions of rationality.  Hence  
 rationality itself takes many forms, for what a culture conceives as  
 rational is rational for that culture. 
8 Alice has a National Rifle Association sticker on her windshield.  It is likely, 
 therefore, that she opposes gun control. 
9 Because all things other than pleasure are valued only for the pleasure they  
 produce, but pleasure is valued for its own sake, only pleasure is intrinsically 
 valuable.  For a thing is intrinsically valuable if and only if it is valued for its  
 own sake. 
10 I lied because I was afraid you would hate me if I told the truth. 
 

1.5  USE AND MENTION 

 Before we move on to formal logic, it will be useful to explain a convention used throughout 
this text.  Since contemporary logic studies systems of symbols, logicians must often talk about 
specific symbols or strings of symbols.  To do this, we need names for these symbols or strings.  We 
shall form names for symbols or strings by enclosing them in single quotation marks.     
 If we take an ordinary name, for example, and flank it with single quoation marks, the result is 
a new name—one that names the old name.  Thus, for example, the following sentence is true: 
 
  'Smog' is a four-letter word. 
 
But this is false: 
 
  Smog is a four-letter word. 
 
Smog is not a word at all; it is a form of air pollution.  In the first sentence the word 'smog' is 
mentioned but not used; in the second it is used but not mentioned.  In logic, we usually mention 
specific symbols by using their quotation names in the manner of the first sentence.  This is why 



 

 

single quotation marks have appeared and will continue to appear so frequently in this book. 
 Failure to observe the use/mention distinction can lead to confusion or nonsense.  Consider: 
 
  The King refers to Elvis. 
 
Which king?  And why would he want to do that?  But, of course, what is intended is: 
 
  'The King' refers to Elvis. 
 
That is, the phrase 'The King' or, more completely, 'The King of Rock and Roll' is used to refer to the 
man Elvis Presley.  The confusion arises from a failure to indicate that the phrase 'The King' is merely 
being mentioned, not used. 
 Here's an example which is purely nonsensical: 
 
  Contains four words does not contain four words 
 
-- at least until appropriate quotation marks are added, when it becomes this simple and obvious 
truth: 
 
  'Contains four words' does not contain four words. 
 
Indeed not; it contains only three. 
 Quotation marks are likewise needed for mentioning letters, numerals, and other symbols.  
Thus we may (correctly) write: 
 
  '10' is a numeral that names the number 10. 
 
Numerals are symbols.  They can be written or printed.  The numeral '10', for example, consists of a 
vertical stroke followed by a circle.  But numbers are something else again.  They are not shapes or 
marks and cannot themselves be written—though they may be named.  The names of the number ten 
are legion.  They include not only the Arabic numeral '10' but also the Roman numeral 'X', the formula 

'82', the English word 'ten', and so on.  Ten is not any of these things, but the unique thing that they 
all name. 
 To summarize, when you see single quotation marks, look between them:  the word or 
phrase, symbol or formula that you see written there is, precisely as written, the thing being 
mentioned.  Where there are no quotation marks, the words in the sentence are being used, and you 
generally have to look elsewhere to find what is being mentioned. 
 When we are using one language to study another, the one we use is called the 
metalanguage and the one being studied—i.e., mentioned—is called the object language.  For 
example, when native speakers of English study Hebrew, they usually converse about Hebrew 
grammar, style, wording, and so on in English.  Here English is the metalanguage and Hebrew is the 
object language.  In the succeeding chapters we shall be studying various logical languages.  Each, 
as we study it in turn, will become our object language; but the metalanguage will always be English.  
We will, however, from time to time import exotica, such as Greek letters for variables, or some 
notation from mathematics into our metalanguage, so it will be a specialized or technical form of 
English. 
 
EXERCISE 1.5:  One or more of the following sentences is true as it stands; others are not true 
unless quotation marks are added.  Supply quotation marks where necessary to make them true. 
1 Logic begins with an L. 

2 The numbers 2 and -2 are both solutions to the equation x2 = 4. 
3 The argument some dogs are collies therefore some collies are dogs is valid. 
4 The number four has many names. 

5 Instead of the word therefore we may write the symbol  . 
 
  



 

 

 
CHAPTER 2 

CLASSICAL PROPOSITIONAL LOGIC:  SYNTAX 

 
 

 An argument form is a pattern of reasoning common to many arguments.  Studying forms 
enables us to understand whole classes of arguments at once.  In this chapter we introduce a 
symbolic language capable of exhibiting simple argument forms:  the language of propositional logic.  
We investigate its syntax (grammar) in this chapter and its semantics (meaning-structures) in the 
next in order to develop mathematically rigorous methods to check for validity and related properties. 
 

2.1  ARGUMENT FORMS 

 In Chapter 1 we approached logic from an informal point of view, considering arguments as 
they occur in natural language.  Here we begin the study of formal logic, whose subject matter is 
argument forms— patterns of reasoning shared by many different arguments.  Here is a simple 
argument form: 
 
   If P, then Q 
   P 

   Q 
 

This form is known by its medieval Latin name, modus ponens.3  The letters 'P' and 'Q' function as 
place-holders for declarative sentences.  We shall call such letters sentence letters.  We say that an 
argument is an instance of a form comprised of sentence letters (or, simply, that it has that form) if it 
is obtainable from the form by replacing the sentence letters with sentences, each occurrence of the 

same letter being replaced by the same sentence.4  The following argument, for example, is an 
instance of the form modus ponens in which 'P' is replaced by 'the fetus is a person' and 'Q' by 
'abortion is murder': 
 
  If the fetus is a person, then abortion is murder. 
  The fetus is a person. 

  Abortion is murder. 
 
Since the number of declarative sentences is potentially infinite, the form represents infinitely many 
different arguments, all with the same structure.  Another, for example, is: 
 
  If Clara won't get the raise, then she'll quit. 
  She won't get the raise. 

  She'll quit. 
 

                                                      
3This is an abbreviation of the longer term 'modus ponendo ponens', which, loosely translated, means 
the mode of proving an assertion by assuming an assertion (the nonconditional premise). 
4Notice, however, that this definition does not rule out replacing different letters with the same 

sentences.  Just as in the mathematical equation 'xy = yx' we may legitimately replace both 'x' and 

'y' by '2' to obtain the instance '22 = 22', so in the form modus ponens, for example, we might 
replace both 'P' and 'Q' by the same sentence, say 'People have souls'.  The result: 
  If people have souls, then people have souls. 
  People have souls. 

 ... People have souls. 

is, like '22 = 22', trivial and uninteresting.  But, like all instances of modus ponens, it is valid. 



 

 

What is significant about this from is that any argument that has it is valid.   Since there are infinitely 
many such arguments, to know that they all are valid is to possess knowledge that is in a sense 
infinite.  But can we really know that each instance of modus ponens is valid? 
 One possible approach to such knowledge is to insert random sentences in place of 'P' and 
'Q' and check the resulting arguments for validity by trying to formulate counterexamples.  But this 
case-by-case approach, though it might ultimately convince us, is logically inconclusive.  Even in an 
entire human lifetime we could only check a finite number of instances; there will always be infinitely 
many that we have never examined.  Maybe some of these, so strange and complex that we would 
never think to check them, are invalid.  Maybe even some of the ones we have checked are invalid, 
and failures of imagination have prevented us from noticing! 
 A more sophisticated approach is to move to a more abstract level of thought.  We might, for 
example, reason this way:  No matter which sentences 'P' and 'Q' stand for, whenever 'if P, then Q' is 
true and 'P' is true, then 'Q' has to be true as well.  Here we focus on the general pattern of the 
reasoning, on the form, rather than its instances.  In this way we might be able to "see" that the form 
itself guarantees the validity of its instances.  But this sort of "seeing," or intuition, is still fallible and 
hence still subject to doubt. 
 These doubts can be wholly dispelled, but not without a deeper understanding of the 
grammatical structure (syntax) and meaning (semantics) of argument forms.  In this chapter we 
consider syntax and in the next semantics.  Our aim is a solid and general understanding of why 
some arguments are valid and others not, an understanding that will yield rigorous techniques for 
settling questions of validity and related issues.   
 We begin with some syntactic fundamentals.  First, the order of the premises and minor 
variations in wording that do not alter meaning are irrelevant to an argument's form.  Thus with regard 
to the previous argument, for example, we may omit the 'then', reverse the premises, and adjust the 
wording a bit without altering the meaning.  The result: 
 
  Clara won't get the raise. 
  If she won't get the raise, she'll quit. 

  She'll quit. 
 
still counts as an instance of modus ponens. 
 However, the order of components within a sentence does matter.  To illustrate this, it will be 
useful to introduce some terminology.  An "if ... then" statement, such as 'if she won't get the raise, 
she'll quit', is called a conditional statement or often just a conditional.  The sentence following the 
'if' is the antecedent and the sentence following the 'then' (or simply the remainder if the 'then' is 
missing) is the consequent ('consequent' with a 't', not consequence.)  If we exchange the 
antecedent and consequent within the conditional, as in this argument: 
 
  If she quits, Clara won't get the raise. 
  She won't get the raise. 

  She'll quit. 
 
the result is no longer modus ponens.  Instead, this argument has the form: 
 
  If Q, then P 
  P 

  Q. 
 
Because the second premise 'P' affirms the consequent of the conditional premise 'If Q, then P', this 
form is called affirming the consequent,   (For parallel reasons, modus ponens is sometimes called 
affirming the antecedent.)  
 Moreover, the argument itself, unlike the two previous arguments, is invalid.  Here is a 
counterexample:  The boss is a scrooge; Clara won't get the raise, period, whether she quits or not.  
But she won't quit, because she needs the job to feed her kids. 



 

 

 At least one instance of affirming the consequent, then, is invalid.  A form like modus ponens 
all of whose instances are valid is called a valid form.  Any form which, like affirming the consequent, 
has at least one invalid instance is called an invalid form.   
 But not every instance of an invalid form need be invalid.  Here is a valid instance of affirming 
the consequent: 
 
  If some men are saints, then some saints are men. 
  Some saints are men. 

  Some men are saints. 
 
This is valid, however, not because it is an instance of affirming the consequent, but rather because 
the second premise and the conclusion say essentially the same thing.  The conclusion therefore 
follows from the second premise alone.  The first premise is superfluous.   
 Because invalid forms may have valid instances, knowing that a form is invalid tells us little 
about the validity of a particular instance of that form.   We may safely assume that having that form 
does not make the instance valid, but it may be valid nevertheless in virtue of structure not 
represented in the form (such as the equivalence of the second premise and conclusion in the 
example above).  

 In algebra, the equation 'xy = yx' has precisely the same meaning as the equation 'zw = 

wz'.  Likewise in logic, the use of different sentence letters makes no difference to the form.  We 
could also write modus ponens, for example, as: 
 
   If R, then S 
   R 

   S. 
 
Similarly, we might express affirming the consequent as: 
 
   If P, then Q 
   Q 

   P 
 
Hence, although exchanging letters within the conditional alone changed modus ponens into  
affirming the consequent, consistent replacement of letters throughout a form does not alter the form.  
The form above, for example, results from our orignal version of affirming the consequent by 
replacing 'P' by 'Q' and 'Q' by 'P' everywhere they occur.  Thus it still counts as affirming the 
consequent.  
 We need to be cautious, however, if we obliterate distinctions between letters.  If in the form 
above, we replace 'P' by 'Q', and make no other changes, we get: 
   If Q, then Q 
   Q 

   Q 
This form is still affirming the consequent, but it is also affirming the antecedent.  We might call it 
"affirming both the consequent and antecedent"! 



 

 

 For brevity, logicians have invented symbols to represent logically significant terms, that is, 

logical operators.5  We shall represent 'if ... then', for example, by the symbol ''.  So instead of 'if P 

then Q', from now on we may write 'P  Q'.  To save space, we often write an entire form on one line.  

In this format we shall use the symbol '├', often called the turnstile, instead of '', and separate the 

premises with commas.  Thus modus ponens, for example, is written as 'P  Q, P  ├  Q'.  An 
argument form written in this format is called a sequent. 
 'If ... then' is not the only logical operator.  In this chapter we shall consider four others.  
These correspond roughly to the English expressions 'it is not the case that', 'and', 'or', and 'if and 

only if', which we shall represent respectively by the symbols '', '&', '', and ''.6  (Often 'and' is 
accompanied by the word 'both' and 'or' by the word 'either'; these additions are usually for clarity or 
emphasis and do not affect the logical meaning.)  What is common to all five operators is that they 
apply to propositions to produce more complex propositions.  That is why the form of logic considered 
in this chapter is known as propositional logic.  In later chapters we will consider operators which 
apply to entities of other types. 
 The operators 'if ... then', 'and', 'or', and 'if and only if' are called binary or dyadic operators, 
because they combine two statements into a new statement.  We may, for example, use the operator 
'and' to combine the separate statements 'it is Wednesday' and 'it is hot' into a new statement 'it is 
Wednesday and it is hot'.  The operator 'it is not the case that', by contrast applies to only one 
proposition at a time and hence is monadic or unary.  We may, for example, affix it to the sentence 
'it is Wednesday' to form the new sentence 'it is not the case that it is Wednesday'. 

 The operator expressed by the symbol '' is called the negation operator, and a proposition 
resulting from its application is called a negative proposition or negation.  '&' is the conjunction 

operator; it combines two propositions, called conjuncts, into a conjunction.  Similarly, '' is the 
disjunction operator; it combines two propositions, called disjuncts, into a disjunction.  The 

biconditional operator '' is the least familiar of the five.  It combines two propositions, which we 
shall call merely constituents, into a biconditional.  A biconditional asserts the equivalence of its 
components in the sense that if either one is true, so is the other. 
 These five operators can be combined with sentence letters to produce an infinity of 
argument forms.  The central aim of formal propositional logic is to establish methods for deciding 
which of these forms are valid and which are not.   
 As a first step toward this goal, we might attempt to evaluate forms informally, by the method 
of counterexamples explained in Section 1.2.  That is, given a sequent, we might by trial and error 
attempt to produce invalid instances—instances for which there is a possible situation that makes the 
premises true but the conclusion untrue.  The hope would be that either we find an invalid instance, 
thus showing the sequent to be invalid, or we fail to find an invalid instance, but as a result of our 
search become familiar enough with the sequent to see that it is valid. 

 Consider, for example, the sequent 'P  Q  ├  P  Q'.  To test its validity informally, we 
consider instances, more or less at random.  Suppose we take this instance: 
 

                                                      
5This is not, of course, an exact definition, but as we shall see later (especially in Section 9.4), the 
exact definition of 'logical operator' is a matter of dispute. 
6Just as mathematicians use both '.' and 'x' to represent multiplication, so logicians sometimes use 
other symbols to represent these operators: 
   LOGICAL OPERATOR  ALTERNATIVE SYMBOL(S) 

  It is not the case that  _ ¬ 

  And    . ^ 

   Or    (none) 
 

  If ... then   

 

    If and only if    
 



 

 

   Either it is a skunk or it is a badger. 

   It is a skunk if and only if it is a badger 
 
Now it is not difficult to formulate a counterexample.  Consider a possible situation in which the 
animal referred to by the word 'it' is a skunk but not a badger.  Then the premise is certainly true, but 
the conclusion is false.  For the conclusion asserts that if it's a skunk it's also a badger, and vice 
versa, but in the situation we are envisioning (which is perfectly possible) it is a skunk but not a 
badger. 

 If we try to find an invalid instance of the sequent 'P  Q, Q  ├ P', by contrast, we meet 
with repeated failure.  (This sequent, incidentally, is called modus tollens (i.e., mode of denying, or 
denying the consequent.)  Consider this instance: 
 
   If you press the accelerator, the engine speeds up. 
   It is not the case that the engine speeds up. 

   Therefore, you are not pressing the accelerator. 
 
We might at first attempt a counterexample along these lines:  maybe the engine is malfunctioning or 
simply turned off, so that even though you are pressing the accelerator it is not speeding up.  This, of 
course, is a possible situation.  But it is not a counterexample, because it is a situation in which the 
first premise is false.  Or maybe the engine is not speeding up, though whenever you press the 
accelerator it does speed up.  But then you are certainly not pressing the accelerator.  This, once 
again is a possible situation, but it is not a counterexample because it is a situation in which the 
conclusion is true. 
 By repeated failures to find a counterexample, both with this instance and with other 
instances of modus tollens, we might eventually gain confidence in the validity of the form itself and 
maybe even see why it is valid.  This method, however, is informal and imprecise.  It relies heavily on 
inventiveness and the powers of imagination.  And since for all of us these powers are limited, it does 
not guarantee a correct answer—or any answer at all.  But there are better methods, as we shall 
soon see. 
  
EXERCISE 2.1.1:  Check the following forms for validity informally by attempting to construct an 
instance that has an obvious counterexample.  If you can do so, write out the instance and describe 
the counterexample that shows it to be invalid.  If not, or if you see that the argument is valid, simply 
write 'valid' for that problem. 

1 P  Q, P  ├ Q 
2 P  ├  P & Q 
3 P & Q  ├  P 

4 P  Q  ├  P 

5 P  ├  P  Q 

6 P  Q  ├  Q  P 

7 P   Q  ├  P   Q 

8 P  Q  ├  Q  P 

9 P  Q  ├  P & Q 

10 P, P  ├  Q 
 
EXERCISE 2.1.2:  Given that modus ponens is also called affirming the antecendent and modus 
tollens is also called denying the consequent, what is the name of the sequent in problem 1 above? 
 

2.2 FORMALIZATION 

 In this section we present the syntax (grammar) of the language of propositional logic.  
Fundamental to an understanding of syntax is the notion of the scope of a logical operator.  The 
scope of a particular occurrence of an operator consists of that occurrence of the operator itself, 
together with whatever it is operating on.  Consider, for example, the following  pair of English 
sentences: 
 



 

 

  It is not the case that boron is both a compound and an element. 
 
  Boron is a compound, and it is not the case that it is an element. 
 
In the first sentence—which, incidentally, is true—the negation operator applies to the entire 
conjunction 'boron is both a compound and an element', or, more explicitly, 'boron is a compound and 
boron is an element'.  Thus the scope of the negation operator is the entire sentence.  In the second 
sentence, which is false, the negation operator applies only to the subsentence 'it [boron] is an 
element'.  Its scope is thus only the second conjunct of the second sentence, i.e., the subsentence 'it 
is not the case that it [boron] is an element'. 
 In representing the forms of these two sentences in the language of propositional logic, we 
need some conventions for indicating scope.  For this purpose, we borrow from algebra the idea of 
using brackets as punctuation.  Using brackets, we can represent the form of the first of the two 

sentences above as '(C & E)'.  The second is then symbolized as 'C & E'. 
 In algebra, the negative sign '-' is presumed to apply just to the term it immediately prefixes, 

unless brackets are used to extend its scope.  Thus the expression '-35' represents the number 2, 

because '-' applies just to the numeral '3'.  But in the expression '-(35)', the '-' applies to '(35)', so 
that this expression represents the number -8.  We use brackets similarly in logic.  The negation sign 
is presumed to apply to whatever formula it immediately prefixes, unless we extend its scope with 
brackets.   
 Brackets are also needed to determine scope when two or more binary operators occur in the 
same formula.  Suppose you receive the following announcement in the mail: 
 
  You have won ten thousand dollars and a Caribbean cruise  
  or a dinner for two. 
 
You might well be puzzled, for this announcement is ambiguous.  Using 'T' for 'you have won ten 
thousand dollars', 'C' for 'you have won a Caribbean cruise' and 'D' for 'you have won a dinner for 

two', we may symbolize it either as 'T & (C  D)' or as '(T & C)  D'.  There is a big difference.  If the 
first formula represents what is meant, you have won ten thousand dollars, plus a cruise or a dinner.  
If (as is most likely) the second formula represents what is meant then, even if the announcement is 
true, you probably have won only a dinner.   
 This sort of multiplicity of meaning is called a scope ambiguity.  In the first formula, the 
scope of the conjunction operator is the whole formula and the scope of the disjunction operator is 
just the second conjunct.  In the second formula, the scope of the disjunction operator is the whole 
formula and the scope of the conjunction operator is just the first disjunct.  Without brackets, the 
scopes of the two operators are indeterminate and, as with the English sentence, it is not clear what 
is meant. 
 Because one of the purposes of propositional logic is to clarify thought, its grammatical rules 

prohibit expressions such as 'T & C  D', which are ambiguous in just the way the contest 
announcement is, because of the absence of brackets.  To prevent such ambiguities, each binary 
operator in a grammatical formula must be accompanied by a pair of brackets that indicate its scope.  
There is only one exception:  we may omit a pair of brackets that surround everything else in a 
formula, since brackets in this position are not needed to prevent ambiguity.  Thus instead of '(T & (C 

 D))', which is strictly correct , having a pair of brackets for each of its two binary operators, we may, 

if we like, write 'T & (C  D)', as we did above, dropping the outermost brackets, the ones that 
indicate the scope of the '&'. 

 Negation requires no brackets of its own.  We can negate any part of the formula '(C  D)', for 
example, simply by appropriate placement of the negation operator.  The possible locations for a 

single negation operator are as follows:  '(C  D)', '(C  D)', '(C  D)'.  The brackets that come 

with the '' (which we have kept here in the second and third formulas, even though we could have 

omitted them), together with the placement of '' suffice to define the scopes of both '' and ''.  Even 

when we iterate negations, as in 'P' ("it is not the case that it is not the case that P"), no brackets 

are needed.  Because '' applies to the smallest whole formula to its right, the scope of the leftmost 

occurence of '' is the whole formula and the scope of the rightmost occurrence of '' is 'P'. 



 

 

 All formulas of propositional logic contain sentence letters as their ultimate constituents.  
Thus sentence letters are called atomic formulas and, by analogy, formulas consisting of more than 
just a single sentence letter are called complex or molecular formulas. 
 Recall that the scope of an occurrence of a logical operator is that occurrence of the operator 
together with all the parts of the formula to which it applies.  More precisely, it is the smallest formula 
containing that occurrence of the operator (which often is only a part of a larger formula).  Each 
molecular formula has one and only one operator whose scope is that entire formula.  This operator is 
called the formula's main operator, and it defines the formula's fundamental form.  The main 

operator of the formula '(P & (Q  R))', for example, is '&'.  The formula as a whole is thus a 

conjunction, though its second conjunct is a disjunction.  In the formula '(P  (Q  R))' the main 

operator is ''.  This formula is therefore negative; more specifically, it is the negation of a conditional 
whose consequent is a disjunction.  Recognition of the main operator in a formula is crucial in 
constructing semantic trees or planning proof strategies, procedures which are discussed in the next 
two chapters. 
 The task of representing the forms of arguments in propositional logic is complicated by the 
fact that there are many ways of expressing the logical operators in natural language.  English has, 
for example, many ways of expressing negation.  Usually, of course, instead of saying 'it is not the 
case that', we simply append 'not' to the sentence's verb.  'It is not the case that I am going' sounds 
better as 'I am not going'.  But we use the more awkward wording to emphasize that from a logical 
point of view negation is an operation that applies to a whole sentence, not just to a verb.   
 Prefixes such as 'non-', 'im-', 'in-', 'un-', 'a-', 'ir-', and so on may also express negation.  But 
not always.  'He is incompetent' is arguably synonymous with 'it is not the case that he is competent', 
but 'gasoline is inflammable' does not mean the same thing as 'it is not the case that gasoline is 
flammable'!  Likewise, 'she uncovered the dough' does not mean the same thing as 'it is not the case 
that she covered the dough'.  Negation is not the only kind of opposition. 
 To determine whether we are dealing with true negation or some other form of opposition, we 
must ask whether what we are dealing with can be adequately expressed by the phrase 'it is not the 
case that'.  If so, it is negation.  If not, it is something else. 
 Conjunction may be expressed not only by the terms 'and' or 'both ... and', but also by 'but', 
'nevertheless', 'furthermore', 'moreover', 'yet', 'still', and so on.  These terms connote differing 
nuances of contrast or connection, yet like 'and' they all perform the logical operation of linking two 
sentences into a compound sentence that affirms them both.  Even a semicolon between two 
sentences may express conjunction in English. 
 English sentences with compound subjects or predicates are usually treated in propositional 
logic as conjunctions of two complete sentences.  Hence we think of the sentence 'Sal and Jeff were 
here' as abbreviating 'Sal was here and Jeff was here' and the sentence 'Sal danced and sang' as 
abbreviating 'Sal danced and Sal sang'. 
 Often where two sentences are linked by word that expresses conjunction, we may question 
whether to treat them as a conjunction or as separate sentences.  From a logical point of view it 
makes little difference.  The argument 'He's big and he's mean, so he's dangerous' is equally well 
rendered into propositional logic as 'B & M  ├  D' or as 'B, M  ├  D'.  In either case, of course, it is 
invalid. 
 Conditionals also have important variants.  They can, for example, be presented in reverse 
order, provided that the antecedent remains attached to the 'if'.  The statement 'if it rains, it pours', for 

example, can also be expressed as 'it pours if it rains'.  The form is in each case the same:  'R  P'.  
In either order, the antecedent is always the clause prefixed by 'if'. 
 There is one exception.  Where 'if' is preceded by the term 'only', what it prefixes is the 
consequent, not the antecedent.  The following four sentences, for example, all assert the same (true) 
conditional proposition: 
 
  If you are pregnant, then you are female. 
  You are female if you are pregnant. 
  Only if you are female are you pregant. 
  You are pregnant only if you are female. 
  
In each case 'you are pregnant' is the antecedent and 'you are female' the consequent.  The form of 



 

 

all four is the same:  'P  F'.  If we reverse antecedents and consequents, we get four sentences of 

the form 'F  P'.  These, too, all affirm the same proposition, but it is a different proposition from that 
affirmed by the first group of four, a proposition that is (fortunately) not in all cases true. 
 
  If you are female, then you are pregnant. 
  You are pregnant if you are female. 
  Only if you are pregnant are you female. 
  You are female only if you are pregnant. 
 
Many people find it difficult to keep the meanings of 'if' and 'only if' distinct.  Keep in mind that 'if' 
always prefixes antecedents and 'only if' always prefixes consequents, and you should have no 
trouble. 
 Given these remarks about 'if' and 'only if', it ought to be clear that the biconditional operator 
'if and only if' may be understood as conjunction of two conditionals, one expressed by 'if', the other 

by 'only if'.  Hence 'P  Q' just means '(P  Q) & (Q  P)'.  We could therefore dispense with the 

symbol '' and treat all biconditionals as conjunctions of two conditionals in this way.  But we retain 

'', partly in deference to tradition, partly because it saves writing. 
 Apart from the optional addition of 'either', the term 'or' has few variants in English.  We may 
regard it, however, as a component of the important term 'neither ... nor'.  Etymologically, this  is a 
contraction of 'not either ... or'; it thus expresses negated disjunction.  The sentence 'it will neither 

snow nor rain', for example, may be symbolized as '(S  R)'.  It is also acceptable to symbolize this 

statement as 'S & R', which is logically equivalent to '(S  R)', though this has the disadvantage of 
failing to reflect the English etymology. 
 The term 'unless' may be thought of as expressing another two-operator combination, a 
conditional with a negated antecedent.  'We will starve unless we eat' says the same thing as 'if we do 

not eat, we will starve'.  We may thus symbolize it as 'E  S'.  Alternatively, 'unless' may be 
understood simply as expressing disjunction, in which case it prefixes the first disjunct.  So we may 

also symbolize 'we will starve unless we eat' as 'E  S'.  These two symbolizations are equally 
correct. 
 
EXERCISE2.2.1:  Formalize each of the sentences below, using the following interpretation scheme: 

Pthe peasants revolt   Qthe queen hesitates  

Rthe revolution will succeed  Sthe slaves revolt 
 
1 Either the peasants will revolt or the slaves will revolt. 
2 Both the peasants and the slaves will revolt 
3 The peasants and the slaves will not both revolt. 
4 If the peasants revolt, then the revolution will not succeed. 
5 The peasants revolt if and only if they don't fail to revolt. 
6 Only if the peasants revolt will the slaves revolt. 
7 The revolution will succeed only if the queen hesitates. 
8 If the peasants revolt and the queen hesitates, the revolution will succeed. 
9 If the peasants revolt, then the revolution will succeed if the queen hesitates. 
10 The revolution will not succeed unless the queen hesitates. 
11 The peasants will revolt whether or not the queen hesitates. 
12 The revolution will succeed if the slaves and peasants both revolt. 
13 If either the peasants or the slaves revolt and the queen hesitates, then 
  the revolution will succeed. 
14 If the peasants revolt but the slaves don't, the revolution will not succeed, 
  and if both the peasants and slaves revolt, the revolution will 
  succeed. 
15 If the peasants revolt if and only if the slaves revolt, then neither will revolt. 
 
EXERCISE 2.2.2:  Use premise and conclusion indicators to determine the premises and conclusions 
of the following arguments, then symbolize them in the formal notation of propositional logic using the 



 

 

sentence letters whose interpretation is specified below.  (The forms of all these arguments, 
incidentally, are valid in classical logic.) 
 
 SENTENCE LETTER INTERPRETATION 
 B   Descartes believes that he thinks 
 E   Descartes exists    
 K1   Descartes knows that he thinks 

 K2   Descartes knows that he exists 

 J   Descartes is justified in believing he thinks 
 T   Descartes thinks 
 
1 If Descartes thinks, then he exists; for he doesn't both think and not exist. 
2 If Descartes thinks, then he exists.  Hence he does not think, because he  
 does not exist. 
3 Descartes is justified in believing that he thinks if he knows that he thinks.   
 But he is not justified in believing that he thinks, so he does not know that  
 he thinks. 
4 If Descartes knows that he thinks, then he exists.  For if he knows that he  
 thinks,  then he thinks; and if he thinks, then he exists. 
5 Descartes does not exist.  For either he knows that he exists or he doesn't  
 exist; and he doesn't know that he exists. 
6 Descartes believes that he thinks.  If he does not think, he does not believe  
 that he thinks.  Therefore Descartes thinks. 
7 If Descartes thinks, then he knows that he exists, and if he knows that he  
 exists, then he exists.  Therefore, if Descartes thinks, then he both knows  
 that he exists and really does exist. 
8 If Descartes does not exist, then he doesn't think; so if he thinks, it is not  
 the case that he does not exist. 
9 Descartes neither exists nor does not exist.  Therefore Descartes thinks. 
10 Descartes knows that he thinks if and only if (1) he believes that he thinks,  
 (2) he is justified in believing that he thinks, and (3) he does in fact think.   
 Therefore if Descartes does not think, then he does not know that he thinks. 
 

2.3 FORMATION RULES   

 The formulas of propositional logic have a grammar, and that grammar (or syntax) may be 
precisely articulated as formation rules.  Formation rules define what counts as a formula by giving 
general directions for assembling formulas out of simple symbols, or characters.  They are the rules 
of grammar for a formal language.  In order to state the formation rules for propositional logic, we 
need first to define the character set for propositional logic—that is, the alphabet and punctuation 
marks from which the formulas of its language are constructed.  We stipulate that a character for the 
language of propositional logic is anything belonging to one of the following four sets: 
 
 Sentence letters: Capital letters from the English alphabet  
 Numerals:    0  1  2  3  4  5  6  7  8  9 

 Logical operators:      &          
 Brackets:    (   ) 
 
 The only novelty here is the numerals.  These are used to form subscripts for sentence letters 
when we want to use the same letter for two different sentences and need a means to keep them 
distinct.  Moreover, without subscripts we could symbolize no more noncompound sentences than we 
have capital letters—that is, twenty-six.  And though we are unlikely in practice to need more than 
twenty-six letters at once, a system of logic should not be subject to such arbitrary restrictions. 
 With these ideas in mind, we are ready to state the formation rules—the rules of grammar 
for the language of propositional logic;  they define the notion of a grammatical formula by telling how 
to construct such formulas, starting with sentence letters, and combining them with the operators and 



 

 

brackets. 
 
 FORMATION RULES FOR PROPOSITIONAL LOGIC 
 1 Any sentence letter, with or without a sequence of numerals as a  
  subscript, is a formula. 

 2 If  is a formula, then so is . 

 3 If  and  are formulas, then so are ( & ), (  ),  (  )  

  and ( ). 
 
 Anything that is not a formula by finitely many applications of these rules is not a formula.  
Notice that in stating the formation rules, we use Greek letters (which belong to the metalanguage 
(see Section 1.5), not to the language of propositional logic).  They are variables that stand for 

formulas of propositional logic.  The Greek indicates generality.  For example,  and  in rule 3 stand 
for any formulas, no matter how simple or complex.  When they are combined with operators and 
brackets into a complex expression, this expression stands for any formula obtainable by replacing 

the Greek letters with formulas.  Thus, for example, the expression '( & )' stands for '(P & Q)', 

'(R & S)', '((P  R) & (Q  S))', etc.  Use of English letters here would be inappropriate, since they 

would too easily be confused with individual expressions of the object language.7   In contrast to such 

expressions as '(P & Q)', expressions containing Greek letters, such as '( & )', are not formulas.  
Rather, they are metalinguistic devices used for referring to whole classes of formulas. 
 Repeated (recursive) application of the formation rules enables us to construct a great variety 

of formulas.  So, for example, 'P' and 'Q' are formulas by rule 1.  Hence by rule 3, '(P  Q)' is a 

formula.  Now by rule 1 again 'R' is a formula, from which it follows by rule 2 that 'R' is a formula and 

again by rule 2 that 'R' is a formula.  Hence, since both '(P  Q)' and 'R' are formulas, by rule 3 

'((P  Q)  R)' is a formula.  And since this is a formula, by rule 2 again, '((P  Q)  R)' is also 
a formula.  And so on!  In this way we can build up formulas as complex as we like. 
 Notice that the only formation rule that introduces brackets is rule 3.  This means that the only 
legitimate function of a pair of brackets is to delineate the scope of some binary operator.  In 
particular, brackets are not used to indicate the scopes of either sentence letters or the negation 
operator.  Thus, for example, none of the following expressions count as formulas:   
 

  (P) (P)   (P)   (P).   (ALL WRONG!) 
 
EXERCISE 2.3:  Some of the following expressions are formulas of propositional logic.  Others are 
not.  For those that are, explain how they are built up by the formation rules.  For those that aren't, 
explain why they can't be built up by the formation rules. 
 

1 (P)  (Q) 
2 (P & Q) 
3 P & Q 

4 P 

5 (P  (Q & S)) 

6 (  ) 

7 ((P & Q)  (R & S)) 
8 P 

9 (P  P) 

                                                      
7To see this more clearly, suppose that instead of rule 2 we wrote: 

 2' If 'P' is a formula, then so is 'P'. 

Then the rule would only tell us how to generate this one formula 'P'.  It would not tell us how to 

generate 'P'  or 'Q'.  If, by contrast, we put it this way: 

 2'' If P is a formula, then so is P 
we would be mixing the object language and metalanguage confusingly.  It's not clear what this 
means.  The Greek says exactly what we want while avoiding these problems. 



 

 

10 (P & Q & R) 
 
 
  



 

 

 
CHAPTER 3 

CLASSICAL PROPOSITIONAL LOGIC:  SEMANTICS 

 
 

3.1 TRUTH CONDITIONS 

 In this section we examine semantics of classical propositional logic.  Semantics is the study 
of meaning.  The logical meaning of an expression is usually understood as its contribution to the 
truth or falsity of sentences in which it occurs.  By rigorously characterizing the meanings (in this 
sense) of the logical operators, we deepen our understanding of validity and related concepts. 
 Logicians have traditionally defined meaning in terms of possible truth.  To know the meaning 
of a sentence, they have assumed, is to know which possible situations or circumstances make it true 
and which make it false.   For example, if we wished to check a student's understanding of the 
sentence 'The government is an oligarchy', we might describe various possible political 
arrangements, asking each time whether the government described was an oligarchy.  The pattern of 
the student's responses to these scenarios would pretty quickly reveal whether she knows what 'The 
government is an oligarchy' means.   
 Or, to take a more sophisticated example, philosophers sometimes debate what is meant by 
such sentences as 'James knows that God exists'.  To clarify their understanding, they ask whether or 
not the sentence would be true in various possible situations.  Suppose, for example, that James has 
been brought up from earliest childhood to believe in God.  Would that make it true that he knows that 
God exists?  Suppose he has had a mystical vision in which it seemed to him that God gave him a 
message.  Would that make it true?  Suppose that he has had such a vision and that God really did 
give him the message?  The point of these queries is to clarify the meaning of the sentence 'James 
knows that God exists'—or, more broadly, to clarify the meaning of the predicate 'knows' in 
application to religious assertions.  And the general assumption of the inquiry is that to know the 
meaning of a sentence or term is to know which possible situations make that sentence true or that 
term truly applicable. 
 This assumption is often expressed by saying that the meaning of a term is its truth 
conditions.  The truth conditions for a term are rules which specify the possible situations in which 
sentences containing that term are true and the possible situations in which sentences containing that 
term are false. 
 In this section we shall give a truth-conditional semantics for the five logical operators 
introduced in the previous section.  That is, we shall explain their meanings in terms of the possible 
situations in which sentences containing them are true and the possible situations in which sentences 
containing them are false.   
 In doing so, we shall employ the concept of truth value.  A truth value is a kind of semantic 
quantity that characterizes propositions.  For now, we assume that there are only two truth values:  
true or T and false or F.  A true proposition has the value T and a false proposition the value F.  We 
shall, moreover, assume that in each possible situation each proposition has one, and only one, of 
these truth values.  This assumption is called the principle of bivalence.  Logics that are based on 
the principle of bivalence and the assumption that meaning is truth conditions are called classical.  
The dominant logics in Western thought have been classical. 
 Some philosophers have held that classical logic is universally the best form of logic, or even 
the only true logic.  This book dissents from that view.  In Part V we shall explore reasons for thinking 

that the principle of bivalence, while appropriate for some applications of logic, is less appropriate for 
others.  We shall consider truth values other than T and F and the possibility that sentences may 
have more than one truth value, or none at all.  And in Section 16.2, we shall question even the idea 
that meaning has anything to do with truth.  There we shall explore a semantics which defines the 
meanings of terms, not as their truth conditions, but as their assertibility conditions—the conditions 
under which statements containing these terms are confirmable by adequate evidence.  And beyond 
that we shall glimpse still more radical ways of departing from the classical tradition.  Each of these 



 

 

novel semantic assumptions alters our conception of what valid reasoning is.  For now, however, we 
shall present the semantics of the logical operators in the classical way, as bivalent truth conditions. 
 We begin with classical logic for two reasons.   First, it is highly established in the Western 
logical tradition—our tradition.  Second, it is, from a semantic viewpoint at least, the simplest logic, 
and it is best to start with what is simple.   
 Our immediate task, then, is to define the meanings of the five logical operators in terms of 
their truth conditions.  We begin with the conjunction operator.  If we conjoin two sentences—say, 'it is 
Wednesday' and 'it is hot'—we obtain a single sentence ('it is Wednesday and it is hot) that is true if 
and only if both original sentences were true, and false otherwise. Hence the truth conditions for 
conjunction may be stated as follows: 
 
 The truth value of a conjunction is T in a given situation iff the truth value of  
 each of its conjuncts is T in that situation. 
 
and 
 
 The truth value of a conjunction is F in a given situation iff one or both of its  
 conjuncts does not have the value T in that situation. 
 
(The term 'iff' is a commonly used abbreviation for 'if and only if'.)  To understand these truth 
conditions is, by the lights of classical logic, to understand what conjunction means. 
 All this is well and good if we aim to state the truth conditions for conjunction when applied to 
statements of natural language.  But we have taken a step of abstraction into formal logic.  We are no 
longer concerned primarily with sentences, like 'it's Wednesday and it's hot', but with formulas, like 'W 
& H'.  Simple sentences have been replaced with sentence letters.  But a sentence letter, such as 'W', 
has in itself no meaning and is neither true nor false.  Of course we can give it a meaning by 
associating it with a particular statement of natural language.  But this we do differently in different 
contexts.  For one problem 'W' may mean "it's Wednesday," for another 'Water is H20'.  So what can 

it mean to talk about a situation that makes a mere formula like 'W & H' true? 
 Two things are needed to make talk about possible situations intelligible in formal 
propositional logic.  The first is an interpretation of the sentence letters.  Interpretations are given by 
associating sentence letters with statements of natural language.  The interpretation of a sentence 
letter may vary from problem to problem, but within a given problem we keep the interpretation fixed.  
Thus we may stipulate, for example, that (for the duration of this example) 'W' means "it's 
Wednesday" and 'H' means "it's hot."   Let us now, in fact, stipulate this.  The second thing we need 
to make sense of the notion of a possible situation is the concept of a valuation: 
 
DEFINITION:  A valuation of a formula or set of formulas of propositional logic is an assigment of 
one and only one of the truth values T and F to each of the sentence letters occuring in that formula 
or in any formula of that set.   
 
For a formula, such as 'W & H', that contains two sentence letters, there are four valuations, as 
shown in the following table: 
 
    W H 
    T T 
    T F 
    F T 
    F F 
 
That is, 'W' and 'H' might both be true, 'W' might be true and 'H' false, 'W' might be false and 'H' true, 
and 'W' and 'H' might both be false.  Given an interpretation of the sentence letters, each valuation 
defines a situation.  For example, given the interpretation stipulated above, the valuation that assigns 
T to both 'W' and 'H' defines a possible situation in which it is both Wednesday and hot.  Similarly, the 
valuation that assigns T to 'W' and F to 'H' defines a possible situation in which it is Wednesday but 
not hot, and so on. 



 

 

 Stipulation of the interpretation, however, though obviously essential for applying logic to 
natural language, is inessential from a purely formal point of view.  To state truth conditions for the 
logical operators, we only need to say how the truth values of sentences containing them depend on 
the truth values of their components, not what the components themselves have been interpreted to 
mean.  Hence truth conditions for formal logic need concern themselves only with valuations, not with 
interpretations.  A valuation alone is not a possible situation, but merely a pattern of truth values—the 
empty form, as it were, of a possible situation.  It has the advantage, however, of being an entity 
definable with mathematical precision.  If we disregard particular interpretations of sentence letters 
and think of abstract valuations rather than possible situations, we enter a realm of formal thought 
where everything is sharply defined and clear.  The truth conditions for conjunction now look like this: 
 
 The truth value of a conjunction is T on a given valuation iff the truth  
 value of of each of its conjuncts is T on that valuation. 
 
and 
 
 The truth value of a conjunction is F on a given valuation iff one or both  
 of its conjuncts does not have the value T on that valuation. 
 
Because these more abstract truth conditions are stated in terms of valuations, they are often referred 
to as valuation rules.   
 Valuation rules will appear so often from now on that it will be useful to abbreviate them.  We 

shall use the script letter 'V' to stand for valuations, and, as in the previous section, capital Greek 

letters will stand for formulas.  Instead of the cumbersome phrase 'the value assigned to  by V', we 

shall write 'V()'.  Thus to say that V assigns the value T to , we write simply 'V() = T'.  Using this 

notation, we may state the valuation rules for conjunction more compactly as follows: 
 

  V( & ) = T iff both V() = T and V ) = T.  

  V( & ) = F iff either V() =/  T or V ) =/  T, or both 8 

 
The same idea may be expressed in tabular form, listing the four possible combinations of truth value 

for  and  on the left and the resulting truth value for  &  on the right: 
 

    &  

T T   T  
T F   F  
F T   F  
F F   F  

 

                                                      
8We could also state the second rule this way: 
 

  ( & ) = F iff either () = F or ) = F, or both  

 

But then a question might arise regarding the truth value of ' & ' if somehow  or  lacked truth 
value or had some value other than T or F.  Defining the falsity of the conjunction in terms of the 
untruth, rather than the falsity, of its components makes conjunctions bivalent even if their 
components are not.  Bivalence is thus built into the valuation rules themselves.  In fact, throughout 
this book I consistently define all semantic ideas in terms of truth and untruth, rather than truth and 
falsehood.  This saves a good bit of trouble in the metatheoretic work of Chapter 5 and facilitates a 
smooth transition to nonclassical logics in Part V.   
 Often both valuation rules are stated together in a very compact fashion, as follows: 

  ( & ) = T iff both () = T and ) = T; otherwise ( & ) = F. 

Our formulation says exactly this, but it is more explicit about what "otherwise" means. 



 

 

This is called a truth table.  Truth tables are, perhaps, easier to read than valuation rules.  But, unlike 
the rules, they have the disadvantage of not being generalizable to more advanced forms of logic.  
Rules will prove more useful in the long run, which is why we emphasize them here. 
 Let's now examine the truth conditions for the negation operator.  If we attach it to a 
sentence—say, 'It's snowing'—we get a negated sentence—e.g., 'It is not the case that it's snowing'.   
If the sentence is true, its negation is false.  If the sentence is false, its negation is true.  This is vividly 
apparent when negation is iterated.  The sentence 'It is not the case that it is not the case that it's 
snowing', for example, is just an elaborate way of saying 'It's snowing'; any situation in which one is 
true is a situation in which the other is true, and in any situation in which one is false, the other is false 
as well.  Two negations "cancel out," producing a statement with the same meaning as the original.  
By the same principle, three negations have the same effect as one, four likewise "cancel out," and 
so on.  Negation, then, is simply an operation that inverts truth value.  Hence the truth conditions for 
negation may be stated precisely as follows: 
 

  V() = T iff V () =/  T.  

  V() = F iff V() = T. 

 
This, according to classical logic, is the meaning of negation.  We can also represent these rules in a 
truth table.  Since the negation operator is monadic, applying to a single formula, rather than to two, 
there are only two cases to consider instead of four:   the case in which that formula is true and the 

case in which it is false.  The table shows that  has the value listed in the right column when  has 
the value listed to the left: 
 

     

T  F   
F  T   

 
 Let's now consider the the truth conditions for 'or'.  'Or' has two meanings.  It can mean 
"either ... or ... and possibly both" or "either ... or ... and not both."  The first meaning is called 
inclusive disjunction and the second exclusive disjunction.  This ambiguity is unfortunate.  
Suppose, for example, that on a true-false quiz, for example, you find the statement: 
 
  Four is either an even number or a square number. 
 
What should you answer?  Four is both even and square.  So, you might argue, it is not either even or 
square, that is, not just one of these two things, it's both.  In that case you would mark the statement 
false.  On the other hand, you might think that since four is even (and also since it's square), it's true 
that it is even or square.  In that case you would mark the statement true.   
 In neither case would you be wrong, and in neither case would you have misunderstood 
anything.  But if you marked the statement false, that would mean that you understood the 'or' 
exclusively, and if you marked it true, that would mean that you understood it inclusively. 
 This problem might be less acute if we were speakers of Latin.  In Latin there are two words 
for 'or':  'vel' and 'aut'.  In most contexts 'vel' more naturally expresses the idea "either ... or ... and and 
possibly both" (the inclusive sense), and 'aut' tends to mean "either ... or ... and not both" (the 
exclusive sense of 'or).  In English we sometimes resolve the ambiguity by using the compound term 
'and/or' for the inclusive sense.  But both 'or' by itself and 'either ... or' generally admit of both 
readings.  When we use them, we or our listeners may not know exactly what we mean. 
 This situation would be intolerable in a formal logical language.  Formal logic aims at 
precision.  Its operators must have clear and unambiguous meanings.  Therefore, when we introduce 

an operator like '' we must stipulate precisely what it means.  Logicians have usually found the 
inclusive sense of 'or' more useful, and so, by convention, that is the sense they have given to the 

operator ''.  In fact, '' is just an abbreviation for 'vel'. 
 Apart from cases in which both disjuncts are true (the cases on which the inclusive and 
exclusive senses of 'or' disagree), the truth conditions for 'or' are clear.  If one disjunct is true and the 
other false (e.g., 'either the sun is a star or the moon is), then the whole disjunction is true.  And if 



 

 

both disjuncts are false (e.g., 'either the moon is a star or the earth is), then the disjunction is false.  

Hence the valuation rules for the operator '' are as follows: 
  

  V(  ) = T iff either V() = T or V ) = T, or both.  

  V(  ) = F iff both V() =/  T and V ) =/  T  

 
The corresponding truth table is: 
 

      

T T   T  
T F   T  
F T   T  
F F   F  

 

The logical operator '', then, accurately symbolizes the English 'or' only when 'or' is used in the 
inclusive sense.  In spite of this, we need not introduce a special symbol for exclusive disjunction, 
since, 'P or Q', where 'or' is intended in the exclusive sense may be symbolized in our notation as '(P 

 Q) & (P & Q)'—that is, "either P or Q, but not both P and Q." 
 In formalizing arguments involving disjunction, we will for the sake of simplicity and 
consistency treat the disjunctions as inclusive, except when there is strong reason not to.  But on 
those fairly frequent occasions when the meaning of 'or' is unclear, we should keep in mind that this 
policy is essentially arbitrary.  

 We now turn to the truth conditions for conditional statements.  Under what conditions is   

 true?  Let's consider the case in which the antecedent  is false (we assume nothing about the 

consequent ).  Now, though  is false, the conditional invites us to consider what is the case if , 

hence to suppose  true.  This, however, yields a contradiction, from which (as we saw in Section 
1.3) any proposition validly follows.  Take a specific instance:  the statement 'Napoleon conquered 
Russia' is false.  Given this, it is (in a certain sense) true, for example, that if Napoleon conquered 
Russia, then Caesar conquered the universe.  Indeed, if Napoleon conquered Russia, then anything 
you like is true—because the fact is that Napoleon didn't conquer Russia.  Thus it appears that when 

 is false,    is true, regardless of the truth value of . 

 Let us next consider the case in which the consequent  is true.  Then, whether or not  is 

true,  is true (trivially).  Take a specific instance:  the statement 'Iron is a metal' is true.  Then any 
conditional containing 'Iron is a metal' as consequent is true.  For example, 'If today is Tuesday, then 
iron is a metal' would be true—because whether or not it is Tuesday (i.e., regardless of the truth value 

of the antecedent), iron is a metal.  Thus in general we may infer that    is true when  is true, 

regardless of the truth value of .   

 We have now concluded that    is true whenever  is false or whenever  is true.  

Together these conclusions account for three of the four truth combinations for  and ; that is   

 is true whenever  and  are both true,  is false and  is true, or  and  are both false.  The 

only remaining case is the one in which  is true and  false.  But in this case the conditional is 
clearly false.  If, for example, it is Tuesday and the weather is not hot, then the conditional 'if it is 
Tuesday, then it is hot' is obviously false.   

 To summarize, we have concluded that     is true if  is true (regardless of the truth 

value of ),   is also true if  is not true (regardless of the truth value of ), and    is false 

if  is true and  is not true.  This covers all possible cases.  Hence the truth conditions for '' are: 
 

  V(  ) = T iff either V() =/  T or V ) = T, or both.  

  V(  ) = F iff both V() = T and V ) =/  T. 

 
The corresponding truth table is: 



 

 

 

      

T T   T  
T F   F  
F T   T  
F F   T  

 
The conditional defined by these truth conditions is called the material conditional.   
 If you were unconvinced by the reasoning that led us to the truth conditions for the material 
conditional, you are not alone.  Many logicians (your author among them) are troubled by this 
reasoning. 

 Consider, once again, the last line on the truth table, the case in which  and  are both 
false.  I argued that the conditional was true in that case, since its antecedent contradicts the facts, 
and from a contradiction anything follows.  Now surely conditionals are sometimes true when their 
antecedents and consequents are both false.  The statement: 
 
  (A) If you are less than an inch tall, then you are less than  
   a foot tall 
 
for example, is uncontroversially true, though (taking 'you' as referring to you) its antecedent and 
consequent are both false.  But the antecedent and consequent of the following statement are also 
both false, and yet, unlike statement (A), this statement seems false: 
 
  (B) If you have no lungs, then you can breathe with  
   your eyeballs. 
 
If, as these examples suggest, English conditionals are sometimes true and sometimes false when 
their antecedents and consequents are both false, then the truth value of an English conditional must 
not be determined solely by the truth values of its components.  Something else must figure into the 
truth conditions.   
 An operator which forms compounds whose truth value is strictly a function of the truth values 

of the components is said to be truth-functional.  '&', '', '', and the material conditional as defined 
by the truth conditions above are truth-functional.  But we have seen evidence that suggests that 'if ... 
then' is not a truth-functional operator and hence is not the material conditional. 
 What makes statement (A) true is not that its antecedent contradicts the facts, but that it is 
necessary, given that you are less than an inch tall, that you are also less than a foot tall.  
Correspondingly, what makes statement (B) false seems to be the lack of just such a necessary 
connection:  it is not necessary, given that you have no lungs, that you can breathe with your 
eyeballs.  This suggests that an English statement of the form 'if P then Q' is true if and only if such a 
necessary connection exists, regardless of the truth values of the components. 
 The truth conditions for the material conditional take into account only the truth values of the 
antecedent and consequent, not the presence or lack of such a necessary connection.  This leads to 
anomalies not only in the case in which the antecedent and consequent are both false, but also in the 
case in which the antecedent is false and the consequent true.  In that case a material conditional is 
true.  But consider the statement: 
 
  If there are no people, then people exist. 
 
Once again, contrary to the truth conditions for the material conditional, this seems false, and once 
again, the necessary connection is lacking.  This case, in fact, is especially anomalous, since here 
the antecedent does not merely fail to necessitate the consequent—it actually necessitates the 
negation of the consequent. 
 Further anomalies occur in the case in which the antecedent and consequent are both true.  
Consider this example: 
 
  If the Mississippi contains more than a thimbleful of water, 



 

 

  then it is the greatest river in North America. 
 
The Mississippi contains considerably more than a thimbleful of water and it is the greatest river in 
North America, so both the antecedent and consequent are true.  If this conditional is material, it is 
therefore true.  Yet many English speakers would say that this conditional is false.  It seems false, 
once again, because it is not necessary given merely that the Mississippi contains more than a 
thimbleful of water that it is the greatest river in North America.   
 Thus English conditionals seem to be true only when there is a necessary connection 
between antecedent and consequent, while the truth conditions for material conditionals ignore all 
such connections, taking into account only the truth values of the antecedent and consequent.   
 What, then, of the reasoning by which I arrived at the truth conditions for the material 
conditional in the first place?  It is sound—as applies to the material conditional, but not to English 

conditionals.  I claimed, for example, that when the consequent  of    is true, then whether or 

not  is true,  is true  But this claim tacitly ignores the possibility that the truth or falsity of  might 

necessitate the falsity of , so that (taking this necessary connection into account) it would be wrong 

to conclude that  is true whether or not  is true.  Thus I arrived at the truth conditions for the 
material conditional by implicitly assuming that such necessary connections do not affect the 
conditional's truth value. 
 A similar assumption underlies my reasoning in the case in which the antecedent is false.  I 

claimed that when  is false, the supposition that  is true yields a contradiction, from which any 

proposition validly follows.  Thus, given that  is false, if  then , that is,    is true—for any 

proposition .  Thus I assumed that what determines the truth value of the conditional is simply the 
contradiction of its antecedent with the facts, rather than a necessary connection, or lack thereof, 
between the antecedent and consequent.   
 It was, therefore, by assuming that such necessary connections do not affect the truth value 
of the conditional that I arrived at the truth conditions for material conditional.  But this assumption 
seems false for at least some English conditionals.  The material conditional is therefore not just 

another way of writing the English 'if ... then'.9 
 But then if our aim is to evaluate arguments, which we normally formulate in English, why 
bother with the material conditional?   
 Part of the answer is historical.  Beginning with the work of the Scottish philosopher David 
Hume (1711-1776), many thinkers, among them some of the founders of contemporary logic, have 
doubted the intelligibility of this idea of necessary connection.  As a result, many have found the 
material conditional (whose truth conditions, though odd, are at least exact) preferable to English 
conditionals, whose truth conditions seem bound up with the suspect notion of necessity.  Indeed, 
logicians have long dreamed of an ideal language, free of all ambiguity, unclarity, and dubious 
metaphysics; and the replacement of the English conditional by the material conditional offered hope 
of progress toward that goal.  Early in this century, Bertrand Russell, Ludwig Wittgenstein, and other 
prominent philosophers held that with the creation of such a language the perennial philosophical 
problems, which they regarded as linguistic confusions, would simply dissolve.  There is indeed much 
to be said for the replacement of murkier notions by clearer ones, but in the end we may be left 
wondering whether we have really solved the problems or merely changed the subject. 
 In any case, these early thinkers had little choice but to embrace the material conditional.  
They needed some sort of conditional operator, and it was not until mid-century that logicians began 
formulate rigorous and illuminating truth conditions involving ideas of necessary connection.  
Moreover, the material conditional does mimic English conditionals fairly well in many cases.  Like 
English conditionals, it is always false when its antecedent is true and its consequent false; and in the 
other cases its truth value sometimes agrees and sometimes disagrees with that of English 
conditionals.   Certainly, it offers the best approximation to English conditionals among truth-
functional operators.  Moreover, its truth conditions are simple and utterly precise.  For these reasons, 

                                                      
9That, at least, is my view.  Some logicians still insist that English conditionals are material 
conditionals.  They say unabashedly that statements like 'if you have no lungs, then you can breathe 
with your eyeballs' are true.  We can see why they say this by understanding what they mean by 'if ... 
then', but I do not think that that is what the rest of us usually mean by 'if ... then'. 



 

 

the material conditional has become the standard conditional of logic and mathematics. 
 Lately, however, logicans have formulated a variety of alternative truth conditions that seem 
to reflect more adequately the meanings of English conditionals.  We shall consider some of these in 
later chapters.  Unfortunately, none of these alternatives has won universal acclaim as the true 
meaning of 'if ... then'.  That is one reason why we still bother with the material conditional.  But we 
use it primarily because it is adequate for most applications in mathematics and many in science, and 
its simplicity makes it very convenient for any sort of formal work. 
 Still, it must be admitted that the common textbook practice of symbolizing 'if ... then' in 
English as the material conditional (a practice in which this textbook too has indulged) is not wholly 
defensible.  The material conditional is at best a rough approximation to 'if ... then', and some patterns 
of reasoning valid for the one are not valid for the other.  We shall be a bit more careful about this for 
the remainder of this section.  When considering instances of argument forms containing the material 
conditional, we shall not translate the material conditional back into English as 'if ... then', but instead 

retain the symbol '' as a reminder that its meaning lies solely in its truth conditions, not in what we 
normally mean by 'if ... then'. 

 It remains to discuss the truth conditions for the biconditional operator '', which we have 
associated with the English expression 'if and only if'.  Since, as we saw in Section 2.2, 'if' prefixes 
antecedents and 'only if' prefixes consequents,  the statement form  

    if   

may be symbolized as   , and the form  

    only if   

as   .  Thus the biconditional, as its name implies, can be understood as a pair of conditionals—
more precisely, as a conjunction of two conditionals.  As a conjunction, it is true if both conditionals 

are true, and it is false if either or both are untrue.  Now if  and  are either both true or both untrue, 

both conditionals are true (by the valuation rules for ').  But if  is true and  untrue, then    is 

untrue; and if  is untrue and  true, then    is untrue.  In either of these cases, the biconditional 
is false.  Thus the truth conditions for the biconditional are: 
 

 V(  ) = T iff either V() = T and V ) = T, or V() =/  T and V() =/  T.  

 V(  ) = F iff either V() = T and V() =/  T, or V() =/  T and V ) = T  

 
These rules yield the following truth table: 
 

      

T T   T  
T F   F  
F T   F  
F F   T  

 
The biconditional, in other words, is true if the two equivalents have the same truth value and false if 
they differ in truth value. 

 Because the truth conditions for '' are just those for a conjunction of two material 

conditionals, '' is often called the material biconditional operator, and where    is true,  and 

 are called material equivalents.  Two formulas, then, are materially equivalent on a valuation if 
and only if they have the same truth value on that valuation. 
 The material biconditional shares with the material conditional the oddity of ignoring 
necessary connections between its components.  If its components are either both true or both untrue 
a material biconditional is true, regardless of the existence or lack of existence of necessary or 

relevant connections between the components.  Thus (importing '' into English) the following 
statements, however odd, are both true: 
 

 Life evolved on earth   Ronald Reagan was President  
       of the United States. 
 



 

 

 

 Grass is purple    grass is colorless.  
 
The first is true because both its components are true, the second because both its components are 

false.  Obviously, then, '' differs from 'if and only if', just as '' differs from 'if ... then'.  The material 
biconditional and English biconditionals do agree, however, when one component is true and the 
other false; here the biconditional itself is surely false. 
 To summarize:  the meanings of the five truth-functional operators of propositional logic are 
given by these rules: 
 
 VALUATION RULES FOR PROPOSITIONAL LOGIC 

 For any formulas  and  and any valuation V: 

 1 V() = T iff V () =/  T; 

  V() = F iff V() = T. 

 2 V( & ) = T iff both V() = T and V ) = T;  

  V( & ) = F iff either V() =/  T or V ) =/  T, or both  

 3 V(  ) = T iff either V() = T or V ) = T, or both;  

  V(  ) = F iff both V() =/  T and V ) =/  T  

 4 V(  ) = T iff either V() =/  T or V ) = T, or both;  

  V(  ) = F iff both V() = T and V ) =/  T. 

 5 V(  ) = T iff either V() = T and V ) = T, or V() =/  T  

   and V() =/  T;  

  V(  ) = F iff either V() = T and V() =/  T, or V() =/  T  

   and V ) = T  

 
These rules constitute the complete semantics for classical propositional logic.  For each operator 
there is a rule giving the truth conditions for formulas of which it is the main operator and a rule giving 
the falsity conditions for those formulas.  Together this pair of rules implies each such formula is false 
if and only if it is not true.  Hence collectively the valuation rules embody the principle of bivalence—
the principle that each formula is either true or false, but not both, on all valuations. 
 The rules are numbered 1-5.  We will use this numbering for future reference. 
 
EXERCISE 3.1:  The five operators discussed in this section are a somewhat arbitrary selection from 
among many possible truth-functional operators, some of them expressible by common words or 
phrases of English.  Invent symbols and formulate truth tables and a valuation rule for binary 
operators expressible by these English terms (you may find it easier to do the truth tables first): 
1 exclusive 'or' 
2 '... unless ...' 
3 'neither ... nor ...' 
4 'not both ... and ...'; this is sometimes called the NAND operator. 
 

3.2  TRUTH TABLES 

 The valuation rules tell us what the operators of propositional logic mean.  But they do more 
than that.  They also enable us to understand why in some cases one formula must be true if others 
are true; that is, they enable us to understand why some argument forms are valid—and not merely to 
understand, but to confirm our understanding by calculation.  Because propositional logic makes such 
calculations possible, it is sometimes called the propositional calculus.  
 In Chapter 1 we said that an argument is valid iff it has no counterexample; that is, iff there is 
no possible situation in which its premises are true but its conclusion is untrue.  In this chapter we 
have shifted our attention from specific arguments to argument forms.  For forms, too, we may define 
a notion of counterexample: 
 
DEFINITION:  A counterexample to a sequent or argument form is a valuation on which its premises 
are true and its conclusion is not true. 



 

 

 
This notion of a counterexample is closely related to the earlier one.  Given a counterexample to a 
sequent, we can always convert it to a counterexample to an argument that is an instance of that 
sequent by giving an appropriate interpretation to the form's sentence letters.   

 Consider, for example, the invalid sequent 'P  Q  ├  Q'.  The valuation V such that 

V(P) = T10 and V(Q) = F is a counterexample to this sequent.  For since V(P) = T, by the valuation 

rule for disjunction V(P  Q) = T.  But V(Q) = F.  That is, V is a valuation that makes the premise 'P  

Q' of this sequent true and its conclusion 'Q' untrue.  Now any interpretation that correlates 'P' with a 
true statement and 'Q' with a false one produces an instance of this sequent that has a 
counterexample.  And, indeed, this counterexample will describe, an actual situation.  (An actual 
situation is, of course, a kind of possible situation; anything actual can be coherently described.)  For 
example, suppose we interpret 'P' by the true statement 'People are mammals' and 'Q' by the false 

statment 'Quail are mammals'.  Then (retaining the '' symbol) this interpretation yields the following 
instance of the sequent: 
 

  People are mammals    Quail are mammals. 

  Quail are mammals. 
 
And in the actual situation the premise is true but the conclusion isn't. 
 Conversely, given a counterexample to an instance of a sequent, we can always construct a 
counterexample to the sequent by assigning to its sentence letters the truth values of the 
corresponding sentences in the counterexample to the instance.  Consider, for example, this 
argument, which is an instance of the sequent 'P  ├  P & Q': 
 
  Bill is a prince. 

  Bill is a prince & Jill is a queen. 
 
Here is a counterexample to this argument: 
 
  Bill is a prince, but Jill, the miller's daughter, 
  is a poor but honest maiden, not a queen. 
 
This counterexample makes 'Bill is a prince' true and 'Jill is a queen' false.  We can turn it into a 
counterexample to the sequent by ignoring our interpretation of the sentence letters and assigning 
these truth values directly to the corresponding sentence letters themselves.  The result is the 

valuation V such that V(P) = T and V(Q) = F, which is a counterexample to the sequent. 

 In this way we can always convert a counterexample to an instance of a sequent into a 
counterexample to the sequent itself, and vice versa.  This realization leads us to a new 
understanding the concept of a valid argument form.  In Section 2.1, we defined a valid argument 
form as a form all of whose instances are valid arguments.  Thus an argument form is valid iff none of 
its instances have counterexamples.  But we have just seen that for each possible situation that is a 
counterexample to an instance there is a valuation that is a counterexample to the form, and vice 
versa.  Therefore, to say that no instances of the form have counterexamples is equivalent to saying 
that the form itself has no counterexamples.  Thus we may equally well define validity for an 
argument form as follows: 
 
DEFINITION:  A sequent or argument form is valid  iff there is no valuation on which its premises are 
true and its conclusion is not true. 
 

                                                      
10 It would be more accurate to write: 
  (P') = T 

But it is tedious to write the single quotes in this context, and so we will adopt the convention of 
omitting them. 



 

 

 Likewise, since an invalid form is just one that has an instance with a counterexample, and 
since there is a counterexample to some instance iff the form has a counterexample, we may likewise 
redefine the concept of invalidity for an argument form: 
 
 DEFINITION:  A sequent or argument form is invalid  iff there is at least one valuation on which its 
premises are true and its conclusion is not true. 
 
 We shall rely on these new definitions from now on.  Central to both is the concept used by 
the valuation rules to define truth conditions:  the concept of a valuation.  Thus these definitions 
illuminate the relationship between the concepts of validity and invalidity and the valuation rules.  The 
remainder of this chapter shows how to utilize this relationship to develop computational tests for 
validity and other semantic properties.   
 As a first step in this direction we note that, given a valuation, the valuation rules enable us to 
calculate the truth value of a formula or set of formulas from the truth values assigned to their 

component sentence letters.  For example, given the valuation V such that V(P) = T, V(Q) = T and 

V(R) = F, we can calculate the truth value of the formula 'P  (Q & R)' as follows. Since V(R) =/  T, 

by the valuation rule for negation, V(R) = T.  And since both V(Q) = T and V(R) = T, by the 

valuation rule for conjunction V(Q & R) = T.  And, finally, since both V(P) = T and V(Q & R) = T, by 

the valuation rule for the material conditional, V(P  (Q & R)) = T. 

 We may list the results of such calculations for all the valuations of a formula or set of 
formulas on a truth table.  If we do this for the set of formulas that comprises a sequent, the table will 
display all the possible valuations of the premises and conclusion, each as a single horizontal line.  
We can then, simply by scanning down the table, check to see if there is a line (i.e. a valuation) on 
which the premises are true and the conclusion is false.  If so, that line represents a counterexample 
to the sequent and the sequent is invalid.  If not, then (since all the valuations of the sequent are 
displayed on the table) there is no counterexample and the sequent is valid.  Here at last is a simple, 
mathematically rigorous test for validity, one that relies neither on intuition nor imagination! 

 Let's try it out.  Our example will be a sequent expressing modus ponens, where '' is now 
explicitly understood as the material conditional.  This sequent contains only two sentence letters, so 
it has four possible valuations ('P' and 'Q' both true, 'P' true and 'Q' false, 'P' false and 'Q' true, both 'P' 
and 'Q' false) which we list in the two leftmost columns of the table.  Then, beneath each formula of 
the sequent, we write its truth value on each of those valuations, like this: 
   

P Q  P  Q, P  ├ Q  

T T   T  T   T  
T F   F  T   F  
F T   T  F   T  
F F   T  F   F  

Each horizontal line represents a single valuation.  For example, the second line from the bottom 

represents the valuation V such that V(P) = F and V(Q) = T.  To the right, below each formula of the 

sequent, it lists the truth value of that formula on V.  On this valuation, for example, 'P  Q' is true.  

Since the truth table is a complete list of valuations, if there is a valuation on which the premises are 
true and the conclusion is not, it will show up as a line on the table.  In this case, there is no such line, 
i.e., no counterexample.  (The only valuation on which both premises are true is the first one listed, 

the valuation V such that V(P) = T and V(Q) = T.  But on this valuation the form's conclusion ‘Q’ is 

true.  Thus modus ponens is valid for the material conditional.   
 Affirming the consequent, which is sometimes confused with modus ponens, is, as we saw in 
Section 2.1, invalid.  Its truth table confirms this: 

P Q  P  Q, Q  ├ P  

T T   T  T   T  
T F   F  F   T  
F T   T  T   F  
F F   T  F   F  

 



 

 

On the third valuation listed in the table the premises 'P  Q' and 'Q' are both true, but the conclusion 
'P' is false.  This valuation is therefore a counterexample to the sequent, proving it invalid. 
 We can use the counterexample displayed in the truth table to construct instances of the 
sequent that are invalid arguments.  Since the valuation which makes 'P' false and 'Q' true provides a 
counterexample, we need merely substitute any sentence that is actually true for 'P' and any 
sentence that is actually false for 'Q' to obtain an invalid instance.  Since these are the truth values 
these sentences have in the actual situation, a description of the actual situation consitutes a 
counterexample to that instance.  Let 'P', for example, be the false sentence 'Logic is a kind of 
biology' and 'Q' the true sentence 'Logic is an intellectual discipline'.  Then we obtain this instance: 
 

  Logic is a kind of biology    logic is an intellectual discipline. 
  Logic is an intellectual discipline. 

  Logic is a kind of biology. 
 
The premises of this argument are true and its conclusion false in the actual situation.   
 This technique sometimes yields puzzling instances whose conditional premise, though 

actually true, seems false if we confuse '' with 'if ... then'.  But keeping the truth conditions for '' 
distinctly in mind resolves the puzzlement. 
 To obtain the values listed under the formulas in the tables above, we just copied them from 
one of the leftmost columns (if the formula was a sentence letter) or derived them directly from the 
valuation rules (in the case of the conditional formulas).  With more complex formulas, however, we 
may need to apply the valuation rules successively, a step at a time, to calculate truth values for 
whole formulas.   

 Consider the sequent '(P & Q)  (P & Q)  ├  P  Q'.  (To illustrate, we might interpret 'P' 
as the statement 'The princess dines' and 'Q' as the statment 'The queen dines'.  This makes the 
argument:  either the princess and queen both dine or neither dines; therefore the princess does not 
dine if and only if the queen does not dine.)  We begin the table for this sequent as before by listing 
the four possible valuations of the two sentence letters 'P' and 'Q' in the two leftmost columns.  Now 
we use the valuation rules to calculate truth values, starting with the sentence letters and working our 
way up to more and more complex formulas.  The first step is to copy the 'P' column at the left of the 
table under each occurrence of the sentence letter 'P' in the formulas and the 'Q' column under each 

occurrence of 'Q'.  Where 'P' or 'Q' are directly preceded by '', however, we know that their truth 
values will be reversed, so in these cases we reverse each truth value in the column we copy.  The 
table now lists the truth values for all sentence letters or negated sentence letters in the formulas: 
 

 P Q (P & Q)  (P & Q)  ├ P  Q   

 T T T  T  F  F   F  F   
 T F T  F  F  T   F  T   
 F T F  T  T  F   T  F   
 F F F  F  T  T   T  T   

 
Notice that we have written the columns for negated sentence letters under the negation signs.  In 
general, whenever we are listing the truth values for a complex formula, we write them under the 
operator whose scope is that formula. 
 The next step is to use the valuation rules to calculate the truth values for the formulas 
directly joining those whose truth value we have already identified.  In the case of the premise, these 

are the two conjunctions 'P & Q' and 'P & Q'.  Remembering that a conjunction is true iff both 
conjuncts are true, we place a 'T' beneath '&' on lines where the sentence letters it joins are both true, 

and an 'F' in all other cases.  In the case of the conclusion, the operator joining the 'P' and 'Q' is the 
biconditional, and its scope is the entire conclusion.  This biconditional is true on those lines in which 

'P' and 'Q' have the same truth value and false where they differ in truth value.  We write these 

values beneath the symbol ''.  The truth table now looks like this: 
 



 

 

 P Q (P & Q)  (P & Q)  ├ P  Q   

 T T T T T  F F F   F T F   
 T F T F F  F F T   F F T   
 F T F F T  T F F   T F F   
 F F F F F  T T T   T T T   

 
One step in our calculation remains.  The premise is a disjunction of the two conjunctions whose truth 
values we have just determined.  A disjunction is true if and only if one or both of its disjuncts are 
true; otherwise it is false.  Using this rule, we write the appropriate truth values beneath the symbol 

'': 
 
 P Q (P & Q)  (P & Q)  ├ P  Q   

 T T T T T T F F F   F T F   
 T F T F F F F F T   F F T   
 F T F F T F T F F   T F F   
 F F F F F T T T T   T T T   

 
We also circle the column under the main operator of each formula.  Only the circled values, the ones 
listing the truth values for whole formulas, matter.  The other columns of truth values on the table are 
merely part of the calculation by which they were obtained. 
 As before we read the table by scanning down the columns of truth values for whole formulas 
(the circled columns), looking for a valuation on which the premise but not the conclusion is true.  
There isn't any.  That is, there is no counterexample.  So the sequent is valid. 
 When a sequent contains two sentence letters, there are four valuations of that sequent and 
hence four lines on the truth table.  But not all argument forms contain two sentence letters.  Some 
contain only one, some three or more.  Where the number of sentence letters in a sequent is n, the 

number of valuations of the sequent, and the number of lines on its truth table is 2n.  Thus a sequent 

containing only one sentence letter has 21 = 2 valuations, a sequent containing three has 23 = 8 

valuations, a sequent containing four has 24 = 16 valuations, and so on. 
 It is useful to list the valuations in a standard order.  Our convention is as follows:  list all the 
sentence letters of the sequent horizontally in the top left corner of the table in alphabetical order.  
(Where the letters have subscripts the order remains alphabetical, but letters with lower subscripts 
are written before those with higher subscripts, and letters with no subscripts come first of all.) 
 Then list the valuations under these letters as follows.  Beneath the rightmost letter, write a 

column of alternating 'T's and 'F's, beginning with 'T', continuing downward until you have written 2n 
'T's and 'F's, where n is the total number of sentence letters.  Then under the next rightmost letter, 
write another column of 'T's and 'F's, beginning with 'T', but doubling the number alternated.  In other 

words, we write two 'T's, two 'F's, and so on, downward until again you have written 2n 'T's and 'F's.  
Now moving to the next rightmost letter (if one remains) and beginning, as always, with 'T' (because, 
after all, truth deserves priority over falsehood), write another column of 2n T's and F's, doubling the 
alternation again (four 'T's, four 'F's, and so on).  Keep moving to the left doubling the number of the 
alteration between T's and F's until each letter has a column of 'T's and 'F's beneath it.  For the three 
letters 'P', 'Q' and 'R', for example, the listing of valuations looks like this: 
 

P Q R          

T T T          
T T F          
T F T          
T F F          
F T T          
F T F          
F F T          
F F F          

 
 Argument forms containing many sentence letters are tested for validity in just the same way 



 

 

as argument forms containing only one or two.  Consider, for example, the sequent '(P & Q)  R  ├ 

(P  R) & (Q  R)'.  Once again, we simply recopy the columns for the sentence letters from the 
columns to the left, then calculate the values for formulas of successively larger scope by using the 
valuation rules, and finally circle the columns under the main operators.  Here is the result: 
 
 P Q R (P & Q)  R ├ (P  R) & (Q  R) 

 T T T T T T T T  T T T T T T T 
 T T F T T T F F  T F F F T F F 
 T F T T F F T T  T T T T F T T 
 T F F T F F T F  T F F F F T F 
 F T T F F T T T  F T T T T T T 
 F T F F F T T F  F T F F T F F 
 F F T F F F T T  F T T T F T T 
 F F F F F F T F  F T F T F T F 

 
The table shows that two valutions are counterexamples to this sequent:  the valuation on which 'P' is 
true and 'Q' and 'R' are false, and the valuation on which 'P' is false, 'Q' true and 'R' false.  Thus the 
sequent is invalid. 
 The significance of these counterexamples can be made clearer by considering a specific 
interpretation.  Let 'P' stand for 'The match is lighted', 'Q' for 'You drop the match into a can of 
gasoline', and 'R' for 'An explosion occurs'.  Then the first counterexample represents a situation in 
which the match is lighted but you don't drop it into a can of gasoline so that no explosion occurs, and 
the second counterexample represents a situation in which the match is not lighted and you do drop it 
into a can of gasoline but once again no explosion occurs. 

 Let's now consider the truth table for the sequent 'Q  ├  P  P'.  Like some of the examples 
discussed in Section 1.3,  this sequent lacks relevance; yet it is clearly valid, as its truth table shows: 
 

 P Q Q ├ P  P  

 T T T  T T T  
 T F F  T T T  
 F T T  F T F  
 F F F  F T F  

 
The sequent is valid because there is no valuation on which the premise is true but the conclusion is 
not.  This, however, is due to a peculiarity of the conclusion:  it is true on all valuations; it cannot in 
any way be false.  In Section 1.3 we noted that a logical truth, that is, a statement  true in all possible 

situations, validly follows from any set of premises.  'P  P' is, of course, a symbolic formula, not a 
statement.  But if we supply it with an interpretation by assigning to 'P' some specific statement (any 

statement will do), then 'P  P' expresses a logical truth.  In a sense, then, 'P  P' itself, though a 
formula and not a statement, is logically true.  A formula which is logically true in this sense is said to 
be valid: 
 
DEFINITION:  A valid formula is a formula true on all its valuations.   
 
Up until now we have applied the term 'valid' exclusively to arguments or argument forms, not to 
formulas.  Since it is important not to confuse the formulas with argument forms, perhaps we ought to 
and use some other term here to avoid confusion.  Yet there is a substantial justification for applying 
the term 'valid' to both.  For a valid formula is in effect a valid sequent with no premises.  That is, we 
may think of a valid formula as a formula which may legitimately function as a conclusion without any 
premises at all.  Since there is no valuation on which this "conclusion" is not true, there is no valuation 
on which the (nonexistent) premises are true and the "conclusion" is not true, and hence no 
counterexample.  A valid formula may thus be regarded as a limiting case of a valid sequent. 
 Actually, in propositional logic we do have a term that substitutes nicely for 'valid formula'.  
The term is 'tautology': 
 



 

 

DEFINITION:  A tautology is a formula whose truth table displays a column consisting entirely of 'T's 
under its main operator. 
 
In elementary propositional logic, a tautology (or tautologous formula) and a valid formula are the 
same thing.  But valuations in more advanced forms of logic are not always expressible by truth 
tables.  Thus in later chapters we shall encounter valid formulas that are not tautologies.  'Valid 
formula' is the more general and widely applicable of the two terms. 
 Truth tables make it graphically clear why a tautology validly follows from any set of 
premises.  Such an inference is valid because it has no counterexample.  It can't have a 
counterexample (that is, a valuation on which the premises are true but the conclusion is not) 
because a tautologous (valid) conclusion is true on all valuations. 
 In Section 1.3, we also noted that any argument with an inconsistent set of premises is valid.  
The corresponding notions of inconsistency for a formula or set of formulas are as follows: 
 
DEFINITION:  A formula is inconsistent iff there is no valuation on which it is true. 
 
DEFINITION:  A set of formulas is inconsistent iff there is no valuation on which all the formulas in 
the set are true. 
 
Inconsistent formulas may also be called self-contradictory formulas or contradictions.  With 
regard to truth tables, a formula is inconsistent if and only if the column under its main operator 
contains only 'F's, and a set of formulas is inconsistent if and only if there is no horizontal line on 
which all show a 'T' beneath their main operators. 
 In Section 1.3 we observed that any conclusion follows from an inconsistent set of premises.  
The medievals called this principle ex falso quodlibet—from a falsehood, anything you please.  
(Actually, this is misleading; the phrase better fits the relation between the antecedent and 
consequent of the material conditional; a false antecedent materially implies whatever you please.  
But a merely false premise or premise set does not validly imply all conclusions.  From the premise 
'The Earth is flat', for example, we cannot validly deduce whatever we please.  We can, however, 
from an inconsistent premise or premise set.)  Ex falso quodlibet may be plainly depicted on a truth 

table.  The premises of the sequent 'P, P  ├ Q', for example, constitute an inconsistent set: 
 

 P Q P, P ├ Q   

 T T T F  T   
 T F T F  F   
 F T F T  T   
 F F F T  F   

 
By scanning down the table, we see that there is no horizontal line (valuation) on which both 
premises are true, so that the set consisting of the two premises is inconsistent.  Obviously, then, 
there is no valuation on which both premises are true while the conclusion is not true.  So the sequent 
is valid.   
 Corresponding to the two notions of inconsistency defined above are the following two 
notions of consistency: 
 
DEFINITION:  A formula is consistent iff it is true on at least one valuation. 
 
DEFINITION:  A set of formulas is consistent iff there is at least one valuation on which all the 
formulas in the set are true. 
 
The truth table of a consistent formula has at least one 'T' in the column beneath its main operator.  
The truth table of a consistent set of formulas contains at least one horizontal line on which there is a 
'T' beneath the main operator of every formula of the set.  Some authors use the term 'satisfiable' 
instead of 'consistent'.   
 Formulas which are consistent but not valid are said to be contingent:   



 

 

 
DEFINITION:  A formula is contingent iff it is true on some of its valuations and not true on others. 
 
 All formulas fall into one of the three categories:  valid, contingent, or inconsistent.  These are 
summarized in the following table: 
 
Type of formula Definition   Truth Table Indication 
Valid   True on all valuations    Column under main operator  
(Tautologous)      contains only 'T's 
 
Contingent   True on at least one but   Column under main operator  
   not all valuations   contains both 'T's and 'F's 
 
Inconsistent  True on no valuations  Column under main operator  
       contains only 'F's 
 
A consistent formula, of course, is just one that is not inconsistent.  It is therefore either valid or 
contingent.  We could also, therefore, have divided all formulas into the two classifications, 
"consistent" and "inconsistent," instead of into the three categories described above.  For sets of 
formulas this twofold classification is generally the most useful: 
 
Type of set  Definition   Truth Table Indication 
Consistent  There is at least one  Horizontal line on which all  
   valuation on which all  formulas in the set have 'T's  
   formulas in the set   under their main operators 
   are true 
 
Inconsistent  There is no valuation   There is no horizontal line on 
   on which all formulas   which all formulas in the set  
   in the set are true  have 'T's under their main  
       operators 
 
 Truth tables are useful for detecting one other semantic relationship that is of great 
importance—logical equivalence: 
 
DEFINITION:  Two formulas are logically equivalent iff they have the same truth value on every 
valuation of both. 
 
With respect to truth tables, two formulas are logically equivalent if and only if the columns under their 

main connectives are identical.  Consider, for example, the formulas '(P  Q)' and 'P & Q', which 
as we saw in Section 2.2 are both ways of symbolizing 'neither P nor Q'.  They are logically 
equivalent, as we can see by placing them both on the same truth table: 
 

 P Q  (P  Q)  P & Q 

 T T F T T T  F F F 
 T F F T T F  F F T 
 F T F F T T  T F F 
 F F T F F F  T T T 

 
The truth table reveals their equivalence in that the columns under their main operators (the circled 
columns) are identical. 
 Logical equivalence is significant for several reasons.  For one thing, logically equivalent 
formulas validly imply one another.  That is, an inference from either as premise to the other as 
conclusion is valid.  There can be no counterexample because since the two formulas have the same 



 

 

truth values on all valuations, there is no valuation on which the premise but not the conclusion of 
such an inference is true.   
 Furthermore, since in classical logic meaning is truth conditions and since logically equivalent 
formulas have identical truth conditions, it follows that logically equivalent formulas have, for the 

purposes of classical logic, the same meaning.  Thus '(P  Q)' and 'P & Q' are equally adequate 
symbolizations for 'neither P nor Q' because from the viewpoint of classical logic they are synoymous.  
'Neither ... nor', in other words, is not ambiguous.  Rather, these formulas are two ways of expressing 
the single meaning that 'neither ... nor' has in English.  The logical meaning of 'neither ... nor' is, in 
other words, simply the pattern of truth values which the table for each of these formulas displays. 

 The material conditional formula 'P  Q' is equivalent to both 'P  Q' and '(P & Q)', as the 
following table shows: 
 
 P Q P  Q P  Q   (P & Q)   

 T T  T  F T T  T T F F   
 T F  F  F F F  F T T T   
 F T  T  T T T  T F F F   
 F F  T  T T F  T F F T   

 

This means that so far as logic is concerned 'P  Q', 'P  Q', and '(P & Q)' all have the same 

meaning.  Thus whenever we symbolize a statement as 'P  Q', we could as well symbolize it as 'P 

 Q' or as '(P & Q)'.  This means that the material conditional is a needless redundancy.  We could 

exclude it from the language of propositional logic and still be able (using '&' or '', and ') to say 
everything we could say before.  This is true even for very complex formulas.  If, for example, we 

consistently replace formulas of the form    with formulas of the form   , then instead of 
writing: 

  P  (Q  R) 
we would write: 

  P  (Q  R) 

 Likewise, we could eliminate '' by taking formulas of the form    as abbreviations for 

more complex but equivalent formulas, say those of the form ()  ( & ) (see problem 1 of 

Exercise 3.2.4).  This would leave us with only three connectives:  '', '&', and ''. 

 We could reduce our vocabulary still further, either by rewriting  &  as   ) or by 

rewriting    as  & ) (see problems 2 and 3 of Exercise 3.2.4), thus eliminating either '&' or 

''.  Only two of the five connectives, then, are really needed —either '' and '&' or '' and ''.  And 
either of these pairs can be further reduced to a single connective, though not to one of the familiar 
five.  This final reduction requires either the connective 'neither ... nor', which is usually written as a 

downward pointing arrow, but which we, lacking that symbol in our typeface, will write as ''; or the 
connective 'not both ... and', sometimes called 'nand', and written simply as '|'.  (Neither symbol 
belongs to the language of propositional logic as we defined it in Section 2.3; thus to do this reduction 
we would have to adopt a new set of formation rules.)  The truth tables for these connectives are as 
follows: 
            |  

 T T      F  T T     F 
 T F      F  T F     T 
 F T      F  F T     T 
 F F      T  F F     T 
 

Here we consider the reduction of '&' and '' to '|', leaving the reduction to '' as an exercise.  This 

reduction depends on the equivalence of  to |, and the equivalence of  &  to (|), i.e., 

(|)|(|), which the following truth tables illustrate: 



 

 

 
    | 

 T F     F 
 F T     T 
 
    &  ( | ) | ( | ) 

 T T      T      F T      F 
 T F      F      T F      T 
 F T      F      T F      T 
 F F      F      T F      T 

 
(In each case we represent two separate formulas on the same table to show their equivalence.)  
Thus we can see that any formula has an equivalent whose sole connective is '|'.  We can express 

the conditional 'P  Q', for example, first in terms of '' and '&': 

  (P & Q) 
Then the negation sign prefixing 'Q' may be eliminated in terms of '|': 

  (P & (QQ)). 

(The order in which we eliminate particular occurrences of '' and '&' is arbitrary.)  Next we eliminate 
the '&' in terms of '|': 

  ((P | (QQ)) | (P | (QQ))). 
And finally, we eliminate the initial negation: 

  ((P | (QQ)) | (P | (QQ))) | ((P | (QQ)) | (P | (QQ))). 
The material conditional!  In principle, we could by such means express every formula of propositional 
logic solely in terms of the operator '|'.  The unreadability of the result explains why in practice we 
don't.  Thus we will stick with the traditional five operators, chiefly because, though redundant, they 
give us a reasonably comprehensible language. 
 Yet here we have learned something remarkable:  we can say much with paltry means if we 
are willing to tolerate long formulas.  Humans generally are not; but, as we shall see in Chapter 10, 
computers have a different opinion. 
 
EXERCISE 3.2.1:  Use truth tables to test the following argument forms for validity.  Write either 'valid' 
or 'invalid' beside the table to indicate the answer. 

1 P  Q, P  ├  Q 

2 P  Q, P  ├  Q 

3 P  Q  ├  Q  P 

4 P  Q  ├ Q  P 

5 P  Q,  P  ├  Q 

6 P  Q,  Q  ├  P 

7 P  ├  Q  P 

8 Q  ├  Q  P 

9 P  ├  P  Q 

10 (P  Q)  ├  P & Q 

11 P  Q  ├  P  Q 

12 P & Q  ├  P  Q 
13 P & Q  ├  Q & P 

14 P  Q,  P  R,  Q  R  ├  R 

15 P  Q,  Q  R  ├  P  R 

16 P  Q,  Q  P  ├  P  Q 

17 P  ├  (P & P) 

18 (P & Q)  ├  P & Q 

19 ~(P  P)  ├ Q 

20 P  ├  (P  Q)  (P & Q) 
 



 

 

EXERCISE 3.2.2:  Use truth tables to determine whether the following formulas are valid, contingent, 
or inconsistent.  Write your answer beside the table. 

1 P  P 

2 P  P 

3 P  P 

4 P  P 

5 (P  Q)  (P & Q) 

6 P & P 

7 P  P 

8 (P & (P  Q))  Q 

9 (P  Q)  (Q  P) 

10 (P  Q)  (P  Q) 
 
EXERCISE 3.2.3:  Use truth tables to determine whether the following sets of formulas are consistent 
or inconsistent.  Write your answer beside the table. 

1 P  Q,  Q  P 

2 P  Q,  Q  P 

3 P  Q,  P,  Q 

4 P & Q,  P 

5 (P & Q),  P  Q 
 
EXERCISE 3.2.4 

1 Use a truth table to verify that 'P  Q' is logically equivalent both to  

 '(P  Q) & (Q  P)' and to '(P & Q)  (P & Q)'. 

2 Use a truth table to verify that 'P & Q' is logically equivalent to '(P  Q)'. 

3 Use a truth table to verify that 'P  Q' is logically equivalent to '(P & Q)'. 

4 Use a truth table to verify that 'Q  P' and 'Q  P', which are both ways  
 of symbolizing 'P unless Q', are equivalent. 

5 Find equivalents for the forms  and  &  in terms of '', and show that  
 they are logical equivalents by constructing the appropriate truth tables. 

6 Find a logical equivalent for    in terms of '|' and demonstrate the  

 equivalence with a truth table.  Do the same thing in terms of ''. 
 

3.3  SEMANTIC TREES 

 A semantic tree is a device for displaying all the valuations on which the formula or set of 
formulas is true.  Since classical logic is bivalent, the valuations on which the formula or set of 
formulas is false are then simply those not displayed.  Thus trees do the same job as truth tables.  
But they do it more efficiently; especially for long problems, a tree generally requires less computation 
and writing than the corresponding truth table.  A truth table for a formula or sequent containing n 

sentence letters has 2n lines.  For n=10, for example, 2n = 1024—a good many more lines than we 
are likely to want to write.  But a tree for a formula or sequent with ten sentence letters (or even more) 
may fit easily within a page.  Moreover, as we shall see in Section 7.4, trees have the advantage of 
being straightforwardly generalizable to predicate logic, which truth tables are not. 

 Suppose, for instance, that we want a list of the valuations on which the formula 'P & (Q  
R)' is true.  To obtain this by the tree method, we write the formula and then begin to break it down 

into those smaller formulas which, according to the valuation rules, must be true in order to make 'P 

& (Q  R)' true.  Now 'P & (Q  R)' is a conjunction, and a conjunction is true iff both its conjuncts 

are true.  So we write 'P & (Q  R)', then check it off (to indicate that it has been analyzed), and write 
its two conjuncts beneath it, like this: 
 

             P & (Q  R)   

    P    

    Q  R    
 



 

 

A formula which has been checked off is in effect eliminated.  We need pay no further attention to it.  

What remains, then, are the two formulas 'P' and 'Q  R'.  'P' is true on just those valuations on 

which 'P' is false.  But we still need to analyze 'P  Q'. 
 Now, whereas a conjunction can be true in only one way (both conjuncts are true) there are 
two ways in which a disjunction can be true:  either the first disjunct is true or the second disjunct is 
true (or both—but this possibility is in effect already included in the other two, as will be explained 

shortly.)  Hence to analyze 'Q  R', we check it and split our list up into two branches, the first 
representing valuations in which 'Q' is true, the second representing valutions on which 'R' is true, as 
follows: 
 

             P & (Q  R) 

    P 

             Q  R 

   
        Q       R 
 
It is because lists may "branch" in this way that the structures we create by this procedure are called 
semantic trees.  (But these trees grow downward!)  When all formulas other than sentence letters or 
negated sentence letters have been checked off, as they have here, the tree is finished.  This tree 

contains two "branches" or paths, one running from 'P & (Q  R)' to 'Q', the other from 'P & (Q  
R)' to 'R'. 
 
DEFINITION:  A path through a tree (in any stage of construction) is a complete column of formulas 
from the top to the bottom of the tree.  
 
 Now we scan along each path, looking for sentence letters or negated sentence letters.  

Along the first path we find 'P' and 'Q'.  This shows that 'P & (Q  R)' is true on those valuations 

which make both 'P' and 'Q' true, that is, those valuations which make 'P' false and 'Q' true.  But 'R' 
does not appear either by itself or negated along the first path.  This indicates that if 'P' is false and 

'Q' true, 'P & (Q  R)' is true, regardless of whether 'R' is true or false.  The first path, then, 
represents these two valuations: 
 
   P Q R 
   F T T 
   F T F 
 

Checking the second path for sentence letters or negated sentence letters, we find 'P' and 'R'.  This 

means that 'P & (Q  R)' is also true on valuations in which 'P' is false and 'R' is true, regardless of 
the truth value of 'Q', which does not appear, either alone or negated, along that path.  Hence the 
second path represents these valuations: 
 
   P Q R 
   F T T 
   F F T 
 
Notice that there is some redundancy here.  Both paths represent the valuation on which 'P' is false 
and both 'Q' and 'R' are true.  This is what I meant when I said a few paragraphs back that the 
possibility of both disjucts being true is in effect already included in the possibilities of either disjunct 
being true.  Thus together the two paths represent three valuations, not four: 
 
   P Q R 
   F T T 



 

 

   F T F 
   F F T 
 

These are precisely the lines of the truth table on which 'P & (Q  R)' is true; they represent all the 
valuations which make this formula true.  In this way the tree procedure accomplishes exactly what 
truth tables do. 
 Sometimes as we are constructing a tree, we find that a formula and its negation both appear 
on the same path.  Since no valuation can make both a formula and its negation true, this means that 
the path does not represent any valuation.  It is merely a failed attempt to find valuations that make 
the formulas of the initial list true.  Such a path is considered "blocked" or "closed," and this is 
indicated by writing an 'X' beneath it.   

 Consider, for example, the tree for the formula '(P & Q) & P'.   Since this formula is a 
conjunction, after writing it we check it and analyze it into its two conjuncts, like this: 
 

            (P & Q) & P 

   (P & Q) 
   P 
 

Now '(P & Q)' is true iff 'P & Q' is false.  By valuation rule 2, 'P & Q' is false iff either 'P' or 'Q' or both 

are untrue, i.e. (by valuation rule 1) iff either 'P' or 'Q' or both are true.  Thus we may check '(P & 

Q)' and split our list up into two branches, the first representing valuations in which 'P' is true, the 

second representing valutions on which 'Q' is true: 
 

    (P & Q) & P 

    (P & Q) 
    P 

   
     P           Q 
     X 
 
We have placed an 'X' at the bottom of the left branch, because the path it represents—the path 

extending from '(P & Q) & P' to 'P'—contains both 'P' and 'P' and must be closed.  This path 
represents no valuations.  The path that follows the right branch, however, does not close.  On it we 

find 'P' and 'Q'.  Since these are the only letters in our initial formula '(P & Q) & P', that formula is 
true on only one valuation, namely the valuation on which 'P' is true and 'Q' is false. 
 Sometimes all paths close.  This indicates that the initial formula or set of formulas is not true 

on any valuations, i.e., is inconsistent.  Consider, for example, the formulas 'P  Q', 'P', and 'Q', 
which together form an inconsistent set.  We may set them down in a vertical list and apply the same 
procedure as above: 
 

             P  Q 

    P 

    Q 

   
     P    Q 
     X     X 
 

When we check 'P  Q' and analyze it into its two truth-possibilities, 'P' and 'Q', we see that each of 

the resulting paths contains both a formula and its negation:  'P' and 'P' on the path that branches to 

the left, 'Q' and 'Q' on the path that branches to the right.  So we place an 'X' at the bottom of each 



 

 

path to indicate that it is closed.  With both paths closed, there is nothing more to be done.  The tree 

is complete, and it shows that there are no valuations on which the formulas of our initial list ('P  Q', 

'P', and 'Q) are all true. 
 In summary, then, to construct a semantic tree list the formula or set of formulas to be tested 
in a single column.  Then check off a complex formula on the list,  writing at the bottom of the list 
simpler formulas that would have to be true if this complex formula were true.  If the complex formula 
can be true in more than one way, split the list and display formulas repesenting each of these ways 
on a separate "branch."  Then repeat this procedure for other complex formulas in the list.  Eventually 
along each path of the tree one of two things will occur.  Either (1) all the formulas along that path of 
the tree will be simplified into sentence letters or negations of sentence letters, or (2) some formula 
and its negation will both appear.  In the first case, the path displays one or more valuations on which 
the initial formula or set of formulas is true—namely those valuations on which isolated sentence 
letters along that path are assigned the letter T, negated sentence letters along that path are 
assigned the value F, and sentence letters not appearing either negated or unnegated along the path 
are assigned either T or F.  In the second case, the path is a dead end and represents only a failed 
attempt to construct a valuation.  We close it with an 'X'.   
 The following terminlogy will be helpful: 
 
DEFINITION:  A path is finished if it is closed or if the only unchecked formulas it contains are 
sentence letters or negations of sentence letters, so that no more rules apply to its formulas.  A tree is 
finished if all its paths are finished.   
 
DEFINITION:  An open path is a path that has not been ended with an 'X'.   
 
DEFINITION:  A closed path is a path that has been ended with an 'X'.   
 
DEFINITION:  a formula occurs on a path if it is on that path as a complete formula and it is 
unchecked. 
 
 In order to apply the tree procedure formally, we need to specify exact rules by which 
complex formulas are to be analyzed into simpler components.  There is nothing very surprising here.  
The tree rules simply mimic the valuation rules.  This is why trees are called semantic trees. They are 
simply a perspicuous way of displaying the semantics for any formula or (finite) set of formulas. 
 There are ten tree rules, two for each of the valuation rules (that is, one for the truth clause 
and one for the falsity clause of each rule).  Each tree rule is listed, along with the clause of the 
valuation rule to which it corresponds, in the following table:  
 

VALUATION RULE CORRESPONDING TREE RULE 

1   V() = T iff V () =/  T 

 

Negation ():  If an open path contains both a 
formula and its negation, place an 'X' at the 
bottom of the path. 

V() = F iff V() = T 

 

Negated Negation ():  If an open path 

contains an unchecked formula of the form , 

check it and write  at the bottom of every open 
path that contains this newly checked formula. 

2  V( & ) = T iff both V() = T and V ) = T 

 

Conjunction (&):  If an open path contains an 

unchecked formula of the form ( & ), check it 

and list  and  at the bottom of every open 
path that contains this newly checked formula. 

    V( & ) = F iff either V() =/  T or V ) =/  T, 

or both 
 

Negated Conjunction (&):  If an open path 
contains an unchecked formula of the form  

( & ), check it and split the bottom of each 
open path containing this newly checked 
formula into two branches; at the end of the first 

write  and at the end of the second write . 



 

 

3  V(  ) = T iff either V() = T or V ) = T, 

or both 
 

Disjunction ()— If an open path contains an 
unchecked formula of the form  

(  ) check it and split the bottom of each 
open path containing this newly checked 
formula into two branches; at the end of the first 

write  and at the end of the second write . 

    V(  ) = F iff both V() =/  T and V ) =/  T 

 
 

Negated Disjunction ():  If an open path 
contains an unchecked formula of the form  

(  ), check it and list both  and  at 
the bottom of every open path that contains this 
newly checked formula. 

4  V(  ) = T iff either V() =/  T or V ) = T, 

or both  
 

Conditional ():  If an open path contains an 

unchecked formula of the form (  ), check 
it and split the bottom of each open path 
containing this newly checked formula into two 

branches; at the end of the first write  and at 

the end of the second write . 

    V(  ) = F iff both V() = T and V ) =/  T 

 

Negated Conditional ():  If an open path 
contains an unchecked formula of the form  

(  ), check it and list both  and  at the 
bottom of every open path that contains this 
newly checked formula. 

5  V(  ) = T iff either V() = T and V ) = 

T, or V() =/  T and V() =/  T  

 

Biconditional ():  If an open path contains an 

unchecked formula of the form (  ), check 
it and split the bottom of each open path 
containing this newly checked formula into two 

branches; at the end of the first list both  and 

, and at the end of the second list both  and 

. 

   V(  ) = F iff either V() = T and V() =/ T, 

or V() =/  T and V ) = T 

Negated Biconditional ():  If an open path 
contains an unchecked formula of the form  

(  ), check it and split the bottom of each 
open path containing this newly checked 
formula into two branches; at the end of the first 

list both  and , and at the end of the second 

list both  and . 

 
The trees we have done so far have exemplified the negation, conjunction, negated conjunction, and 
disjunction rules. 

 The conjunction rule, for example, was the one we used to analyze '(P & Q) & P' into its 
components: 
 

   1          (P & Q) & P   given 

   2 (P & Q)   1 & 
   3        P    1 & 
 

Here we have repeated the first step of the tree for '(P & Q) & P', annotating it by numbering and 
labelling the lines—a procedure which, having named the rules, we will follow from now on.  Line 1 is 
marked 'given' to indicate that it is the given formula.  Lines 2 and 3 are marked '1 &' to show that 
they are obtained from line 1 by the conjunction rule. 
   In the second step of this tree we used the negated conjunction rule to show that there are 

two ways in which 'Q  R' can be true—namely if 'Q' is true or if 'R' is true. 
 

   1          (P & Q) & P   given 



 

 

   2 (P & Q)   1 & 
   3       P    1 & 

   
   4    P         Q   2 & 
 
Finally, we complete the tree by closing the left branch with the negation rule.  From now on we will 
annotate the 'X' by writing the line numbers on which we found the formula and its negation, which 
closed the path—in this case lines 3 and 4: 
 

   1 (P & Q) & P   given 

   2 (P & Q)   1 & 
   3       P    1 & 

   
   4    P             Q   2 & 
   5    X  3,4 
 

As noted above, this tree shows that '(P & Q) & P' is true on only one valuation, namely the 
valuation on which 'P' is true and 'Q' is false. 
 Because a tree for a formula, set of formulas, or sequent displays all the information 
contained in a truth table for that formula, set of formulas, or sequent, any test that can be performed 
by a truth table can also be performed by a tree.  To test a sequent for validity, for example, we must 
determine whether there is a valuation which makes its premises but not its conclusion true.  This 
would, of course, be a valuation on which both the sequent's premises and the negation of its 
conclusion are true.  We may construct a tree to search for just such valuations by starting with the 
argument's premises and the negation of its conclusion. 

 Let's test the sequent 'P  (Q & (R  S))  ├  P  Q'.  Since it contains four sentence letters, 

the truth table would take 24 = 16 lines—a laborious task.  The tree method is much more efficient.  
We list the premise and the negation of the conclusion, labelling them as such to the right, and then 
analyze them by mechanically applying the tree rules.  Here is the result: 
 
 

  1           P  (Q & (R  S))  Premise 

  2           (P  Q)   Negation of conclusion 

  3  P    3  

  4  Q    3  

   
  5 P           Q & (R  S)  1  
  6 X  3,5  Q   5 & 

  7   R  S   5 & 
  8   X  4,6 
 
Both paths close, so there is no valuation which makes the premises but not the conclusion true.  
Hence the sequent is valid. 

 Notice that we closed the right branch without analyzing 'R  S'.  This is permissible.  Any 

path may be closed as soon as a formula and its negation both appear on it.  Analysing 'R  S' would 

have split this path into two new paths, but each of these would still have contained both 'Q' and 'Q' 
and hence each would still have closed.  Closing a path as soon as possible saves work. 
 It also saves work to apply nonbranching rules first.  When I began the tree, I had the choice 



 

 

of analyzing either 'P  (Q & (R  S))' or '(P  Q)' first.  I chose the latter, because it is a negated 

conditional, and the negated conditional rule does not branch.  If I had analyzed 'P  (Q & (R  S))', 
which is a conditional, first, then I would have had to use the conditional rule, which does branch.  

Then when I analyzed '(P  Q)', I would have had to write the results twice, once at the bottom of 
each of the open paths.  This is not wrong, but it requires a bit more writing, as can be seen by 
comparing the resulting tree with the tree above: 
 
 

  1           P  (Q & (R  S))  Premise 

  2           (P  Q)   Negation of conclusion 

   
  3 P           Q & (R  S)  1  

  4 P  P   2  

  5 Q  Q   2  
  6 X 3,4  Q   3 & 

  7   R  S   3 & 
  8   X 5,6 
 
Yet this tree, though more complicated, gives the same answer as the first.  There is, then, some 
flexibility in the order of application of the rules.  But in general it is best where possible to apply 
nonbranching rules before the branching ones. 

 Let's next test the sequent '(P  Q)  ├  (P  R)' for validity.  Once again we list the 
premises and the negation of the conclusion, so that the tree searches for counterexamples.  In this 
case the conclusion is a negation, so its negation is a double negative.  Here is the tree: 
 

 1             (P  Q)   Premise 

 2             (P  R)   Negation of conclusion 

 3             (P  R)   2  

 
 4  P    P  1  

 5  Q    Q  1 

 
 6 P  P  P  P 3  

 7 R  R  R  R 3  
 8   X 4,6  X 4,6 
 
The leftmost and rightmost branches remain open.  The leftmost branch reveals that the premise 

'(P  Q)' is true and the conclusion '(P  R)' false (because its negation is true) on the valuation on 
which 'P', 'Q', and 'R' are all true.  This valuation, in other words, is a counterexample to the sequent.  
The rightmost branch reveals that the valuation on which 'P', 'Q', and 'R' are all false is also a 
counterexample.  Thus the sequent is invalid. 
 If we begin a tree, not with premises and a negated conclusion, but with a single formula or 
set of formulas, as we did in the first examples of this section, the tree tests this formula or set of 
formulas for consistency.  If all paths close, there is no valuation on which the formula or set of 
formulas is true, and so that formula or set is inconsistent.  If one or more paths remain open after the 
tree is finished, these represent valuations on which the formula or all members of the set are true, 
and so the formula or set is consistent. 
 Trees may also be used to test formulas for validity.  The easiest way to do this is to search 



 

 

for valutions on which the formula is not true.  If no such valuations exist, then the formula is valid.  
Thus we begin the tree with the formula's negation.  If all paths close, there are no valuations on 
which its negation is untrue, so that the original formula is true on all valuations.  Consider, for 

example, the formula '(P  Q)  (P & Q)'.  When we negate it and do a tree, all paths close: 
 

 1            ((P  Q)  (P & Q))  Negation of formula 

 
 2           (P  Q)            (P  Q) 1  

 3           (P & Q)            (P & Q) 1  

 4           P & Q             3  

 5  P            4 &  P  2  

 6  Q            4 &  Q  2 

 
 7 P  Q    2  P  Q 3 & 
 8 X      5,7 X    6,7  X       5,7 X 6,7 
 

Therefore, since there is no valuation on which '((P  Q)  (P & Q))' is true, '(P  Q)  (P & 

Q)' is true on all valuations, i.e., valid. 

 Notice that I closed the rightmost path before 'Q' was fully analyzed.  This is a legitimate 
use of the negation rule.  If the path had not closed, however, the tree would not be finished until the 

negated negation rule was applied to 'Q'. 
 Here is a list of some of the ways in which trees may be used to test for various semantic 
properties: 
 
To determine whether a sequent is valid, construct a tree starting with its premises and the 
negation of its conclusion.  If all paths close, the sequent is valid.  If not, it is invalid and the open 
paths display the counterexamples. 
 
To determine whether a formula or set of formulas is consistent, construct a tree starting with 
that formula (or set of formulas).  If all paths close, that formula (or set of formulas) is inconsistent.  If 
not, it is consistent, and the open paths display the valuations that make the formula (or all members 
of the set) true. 
 
To determine whether a formula is valid, construct a tree starting with its negation.  If all paths 
close, the formula is valid.  If not, then the formula is not valid, and the open paths display the 
valuations on which it is false. 
 
To determine whether a formula is contingent, construct two trees, one to test it for consistency 
and one to test it for validity.  If it is consistent but not valid, then it is contingent. 
 
 Constructing trees is just a matter of following the rules, but there are a few common errors to 
avoid.  Keep in mind that: 
 
The rules for constructing trees apply only to whole formulas, not to their parts.  Thus, for example, 

the use of  shown below is impermissible: 
 

  1            P  Q given 

  2            P  Q  1  (WRONG!!!) 
 



 

 

Although using  on subformulas does not produce wrong answers, it is never necessary and 
technically is a violation of the double negation rule.  Trying to apply other rules to parts of formulas, 
however, often does produce wrong answers. 
 
A rule applied to a formula cannot affect paths not containing that formula.  Consider, for example, 
the following incomplete tree: 
 

  1           P  (Q  R)  given 

 
  2 P    Q  R    1  
 

Here the formula 'Q  R' at the end of the right-branching path remains to be analyzed.  The next step 
is to apply the disjunction rule to this formula.  In doing so, we split this right-branching path but add 

nothing to the path at the left, for it does not contain 'Q  R' and is in fact already finished . 
 
The negation rule applies only to formulas on the same path.  In the following tree, for example, both 

'P' and 'P' appear, but neither path closes because they don't appear on the same path: 
 

  1           P  P  given 

 
  2 P    P   1  
 
 
Summary:  A finished tree for a formula or set of formulas displays all the valuations on which that 
formula or all members of that set are true.  Thus trees do the same work as truth tables, but in most 
cases they do it more efficiently.  Moreover, as we shall see in later chapters, they may be used for 
some logics to which truth tables are inapplicable. 
 
EXERCISE 3.3.1:  Redo exercises 3.2.1, 3.2.2, and 3.2.3 using trees instead of truth tables. 
 
EXERCISE 3.3.2 
1 How might trees be used to prove that two formulas are logically equivalent?   
 Explain. 
2 To prove a formula valid using trees, we construct a tree from its negation. 
 Is there a way to prove a formula valid by doing a tree on that formula 
 without negating it?  Explain. 
 

3.4 VALUATIONS AND POSSIBLE SITUATIONS 

 We saw in Section 2.1 that while any instance of a valid form is a valid argument, not every 
instance of an invalid form is an invalid argument.  We noted, for example, that this instance of the 
invalid sequent affirming the consequent is in fact a valid argument: 
 
  If some men are saints, then some saints are men. 
  Some saints are men. 

  Some men are saints. 
 
How can this be?  The answer lies in the distinction between valuations and possible situations. 
 Suppose we let 'S1' stand for 'Some men are saints' and 'S2' for 'Some saints are men'.  Then 

we can represent the form of the argument as 'S1  S2 , S2  ├  S1'.  Here is its truth table: 

   



 

 

S1 S2  S1  S2, S2  ├ S1  

T T   T  T   T  
T F   F  F   T  
F T   T  T   F  
F F   T  F   F  

 
The valuation in which 'S1' is false and 'S2' true is a counterexample to the sequent or argument form.  

But the corresponding situation—the one in which 'Some men are saints' is false and 'Some saints 
are men' is true—isn't a counterexample to the argument because it isn't a possible situation.  The 
very idea of a situation in which some men are saints but it is not the case that some saints are men 
(i.e. no saints are men) is nonsense.  Of course we can easily find other interpretations of 'S1' and 

'S2'—and consequently other instances of this form—to which the valuation that makes 'S1' false and 

'S2' true provides a genuine counterexample, even an actual counterexample.  But on this particular 

interpretation, that valuation corresponds to an impossible situation.  (Incidentally, so does the 
valuation that makes 'S1' true and 'S2' false.)  An impossible situation, if it even makes sense to talk 

about such a thing, cannot be a counterexample. 
 Depending on how we interepret the sentence letters, then, a particular valuation may or may 
not correspond to a possible situation.  For many interpretations, all valuations correspond to possible 
situations.  For example, if we let 'S1' stand for 'It is sunny' and 'S2' for 'It is Sunday', every line on the 

truth table above (every valuation) represents a possible situation, and the valuation on which'S1' is 

false and 'S2' true represents a counterexample to the argument as well as to the form.  In such 

cases, the statements corresponding to the sentence letters are said to be logically independent.  
But where the statements corresponding to the sentence letters logically imply one another or 
exclude one another, in various combinations, some valuations represent impossible situations. 
 Such nonindependent statements as 'Some men are saints' and 'Some saints are men' have 
interrelated semantic structures that are not represented in propositional argument forms in which 
they are symbolized simply as sentence letters.  (In this case, the semantic structures in question are 
relationships among the logical meanings of the words 'some', 'men' and 'saints'.)  In Chapter 6 we 
shall begin to formalize the semantic structures of such statements, and we shall redefine the notion 
of a valuation so that it reflects more of these semantic structures and yields a more powerful and 
precise logic.  Later we shall explore ways of creating logics that are more powerful and precise still.  
But at no point shall our concept of a valuation become so sophisticated that a valuation may never 
represent an impossible situation—which is to say that at no point do we ever achieve a formal 
semantics or formal logic that reflects all the logical dependencies inherent in natural language. 
 Certain consequences of this disparity between valuations and possible situations, between 
formal and informal logic, will haunt us throughout this book: 
 
An invalid sequent may have valid instances.  The reason for this we have already seen.  The 
counterexamples to the sequent may on some interpretations represent impossible situations, so that 
there are no possible situations which make the corresponding argument's premises true while its 
conclusion is untrue.  No argument is valid because of having an invalid form, but an argument may 
be valid in spite of having an invalid form, because of elements of its semantic structure not 
represented in the form. 
 
A contingent formula may have valid or inconsistent instances.  A contigent formula is true on 
some valuations and false on others.  But on some interepretations either the valuations on which it is 
true or those on which it is false may all correspond to impossible situations.  In the former case, the 
interpretation yields an inconsistent instance.  In the latter, provided that at least one of the valuations 
on which the formula is true corresponds to a possible situation, the interepretion yields a valid 
instance.  Example:  'P & Q' is a contingent formula, but the instance 'Some women are mortal & 
Nothing is mortal' is an inconsistent statement, and the instance 'Every woman is a woman & every 
mortal is a mortal' is a valid statement (logical truth).  (Check the truth table of 'P & Q' to see which 
valuations correspond to impossible situations in each case.) 
 



 

 

A consistent formula or set of formulas may have inconsistent instances.  That is, though there 
is a valuation that makes the formula or set of formulas true, there may not be a possible situation 
that makes a particular instance of that formula or set of formulas true, again because the situation 
corresponding to that valuation may be impossible.  Example:  The set consisting of the formulas 'P' 
and 'Q' is consistent, but if we interpret 'P' as 'Smoking is permitted' and 'Q' as 'Smoking is forbidden', 
the set of statements for which these letters stand is inconsistent. 
 
All this sounds discouraging.  Neverthless: 
 
All instances of a valid sequent are valid arguments.  A valid sequent has no valuation on which 
its premises are true but its conclusion is not true.  Some valuations may on a particular interpretation 
correspond to impossible situations.  Yet since a valid sequent has no valuations representing 
situations (possible or impossible) in which the premises are true and the conclusion is false, none of 
its valuations represents a possible situation that is a counterexample to the instance.  Hence if a 
sequent is valid, all its instances must be valid as well.  Valid sequents are, in other words, perfectly 
reliable patterns of inference. 
 
All instances of a valid formula are logical truths.  A valid formula is a formula true on all 
valuations.  Even if on a given interpretation some valuations of such a formula do not represent 
possible situations, it is still true on all the others and hence true in all the situations that are possible.  
Therefore any statement obtained by interpreting a valid formula must be true in all possible 
situations.  That is, it must be a logical truth. 
 
All instances of an inconsistent formula are inconsistent statements.  An inconsistent formula is 
true on no valuations.  Hence even if on a given interpretation some of its valuations represent 
impossible situations, still the formula is true on none of the remaining valuations which represent 
possible situations.  Therefore any statement obtained by interpreting an inconsistent formula is not 
true in any possible situation. 
 
Under the same interpretation, logically equivalent formulas have as their instances logically 
equivalent statements.  Logically equivalent formulas are formulas whose truth value is the same on 
all valuations.  Once again, even if a given interpretation rules out some of these valuations as 
impossible, still the formulas will have the same truth value in the remaining valuations—the ones 
representing possible situations.  Hence any two statements obtained by interpreting them will have 
the same truth values in all possible situations.  That is, they will be equivalent statements. 
 
To summarize:  Formal validity (for both formulas and sequents), inconsistency, and equivalence are 
reliable indicators of their informal counterparts.  Formal invalidity, contingency, and consistency are 
not. 
  



 

 

 
CHAPTER 4 

CLASSICAL PROPOSITIONAL LOGIC:  INFERENCE 

 

4.1  CHAINS OF INFERENCE 

 Most people can at best understand arguments that use about three or four premises at 
once.  For more complicated arguments, we generally break the argument down into more digestible 
chunks.  Beginning with one or two or three premises, we draw a subconclusion, which functions as a 
stopping point on the way to the main conclusion that the argument aims to establish.  This 
subconclusion summarizes the contribution of these premises to the argument, so that they may 
henceforth be forgotten.  This subconclusion is then combined with a few more premises to draw a 
further conclusion, and the process is repeated, step by small step, until the final conclusion emerges.  
The following example illustrates the utility of breaking complex inferences down into smaller ones: 
 
  The meeting must be held on Monday, Wednesday or Friday. 
  At least four of these five people must be there:  Al, Beth, Carla, 
   Dave, and Em. 
  Em can't come on Monday or Wednesday. 
  Carla and Dave can't both come on Monday and Friday, 
   though either of them could come alone on those days. 
  Al can can come only on Monday and Friday. 

  The meeting must be held on Friday. 
 
 The argument is difficult to understand all at once, but it becomes easy if analyzed into small 
steps.  For example, from the premises: 
 
  Em can't come on Monday or Wednesday 
 
and 
 
  Al can can come only on Monday and Friday 
 
we can deduce the subconclusion: 
 
  Neither Al nor Em can come on Wednesday. 
 
And from this subconclusion together with the premise: 
 
  At least four of these five people must be there:  Al, Beth, Carla,  
  Dave, and Em 
 
we can further conclude: 
 
  The meeting can't be held on Wednesday. 
 
In addition, from the premises: 
 
  Em can't come on Monday or Wednesday 
 
and 
 
  Carla and Dave can't both come on Monday and Friday, though  
  either of them could come alone on those days 



 

 

 
we can conclude: 
 
  Em and either Carla or Dave can't come on Monday. 
 
Putting this together with the premise: 
 
  At least four of these five people must be there:  Al, Beth,  
  Carla, Dave, and Em 
 
yields the conclusion: 
 
  The meeting can't be held on Monday. 
 
Combining this with the previously derived conclusion that the meeting can't be held on Wednesday 
and with the premise: 
 
  The meeting must be held on Monday, Wednesday or Friday 
 
we get the conclusion: 
 
  The meeting must be held on Friday. 
 
Thus we analyze a complicated and forbidding inference into a sequence of simple inferences.  The 
result of this process is summarized below in a more compact form, which we shall call a proof.  A 
proof begins with the premises, or assumptions, of the unanalyzed argument, listed on separately 
numbered lines.  We indicate which statements are assumptions by writing an 'A' to the right of each.  
Each successive conclusion is written on a new numbered line, with the line numbers of the premises 
(either assumptions or previous conclusions) from which it was deduced listed to the right.  Here is 
our reasoning recorded as a proof: 
 
 1 The meeting must be held on Monday, 
   Wednesday or Friday.     A 
 2 At least four of these five people must be  
   there:  Al, Beth, Carla, Dave, and Em.   A 
 3 Em can't come on Monday or Wednesday.   A 
 4 Carla and Dave can't both come on Monday 
   and Friday, though either of them  
   could come alone on those days.    A 
 5 Al can can come only on Monday and Friday.   A 
 6 Neither Al nor Em can come on Wednesday.  3,5 
 7 The meeting can't be held on Wednesday.  2,6 
 8 Em and either Carla or Dave can't come on Monday. 3,4 
 9 The meeting can't be held on Monday.   2,8 
 10 The meeting must be held on Friday.   1,7,9 
 
The series of conclusions is listed on lines 6-10.  None of these conclusions is drawn from more than 
three premises.  Each inference is plainly valid.  The proof ends when the desired conclusion is 
reached.  In the remainder of this chapter, we explore a more formal version of this proof technique. 
 
EXERCISE 4.1:  Analyze each of the following arguments into simple inferences involving at most 
three presmises each and write the analyzed argument as a proof.  Each inference in this proof 
should be obviously valid in the informal sense of validity discussed in Chapter 1, but it need not 
exemplify any prescribed formal rule.  (Formal inference rules are introduced in the next section.)  
There is not just one right answer; each argument may be analyzed in many ways.  
 



 

 

 
1  If the person exists after death, then the person is not a living body. 
  The person is not a dead body. 
  Any body is either alive or dead. 
  The person exists after death. 

  The person is not a body. 
 
2  x is an odd number. 

  xy = 25. 
  x>3. 
  30/x is a whole number. 
  x<10. 

  y = 20.            
 
3  You will graduate this semester. 
  In order to graduate this semsester, you must fulfill the humanities  
   requirement this semester. 
  You fulfill the humanities requirement when and only when you  
   have taken and passed either (1) two courses in literature  
   and a single course in either philosophy or art or (2) two  
   courses in philosophy and a single course in either literature  
   or art. 
  You have taken and passed one art course, but have taken no  
   courses in philosophy or literature. 
  You have time to take at most two courses this semester. 
  Among the philosophy courses, only one is offered at a time when  
   you can take it. 

  You will take two literature courses this semester. 
 

4.2 SIMPLE INFERENCE RULES 

 In this section we introduce the idea of a proof, not for an argument, but for a sequent or 
argument form.  The idea, once again, is to break a complicated or dubious inference down into 
smaller inferences, each of which has a simple form.  In formal proofs we require that these smaller 
inferences have one of a well-defined set of forms that we already recognize as valid.  In the system 
of formal logic we that shall adopt there are ten such forms.  The most familiar of them is modus 
ponens (introduced in Section 2.1).   
 To illustrate, let's construct a formal proof to demonstrate the validity of the sequent: 

   P  (Q  (S  T)), P, P  Q, S  ├  T 
The first step is to write the assumptions in a numbered list, indicating that they are assumptions by 
writing an 'A' to the right of each: 
 

  1 P  (Q  (S  T))   A 
  2 P     A 

  3 P  Q     A 
  4 S     A 
 
Then we look for familiar inference patterns among the premises.  For example, from premises 2 and 
3, we may infer by modus ponens the conclusion Q.  So we write this as a conclusion, listing to the 
right the line numbers of the premises from which it was inferred and the form or rule of inference by 
which it was inferred: 
 
  5 Q     2,3 modus ponens 
 



 

 

The formula 'P', which is assumed on line 2, is also the antecendent of the conditional assumption on 
line 1.  Though the consequent of this conditional is a complex formula, rather than a single sentence 
letter, we still recognize here another instance of modus ponens.  So we draw the conclusion: 
 

  6 Q  (S  T)    1,2 modus ponens 
 
(We have dropped the unnecessary outer brackets, as usual, and will continue to do so without 
comment from now on.)  Now lines 5 and 6 can be combined to obtain yet another conclusion: 
 

  7 S  T     5,6 modus ponens 
 
And lines 4 and 7 yield the conclusion: 
 
  8 T     4,7 modus ponens 
 
This is the conclusion we wanted to establish.  And now we have succeeded.  For by showing that it 
is possible to get from the assumptions of the sequent to its conclusion by simple steps of valid 
reasoning, we have shown that the sequent itself is valid.  
 To see why, consider a preliminary conclusion C1 validly drawn from some initial set of 

premises.   Now let new premises be used together with C1 to validly draw a second conclusion C2.  

Since C1 was validly drawn, by the definition of validity C1 is true on any valuation on which the 

original premises are true.  And similarly, since C2 validly follows from C1 together with the new 

premises, C2 is true on any valuation on which both C1 and the new premises are true.   But since C1 

is true on any valuation on which the original premises are true, C1 is true on any valuation on which 

the original premises and also the new premises are true.  Hence since C2 is true on any valuation on 

which both C1 and the new premises are true, C2 is true on any valuation on which both the initial 

premises together with the new premises are true.  That is, the inference from the initial premises 
together with the new premises to C2 is valid.  Furthermore, if we were to add still more premises and 

validly draw yet a third conclusion C3, the same reasoning would show that the inference combining 

all three sets of premises to the conclusion C3 is also valid.  And so it goes.   Thus by stringing 

together valid inferences, we prove the validity of the inference whose premises are all the 
assumptions made along the way and whose conclusion is the final conclusion of the string. 
 In the rest of this section, we shall show how to break down any valid sequent in propositional 
logic into a sequence of simple and (more or less) obviously valid patterns of reasoning.  Such 
sequences, as exemplified by lines 1-8 above, are called proofs.  Modus ponens is not the only 
pattern used in proofs.  We shall construct proofs in propositional logic by the so-called "natural 
deduction" method, which utilizes ten distinct patterns of reasoning, or rules of inference ( or 
inference rules), of which modus ponens is one.  (There are many other methods of proof, which 
use different types and numbers of rules, though for classical logic, at least, they all yield the same 
results.  Some of the alternatives are discussed in Section 4.5.) 
 Proofs, of course, are only as credible as their inference rules.  As we introduce each rule, we 
shall verify its validity using the semantics developed in Chapter 3.  This will enable us to see that our 
proof technique is sound—that is, that if we start with assumptions true on some valuation, we shall 
always, no matter how many times we apply these rules, arrive at conclusions that are likewise true 
on that valuation.  Thus a proof establishes that there are no counterexamples to the sequent of 
which it is a proof; it is a third formal method (in addition to truth tables and trees) for showing that a 
sequent is valid.  In Section 5.10 we shall show that the entire system of rules introduced here is not 
only sound but also complete, i.e., capable of providing a proof for every valid sequent of 
propositional logic.    
 Our first inference rule, modus ponens, may be stated as follows: 
 
  Given any conditional and its antecedent, infer its consequent. 
 



 

 

—or, using the Greek letters of Section 2.1: 
 

  Given    and , infer 



 and  may be any formulas, simple or complex.  For example, in the inference from assumptions 1 

and 2 to conclusion 6 in the proof above  is 'P' and  is 'Q  (S  T)'. 
 Modus ponens is clearly valid, as we can see by examining its truth table.  That is, no matter 

what the truth values of  and  may be, it can never happen that    and  are true but  is 
untrue: 
  

     ,    ├   

T T  T T T  T    T 
T F  T F F  T    F 
F T  F T T  F    T 
F F  F T F  F    F 

 
 In addition to modus ponens, we shall introduce nine other rules, for a total of ten—two each 
for each of the five logical operators.  For each operator one of the two rules, called an introduction 
rule, allows us to reason to (introduces) conclusions in which that operatior is the main operator.  The 
second allows us to reason from premises in which that operator is the main operator; it is known as 
the operator's elimination rule, because it enables us to break a premise up into its components, 
thus "eliminating" the operator. 

 Modus ponens is the elimination rule for the conditional.  Given a formula , it allows us to 

"eliminate" the conditional operator from    and wind up just with .  In doing proofs, then, we 

shall call modus ponens conditional elimination, which we abbreviate as 'E'.  Officially, we state 
the rule of modus ponens as follows: 
 

 Conditional Elimination ( E) —given (  ) and , infer  
 
 The introduction rule for the conditional has some special features which are best 
appreciated only after some practice with the other rules.  We shall therefore consider it later. 
 Perhaps the simplest rules are those for conjunction.  Indeed, these may seem utterly trivial.  
Here is the conjunction elimination rule: 
 

 Conjunction Elimination (&E)—from ( & ), infer either  or . 
 
That is, we may "eliminate" a conjunction by inferring one or the other of its conjuncts.  (We can, if we 
like, infer both, but that takes two applications of the rule.)  Conjunction elimination is sometimes 

known as simplification.  This rule is obviously valid.  The only way   can be true on a 
valuation is if both its conjuncts are true on that valuation.  Hence there is no valuation on which 

  is true and either of its conjuncts is untrue. 
 

 The following proof for the sequent 'R  (P & Q), R  ├  Q' exemplifies both &E and E: 
 

 1 R  (P & Q)    A 
 2 R     A 

 3 P & Q     1,2 E 
 4 Q     3 &E 
 
As before, we begin by writing the assumptions on numbered lines (lines 1 and 2) and marking them 

with an 'A' to indicate that they are assumptions.  'E' (modus ponens) applied to lines 1 and 2, gets 
us the conclusion 'P & Q' at line 3, and from this by conjunction elimination we obtain the desired 
conclusion 'Q'.   



 

 

 Let's now consider the conjunction introduction rule.  This rule enables us to infer conclusions 
whose main operator is a conjunction: 
 

 Conjunction Introduction (&I)—from  and , infer ( & ). 
 
Conjunction introduction is also called conjunction or (more rarely)  adjunction.  It allows us to join 
any two previously established formulas together with '&'.  If these formulas are true, then by the 
valuation rule for '&' the resulting conjunction must be true as well, and so clearly the rule is valid.  We 
may illustrate both &E and &I by constructing a proof for the sequent 'P & Q  ├  Q & P'.  (This sequent 
is hardly less obviously valid than the rules themselves, but it nicely illustrates their use.) 
 
  1 P & Q     A 
  2 P     1 &E 
  3 Q     1 &E 
  4 Q & P     2,3 &I 
 
Starting with the assumption 'P & Q', we break it into its components at lines 2 and 3 by &E, then 
introduce the desired conclusion by &I (whose purpose, remember, is to create conjunctive 
conclusions) at line 4.  In sum, given that the conjunction 'P & Q' is true, 'P' is true and 'Q' is true as 
well.  But then the conjunction 'Q & P' is also true.  
 The order in which the premises are listed is irrelevant to the application of a rule of 
inference.  Thus even though 'P' is listed on line 2 of this proof and 'Q' on line 3, we may legitimately 
infer 'Q & P', in which 'Q' comes first. 
 Moreover, the use of two different Greek letters in stating a rule does not imply that the 

formulas designated by those letters must be different.  In the &I rule, for example,   and  can 
stand for any formulas without restriction—even for the same formula.  The following proof of the 
trivial but valid sequent 'P  ├  P & P' illustrates this point: 
 
  1 P     A 
  2 P & P     1,1 &I 
 

Here we apply the rule of &I (from  and , infer ( & )) to a case in which both  and  are 'P'.  
That is, we infer from 'P' and 'P' again the conclusion 'P & P'.  Since we have used 'P' twice, we list 
line 1 twice in the annotation.  Though odd, this sort of move quite legitimate, not only for &I, but 
(where applicable) for other rules as well.  Given, for example, the sun is hot, it validly follows that the 
sun is hot and the sun is hot—though we are not likely to have much use for that conclusion.   
 The elimination and introduction rules for the biconditional are closely related to those for 

conjunction.  This is not surprising since 'P  Q' has the same truth conditions as the conjunction 

'(P  Q) & (Q  P)'.  Thus, like the conjunction rules, the biconditional rules simply break the 
complex formula into its conditional components or assemble it from these components: 
 

 Biconditional Elimination (E)—from ( ), infer either   )  

  or (  ). 
 

 Biconditional Introduction (I)—from   ) and (  ),  

  infer ( ). 
 
As with conjunction elimination, the biconditional elimination rule gives us a choice of which  of the 

two components to infer.  This rule is used here in a proof of 'P  Q, P  ├ P & Q': 
 

  1 P  Q     A 
  2 P     A 

  3 P  Q     1 E 

  4 Q     2,3 E 
  5 P & Q     2,4 &I 



 

 

 

We "eliminate" the biconditional at line 3, obtaining one of its component conditionals, 'P  Q'.  Next 

we use modus ponens (E) at line 4 to obtain 'Q', one of the conjuncts of our desired conclusion.  
The other conjunct, 'P' was already given as an assumption.  Conjunction introduction enables us to 
combine these conjuncts into our conclusion at line 5. 

 The following proof of '(P  Q)  (Q  P), P  Q  ├  P  Q' illustrates the use of the other 
biconditional rule, biconditional introduction: 
 

  1 (P  Q)  (Q  P)   A 

  2 P  Q     A 

  3 Q  P     1,2 E 

  4 P  Q     2,3 I 
 
 We next consider the disjunction introduction rule (sometimes called the addition rule): 
 

 Disjunction Introduction (I)—from , infer either (  ) or (  ). 
 
That is, given any formula, we may infer its disjunction (as either first or second disjunct) with any 
other formula.  If, for example, my best friend is Jim, then it is certainly true that either my best friend 

is Jim or my best friend is Sally.  And it is obvious from the valuation rule for '' that this pattern is 
valid in general, for whenever either disjunct of any disjunction is true, the disjunction itself is also 
true. 

 The following proof of '(P  Q)  R, P  ├  R  S' illustrates the use of I: 
 

  1 (P  Q)  R    A 
  2 P     A 

  3 P  Q     2 I 

  4 R     1,3 E 

  5 R  S     4 I 
 

To use the conditional assumption '(P  Q)  R' we must "eliminate" the conditional by E.  But to 

do this we must first obtain its antecedent 'P  Q'.  Since we are given 'P' as an assumption, we can 

infer 'P  Q' simply by applying I at line 3.  This enables us to derive 'R' at line 4.  The conclusion we 

want to reach, however, is 'R  S'.  But this can be deduced from 'R' by applying I once again, this 
time to line 4. 
 The disjunction elimination rule, vE, allows us to draw conclusions from disjunctive premises, 
provided that we have established certain conditionals:     
 

 Disjunction Elimination (vE)— from (  ), (  , and (  ,  

  infer .  
 
Disjunction elimination is also known as constructive dilemma.  It is valid, as can be seen by 
inspection of this truth table: 
 
    (  ), (  ), (  ) ├  

 T T T  T   T   T   T 
 T T F  T   F   F   F 
 T F T  T   T   T   T 
 T F F  T   F   T   F 
 F T T  T   T   T   T 
 F T F  T   T   F   F 
 F F T  F   T   T   T 
 F F F  F   T   T   F 
 



 

 

Consider, for example, the argument: 
 
  ABCD is either a rectangle or a parallelogram 
  If ABCD is a rectangle, then it is a quadrilateral 
  If ABCD is a parallelogram, then it is a quadrilateral 

  ABCD is a quadrilateral 
 

We may symbolize this as 'R  P, R  Q, P  Q  ├  Q'.  Its proof is a single step of vE: 
 

  1 R  P    A 

  2 R  Q    A 

  3 P  Q    A 
  4 Q    1,2,3 vE 
 

Here  is 'R',  is 'P', and  is 'Q'. Notice that since vE uses three premises, we must cite three lines 

to the right when using it.  Sometimes the same line is cited twice, as in the proof of 'P  P,  P  Q  ├  
Q': 
 

  1 P  P    A 

  2 P  Q    A 
  3 Q    1,2,2 vE 
 

In this proof  and  are both 'P' and  is 'Q'. The first premise is, of course, redundant, but 
redundancy does not affect validity.   
 The most interesting uses of vE are those in which the conditional premises necessary for 
proving the conclusion are not given as assumptions but must themselves be proved.  This, however, 

requires the use of the rule I, which is introduced in the next section. 
 The negation elimination rule, which is sometimes called the double negation rule, allows us 
to "cancel out" double negations, when these have the rest of the formula in their scope: 
 

 Negation Elimination (E)—from , infer . 
 

This rule, too, is obviously valid.  For by the valuation rule for '', if  is true, then  is false and 

hence  is true.  To say, for example that I am not not tired is the same thing as to say that I am tired.  

Here is an example of the use of negation elimination, in the proof of 'P  Q, P  ├  Q': 
 

  1 P  Q    A 
  2 P     A 

  3 Q     1,2 E 

  4 Q     3 E 
 
Neither the negation elimination rule nor any of the others allows us to operate inside formulas.  It is a 
mistake, for example, to do the proof just illustrated this way: 
 

  1 P  Q    A 
  2 P     A 

  3 P  Q     1 E  (WRONG!!!) 

  4 Q     2,3 E 
 

Negation elimination operates only on doubly negated formulas.  'P  Q' is a conditional, not a 

doubly negated formula.  We must use conditional elmination to separate 'Q' (which is a doubly 
negated formula) from the conditional before negation elimination can be applied. 
 It is not really invalid to eliminate double negations inside formulas; it's just not a legitimate 
use of our negation elimination rule.  We never need to use it this way, because our elimination rules 



 

 

always enable us to break formulas down (where this may validly be done) so that the double 
negation sooner or later appears on a line by itself and hence becomes accessible to the negation 
elimination rule.  We could be more liberal, permitting elimination of double negations inside formulas, 
but only at the expense of complicating some of our metatheoretic work later on.  Conservatism now 
will pay off later. 
 Finally, it should be noted that there is no one correct way to prove a sequent.  If the sequent 
is valid, then it will have many different proofs, all of them correct, but varying in the kinds of rules 
used or in their order of application.  Often, however, there is one simplest proof, more obvious than 
all the rest.  In constructing proofs, good logicians strive for simplicity and elegance and thus make 
their discipline an art. 
 
EXERCISE 4.2:  Construct proofs for the following sequents: 

1 P  Q, Q  R, P  ├ R 

2 P  (Q  R), P, Q  ├  R 

3 P & Q, P  R  ├  R 

4 P  Q,  P  R, P  ├  Q & R 

5 (P & Q)  R, P  Q, P  ├  R 

6 P & Q  ├  Q  R 

7 P  ├  (P  Q) & (P  R) 

8 P,  ((Q & R)  P)  S  ├  S 

9 P  ├  P  P 

10 P  ├  (P  P) & (P & P) 

11 P  (Q  R),  P  (R  Q), P  ├  Q  R 

12 P  Q, (P  Q)  R  ├  R 

13 (P  (Q & R)), P  ├  R 

14 (P  Q)  (Q  P),  P  Q  ├  Q  P 

15 P  Q, P & R  ├  Q  S 

16 P  Q, Q  P, P  P  ├  P 

17 P  Q, Q  R, P  R  ├  R  S 

18 (P & (Q  R))  S, P, R  ├ S 

19 P  P  ├  P  P 

20 Q  ├  Q  (Q  P) 
 

4.3 HYPOTHETICAL DERIVATIONS 
 We have now encountered eight of the ten rules.  I saved the remaining two until last 
because they make use of a special mechanism:  the hypothetical derivation.  A hypothetical 
derivation is a proof made on the basis of a temporary assumption, or hypothesis, which we do not 
assert to be true, but only suppose for the sake of argument.  Hypothetical reasoning is common and 
familiar.  In planning a vacation, for example, we might reason as follows: 
 
  Suppose we stay an extra day at the lake.  Then we would get 
  home on Sunday.  But then it would be hard to get ready for  
  school on Monday. 
 
Here the arguer is not asserting that she and her audience will stay an extra day at the lake, but is 
only supposing this to see what follows.  The conclusion, that it will be hard to get ready for school on 
Monday, is likewise not asserted or believed.  The point is simply that this conclusion would be true if 
the hypothetical supposition were true. 
 Her reasoning presupposes two unstated assumptions, used respectively to derive the 
second and third sentences.  These are: 
 1 If we stay an extra day at the lake, then we get home on Sunday  
and  
 2 If we get home on Sunday, then it will be hard to get ready for   
  school on Monday 



 

 

 Using 'S' for 'we stay an extra day at the lake,' 'H' for 'we get home on Sunday', and 'M' for 'it 
will be hard to get ready for school on Monday', we may formalize this reasoning as follows: 
 

  1 S  H    A 

  2 H  M    A 

  3 | S   H (for I) 

  4 | H   1,3 E 

  5 | M   2,4 E 
 
(Assumptions 1 and 2 correspond to the implicit statements 1 and 2 above.  Statements 3, 4 and 5 
represent the first, second and third sentences of the stated argument, respectively.) 
 I have done something novel beginning with S on line 3, the line that represents the 
supposition or hypothesis that we stay an extra day at the lake.  Instead of labeling S as an 

assumption ('A), I have marked it with the notation 'H (for I)'.  This indicates that 'S' is a hypothesis 

('H), made only for the sake of a conditional introduction ('I) argument and not (like 1 and 2) really 
assumed and asserted to be true.  Moreover I have drawn a vertical line to the left of 'S' extending to 
all subsequent conclusions derived from 'S'.  This line specifies that the reasoning to its right is 
hypothetical, i.e., that statements 3, 4 and 5 are not genuinely asserted, but only considered for the 
sake of argument. 
 This hypothetical reasoning has a purpose.  In granting assumptions 1 and 2, we see that we 

can derive 'M' from 'S'; this means the conditional 'S  M' must be true.  This conditional, which 
symbolizes the English sentence 'if we stay an extra day at the lake, then it will be hard to get ready 
for school on Monday', is both the point of the argument and its implicit final conclusion.  But this 
conditional does not follow directly from our assumptions, nor from any of the statements listed in the 

argument, either singly or in combination.  Rather, we know that 'S  M' is true because (given our 
assumptions) we showed in the hypothetical reasoning (or hypothetical derivation) carried out in 
lines 3 through 5 that 'M' follows logically from 'S'.  It is this reasoning, not any single statement or set 

of statements, that shows that 'S  M' is true.  To indicate this, and to draw the argument's final 
conclusion, we add a new line to the previous reasoning, as follows: 
 

  1 S  H    A 

  2 H  M    A 

  3 | S   H (for I) 

  4 | H   1,3 E 

  5 | M   2,4 E 

  6 S  M    3-5 I 
 

The annotation of line 6 indicates that we have drawn the conclusion 'S  M' from the hypothetical 

derivation displayed on lines 3-5.  The rule used is the rule of conditional introduction (I), 
commonly known as conditional proof.  It may be stated as follows: 
 

 Conditional Introduction or Conditional Proof  (  I) —given a hypothetical  

 derivation of  from , end the derivation and infer (  ). 
 

In our example,  is 'S' and  is 'M'. 
 A hypothetical derivation itself begins with a hypothesis, or temporary assumption and ends 
when a desired conclusion has been reached.  In this case the conclusion of the hypothetical 
derivation was 'M'.  Its duration is marked by indentation and a vertical line to the left.  Since in this 
problem the point of the hypothetical derivation was to show that 'M' followed from 'S', the 
hypothetical derivation (and hence the vertical line) ends with 'M'.  A conclusion inferred from a 
hypothetical derivation is not part of the hypothetical derivation, and hence the vertical line does not 

extend to it.  The conclusion 'S  M' ('if we stay an extra day at the lake, then it will be hard to get 
ready for school on Monday) is not merely hypothetical; it is something the arguer actually asserts 
and presumably believes. 



 

 

 Conditional introduction is, of course, the rule than enables us to prove conditional 
conclusions.  We do this by hypothesizing the antecedent of the conditional and reasoning 
hypothetically until we derive the conditional's consequent.  At that point the hypothetical derivation 
ends.  We then apply conditional introduction to our hypothetical derivation to obtain the conditional 

conclusion.  This proof of 'P  ├  Q  (P & Q)' provides another example: 
 
  1 P    A 

  2 | Q   H (for I) 
  3 | P & Q   1,2 &I 

  4 Q  (P & Q)   2-3 I 
 

The sequent's conclusion, 'Q  (P & Q)', is a conditional, so after listing the assumption 'P' as usual, 
we hypothesize the antecedent 'Q' of this conditional at line 2.  A single step of &I at line 3 enables us 
to derive its consequent, 'P & Q', thus completing the hypothetical derivation.  We then get the 
desired conclusion by applying conditional introduction to the hypothetical derivation at line 4. 
 Conditional introduction is used in proving biconditional conclusions as well as conditional 
conclusions. But in proving biconditionals we often need to employ it twice in order to prove each of 
the two conditionals that comprise the biconditional before assembling these components into the 

biconditional conclusion.  The following proof of the sequent 'P & Q  ├  P  Q' illustrates this 
technique: 
 
  1 P & Q    A 

  2 | P   H (for I) 
  3 | Q   1 &E 

  4 P  Q    2-3 I 

  5 | Q   H (for I) 
  6 | P   1 &E 

  7 Q  P    5-6 I 

  8 P  Q    4,7 I 
 

Here the conclusion we wish to obtain is 'P  Q'.  The rule for proving biconditional conclusions is 

I, but to use I to get 'P  Q' we must first obtain its "component" conditionals 'P  Q' and 'Q  
P'.  We do this in lines 2-4 and 5-7, respectively, by first hypothesizing each conditional's antecedent, 
next hypothetically deriving its consequent (which in each case involves a simple step of &E from our 

assumption), and finally applying I to the resulting hypothetical derivation (at lines 4 and 7, 
respectively).  Having obtained the two component conditionals, we complete the proof with a step of 

I at line 8. 
 A step or two of conditional introduction is often used to provide the conditionals needed for 

drawing conclusions from a disjunctive premise by vE.  This proof of 'P  P  ├  P' provides an 
example that is both elegant and instructive: 
 

  1 P  P    A 

  2 | P   H (for I) 

  3 P  P    2-2 I 
  4 P    1,3,3 vE 
  

Our assumption is the disjunctive premise 'P  P'.  The standard rule for drawing conclusions from 

disjunctive premises is vE:  from (  ), (  , and (  , infer .  If we take , , and   all 

to be 'P', this becomes:  from 'P  P', 'P  P', and  'P  P' infer 'P'.  Thus we see that if we can prove 

'P  P', we can use it twice with our assumption 'P  P' to deduce the desired conclusion 'P'.  But 

how do we prove 'P  P'?  That's where I comes in.  We hypothesize this conditional's antecedent 
at line 2 and aim to derive its consequent.  The hypothetical derivation is the simplest possible, for its 
hypothesis and conclusion are the very same statement 'P'.  There is no need to apply any rules.  In 



 

 

hypothesizing 'P', we have already in effect concluded 'P'; the hypothetical derivation ends as soon as 

it begins at line 2.  We then use I to derive 'P  P' at line 3 and vE to obtain 'P' at line 4. 

 Let's consider one more example of the use of I in preparation for a step of vE.  In this case 

the sequent to be proved is 'P  Q, R  ├  (P & R)  (Q & R)': 
 

  1 P  Q    A 
  2 R    A 

  3 | P   H (for I) 
  4 | P & R   2,3 &I 

  5 | (P & R)  (Q & R) 4 I 

  6 P  ((P & R)  (Q & R))  3-5 I 

  7 | Q   H (for I) 
  8 | Q & R   2,7 &I 

  9 | (P & R)  (Q & R) 8 I 

  10 Q  ((P & R)  (Q & R)) 7-9 I 

  11 (P & R)  (Q & R)  1,6,10 vE 
 

To use the disjunctive premise 'P  Q' to obtain the conclusion '(P & R)  (Q & R)' by vE, we need two 

conditional premises:  'P  ((P & R)  (Q & R))' and 'Q  ((P & R)  (Q & R))'.  These are 

conditionals, so we use I to prove each, the first in lines 3-6, the second in lines 7-10.  Once the 
two conditionals have been established, a single step of vE at line 11 completes the proof. 
 In proving conditionals whose antecedents contain further conditionals, we sometimes need 

to make two or more hypothetical suppositions in succession.  For example, to prove 'P  ├  (Q  R) 

 (Q  (P & R))', we hypothesize the conclusion's antecedent 'Q  R' and then aim to deduce its 

consequent 'Q  (P & R)'.  But this consequent is itself a conditional, so that we must introduce a 

second hypothesis, the second conditional's antecedent, 'Q'.  This enables us to deduce 'Q  (P & 

R)' by I.  And since this is proved under the initial hypothesis '(Q  R)', a final step of I yields the 

conclusion '(Q  R)  (Q  (P & R))'.  Here is the proof in full: 
 
  1 P    A 

  2 | Q  R   H (for I) 

  3 | | Q  H (for I) 

  4 | | R  2,3 E 
  5 | | P & R  1,4 &I 

  6 | Q  (P & R)  3-5 I 

  7 (Q  R)  (Q  (P & R)) 2-6 I 
 

Notice that though the antecedent of '(Q  R)  (Q  (P & R))' is also a conditional, 'Q  R', we do 
not attempt to prove this conditional by hypothesizing 'Q' and deriving 'R'.  The antecedent of a 
conditional conclusion, no matter how complex, typically figures in a proof as a single hypothesis (line 
2 in the proof above), and is not itself proved. 
 Finally, we should note that after a hypothetical derivation ends, all the formulas contained 
within it are "off limits" for the rest of the proof.  They may not be used or cited later, because they 
were never genuinely asserted, but only hypothetically entertained.  The following attempted proof of 

the invalid sequent 'P, Q  P  ├  P & P' illustrates how violations of this restriction breed trouble.  
(If you don't see that this sequent is invalid, check it with a truth table.) 
 
  1 P   A 

  2 Q  P   A 

  3 | Q  H (for I) 

  4 | P  2,3 E 

  5 Q  P   3-4 I 

  6 P & P   1,4  &I  (WRONG!!!) 
 



 

 

All rules are used correctly through step 5, though steps 3-5 are redundant, since all they do is prove 

'Q  P', which was already given as an assumption at line 2.  Step 6, however, is mistaken, since it 

uses the formula 'P', which appears in the hypothetical derivation at line 4, after that hypothetical 

derivation has ended.  'P', however, was never proved; it was merely derived from the suppostion of 
'Q'.  It cannot be cited after the hypothetical derivation based on 'Q' ends at step 4.   Violation of this 
restriction may result in "proofs" of invalid sequents, as it does here.  These, of course, are not really 
proofs, since in a proof the rules must be applied correctly. 
 However, any nonhypothetical assumption or nonhypothetical conclusion and any hypothesis 
or conclusion within a hypothetical derivation that has not yet ended may be used to draw further 

conclusions.  So, for example, in the proof of 'P  ├  (Q  R)  (Q  (P & R))', which was given just 

before the last example, it is permissible to use the hypothesis 'Q  R' (line 2) at line 4 of the 
hypothetical derivation that begins with 'Q' (line 3), because the hypothetical derivation beginning with 

'Q  R' has not yet ended. 
 A proof is not complete until all hypothetical derivations have ended.  If we were to leave a 
hypothetical derivation incomplete, then its hypothesis would be an additional assumption in the 
reasoning; but, being marked with an 'H' instead of an 'A', it might not be recognized as such. 

 To summarize:  I is the rule most often used for proving conditional conclusions.  To prove 

a conditional conclusion   , hypothesize its antecedent  and reason hypothetically to its 

consequent .  Then, citing this entire hypothetical derivation, deduce    by I.  The conclusion 

   does not belong to the hypothetical derivation, so the vertical line that began with  does not 

continue to   , but ends with . 

 It is perhaps not so obvious as with the nonhypothetical rules that I is valid.  To recognize 

its validity, we must keep in mind that the hypothetical derivation from  to  must itself have been 
constructed using valid rules.  This means if a valuation makes true both the proof's assumptions and 

, as well as any other hypotheses whose derivations had not ended when  was supposed, then it 

also makes  true.  That is, there is no valuation that makes these assumptions and hypotheses true 

and also makes  true but  untrue.  In other words, there is no valuation that makes these 

assumptions and hypotheses true and    untrue.11  But this means that the inference from these 

assumptions or hypotheses to    is valid.  Hence the rule I, which allows us to conclude   

 from these assumptions and hypotheses, is itself valid; it never leads from true premises to an 
untrue conclusion. 

 We next consider the rule for proving negative propositions:  negation introduction, I, often 
known as indirect proof or reductio ad absurdum (reduction to absurdity).  Negation introduction is 

the rule for proving negated conclusions.  To prove , hypothesize  and validly derive from  an 

"absurdity"—that is, a conclusion known to be false.  Since the derivation is valid, if  and any 
additional assumptions or hypotheses used in the derivation were true, the derived conclusion would 

have to be true as well.  Therefore, since the derived conclusion is false, either  or some other 
assumption or hypothesis used to derive it must be false.  So if these other assumptions or 

hypotheses are true, it must be  that is false.  Hence  follows from these other assumptions or 
hypotheses. 

 But how can we formally assure that the conclusion we derive from  is false?  One way is to 

require that it be inconsistent.  Inconsistencies of the form '& ', for example, fill the bill.  Actually, 
any inconsistency would do, but so as not to unduly complicate our rule, we shall require that the 
conclusion of the hypothetical derivation always have this one form.  This restriction, as we shall see 
in Section 5.10, does not prevent us from proving any valid sequent.  Therefore we will state the 
negation introduction rule as follows: 
 

Negation Introduction (I)  given a hypothetical derivation of any formula of the form ( & ) from 

, end the derivation and infer .  
 

 The following proof of 'P  Q, Q  ├  P', a sequent expressing modus tollens, uses this rule.  

Here  is 'P' and  is 'Q': 

                                                      
11This reasoning appeals implicitly to the valuation rule for the conditional. 



 

 

 

  1 P  Q    A 

  2 Q    A 

  3 | P   H (for I) 

  4 | Q   1,3 E 

  5 | Q & Q   2,4 &I 

  6 P    3-5 I 
 
Having listed the assumptions on lines 1 and 2, we note that the desired conclusion is a negation, 

'P'.  To prove it by I, then, we hypothesize 'P' at line 3—not, as before, for I, but rather for I—
and try to derive an "absurdity."  This is accomplished at line 5, where it is established that, given the 

assumptions 'P  Q' and 'Q', 'P' leads to absurdity.  Therefore, given these assumptions, 'P' must 

be false, which is what we conclude at line 6 by asserting 'P'. 
 Formal indirect proofs are, of course, not merely formal.  They may be used to represent 
specific natural language arguments.  So, for example, if we let 'P' stand for 'A person is defined by 
her genome' and 'Q' for 'Identical twins are the same person', the reasoning represented by this proof 
is as follows.  It is assumed at line 1 that if a person is defined by her genome, then identical twins 
are the same person and at line 2 that identical twins are not the same person.  The argument aims 
to show that a person is not defined by her genome (line 6).  To prove this, we suppose for the sake 
of argument at line 3 that a person is defined by her genome.  We do not, of course, really assert this; 
we suppose it only to reduce it to absurdity and so prove its negation.  Together with assumption 1, 
this supposition leads at line 4 to the conclusion that identical twins are the same person.  And this 
conclusion, together with assumption 2, yields the absurd conclusion that identical twins both are and 
are not the same person.  Having shown, given assumptions 1 and 2, that the supposition that a 
person is defined by her genome leads to absurdity, we conclude on the strength of these 
assumptions alone that a person is not defined by her genome.  This final conclusion is recorded on 
line 6. 

 The following proof of the sequent '(P  Q)  ├  P' provides another example of the 

application of I.  Recall that '(P  Q)' means "neither P nor Q." 
 

  1 (P  Q)   A 

  2 | P   H (for I) 

  3 | P  Q   2 I 

  4 | (P  Q) & (P  Q) 1,3 &I 

  5 P    2-4 I 
 

With respect to our statement of the rule above,  here is 'P' and  is 'P  Q'.  Once again the 

conclusion to be proved is 'P'.  So after listing the assumption, we hypothesize 'P' and aim for some 

contradiction.  The trick is to see that we can obtain 'P  Q', which contradicts our assumption, by 

applying I to 'P'.  The contradiction (absurdity) is reached at line 4 by &I.  'P' having led to an 

absurdity, we deduce 'P' at line 5. 
 Negation introduction may also be used, in combination with negation elimination, to prove 

unnegated conclusions.  To prove an unnegated conclusion , we may hypothesize , derive an 

absurdity, and apply I.  But since I adds a negation sign to the hypothesis that is reduced to 

absurdity, it enables us to conclude only , not the desired conclusion .  However from  we 

can deduce  by negation elimination and so complete the proof.  The following proof of '(P & Q), 

P  ├  Q' uses this strategy.12  In this case  is 'Q'; with respect to the formal statement of the I rule, 

 is 'Q' and  is 'P & Q': 

                                                      
12To see why this form ought to be valid, recall that '(P & Q)' is equivalent to 'P  Q'.  



 

 

 

  1 (P & Q)   A 
  2 P    A 

  3 | Q   H (for I) 

  4 | P & Q   2,3 &I 

  5 | (P & Q) & (P & Q) 1,4 &I 

  6 Q    3-5 I 

  7 Q    6 E 
 
 Negation introduction is often combined with conditional introduction, as in this proof of the 

sequent, 'P  Q  ├  Q  P', which expresses the pattern of inference called contraposition: 
 

  1 P  Q    A 

  2 | Q   H (for I) 

  3 | | P  H (for I) 

  4 | | Q  1,3 E 

  5 | | Q & Q  2,4 &I 

  6 | P   3-5 I 

  7 Q  P   2-6 I 
 

Having written our assumption, we note that the conclusion for which we are aiming, 'Q  P', is a 

conditional.  So we hypothesize its antecedent at line 2 for I, aiming to derive its consequent, 'P'.  

But 'P' is a negation, and I is the rule for proving negations.  So to set up a derivation of 'P', we 

hypothesize 'P' at line 3 for I and try to deduce a contradiction.  The contradiction is obtained at line 

5, which enables us to use I at line 6 to get 'P'.  Having now derived 'P' from 'Q', we can deduce 

'P  Q' by I at line 7 to complete the proof. 
 Negation introduction is used in a peculiar way in the proof of the principle ex falso quodlibet, 

the principle expressed by the sequent 'P, P  ├  Q'.  (We demonstrated the validity of this sequent 
using a truth table in Section 3.2.) 
 
  1 P    A 

  2 P    A 

  3 | Q   H (for I) 

  4 | P & P   1,2&I 

  5 Q    3-4 I 

  6 Q    5 E 
 

'Q' is an unnegated conclusion, but I enables us to prove it nevertheless.  To do so, we must reduce 

'Q' to absurdity to obtain 'Q', from which 'Q' follows by E.   

 What is genuinely peculiar about this proof is that 'Q' is not used in the derivation of the 

contradiction 'P & P'.  The contradiction comes directly from assumptions 1 and 2.  This undermines 

the notion that it is 'Q' that is being reduced to absurdity, for the absurdity lies in the assumptions, 

not in 'Q'.  This pattern of reasoning is, however, legitimate in classical logic.  Having assumed an 
absurdity, we can reduce any formula to absurdity:  all formulas validly follow.   

 Validly—but not relevantly.  There is no counterexample to the sequent 'P, P  ├  Q', but 
many instances of this sequent are irrelevant.  Relevance logicians, who advocate a notion of validity 

stricter than the classical notion, would reject step 5 of this proof as invalid.  Since the hypothesis 'Q' 

was not used in the derivation of the contradiction, they argue, no conclusion concerning 'Q' can 
legitimately be drawn.  We note their protest here, but set it aside.  They will get their say in Section 

16.3.  In the meantime, we will accept such peculiar uses of I as valid. 

 We next consider a proof of the sequent 'P  Q, P  ├  Q', which expresses the pattern of 

inference called disjunctive syllogism.  This proof also employs the irrelevant use of I illustrated in 
the previous problem.  Because this sort of irrelevant move is unavoidable in proofs of disjunctive 



 

 

syllogism, many relevance logicians like disjunctive syllogism no better than they like ex falso 
quodlibet. 
 

  1 P  Q    A 

  2 P    A 

  3 | P   H (for I) 

  4 | | Q  H (for I) 

  5 | | P & P  2,3 &I 

  6 | Q   4-5 I 

  7 | Q   6 E 

  8 P  Q    3-7 I 

  9 | Q   H (for I) 

  10 Q  Q    9,9 I 
  11 Q    1,8,10 vE 
 

Our first assumption is a disjunction; to use it we need vE.  But to use vE with 'P  Q' to obtain the 

conclusion 'Q', we need these two conditionals:  'P  Q' and 'Q  Q'.  These we obtain by I, the 

first in lines 3-8, the second in lines 9-10.  To prove 'P  Q', we hypothesize its antecedent 'P' at line 

3.  We now have hypothesized 'P' and assumed 'P', so that we can obtain any conclusion we 

please.  We want 'Q', the consequent of 'P  Q', in order to complete our conditional proof.   To get it, 

we hypothesize 'Q' for reduction to absurdity.  As in the previous example, however, we derive the 
absurdity (at line 5), not from this hypothesis, but from previous (and irrelevant) assumptions.  

Nevertheless, this allows us to conclude 'Q' at line 6 by I, from which we obtain 'Q' at line 7.  The 

hypothetical derivation at lines 3-7 has thus established 'P  Q', a fact which we record at line 8.  

The proof of 'Q  Q' at lines 9-10 is trivial.  Having obtained the necessary premises at lines 1, 8 and 
10, we finish with a step of vE. 
 Although there are many (indeed, infinitely many!) different proofs for each valid sequent, 
there is often one way that is the simplest and most direct.  Finding that way is a matter of strategy.  
Often the best strategy for a proof can be "read" directly from the form of the conclusion—i.e., from 
the identity of its main operator, as the following table indicates: 
 

PROOF STRATEGIES 

If the conclusion or 
subconclusion you are 
trying to prove is of the 
form: 

 
 
 
Then try this strategy: 

 Hypothesize  and work toward a subconclusion of the form  &  

in order to obtain  by I. 

 & Prove the subconclusions  and  separately and then join them by 
&I. 

   If either  or  is a premise, simply apply I to obtain   .  

Otherwise, if there is a disjunctive premise   , try proving the two 

conditionals   (  ) and   (  ) as subconclusions and 

then using vE to obtain   .  If neither of these strategies works, 

then hypothesize (  ) and work toward a subconclusion of the 

form  &  in order to obtain    by I and E. 

   Hypothesize  and work to toward the subconclusion  in order to 

obtain the conditional by I. 

   Prove the subconclusions    and   ; then use I to obtain 

  . 

 
 It is common, as we have seen in some of the examples worked above, for different 
strategies to be used successively in different stages of a proof.  To illustrate how the table of 



 

 

strategies provides guidance in doing this, let's prove the sequent 'P  Q  ├ Q  P'.  We begin by 

noting that the conclusion of this sequent is of the form   .  The first suggestion in the table for 

conclusions of this form is to use I if either  or  (i.e., in this instance 'P' or 'Q) is present as a 
premise.  But we have neither premise, so this suggestion is inapplicable.  We then try the second 

suggestion, which is applicable if there is a premise of the form   .  'P  Q' is such a premise.  

The table then recommends proving as subconclusions the conditionals   (  ) and   (  

) (i.e., in this case 'P  (Q  P)' and 'Q  (Q  P)).  A subconclusion is simply a conclusion useful 
for obtaining the main conclusion.  It may be, but is not always, the conclusion of a hypothetical 
dervivation. 

 Now the task is to prove the two subconclusions 'P  (Q  P)' and 'Q  (Q  P)'.  These are 

both of the form   .  So we consult the table regarding strategies for proving conclusions of this 
form.  The table recommends in each case to hypothesize the antecedent, derive the consequent and 

then use I.  We are now working on two levels.  While our ultimate strategy is to use vE, our 

immedate strategy is I to obtain both 'P  (Q  P)' and 'Q  (Q  P)'.  We begin the proof of the 
first of these conditionals by hypothesizing 'P' (line 2 in the proof below).   

 Now our goal is to prove yet another subconclusion: 'Q  P'.  This, again, is of the form   

.  So once again we consult the the table for strategies for proving conclusions of this form.  But 
now, since we have hypothesized 'P', we can follow the first suggestion for disjunctive conclusions, 

obtaining 'Q  P' directly by I.  

 This enables us to prove 'P  (Q  P)' by  I, completing our I strategy.  The second 

conditional 'Q  (Q  P)' can now be proved in the same way (lines 5-7 below).  Now with both 
conditionals available, we simply apply vE (at line 8 below), completing both our initial strategy and 
the proof.  Here is the result: 
 

 1 P  Q    A 

 2 | P   H (for I) 

 3 | Q  P   2 I 

 4 P  (Q  P)   2-3 I 

 5 | Q   H (for I) 

 6 | Q  P   5 I 

 7 Q  (Q  P)   5-6 I  

 8 Q  P    1,4,7 vE 
  
 Though the form of the conclusion usually determines the best overall strategy for the proof, 
the details depend on the forms of the premises.  It is nearly always necessary to break the premises 
into their components using the appropriate elimination rules.  Sometimes when no promising 
strategy is apparent, breaking down the premises in this way makes the path to the conclusion clear.   
As the example above illustrates, disjunctive premises typically demand a disjunction elimination 

strategy.  Where    is the disjunctive premise and  is the desired conclusion, this strategy 

requires the conditionals    and   , which must usually be proved by I before vE can be 
applied. 
 Sometimes none of the strategies listed in the table seems to work.  In that case, consider 
what additional premises would enable you to prove the conclusion and see if these can be proved in 

some way.  In many cases such premises can be proved by I.  

 The following proof of 'P  Q  ├ P  Q' illustrates this point: 
 



 

 

  1 P  Q     A 

  2 | (P  Q)   H (for I)  

  3 | | P   H (for I) 

  4 | | P  Q   2 I 

  5 | | (P  Q) & (P  Q) 2,4 &I 

  6 | P    3-5 I 

  7 | Q    1,6 E 

  8 | P  Q    7 I 

  9 | (P  Q) & (P  Q)  2,8 &I 

  10 (P  Q)    2-9 I 

  11 P  Q     10 E 
 

 Having written the assumption at line 1, we note that the conclusion is of the form    and 
consult the table of strategies regarding conclusions of this form.  But we are not given either disjunct, 
nor are we given a disjunctive premise, so the first two strategies for disjunctive conclusions are 
inapplicable.  We therefore follow the third, hypothesizing the negation of this conclusion at line 2 and 
hoping to derive an absurdity.  But which absurdity?  Thinking ahead, we see that if we had the 

premise 'P', then by E with 1 we could get 'Q', from which we could obtain 'P  Q' by I.  This 
would contradict our hypothesis, providing the desired absurdity.  Hence we can solve the problem if 

we can prove 'P'.  Since 'P' is of the form , the table recommends using I as the strategy for 
proving it.  So we hypothesize 'P' at line 3, attempting to derive an absurdity.  This is achieved at line 

5, which enables us to conclude 'P' at line 6.  The rest of the proof then proceeds according to the 
strategy just outlined.  Solving difficult problems in propositional logic often requires just this sort of 
thinking ahead. 

 This proof of 'P  Q  ├  (P  Q)' uses a similar double I strategy, which requires the 
same sort of advance planning. 
 

  1 P  Q    A 

  2 | P  Q   H (for I) 

  3 | P  Q   1 E 

  4 | Q  P   1 E 

  5 | P  Q   2 E 

  6 | Q  P   2 E 

  7 | | Q  H (for I) 

  8 | | P  6,7 E 

  9 | | Q  3,8 E 

  10 | | Q & Q  7,9 &I 

  11 | Q   7-10 I 

  12 | P   4,11 E 

  13 | Q   5,12 E 

  14 | Q & Q   11,13 &I 

  15 (P  Q)   2-14 I    
  

Since the sequent's conclusion is '(P  Q)', which has the form , we hypothesize 'P  Q' at line 

2 in order to reduce it to absurdity.  No strategy is apparent at this point, so we use E to break the 
two biconditionals into their components at lines 3-6, hoping that this will help us see how the 

absurdity might be derived.  And it does, for we now note that if we could prove 'Q', then using line 4 
we could get 'P', and with 'P' together with line 5 we could get 'Q'.  Then we would have both 'Q' and 

'Q'—which would provide the absurdity that we need to derive from the hypothesis 'P  Q'.  But 

before we can do any of this, we must prove 'Q'.   Since this is a negated formula, the appropriate 

strategy is I.  So we hypothesize 'Q' at line 7 in order to reduce it to absurdity.  We obtain the 

absurdity at line 10 and that yields 'Q' at line 11.  We then proceed to the final absurdity as planned. 
 



 

 

Summary:  the Ten Rules of Inference 

Negation Elimination (Double Negation) (E)—from , infer . 

Negation Introduction (Reductio ad Absurdum, Indirect Proof) (I)  given a hypothetical 

derivation of any formula of the form ( & ) from , end the derivation and infer . 

Conjunction Elimination (Simplification) (&E)—from ( & ), infer either  or . 

Conjunction Introduction (Conjunction) (&I)—from  and , infer ( & ). 

Disjunction Elimination (Constructive Dilemma) (vE)— from (  ), (  , and (  , 

infer . 

Disjunction Introduction (Addition) (I)—from , infer either (  ) or (  ). 

Conditional Elimination (Modus Ponens) ( E) —given (  ) and , infer . 

Conditional Introduction (Conditional Proof)  (  I) —given a hypothetical derivation of  from 

, end the derivation and infer (  ). 

Biconditional Elimination (E)—from ( ), infer either   ) or (  ). 

Biconditional Introduction (I)—from   ) and (  ), infer ( ). 

 
EXERCISE 4.3:  Construct a proof for each of the following sequents: 

1 P  Q, P  ├  Q  R 

2 (P  Q)  R  ├  P  R 

3 P  Q, P  R  ├  P  (Q & R) 

4 P  Q  ├  (P & R)  Q 

5 P  Q, Q  R  ├  P  R 

6 P  (Q  R)  ├  (P & Q)  R 

7 (P & Q)  R  ├  P  (Q  R) 

8 P  Q  ├  (Q  R)  (P  R) 

9 P  ├  Q  (R  (S  ((P & Q) & (R & S)))) 

10 P  Q  ├  P  Q 

11 (P & Q)  (P & R)  ├  P 

12 (P & Q)  (P & R)  ├  Q  R 

13 P  Q, P  Q  ├  P 

14 P  P  ├  P 

15 P, Q  ├  (P  Q) 

16 (P & Q)  ├  P  Q 

17 P  Q  ├  P  Q 

18 (P & Q)  (P & Q)  ├ (P  Q) 

19 P  Q  ├  (P  Q) 

20 P  ├  P  Q 
 

4.4 THEOREMS AND SHORT CUTS 

 A remarkable feature of the hypothetical rules is that they enable us to prove conclusions 
without assumptions.  Consider, for example, this simple proof of the assumptionless sequent 

'├  P  P': 
 

  1 | P   H (for I) 

  2 P  P    1,1 I 
 

But this is reasonable, for 'P  P' is a tautology—that is, a valid formula.  It is true on all valuations, 
i.e. not matter what the facts are, and hence is true regardless of what we assume, or whether we 
assume anything at all.  Each of its instances—the statement 'If the pie is done, then the pie is done', 



 

 

for example—is true come what may.  (Even in a world where there are no pies, it is true that if the 
pie is done, then the pie is done!)  Conclusions provable without assumptions are called theorems.  
And, as we shall see in Section 5.10, all the theorems of propositional logic are tautologies, and vice 

versa.13  

 '(P & P)', which expresses the principle of noncontradition, is also a theorem, which is 
equally easy to prove: 
 

  1 | P & P   H (for I) 

  2 (P & P)   1-1 I 
 
Here we needn't draw any conclusions in order to reduce the hypothesis to absurdity; the hypothesis 
is an absurdity! 
 Slightly more difficult to prove than the theorems above is the law of excluded middle as 

expressed by the sequent '├  P  P': 
 

  1 | (P  P)   H (for I) 

  2 | | P   H (for I) 

  3 | | P  P   2 I 

  4 | | (P  P) & (P  P) 1,3 &I 

  5 | P    3-4 I 

  6 | P  P    5 I 

  7 | (P  P) & (P  P)  1,6 &I 

  8 (P  P)    1-7 I 

  9 P  P     8 E 
 

Here we prove 'P  P' by reducing its negation '(P  P)' to absurdity.  The trick is to see, after 

hypothesizing '(P  P)', that we could contradict this hypothesis by a simple step of I (line 6) if we 

could prove 'P'.  But 'P' is a negated formula, so we hypothesize 'P' at line 3 in an effort to reduce it 

to absurdity.  This absurdity emerges at line 4, enabling us to deduce 'P' at line 5 and so complete 
the strategy as planned. 

 As a final example, we shall prove the theorem '├ (P  Q)  (Q  P)'.  The strategy here, 
an indirect proof nested within two conditional proofs, calls for three hypotheses: 
 

  1 | P  Q    H (for I) 

  2 | | Q   H (for I) 

  3 | | | P  H (for I) 

  4 | | | Q  1,3 E 

  5 | | | Q & Q  2,4 &I 

  6 | | P   3-5 I 

  7 | Q  P   2-6 I 

  8 (P  Q)  (Q  P)  1-7 I 
 
 When we prove a sequent, whether or not it is a theorem, we show it to be a reliably valid 
inference pattern—a fact which can be used to shorten proofs.  Consider, for example, the sequent 'P  

├  P', which expresses an inference pattern that like E is often called double negation.  Its proof 
is as follows: 
 
  1 P    A 

  2 | P   H (for I) 

  3 | P & P   1,2 &I 

  4 P    1-2 I 
 

                                                      
13See Exercise 5.10.2, problem 2. 



 

 

Having proved this sequent, we have in effect proved the validity of all sequents of the form  ├ , 

where  is any formula whatsoever—sequents such as 'P  Q  ├  (P  Q)',  'P  R  ├  (P  

R)',  'Q  ├  Q', and so on.  We shall call these variants of the original sequent.  More precisely, 
a variant of a sequent is a sequent formed by replacing one or more of its sentence letters by 
formulas, each occurrence of the same sentence letter being replaced by the same formula.  (Note, 
however, that only sentence letters may be replaced, not larger parts of the formula.)  Take, for 

example, 'P  Q  ├  (P  Q)'.  This is a variant of the sequent 'P  ├ P' because it is the result of 

replacing each occurrence of the sentence letter 'P' in 'P  ├ P' by 'P  Q'.  To prove 'P  ├  P' is in 

effect to prove 'P  Q  ├  (P  Q)' as well, since the proof of the latter mimics the proof of the 

former precisely; we simply replace each occurrence of 'P' in the proof of 'P  ├  P' with 'P  Q', 
leaving everything else the same: 
 

  1 P  Q    A 

  2 | (P  Q)  H (for I) 

  3 | (P  Q) & P  Q) 1,2 &I 

  4 (P  Q)   1-2 I 
 

Any other variant of 'P  ├  P' can be proved by the same sort of replacement.  Thus, having proved 

'P  ├  P', we have in effect shown how to prove each instance of the general rule of double 
negation: 
 

  From  infer . 
 
This rule is thus just as legitimate as our ten basic introduction and elimination rules.  There is no 
reason not to give it some abbreviation, say 'DN', and allow it to be used in proofs.  This will save  

work.  Consider, for example, this proof of the sequent 'Q  R, Q  ├  R': 
 

  1 Q  R   A 
  2 Q    A 

  3 | Q   H (for I) 

  4 | Q & Q   2,3 &I 

  5 Q    3-4 I 

  6 R    2,5 E 
 
Steps 2-5 just repeat the form of the proof of double negation given above.  Instead of going to all this 
trouble, from now on we may simply write: 
 

  1 Q  R   A 
  2 Q    A 

  3 Q    2 DN 

  4 R    1,3 E 
   
Any previously proved sequent may be used as a rule of inference in this way.  Such rules are called 
derived rules because their justification is derived from the ten rules that we have taken as basic.  
Derived rules do not enable us to prove any sequent that cannot already be proved by the original 
ten.  They merely shorten proofs and save work. 
 Though any previously proved sequent can be used as a derived rule, we shall be somewhat 
selective in the ones we name and abbreviate for use.  Too many rules can be just as cumbersome 
as too few.  The derived rules listed on the table below suffice for an elegant proof for just about any 
sequent we might encounter.  We have not actually proved them all—yet.  Those that remain 
unproved are left for the reader as exercises. 

 



 

 

                        Some Important Derived Rules   

Derived Rule(s) Name Abbreviation 

From    and  infer  Modus Tollens MT 

From    infer    Contraposition CP 

From    and  infer ; 

From    and  infer  

Biconditional Modus Ponens MP 

From    and  infer ; 

From    and  infer  

Biconditional Modus Tollens MT 

From    and  infer ; 

From    and  infer  

Disjunctive Syllogism DS 

From    and   , infer    Hypothetical Syllogism HS 

From  infer  Double Negation DN 

From (  ) infer  & ; 

From  &  infer (  );

From ( & ) infer   ; 

From    infer ( & ); 

From    infer ( & ); 

From ( & ) infer   ;

From  &  infer (  ); 

From (  ) infer  &  

De Morgan's Laws DM 

From  &  infer  & 

From    infer    

Commutation COM 

From ( &  &  infer  & ( & ); 

From  & ( & ) infer ( &  & ; 

From (     infer   (  ); 

From   (  ) infer (     

Association ASSOC 

From ( &    infer (  ) & (  ); 

From (  ) & (  ) infer ( &   ; 

From (   &  infer ( & )  ( & ); 

From ( & )  ( & ) infer (   &  

Distribution DIST 

From    infer   ;

From   , infer   ; 

From    infer ( & );

From ( & ), infer    

Material Implication MI 

From  and , infer any formula  Ex Falso Quodlibet EFQ 

 

From now on we may freely use the derived rules listed in this table.  The following proof of '(P  

Q)  ├  (P  Q)' provides a further illustration of the use of derived rules: 
 

  1 (P  Q)   A 

  2 | P  Q   H (for I) 

  3 | P & Q  1 DM 

  4 | Q   3 &E 

  5 | P   2,4 MT 

  6 | P   3 &E 

  7 | P & P  5,6 &I 

  8 (P  Q)   2-7 I 
 



 

 

The overall strategy is reductio (indirect proof).  Notice that there is no need to use E on line 6 

before proceeding to the contradiction.  'P & P' is just as good a contradiction as 'P & P'. 
 
EXERCISE 4.4.1:  Sequents repesenting some of the derived rules discussed in this section have 
been proved in the text (Sections 4.2-4.4), but a number of the derived rules have not been so 
verified.  Complete the verifcation of these derived rules by proving the following sequents, using only 
the ten basic rules: 
 SEQUENT    CORRESPONDING DERIVED RULE 

1 P  Q, P  ├  Q    Biconditional Modus Ponens 

2 P  Q, Q  ├  P    Biconditional Modus Ponens 

3 P  Q, Q  ├  P   Biconditional Modus Tollens  

4 P  Q, P  ├  Q   Biconditional Modus Tollens 

5 P  Q, Q  ├  P    Disjunctive Syllogism 

6 (P  Q)  ├  P & Q   DeMorgan's Law 

7 P & Q  ├  P  Q)   DeMorgan's Law 

8 (P & Q)  ├  P  Q   DeMorgan's Law 

9 P  Q  ├  (P & Q)   DeMorgan's Law 

10 P  Q  ├  (P & Q)   DeMorgan's Law 

11 (P & Q)  ├  P  Q   DeMorgan's Law 

12 P & Q  ├  (P  Q)   DeMorgan's Law 

13 (P  Q)  ├ P & Q   DeMorgan's Law 
14 (P & Q) & R  ├  P & (Q & R)  Association 
15 P & (Q & R)  ├  (P & Q) & R  Association 

16 (P  Q)  R  ├  (P  Q)  R  Association 

17 P  (Q  R)  ├  (P  Q)  R  Association 

18 (P & Q)  R  ├  (P  R) & (Q  R) Distribution 

19 (P  R) & (Q  R)  ├  (P & Q)  R Distribution 

20 (P  Q) & R  ├  (P & R)  (Q & R) Distribution 

21 (P & R)  (Q & R)  ├  (P  Q) & R Distribution 

22 P  Q  ├  P  Q   Material Implication 

23 P  Q ├  P  Q   Material Implication 

24 P  Q  ├  P & Q)   Material Implication 

25 P & Q)  ├  P  Q   Material Implication 
 
EXERCISE 4.4.2:  Prove the following theorems using either basic or derived rules: 

1 ├  P  (P  Q) 

2 ├  (P & Q)  P  

3 ├  P  P 

4 ├  P  (Q  (P & Q)) 

5 ├  P  ((P  Q)  Q) 

6 ├  (P  Q)  P 

7 ├  (P  P) 

8 ├  P  (Q  Q) 

9 ├  (P  Q)  (P  Q) 

10 ├  (P  Q)  (P & Q) 
 
EXERCISE 4.4.3:  Reprove the sequents of Exercise 4.3, using derived rules to shorten the proofs 
wherever possible. 
 

4.5 ALTERNATIVE PROOF TECHNIQUES AND THE LIMITATIONS OF 
PROOFS 

 Our system of ten inference rules is only one of many proof systems for classical predicate 
logic.   All do the same work—that is, prove the same sequents—so choice among them is largely a 



 

 

matter of taste and style.  For the austere, there is the system which uses only two rules—modus 

ponens (our E) and tautology introduction: 
 
  Tautology Introduction (TI)— Any tautology may be asserted at any  
  line of a proof. 
 
Tautology introduction is in effect a derived rule of our system (though we have not used it as such), 
since every tautology is a theorem.   

 A proof of the sequent 'P  Q, P  ├  Q' in this system might look like this: 
 

  1 P  Q    A 

  2 P    A 

  3 (P  Q)  (P  Q)  TI 

  4 P  Q    1,3 E 

  5 Q    2,4 E 
 
This system works because each valid sequent corresponds to a conditional tautology created by 

taking its premises successively as antecedents for its conclusion.  For example, if 1, 2, 3  ├   

is a valid sequent, then (1  (2  (3  ))) is the corresponding tautology.  To prove the 

sequent using just modus ponens and TI, we assume 1, 2, and 3, assert (1  (2  (3  

))) by TI and derive successively 2  (3  ), 3  , and finally  by modus ponens.  It is not 

difficult to see that this proof procedure works for any valid sequent, regardless of the number of 
premises. 
 The main drawback of this method is that tautologies are not immediately recognizable by 

their form.  If, for example, we are presented with an invalid sequent, say 'P  Q, Q  ├  P', we may 
attempt a proof along these lines: 
 

  1 P  Q    A 
  2 Q    A 

  3 (P  Q)  (Q  P)  TI (WRONG!!!) 

  4 Q  P    1,3 E 

  5 P    2,4 E 
 

But this is erroneous; for '(P  Q)  (Q  P)' is not tautologous.  We may, however, be unable to 
confirm this without doing a truth table, a tree, or a proof using another system of rules!  Thus in 
application this proof system must often be supplemented by some independent test for 
tautologousness.  Though technically there is nothing wrong with such a system, it is not very 
practical. 
 But the austere need not despair.  If instead of the rule TI, which permits the introduction of 
any tautology, we allow introduction of tautologies only of a limited number of recognizable forms. we 
can still create a system that will prove all valid sequents.  Such, for example, is the system that has 

as its inference rules only E and the introduction of tautologies of one of the following three forms: 
 

  Ax1   (  ) 

  Ax2 (  (  ))  ((  )  (  )) 

  Ax3 (  )  ((  )  )14 
 
These forms are called axiom schemas.  (An axiom is a fundamental principle from which other less 
fundamental principles are derived.)  There are other sets of axiom schemas which also suffice to 
prove all valid sequents.  This particular set is formulated only in terms of negation and the 
conditional; it must be augmented by definitions introducing the other connectives to be capable of 

                                                      
14These axiom schemas are from Elliott Mendelson, Introduction to Mathematical Logic, 3rd ed., Monterey, CA, Wadsworth & 
Brooks/Cole, 1987, p. 29. 



 

 

proving sequents containing them.  A disjunction   , for example, is defined as  , a 
logically equivalent conditional whose antecedent is negated.  This means that any instance of either 
of these two forms may be replaced by the corresponding instance of the other—regardless of 
whether the initial instance is a whole formula or just a subformula.  So, for example, this definition 
allows us to move from the premise: 
 

  (P  Q)  ((P  Q)  P) 
 
(which, incidentally, is an instance of Ax3) to the conclusion: 
 

  (P  Q)  ((P  Q)  P), 
 

by replacing 'P  Q' with 'P  Q'.  Definitions such as these have been called contextual 
defininitions or definitions in use, because they give directions for replacing, not merely the 
defined term, but an entire formula or subformula containing that term, by an abbreviating formula 

and vice versa.  The operators '' and '' are regarded in this axiom system as primitive operators; 
only they are mentioned in the formation rules.  Those introduced by definition are known as defined 
operators.  Formulas containing defined operators are regarded as mere abbreviations for formulas 
containing only primitive operators.   
 The full set of definitions for the defined operators is as follows: 
 

      =      

   &   =      

      =   (  ) & (  ) 

 
The symbol '= ' is a metalinguistic abbreviation meaning "is by definition."   

 Notice that the definition of '' mentions the operator '&'.  It must therefore be supplemented 

by the definition of '&' if expressions containing '' are to be reduced to primitive terms.  Formulas of 

the form    abbreviate formulas of the form (  ) & (  ), which in turn (by the definition 

of '&) abbreiviate formulas of the form (( )  (  )). 
 In a proof, the definitions may be used as rules of inference, though they differ from the 
deduction rules presented earlier in this chapter in that they may be applied to subformulas as well as 
to whole formulas.  When the definition of an operator is used, either to introduce or to eliminate that 
operator, we indicate this by writing to the right of the new formula the line number of the formula to 
which the definition was applied, followed by 'Df' to indicate that the step is being made by definition, 
and an occurrence of the operator itself to indicate which definition is being used. 

 This simple proof 'Q  ├  P  Q' illustrates the use of both an axiom and a definition: 
 
  1 Q    A 

  2 Q  (P  Q)   A1 

  3 P  Q    1,2 E 

  4 P  Q    3 Df 
 

In step 2 we introduce an instance of Axiom Schema 1 in which  is 'Q' and  is 'P'.  The conclusion 

follows directly by modus ponens (E) and the definition of ''. 

 Here is a proof of hypothetical syllogism, 'P  Q, Q  R  ├ P  R': 
 

  1 P  Q      A 

  2 Q  R      A 

  3 (P  (Q  R))  ((P  Q)  (P  R))  Ax2 

  4 (Q  R)  (P  (Q  R))   Ax1 

  5 P  (Q  R)     2,4 E 

  6 (P  Q)  (P  R)    3,5 E 

  7 P  R      1,6 E 



 

 

 

In step 3 we use a simple instance of Axiom Schema 2 in which  is 'P',  is 'Q' and  is 'R'.  In step 

4 we introduce an instance of Axiom Schema 1 in which  is 'Q  R' and  is 'P'.   The conclusion 
then follows by three steps of modus ponens.  In virtue of this proof, hypothetical syllogism may 
henceforth be used as a derived rule. 

 As a final illustration, we shall prove 'P  ├  P', which establishes E as a derived rule in this 
axiom system: 
 

 1 P       A 

 2 P  (P  P)     Ax1 

 3 P  P      1,2 E 

 4 (P  P)  ((P  P)  P)    Ax3 

 5 (P  P)  P      3,4 E 

 6 (P  ((P  P)  P)   

   ((P  (P  P))  (P  P))  Ax2 

 7 P  ((P  P)  P)    Ax1 

 8 (P  (P  P))  (P  P)    6,7 E 

 9 P  (P  P)     Ax1 

 10 P  P      8,9 E 

 11 P       5,10 E 
 
Because this axiom system has just three axiom schemas and only one inference rule, there is little to 
work with.  Proofs tend to be longer and more complicated than those in natural deduction systems.  
This can be alleviated, however, by the introduction of derived rules.  Axiom systems, though perhaps 
cumbersome to reason with, are generally easy to reason about.  Thus axiom systems are often 
preferred for metatheoretic work.  But that is the subject of the next chapter.  
 It can be shown (though we shall not show it) that each of the ten basic rules of our natural 
deduction system is a derived rule of this axiom system.  Thus any sequent provable in the former is 
provable in the latter.  Likewise, it is easy to show that each instance of each of the axioms of this 
system is a theorem of our natural deduction system.  Since the natural deduction system also 

contains E, this means that any sequent provable in the axiom system is also provable in the 
natural deduction system—provided that there is always some way within the natural deduction 
system to mimic definitional inferences.  This, too, can be shown.  Therefore the two systems prove 
exactly the same sequents. 
 Deduction can also be pursued in an algebraic fashion.  The idea here is to treat logical 
equivalences as identities.  Thus, for example, the commutation law: 

   ( & )  ( & ) 
which expresses a logical equivalence, may be thought of as asserting that propositions of the forms 

 &  and  &  are identical.  In algebra, terms denoting identical objects may be substituted one 
for another wherever they occur.  Thus, for example, since 3x = x+x+x, the expressions '3x' and 
'x+x+x' may be used interchangeably.  In algebraic deduction, logically equivalent formulas are 
similarly interchangeable.  Hence, for instance, using the commutation rule above, we may from the 
premise: 

   (P & Q)  R 
directly infer the conclusion: 

   (Q & P)  R. 
 Algebraic equivalence rules may be combined with natural deduction rules to form hybrid 
logical systems.  There are also systems which combine natural deduction rules with axioms.  Indeed, 
the number of deductive systems adequate to classical propositional logic (or any other interesting 
logic, for that matter) is infinite.  We have chosen the natural deduction approach and will stick with 
that throughout this book, because among all the systems of classical logic it seems most nearly to 
approximate the ways people ordinarily reason. 
 In comparison to truth tables and trees, however, all these proof techniques have two serious 
disadvantages:  (1) they test only for validity, not for invalidity, and (2) even for valid arguments they 



 

 

do not guarantee an answer.15  We may prove a sequent to be valid, but proofs are not designed to 
reveal invalidity.  If we try to prove a sequent and fail, that does not show that the sequent is invalid.  
Maybe we did not try hard enough.  Thus, given a sequent whose validity is in question, trying to 
prove it settles the question only if the sequent is valid and we do in fact find a proof.    
 Moreover, because proof rules can be applied or axioms introduced in any order, they may 
be applied repeatedly without ever reaching the desired conclusion, even if that conclusion validly 
follows form the premises.  Proof, in other words, may elude us, even though proofs exist. 
 Because of these disadvantages, this book does not emphasize proofs, though they are the 
most familiar and widely recognized way of doing logic.  We shall concentrate instead on the more 
powerful semantic techniques—valuation rules, truth tables, and trees—and their generalizations for 
more advanced logical systems. 
 
EXERCISE 4.5.1:  Prove instances of Ax1, Ax2 and Ax3 as theorems within our natural deduction 
system. 
 
EXERCISE 4.5.2:  Prove the following sequents within the axiom system presented in this section: 

 1 ├  P  P 

 2 ├ (P  P)  P 

 3 P, P  ├  Q 

 4 P  (Q  R), Q  ├  P  R 
  

                                                      
15Proof techniques can be modified or elaborated to ameliorate or, in some cases, eliminate these disadvantages, but only at 
the cost of making them more complicated or less natural.  



 

 

CHAPTER 5 
CLASSICAL PROPOSITIONAL LOGIC:  

METATHEORY  
 

5.1  INTRODUCTION TO METALOGIC 

 Metalogic is the logical study of formal logical systems.  In metalogic we study one or more 
formal languages (e.g., the language of propositional logic) which, being the objects of our study, are 
called object languages.  We must, of course, use language to talk about an object language, but 
the language we use is usually not the object language itself.  We call it the metalanguage.  Virtually 
everything said in a logic textbook, except for the problems and exercises, is formulated in the 
metalanguage.  Our metalanguage is English augmented with an assortment of variables (e.g., Greek 
letters) and other technical devices. 
 Chapter 4 covered proofs formulated and carried out in an object language, the language of 
propositional logic.  The proofs we shall construct in this chapter will be proofs about the object 
language, formulated and carried out in the metalanguage.  The conclusions of these proofs are 
called metatheorems, and the proofs themselves are called metaproofs.  Reasoning in metaproofs 
often mirrors reasoning in the object language.  Similar inference rules (e.g., modus ponens) may be 
used, though usually they are used without comment, rather than being explicitly cited and annotated.  
Over the years, logicians have developed a peculiar style and rhetoric for expressing metatheorems.  
Part of what you will be learning here is that style and rhetoric. 
 To prove a metatheorem, we begin with a set of premises and construct a proof linking them 
to some desired conclusion, just as in a formal language.  In a typical exercise in propositional logic, 
however, both the premises and conclusion are explicitly given.  For metatheorems, only the 
conclusion is given; you are not told exactly which premises to use.  Part of your work is to decide 
which premises are needed.  Premises for metatheorems are typically definitions or previously proved 
metatheorems.  Occasionally some principles of arithmetic or algebra are also used.  It's usually easy 
to tell which definitions to use; they will nearly always be the definitions of the concepts employed in 
the metatheorem.  The definitions we will need to prove metatheorems in this chapter are the ones 
introduced in Chapters 2-4. 

 Consider, for example, how to prove the elementary metatheorem that 'P' is a formula (of 
the language of propositional logic).  The main concept used in this metatheorem is the concept of a 
formula.  So we need to locate the definition of a formula, which will function as a premise in the 
proof.  The appropriate definition is embodied in the formation rules (see Section 2.3).  Notice that 

from rule 1 it follows that 'P' is a formula.  And since 'P' is a formula, by rule 2 'P' is also a formula.  

Once we have shown that 'P' is a formula, it follows, again by rule 2, that 'P' is a formula—so we 
have our conclusion.  Notice that the only premises used were the rules 1 and 2, and that rule 2 was 
used twice.  Here's the proof in good metatheoretic style: 
 

 METATHEOREM:  'P' is a formula. 
 Proof:  By formation rule 1, 'P' is a formula, whence it follows by rule  2  

 that 'P' is a formula, and again by rule 2 that 'P' is a formula.     QED 
 
The letters 'QED' at the end stand for "quod erat demonstrandum," a Latin phrase meaning "which 
was to be proved."  This is the logician's equivalent of a high five.  When you finish proving a 
metatheorem, writing these letters gives you a little rush. 
 Metatheorems differ greatly in form and content.  Here is another simple metatheorem that 
uses the valuation rules, rather than the formation rules: 
 

 METATHEOREM:  'P  P' is consistent. 
 Proof:  Since (by the definition of a valuation), a valuation is simply an assignment of one but 

not both of the values T or F to the sentence letters of a formula, there is a valuation V of the 

formula 'P' such that V(P) = F, and so V(P)  T.  By valuation rule 4 (the rule for the 



 

 

conditional), if V(P)  T, then V(P  P) = T.  Hence there is a valuation (namely V) on which 

'P  P' is true.  It follows (by the definition of consistency) that 'P  P' is consistent.  QED 
 
This metatheorem simply puts into words what a truth table or tree would reveal.  But for that very 
reason it may be useful as an illustration of metatheoretic style.  Simple metatheorems may just be 
summaries or reminders of what we already know; that is the case, too, with the next one. 
 But this next metatheorem is more general in scope.  It combines the definition of a valuation, 
the formation rules, and the valuation rules to get the conclusion that all formulas have exactly one of 
the values T or F on each of their valuations:  
 
 METATHEOREM (Bivalence):  Each formula of propositional logic is either  
 true or false, but not both, on each of its valuations. 

 Proof:  Consider any formula  of propositional logic and any valuation V of .  Since  is a 

formula,  is either atomic or complex.  If  is atomic, then the definition of a valuation 

stipulates that V assigns it one, but not both, of the values T or F.  If  is complex, then by 

formation rules 2 and 3 it must have one of five forms:  , ( & ), (  ), (  ), or ( 

 ).  Now the valuation rule for each of these forms stipulates that V assigns  the value F 

iff V does not assign  the value T.16  No matter whether  is atomic or complex, then, V 

assigns to  one, but not both, of the values T or F. QED 
 
Though simple, this metatheorem is important; it will be used in many subsequent metatheorems.  
We shall refer to it simply as "bivalence."  
 
EXERCISE 5.1:  Prove the following metatheorems: 

1 '(P  (Q  (R  S)))' is a formula. 

2 '(P  P)' is true on the valuation in which 'P' is false. 
  

5.2  CONDITIONAL PROOF 

 In formal logic, different kinds of proofs require different strategies.  The same is true in 
metalogic.  Indeed, the same principles of strategy apply  to both kinds of reasoning.  In both cases, 
strategy is governed mainly by the structure of the conclusion.  For example, if the conclusion is a 

conditional statement (i.e., a statement of the form   ), then the best strategy is usually 
conditional proof.  The object language version of conditional proof was covered in Section 4.3, 

where it is called conditional introduction (I).  Here we discuss conditional proof in the 
metalanguage.   

 In a conditional proof we suppose the antecedent  for the sake of argument and use it, 

perhaps together with other assumptions, to derive the consequent .  The argument in which we 

derive  is hypothetical, in the sense that it depends on the supposition of the antecedent , which 
we need not assert to be true.  Because of its hypothetical character, I like to think of this argument 

as a kind of fiction.  However, if we succeed in validly deriving the consequent  from the antecedent 

, then we certainly know this: 
 

  If  is true, then  is true. 
 

Since we know this whether or not  is true, the conclusion   , unlike the hypothetical conclusion 

, does not depend on the truth of the supposition .  Hence we are entitled to discharge this 

supposition—that is, not to regard it as one of the assumptions on which the proof of    rests.  (It 
was, after all, made only "for the sake of argument.")   

                                                      
16The valuation rule for conjunction, for example, is: 

( & ) = T iff both () = T and () = T;  

  ( & ) = F iff either () =/  T or () =/  T, or both

The conditions under which ( & ) = F are precisely those under which it is not the case that ( & ) = T.  (Check this for 

the other rules as well.) 



 

 

 Formal systems usually have some notational device to indicate the discharging of 
suppositions and some even have ways of setting off the hypothetical argument.  In the system of 
Chapter 4, it is indicated by the ending of the line the the left of the hypothetical derivation.  
Metatheory dispenses with these devices.  I find it helpful, however, to adopt the convention of 
indenting the proof when a supposition is introduced and ending the indentation when it is 
discharged.  The hypothetical argument is thus set off clearly from the rest.  This convention is 
consistently employed below. 
 Let's consider a simple example of a metatheorem employing a conditional proof strategy.  
The metatheorem is this:   
 
  If the set of premises of a valid sequent is consistent, then so is the 
  conclusion. 
 
 This metatheorem is a conditional statement, so to prove it we will use conditional proof.  We 
begin by supposing the antecedent: 
 
  (A)  The set of premises of a valid sequent is consistent. 
 
Our immediate goal is to prove the consequent: 
 
  (C)  The conclusion of the sequent is consistent.   
 
If we can do so, then we can discharge the supposition (A) and assert the desired conditional 

statement (A)  (C). 
 The problem now becomes how to derive (C) from (A).  The argument is not immediate, so 

we need some additional assumptions.17  As noted above, these are likely to be definitions of major 
terms used in the metatheorem.  Two major terms used here are 'valid' and 'consistent'.  The latter is 
used in two senses; statement (A) concerns the consistency of a set of object language formulas, and 
statement (B) concerns consistency of a single object language formula, the conclusion.  So the next 
step is to look up the definitions of these terms.  These definitions are as follows: 
 
 (1) A sequent is valid iff there is no valuation on which its premises are  
  true and its conclusion is not true  
 
 (2) A set of formulas is consistent iff there is at least one valuation  
  in which all members of the set are true.   
  
 (3) A single formula is consistent iff there is at least one valuation in 
  which it is true. 
 
(These definitions are statements in the metalanguage concerning features of arguments in the object 
language). 
 Now the path of reasoning from (A) to (C) is easy to see.  Since the argument in question is 
valid, by (1) there is no valuation on which its premises are true and its conclusion is not true.  But 
since the set of its premises is consistent, by (2) there is at least one valuation on which these 
premises are all true.  Hence on that valuation (if no other) the argument's conclusion is not untrue—
i.e,. it is true.  But, then by definition (3), the argument's conclusion is consistent—which is the 
conclusion (C) that we were trying to prove. 
 That, of course, was just the hypothetical argument.  Having completed the hypothetical 

argument, we still need to discharge supposition (A) and assert our conclusion (A)  (C).  Here's 
what it looks like when we assemble the pieces: 
 

                                                      
17By the way, be sure to keep straight which argument we are talking about at which time.  We are talking about two 
arguments: a metatheoretical one that we are constructing, and a formal one in the object language that the metatheoretical 
argument is about.  Metatheory is always working on two levels like this, and that's one of the things that makes it difficult. 



 

 

 METATHEOREM:  If the set of premises of a valid sequent is consistent,  
 then so is the conclusion. 

Proof: Suppose (for conditional proof) that the set {1,...,n} of premises of some valid 

sequent with conclusion  is consistent.  Then (by the definition of consistency for a 

set) there is at least one valuation V on which 1,...,n are all true.  But (by the 

definition of validity) there is no valuation on which 1,...,n are all true and  is not 

true.  Thus  is not untrue on V and so must be true on V.  Hence (by the definition 

of consistency)  is consistent. 
 Therefore, if the set of premises of a valid sequent is consistent, then  
 so is the conclusion. QED 
 
The indented part is the hypothetical argument, the "logical fiction."  We need not know or care 
whether there is any such object language argument as we are supposing here (though in this case, 
of course, there are many).  The hypothetical argument takes us from the antecendent (A) to the 
consequent (C) of our conclusion.  Then the antecendent is discharged (indicated by ending the 
indention) and the conditional conclusion is asserted to complete the proof. 
 I have used parenthetical remarks to indicate where definitions are invoked in the proof.  In 
most metatheoretical writing, these remarks would be omitted; it is assumed that the reader is 
sophisticated enough to realize that the argument is by definition.  But it helps when you are learning 
metatheory to remind yourself of what you are doing by incorporating such remarks. 
 Notice how I used Greek letters as variables in the metalanguage.  Such variables provide 
clear reference and help to condense the prose.  I used Greek because I didn't want the variables 
that belong to the metalanguage to be confused with the P's, Q's, and so on that are part of the 
formal object language that we are talking about.  If, for example, I had used the letter: 
   P  
instead of: 

    
in the metatheorem, someone might have thought the conclusion was meant specifically to be the 
atomic formula 'P'.  The metatheorem, however, does not specify the form of the conclusion.  To 
designate object language formulas without specifying their identity, we need special variables in our 
metalanguage.  And since we don't want to confuse these metavariables—i.e., variables of the 
metalanguage—with object language formulas, it's best to use a wholly distinct type face.  That's the 
reason for the Greek.  When no such confusion could arise, however, we will sometimes use the 
more familiar English letters as metavariables. 

 The purpose of the notation '1,...,n' should be clear.  This is just a way of designating a list 

of some unspecified number (n) of formulas.  We stipulate that this notation allows the possibility that 
the list has no members, so that n might be 0, unless otherwise specified.   If n = 0, then by 

convention every valuation makes 1,...,n true, since there is nothing to make true.  This same 

convention governs universally quantified statements—i.e., statements about all or every member of 
a class—in classical logic generally.  In this case the particular statement at issue-- 'Every valuation 

makes 1,...,n true'—is a statement of the metalanguage.  Further explanation of this convention 

must await a full treatment of the semantics of quantifiers, which is given in Section 7.2. 
 The curly brackets '{' and '}' used in this proof are the conventional symbols used to designate 
a set, whose members are the things named inside them.  We will employ this convention from now 
on.  For more on sets, see Section 7.1. 
 One final point about this metatheorem:  its hypothetical argument follows a pattern that is 
very common in metalogical reasoning: 
 
  Unpacking—Logical manipulation—Repacking 
 
Unpacking means replacing the terms given in the metatheorem (in this case in its antecedent) with 
their definitions.  The following statements in the proof constituted the unpacking:  
 
  Then (by the definition of consistency for a set) there is at least one  



 

 

  valuation V on which 1,...,n are all true.  But (by the definition of  

  validity) there is no valuation on which 1,...,n are all true and 

   isnot true.   
 
When you begin to prove metatheorems, it is best to look up relevant definitions as you unpack and 
to word your unpacking as nearly like the definition as is possible.  This prevents errors. 
 One common error in unpacking is to intoduce the symbol V without specifying whether it 

stands for some particular valuation (as in the example above) or for all valuations.  Always be sure to 
specify this.   
 Moreover, remember that there is no such thing as truth per se in formal logic.  That is, a 
formula is never merely true or false; it is true or false on some valuation, or, perhaps, all valuations.  
Make sure as you unpack that with each mention of truth or falsity you specify the valuation(s) to 
which it applies.   
 Once the given terms are unpacked, a conclusion is drawn from them by logical inference.  
This is the stage of logical manipulation: 
 

  Thus  is not untrue on V and so must be true on V.   

 
The logical step here is simply the elimination of a double negation.  The final stage, repacking, puts 
the newly derived conclusion back into defined terms: 
 

  Hence (by the definition of consistency)  is consistent. 
 
Watch for this pattern, and imitate it where appropriate.  It is common not only in conditional proof but 
in many other forms of metalogical reasoning. 
 Some metatheorems are biconditional in form.  Since a biconditional is, in effect, simply two 
conditionals, proofs of biconditional metatheorems often take the form of two conditional proofs.  That 
is the case in the next metatheorem.   
 
 METATHEOREM:  A sequent is valid if and only if the set containing its 
 premises and the negation of its conclusion is inconsistent. 

 Proof: Suppose (for conditional proof) that 1,...,n  ├  is a valid  

 sequent.  Then (by the definition of validity) there is no valuation in which its premises 

1,...,n are all true and its conclusion  is not true.  From this it follows by valuation 

rule 1 that there is no valuation on which 1,...,n and  are all true, i.e. (by the 

defintion of consistency) that the set {1,...,n,} is inconsistent. 

 Hence we have shown that if a sequent is valid, then the set consisting of its premises and 
the negation of its conclusion is inconsistent. 

 Now suppose (again for conditional proof) that the set {1,...,n,} is inconsistent.  

This means that there is no valuation on which 1,...,n and  are all true.  Hence 

(by valuation rule 1) there is no valuation on which 1,...,n are true and  is not 

true, which is to say that the sequent 1,...,n  ├  is valid. 

 Thus, if the set containing a sequent's premises and the negation of its conclusion is 
inconsistent, then that sequent is valid.  In summary, we have shown that a sequent is valid if 
and only if the set containing its premises and the negation of its conclusion is inconsistent.  
QED 

 
The proof consists of two conditional proofs, whose conclusions are assembled into the biconditional 
at the end.  Again, I am saying more here than the usual sparse metalogical style permits.  At most 
what is actually written when this kind of proof appears in a journal article is the two hypothetical 
arguments (indicated here by the indentations).  The rest would be understood as implicit.  With this 



 

 

example it is also possible to combine the two proofs into a series of biconditional inferences—
something like this: 
 

 Proof: 1,...,n  ├  is a valid sequent iff there is no valuation in which its premises 

1,...,n are all true and its conclusion  is false.  But this is the case iff there is no valuation 

on which 1,...,n and  are all true, i.e. iff {1,...,n,} is inconsistent.  QED 

 
This style of proof is fairly common.   
 
EXERCISE 5.2:  Prove the following metatheorems by conditional proof: 

1 If formula  is valid, then  is inconsistent. 

2 If  and  are formulas and  is inconsistent, then ( & ) is inconsistent. 

3 If 1,...,n ├  is a valid sequent whose premises 1,...,n are all  

 valid, then its conclusion  is also a valid formula. 
4 If the set of premises of a sequent is inconsistent, then that sequent is  
 valid. 

5 A formula  is inconsistent if and only if  is a valid formula. 

 
5.3 REDUCTIO AD ABSURDUM 

 Conditional proof is a very common proof strategy in metatheorems.  It may be used 
whenever a metatheorem is conditional in form.  However, not all metatheorems are conditionals, and 
so some require other strategies.  Another common strategy is reductio ad absurdum —also called 
indirect proof.  The object language version of this strategy, which is embodied in the negation 

introduction rule (I),  was covered in Section 4.3.  This is a powerful technique, which is used 
primarily in proving negative conclusions but may be used with conclusions of any form. 
 The trick of a reductio is to suppose the denial of the conclusion you want to prove and then 
show that that supposition validly implies a contradiction.  Typically the contradiction will be a 

metalinguistic statement of the form ( and not-), but occasionally other sorts of contradictions are 
used—for example the arithmetic statement '0 = 1', or a statement to the effect that a thing is not 
identical to itself.  Now any supposition which—perhaps together with other statements that are given 
as true—validly implies a contradiction must be false.  For by the definition of validity it is impossible 
for all the premises of a valid inference to be true while its conclusion is false.  But a contradictory 
conclusion is certainly false.  Hence at least one of the premises that validly implies it must be false.  
Therefore, given that the other premises used to derive the contradiction are true, we may discharge 
the supposition (which, recall, was the denial of our intended conclusion), and assert this intended 
conclusion itself.   
 As in a conditional proof, the argument from the supposition to the contradiction is 
hypothetical; it is a fiction based on a supposition which we needn't believe.  (In a reductio we 
certainly don't believe our supposition, since what we are trying to prove is precisely its opposite!)  
And, as in conditional proof, we will set this fiction off by indenting it.  Here is a simple metatheorem 
whose proof uses a reductio strategy: 
 

METATHEOREM:  There is no invalid sequent with an inconsistent set of premises. 
Proof: Suppose for reductio that there is an an invalid sequent with an inconsistent premise 

set {1,...,n}.  Since the sequent is invalid, there is (by the definition of invalidity) 

some valuation V on which 1,...,n are all true and the sequent's conclusion is not 

true.  But since 1,...,n are true on V, {1,...,n} is consistent (by the definition of 

consistency for a set) , which contradicts our supposition. 
 Consequently, there is no invalid argument with an inconsistent set of  
 premises. QED 
  
The hypothetical argument begins with the supposition of the denial of the intended conclusion.  This 

is shown by the hypothetical argument to lead to the contradiction that {1,...,n} is both consistent 



 

 

and inconsistent.  So the supposition is discharged (ending the indentation), and the desired 
conclusion is asserted as proved. 
 
EXERCISE 5.3:  Prove the following metatheorems by reductio ad absurdum: 
1 There is no valid sequent with a consistent set of premises and an  
 inconsistent conclusion. 

2 There is no valid formula  such that  is consistent. 
3 There is no invalid sequent with a valid conclusion. 

4 The formula 'P& P)' is inconsistent. 

5 The form 'P  ├  P  Q' is valid. 
6 '(P)' is not a formula.  (Hint:  Suppose for reductio that '(P)' is a formula.  Assume also that 

any formula must have been constructed only by successive application of the three 
formation rules.  You can then contradict this assumption by showing for each of the 
formation rules that it could not have been the last rule used to construct '(P)'. 

7 Any sequent of the form  ├  is valid. 
 

5.4  MIXED STRATEGIES 

 The metatheorems we have considered so far are extremely simple.  More interesting 
metatheorems use several different strategies, one nested inside another.  For example, in deriving 
the consequent from the antecedent in the hypothetical argument of a conditional proof, we might 
need to use a reductio strategy, so that we nest a reductio argument inside a conditional proof.  Here 
is an example: 
 

METATHEOREM:  If the conclusion of one valid sequent is  and the conclusion of a second valid 

sequent is , then the set consisting of all the premises of both sequents is inconsistent. 

Proof: Suppose for conditional proof that the conclusion of one valid sequent is  and the 

conclusion of a second valid sequent is . 
Now suppose for reductio that the set consisting of all the premises of both sequents 
is consistent.  That is (by the definition of consistency for sets), there is some 

valuation V which makes each member of this set true.  Then all the premises of both 

sequents are true on V; and, since both sequents are valid, it follows by the definition 

of validity that neither the conclusion  nor the conclusion  is untrue on V.  

Therefore both V() = T and V() = T.  But since V() = T, by valuation rule 1,  

V() =/  T, and so we have a contradiction. 

Thus, contrary to our reductio supposition, the set consisting of all the premises of both 
sequents is inconsistent. 

So if the conclusion of one valid sequent is  and the conclusion of  a second valid sequent is , 
then the set consisting of all the premises of both sequents is inconsistent.  QED 
 
The trick in proving this metatheorem is to pay careful attention to the form of the conclusion, i.e. the 
metatheorem itself.  The metatheorem is a conditional whose antecedent is: 
 

 (A) The conclusion of one valid sequent is  and the conclusion of  

  a second valid sequent is . 
 
and whose consequent is: 
 
 (C) The set consisting of all the premises of both sequents is  
  inconsistent. 
 
So to prove it, we suppose (A) for conditional proof (thus beginning the proof with an indention to 
indicate that we are engaged in a logical fiction) and from (A) derive (C).  Then we discharge (A) and 
assert the conditional conclusion (the last statement of the proof).   
 But how can we derive (C) from (A)?  The clue to follow here is that (C) is a negative 
statement; it says that a certain set is inconsistent, i.e., not consistent.  Negative conclusions are 



 

 

usually best proved by reductio.  So within the hypothetical argument of the conditional proof, we use 
a reductio strategy.  We thus suppose the denial of (C) for reductio.  This is our second supposition, 
so we indent a second time; we are now engaged in a "fiction within a fiction" —something like the 
play performed inside Shakespeare's comedy A Midsummer Night's Dream.  We then proceed from 
(A) by simple definition, as in the previous examples, and a contradiction follows quickly.  This 
contradiction brings the "inner" fiction to an end.  We discharge the reductio supposition and conclude 
that its negation is true.  But this negative conclusion is precisely the conclusion (C) that we were 
aiming for. 
 
EXERCISE 5.4:  Prove the following metatheorems by using reductio arguments inside conditional 
proofs: 
1 If the conclusion of a valid sequent is inconsistent, then the set of  
 premises is inconsistent as well. 

2 If the conclusion  of a sequent 1,...,n  ├  is valid, then the sequent  

 itself is valid. 

3 If new premises n+1,...,m are added to a valid sequent 1,...,n  ├ ,  

 then the resulting sequent 1,...,n,n+1,...,m  ├  is valid. 

4 If 1,...,m ├  and ,1,...,n ├  are valid sequents, then  

 1,...,m,1,...,n ├  is a valid sequent. 

 

5.5 MATHEMATICAL INDUCTION 

 The final metatheoretic strategy that we will consider is mathematical induction.  The name is 
really a misnomer; mathematical induction is a form of deductive reasoning, not inductive reasoning.  
In fact, it's just an iterated form of modus ponens.  Mathematical induction is used when we want to 
prove that each member of a series of items has a certain property.  A series is a linear list, in which 
there is a first item, a second item, and so on.  Mathematical induction works on both finite series 
(which have a last item) and infinite series (which do not).  An infinite series is a series ordered like 
the natural numbers (the whole numbers beginning with 1); that is, it has a first item and each item of 
the series has a successor (e.g., after the second item there is a third), but the series itself never 
ends.  Many items that concern us in logic can be arranged into series.  For example, Rule 2 of the 
formation rules generates an infinite series of negated formulas for each sentence letter, so that from 
rule 2 alone we can see that there are infinitely many formulas.  Using the sentence letter 'P', for 
example, we have the series: 

  P     P    P   P  . . . 
(the dots indicate that the series continues infinitely).  Let us call this series S. 
 Now suppose that we want to prove that each item of S has the property of being a formula.  
Of course, that's obvious from the formation rules, but we are concerned with how to give a proper 
proof of it.  The proof requires mathematical induction.  To prove by mathematical induction that each 
item of a series has a given property F, we prove two things: 
 
 (1) That the first item of the series has F and 

 (2) For any n, if the nth item of the series has F, then so 

  does the (n+1)st. 
 
The proof of (1) is called the basis case of the induction; the proof of (2) is called the inductive step.  
If we can prove these two things, then our work is done, for together they logically imply the 
conclusion that every object in the series has the property, even if the series is infinite.  To see this, 
note that (2) is a universal statement which implies each of the following instances: 
 
  If item 1 has F, then so does item 2 
  If item 2 has F, then so does item 3 
  If item 3 has F, then so does item 4 
   . . . and so on. 
 



 

 

But (1) tells us that item 1 has F.  So by modus ponens, together with the first statement, item 2 has 
F.  But then by modus ponens, together with the second statement, item 3 has F, and so on.  Thus by 
infinitely many steps of modus ponens it follows that each item in the series has F.  Of course we 
can't actually carry out infinitely many steps of modus ponens.  That's why we have the special 
principle of mathematical induction.  (We wouldn't need it if all we ever had to worry about were finite 
series.)  This principle stipulates that if we have proved (1) and (2), we can conclude straightaway 
that each item of the series has F; we needn't bother with modus ponens.  The validity of the principle 
is obvious. 
 In proofs by mathematical induction, the basis case is usually trivial.  The inductive step 
justifies the universally quantified conditional (2).  The strategy is always conditional proof.  We 

suppose for conditional proof that some arbitrary nth item of the series has F (this supposition is 

called the inductive hypothesis) and prove from this supposition that the (n+1)st item has F as well.  
That proves the conditional, and since the item considered was arbitrary, we can universally 
generalize the conditional. 
 Now in the problem we are considering, F is the property of being a formula.  We want to 
prove that every item of series S has this property.  The basis case must establish that 'P' is a formula 
(which follows immediately from Formation Rule 1), and the inductive step must show that if one item 
in the series is a formula, the result of prefixing it with a negation sign is also a formula (which follows 
immediately from Formation Rule 2).  Hence the proof is easy.  Here it is in proper metatheoretic 
form: 
 
 METATHEOREM:  Each item of series S is a formula. 
 Proof: 
 BASIS CASE:  The first item of S is 'P', which (by Formation Rule 1) is a  

formula. 

INDUCTIVE STEP:  Suppose that the nth item of S is a formula.  (This is the  

 inductive hypothesis; it initiates the conditional proof).  Now  the (n+1)st item is the 

result of prefixing the nth with a negation sign.  Therefore (by formation rule 2 and the 

inductive hypothesis) the (n+1)st item of S is a formula. 

Thus (by conditional proof) it follows that if the nth item of S is a formula, then so is the 

(n+1)st.  Hence (by mathematical induction) each item of S is a formula.  QED 
 

 Again, this is more explicit than the usual metatheoretic style.  In professional writing, the 
labels 'BASIS CASE' and 'INDUCTIVE STEP' and the parenthetical remarks would be omitted, as 
would the last two sentences, which explicity use conditional proof and mathematical induction to 
draw the conclusions. 
 Mathematical induction enables us to prove that each item in a sequence has a given 
property F.  In the previous example, F was the property of being a formula.  In the next example, F is 
the property of being logically equivalent to 'P', and the sequence is: 
 
 P,  (P & P),  ((P & P) & P),  (((P & P) & P) & P), ... 
 
We shall call this series T.  What we want to show, in other words, is that each member of T has the 

property of being logically equivalent to 'P'.  In this sequence, for each number n (n>0), the (n+1)st 

item is a conjunction whose first conjunct is the nth item and whose second conjunct is 'P'. 
 We begin by recalling that two formulas are logically equivalent iff they have the same truth 
value on every valuation of both.  Since no formula of T contains any sentence letter other than 'P', 
there are only two valuations to consider:  the valuation on which 'P' is true and the valuation on 
which 'P' is false.  The proof proceeds as follows: 
 
 METATHEOREM:  Each item of series T is logically equivalent to 'P'. 
 Proof: 
 BASIS CASE:  The first item of T is 'P', which (trivially) has the same truth  



 

 

 value as 'P' on any valuation.  Hence the first item of T is logically equivalent  
 to 'P'. 

INDUCTIVE STEP:  Suppose that the nth item  of T is logically equivalent to 'P'.  That is,  
is true on any valuation on which 'P' is true and false on any valuation on which 'P' is 

false.  Now the (n+1)st item is of the form ( & P).  On any valuation on which 'P' is 

true, therefore, both conjuncts of ( & P) are true; similarly on any valuation on which 

'P' is false, both conjuncts of ( & P) are false.  Thus by the valuation rule for 

conjunction, ( & P) is true on any valuation on which 'P' is true and false on any 

valuation on which ( & P) is false.  Thus these 'P' has the same truth value as ( & 

P) on every valuation of both and so ( & P), which is the (n+1)st item in the series, 
is logically equivalent to 'P'. 

Thus (by conditional proof) it follows that if the nth item of T is is logically equivalent to 'P', 

then so is the (n+1)st.  Hence (by mathematical induction) each item of T is is logically 
equivalent to 'P'.  QED 
 

 Let's consider one more metatheorem that uses mathematical induction.  In this case, we will 
be concerned with the following sequence of formulas, which we shall call T: 
 
  P1,    (P1vP2),    ((P1vP2)vP3),    (((P1vP2)vP3)vP4), ... 

 

For each number n greater than 0, the (n+1)st item of this sequence is obtained from the nth by 
disjoining it with the letter 'P' subscripted with the numeral for n+1.  Our problem is to prove that for 

each such n, the tree constructed using the nth item as its initial list contains exactly n paths.  That is, 
F is the rather complex property of being a disjunction whose tree contains the number of paths 
designated by the numeral that subscripts its second disjunct.  Despite the complexity of this 
property, mathematical induction operates in precisely the same way as in the previous metatheorem.  
Here is the proof: 
 

 METATHEOREM:  For all n, the tree constructed by using the nth item of T  
 as its initial list has exactly n paths. 
 Proof: 
 BASIS CASE:  The first item of T is 'P1'.  Since 'P1' is atomic, the tree  

 constructed by using it as the initial list is finished as soon as 'P1' is  

 written,and it contains one path. 
INDUCTIVE STEP:  Suppose (inductive hypothesis) that the tree constructed by using the 

nth item of T as its initial list has exactly n paths.  Now the (n+1)st item is obtained 

from the nth by disjoining it with 'P' subscripted by the numeral for n+1.  Thus when 

the (n+1)st item is used as the initial list of a tree, the only possible first move is to 

check it and branch to the nth item on the left and to 'P' subscripted by the numeral 
for n+1 on the right.  The right path is then finished, since the initial formula is 
checked and 'P' with its subscript is atomic.  And the left path below the initial formula 

will consist simply of the tree for the nth item of T, which by hypothesis has exactly n 
paths.  Hence the whole tree must contain exactly n+1 paths. 

Thus we have shown (by conditional proof) that if the tree constructed by using the nth  item 

of T as its initial list has exactly n paths, then the tree constructed by using the (n+1)st item of 
T as its initial list has exactly n+1 paths. So (by mathematical induction) for all n, the tree 

constructed by using the nth item of T as its initial list has exactly n paths.  QED 
 
SUMMARY:  We have considered three important strategies for metalinguistic proofs:  conditional 
proof, reductio ad absurdum, and mathematical induction.  These strategies may be nested within 
one another in various combinations, but each always produces an argument of the same form.  



 

 

Which form to use is determined by the structure of the conclusion:  for a conditional conclusion use 
conditional proof; for a negative conclusion and some conclusions of other forms use reductio; for a 
conclusion about a series of things use mathematical induction.  The essentials of these forms are 
expressed in the following templates.  These templates may be used quite literally and mechanically 
in setting up proofs, but filling in the arguments (represented in each case by a box containing a 
sketchy outline of the argument) may require creativity. 
 
 
TEMPLATE FOR CONDITIONAL PROOF 
METATHEOREM:  If [ANTECEDENT], then [CONSEQUENT] 
Proof: Suppose for conditional proof that [ANTECEDENT] 

 Unpacking 
Logical Manipulation 
Repacking 

 Therefore [CONSEQUENT] 
Hence (by conditional proof) if [ANTECEDENT], then [CONSEQUENT]. 
 
 
TEMPLATE FOR REDUCTIO 
METATHEOREM:  [CONCLUSION] 
Proof:  Suppose for reductio that [DENIAL OF CONCLUSION] 

 Unpacking 
Logical Manipulation 

 Therefore [CONTRADICTION] 
Hence (by reductio) [CONCLUSION]. 
 
 
TEMPLATE FOR MATHEMATICAL INDUCTION 
METATHEOREM:  All members of [SERIES] have property F 
Proof: 
BASIS CASE:   

(Style of argument here varies but is often trivial.) 

Therefore the first member of [SERIES] has property F 
INDUCTIVE STEP:   
 Suppose that the nth member of [SERIES] has property F 

 Unpacking 
Logical Manipulation 
Repacking 

 Therefore the (n+1)st member of [SERIES] has property F. 
Hence (by conditional proof) we have shown that for any n, if the nth member of [SERIES] has 

property F, so does the (n+1)st.  Consequently (using mathematical induction to combine this 
conclusion with the conclusion of the basis case) all members of [SERIES] have property F. 
 
  
EXERCISE 5.5:  Prove the following metatheorems: 
1 Every member of the following sequence is a formula: 

  (P  P),     (P  (P  P)),    (P  (P  (P  P))) ... 
2 Every member of the sequence of problem 1 is valid.  
3 Every member of the following sequence is contingent: 

  P, P, P, P, ... 
4 Each member of the following sequence of formulas: 

  P1,   (P2P1),   (P3(P2P1)),   (P4(P3(P2P1))), ... 

 is true in any valuation on which 'P1' is true.  (Hint:  for each n, the (n+1)st  

 member of the series is a conditional whose antecedent is 'P' subscripted  



 

 

 by the numeral for n+1, and whose consequent is the nth member.) 

5 If  is a valid formula, then every member of the following sequence is a  
 valid formula: 

  ,   (  P1),  ((  P1)  P2),   (((  P1)  P2)  P3) ... 

 (Hint: use mathematical induction inside a conditional proof.) 

 
5.6  ALGORITHMS 

 An algorithm18 is a fully determinate computational procedure.  A fully determinate 
procedure is one that leaves nothing to chance or human discretion; any two people (or computers) 
carrying out the procedure (on the same symbols) would carry out the same steps in the same order.  
Algorithms are computational in the sense that they are operations on symbols; that is, an algorithm 
takes a sequence of symbols and converts it into a sequence of symbols.  One simple algorithm is 
the familiar procedure for adding a column of numbers.  The process begins, for instance, with a 
sequence of symbols that looks like this: 
 
   27 
   82 
         + 13 
This initial symbol sequence is called the input to the algorithm.  Then you perform a series of 
precise, well-defined operations that yields a new sequence of symbols, namely: 
   122. 
This is the output, or answer.  The steps comprising the algorithm consist of adding the individual 
digits together (starting in the rightmost column), carrying the appropriate numbers, and so on.  This 
procedure, of course, works with any finite column of numbers as input, so that once you learn the 
algorithm, you can, at least in principle, add any column of numbers.  
 The symbols or characters that an algorithm operates on need not be numerals.  The 
automatic "search and replace" operations available on most word processors, for example, are 
simple algorithms that operate on the character set of a computer (which includes the English 
alphabet), rather than just on numerals.  Say you want to replace all occurrences of the word 'Milton' 
in a document with the word 'Shakespeare'.  You put the cursor at the beginning of the document and 
invoke the algorithm.  The computer then runs through the entire document from beginning to end, 
making the replacements you indicated.  In this case, the input to the algorithm consists of three 
symbol sequences:  'Milton', 'Shakespeare' and the initial document.  The output is the revised 
document, in which the word 'Shakespeare' has replaced the word 'Milton'.  Here again the algorithm 
is a general procedure; it operates not only on these three symbol sequences, but (in principle at 

least—ignoring the memory limitations of computers) on any three sequences of letters.19  This is 
why mathematicians sometimes refer to algorithms as general procedures. 
 The concept of an algorithm carries with it some important presuppostions, which are not 
always explicitly recognized, but which ought to be of especial concern to philosophers.  First, each 
algorithm is defined only over a prescribed character set, that is, a specified alphabet of symbols.   
Though both sequences of numerals and strings of ordinary text are symbol sequences, you can only 
do addition on sequences of numerals, not on strings of text.  That is, the generality of an algorithm is 
not absolute; it is limited by the kinds of symbols the algorithm is designed to deal with.  More 
specifically, each algorithm presupposes a fixed character set upon which it works.   

                                                      
18The word "algorithm" (occasionally spelled "algorism") is a corruption of the name of the ninth century Arabic mathematician 
Al-Khawarazmi.  Al-Khawarazmi is most noted for bringing what we now call "Arabic" numerals from India to the Arab world, 
whence they were later transmitted to the West.  He also wrote a famous textbook illustrating many algorithms (or "Al-
Khawarazmisms"!). 
19When the input to an algorithm consists of more than one sequence of symbols, as it does here, these may be regarded as 
a single sequence in which the three elements are listed in some conventional order (for example:  term to be replaced, term to 
replace it, document).  We might in practice need additional symbols (such as spaces, commas, or other special symbols) 
between successive members of the sequence, so that we can tell where one ends and the next begins.  But by this means, 
any finite set of sequences can be treated as a single sequence.  Therefore, we lose no generality by thinking of an algorithm 
as operating always on a single sequence of symbols. 



 

 

 A character set is simply a finite set of discrete symbols.  It may be as simple as the binary 

alphabet of a computer (which has only two fundamental symbols, often represented as 0 and 1)20, or 
as complex as the typographical system of English (which includes letters, both upper and lower 
case, numerals, punctuation marks, etc.).   Logicians, of course, are most interested in the character 
sets of logical languages.  The character set for propositional logic, for example, consists of the 
twenty-six capital letters of the English alphabet, the ten numerals 0-9 (for subscripts), right and left 
parentheses, and the five characters for the logical operators.  Among the most prominent algorithms 

applied to sequences of these symbols (formulas or lists of formulas) are truth tables and trees.21   
 The character set presupposed by any particular algorithm must be finite; that is, it must not 
contain an infinite number of fundamental symbols.  We shall sometimes talk about infinite sequences 
of characters, but the character set itself must be finite. (Thus these infinte sequences always contain 
repeated characters.) 
 This is a genuine limitation, though it might not seem so at first, for there are symbol systems 
that can be interpreted as having infinitely many characters.  Consider, for example, the dial of a 
nondigital watch.  If the hands move continuously—instead of in discrete jumps or ticks—then each 
configuration of the hands might be thought of as a character representing a time.  But between any 
two distinct positions of a given hand, there is always an intermediate position, so that there are 
infinitely many of these "characters".  Such characters (or sequences of them) would not, therefore, 
be appropriate input for an algorithm.  We'd have to digitize them, i.e., represent them in a symbol 
system with a finite character set, before we could apply anything that could legitimately be called an 
algorithm. 
 The character set must not only be finite; its symbols must be distinct as well.  This does not 
preclude some variation.  For example, all the following consitute tokens of the letter 'U' in the 
character set of English: 
 

  U  U    u       

But what about this?: 

 
Is it a 'U' or an 'O' that didn't quite get closed at the top?  In reality, there are borderline cases—
symbol tokens that could be classified either of two or more ways.  But the conception of an algorithm 
presupposes that such things don't happen, that each individual symbol is distinct and uniquely 
classifiable. 
 In addition, inputs to and outputs from algorithms must be sequences of symbols.  That is, 
they must be arrayed in a distict linear order, like the text you are now reading.  By convention the 
sequential order of this text is from left to right and from the top to the bottom of the page, but other 
conventions could be used, as they are in some languages.  Below are some symbols from the 
English character set that are not arranged in any clear sequential order: 
 
     B 

     X    
R

  N  

    Q 
T

  V 

     ZC 

 
This sort of thing could not be input or output for an algorithm, unless we established some 
convention that would impose a sequential order on it. 

                                                      
20Simpler still are character sets containing only one character; the abaci discussed in Chapter 10 use in effect only a single 
character type: the counters that are manipulated in their registers. 
21Actually, truth tables and trees are not quite algorithms as we use them, since we allow some choice as to which rule to 
apply next in a tree or which subformula to analyze next in a truth table.  Only if we adopted rules that rigidly determined the 
order of these operations would trees and truth tables be algorithms, strictly speaking.  We could adopt such rules, just to make 
truth tables and trees conform to the definition of an algorithm, but that would be more trouble than it would be worth. 



 

 

 Moreover, all input sequences are presumed to be finite.  Infinite sequences, like the 
sequence of numerals used for counting: 
  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, ... 
cannot be input to an algorithm (though each individual member of the sequence, being itself a finite 
string of symbols, could be). 
 Finally, an algorithm need not be defined over all the finite sequences of symbols from its 
prescribed character set.  Many algorithms work with only certain very specific sorts of sequences.  In 
the case of truth tables and trees, for example, the sequences must be formulas or lists of formulas, 
i.e., sequences generated by the formation rules.  There are infinitely many ill-formed or nonsensical 
sequences of characters of propositional logic, such as: 

  ) )    P ( 
for which the truth table algorithm is not defined.  In general, we shall designate those symbol 
sequences for which an algorithm is defined as its permissible symbol sequences. 
 Noting the limitations of algorithms gives us a clearer conception of their nature.  An 
algorithm can apply only to finite, linear sequences of absolutely distinct symbols—and only to those 

that count as permissible sequences of the prescribed character set.22   
 A final and crucial feature of algorithms is that they may be either terminating or 
nonterminating.  A terminating algorithm is one that, given any permissible input, will always yield its 
output after a finite number of steps.  A nonterminating algorithm is one that for at least one 
permissible input does not yield its entire output after any finite number of steps.  The procedure for 
adding columns of numbers, for example, is a terminating algorithm.  But the algorithm for counting 
(using a given numeral, usually '1', as the starting point or input) is nonterminating.  It's a fully definite 
computational procedure, but it never achieves completion. 
 Logicians are interested in algorithms because they want to know how much of logic can be 
reduced to mechanical computational procedures.  Early in this century, some philosophers and 
mathematicians hoped that all the theses of logic and mathematics could eventually be brought within 
the reach of terminating algorithms; that is, that the truth or falsity of any statement of logic or 
mathematics could be decided by finite calculations.  They thought this could be accomplished by 
completely formalizing logic and mathematics—that is, expressing them in symbol systems—and 
then devising the appropriate algorithms to operate on these symbol systems.   Accordingly, this line 
of research was called formalism.  Formalists hoped to encode various fields of logic and 
mathematics in axioms (fundamental assumptions) expressed in a logical language, and then apply 
finite computational procedures (usually envisioned at the time as rules of inference) to these axioms 
to determine the truth or falsity of any question expressible in the system. 
 But formalism failed.  We now know that it is impossible to answer all logical questions by 
finite computations, and we shall prove this when we consider the undecidability of predicate logic.  
Nevertheless, for some restricted systems of logic, the formalist dream can be realized.  Propositional 
logic is one such system.  For all questions of validity (for both formulas and sequents), invalidity, 
consistency, etc., we have terminating algorithms (truth tables and trees) which give the answers. 
 Here we are concerned with trees.  It is obvious that the tree test is—or can easily be 
transformed into—an algorithm (see footnote 5).  What is not so obvious is that it terminates for all 
inputs consisting of any finite list of sentences whatsoever.  That requires proof.   Our task in the next 
section is to construct a metatheorem that proves this. 
 

5.7 DECIDABILITY 

 What we want to prove ultimately is that propositional logic is decidable.  What it means to 
say that a logic is decidable is that there exists a terminating algorithm which determines for each 
sequent of the logic whether or not it is valid.  Such an algorithm is called a decision procedure or a 
solution to the decision problem for the logic.  What we shall show is that the tree test is a decision 

procedure for propositional logic.23  To do so, we need to establish that: 

                                                      
22Philosophers -- especially those who want to identify thought with algorithmic process -- have not always kept these 
presuppositions in mind.   The human mind operates with sensory input and behavioral output that, at least on the face of it, 
seems not to satisfy all these presuppositions. 
23We could have shown this for the truth table test as well.  In fact, for the truth table test it's obvious.  We focus on trees, 
however, because the tree test can be straightforwardly generalized to predicate logic; the truth table test can't be. 



 

 

 
 (1) the tree test for propositional logic is in fact a terminating algorithm, 
 (2) if the tree test classifies the sequent as valid (i.e., all paths of its  
  finished tree close), then that sequent is valid, and 
 (3) if a sequent is valid, the tree test classifies that sequent as valid  
  (i.e., all paths of its finished tree close). 
 
We will prove proposition (1) in this section,  proposition (2) in Section 5.8, and propostion (3) in 
Section 5.9.  Proposition (2) expresses the soundness of the tree test; the test is sound in the sense 
that if it classifies a sequent as valid, the sequent is in fact valid.  Proposition (3) expresses the test's 
completeness; it is complete in that it does not fail to classify any valid sequents as valid.  Uniting 
the conditionals (2) and (3) into a single biconditional, we get a statement that expresses the full 
accuracy of the tree test: 
 
 (4) The tree test classifies a sequent as valid (i.e., all paths close)  
  if and only if that sequent is valid. 
 
 Our first task is to prove that the tree test always terminates.   The reason why it terminates is 
that whenever we apply a rule to a formula, each of the new formulas produced by the rule is shorter 
(i.e., contains fewer characters) than the original formula.  Now formulas are not infinitely divisible; 
like material substances they have smallest units, or atoms—namely atomic formulas.  Hence this 
shortening process cannot go on forever.  Eventually it has to stop. 
 This is the right idea, but it misses something:  although formulas grow shorter and shorter 
within each path, the number of paths increases each time we apply a branching rule.  In applying 
branching rules, might we not spawn so many new paths that we create more work than we complete 
and hence never finish?  In other words, even though no single path may ever grow infinitely long, 
might we not generate so many new paths that the tree continues to grow—perhaps by becoming 
"bushier and bushier"—without end? 
 In fact this cannot happen.  But that is not so obvious; it requires proof.   
 Our reasoning will fall into several parts, which we will express as lemmas (short proofs 
preliminary to a major result).  In Lemma 1 we will show that because of the shortening of formulas, 
each individual path in a tree must come to an end.  Then to alleviate the concern that the tree might 
continue to grow forever anyway (e.g. by multiplication of paths), we will prove in Lemma 3 that in 
order to grow endlessly it would have to have an unending path—which Lemma 1 will have shown to 
be impossible.  Before proving Lemma 3, we shall prove another lemma, Lemma 2, which provides a 
fact needed in proving Lemma 3.   Finally, we'll combine Lemmas 1 and 3 into a metatheorem that 
proves that the tree test always terminates.  Before embarking on our proofs, we need some 
definitions: 
 
DEFINITION 1:  The character count of an open path is the total number of characters (logical 
operators, sentence letters, and parentheses—numerical subscripts don't count) contained in 
unchecked formulas on that path.  The character count of a closed path is zero. 
 
NOTE:  For purposes of calculating the character count, the formation rules must be followed strictly.  
This means that outer brackets may not be dropped; they are included in the count. 
 
DEFINITION 2:  A path P2 is an one-step extension of a path P1 iff P2 is obtained from P1 by 

applying a single tree rule to some unchecked formula or (in the case of the negation rule) pair of 
unchecked formulas of P1.   

 
Each application of a branching rule produces two one-step extensions of a path, but application of a 
nonbranching rule produces only one one-step extension.  One-step extensions created by some 
rules (for example, the disjunction or double negation rules) contain only one more formula than the 
path they extend.  But one-step extensions created by others (for example, the conjunction or 
biconditional rules) contain two more formulas than the path they extend.   



 

 

 We can now launch our proofs.  We first prove Lemma 1, which shows in effect that if an 
initial list has a finite character count (which is always the case), then any path it generates must be 
finitely long as well. 
 
Lemma 1:  If the character count of the tree's initial list is n, then each path of the tree must be 
finished after at most n applications of the tree rules to formulas on that path. 
Proof: Suppose the character count of the tree's initial list is n.  Now when any of the rules is applied 

to a formula on a path P, each of the resulting one-step extensions of P has a character 

count at least one less than the character count of P (check this for each of the rules)24.  

Furthermore, the minimum character count for any path is zero.25  Thus since the character 
count of the initial list is n, and each application of a rule decreases the character count of the 
resulting one-step extensions by at least one, at most n applications of the rules can be made 
to formulas on a path before that path is finished. 

Hence if the character count of the tree's initial list is n, then each path of the tree must be finished 
after at most n applications of the tree rules to formulas on that path. QED 
 
Having shown that all paths must be finite, we must still prove that the tree can't grow forever by 
endless proliferation of these finite paths.  To make these ideas precise, we add two more definitions.  
 
DEFINITION 3:  A path P is infinitely prolongable iff there exists an infinite series P

0
, P

1
, ... of paths 

such that P
0
 = P and, for each n, Pn+1

 is a one-step extension of Pn. 

 
That is, a path is infinitely prolongable iff the tree rules can be applied to make it grow endlessly 
longer.  This is just what Lemma 1 rules out; that is, so long as the initial list has a finite character 
count, Lemma 1 tells us that it cannot produce an infinitely prolongable path.  But we are still 
concerned about a tree growing endlessly in some other way—e.g., by becoming infinitely bushy.  
The next definition gives precision to this worry.  It captures the idea of infinite growth in general:  
 
DEFINITION 4:  A path P is nonterminating iff there exists an infinite series T

0
, T

1
, ... of trees such 

that T
0
 = P and, for each n, Tn+1

 is the result of applying a single rule to an unchecked formula or (in 

the case of the negation rule) pair of unchecked formulas somewhere in Tn.   

 
The series T

0
, T

1
, ... is a series of trees (or partial trees) generated by applying rules starting with P, 

but not confining application of the rules to only one path.  Thus a path is nonterminating iff starting 
with that path we can apply tree rules to formulas (perhaps among various branches into which that 
path splits) forever.  Nontermination is an apparently broader concept than infinite prolongability; a 
path might, it seems, be nonterminating by being able to grow endlessly more "bushy," as well as by 
growing endlessly longer.  Actually, however, this apparent difference is illusory, as we'll prove in 
Lemma 3.  But to prove Lemma 3, we first need to prove this: 
 
Lemma 2:  If P is a nonterminating path, then P has a nonterminating one-step extension. 
Proof: Suppose (for conditional proof) that P is a nonterminating path.  That is, there is an infinite 

series T
0
, T

1
, ... such that T

0
 = P and, for each n, Tn+1

 is the result of applying a single rule 

                                                      
24The biconditional rule, for example, allows us to check a formula of the form (  ) and create one one-step extension to 

which we add  and  and another to which we add  and .  The formula (  ) has three characters in addition to 

those in   and , namely:  '(', '', and ')'.  (Outer brackets are included in the character count!)  But the first one-step 

extension omits all three of these characters, keeping only  and , while the second adds only two characters in addition to 

those in  and , namely two occurrences of ''.  Thus since a checked formula no longer counts, application of the 
biconditional rule reduces the character count along the first one-step extension by three and along the second one-step 
extension by one.  Similar reductions of the character account occur with all the other rules. 
25The character count of a path drops to zero if the path closes; if it doesn't close, the path must nevertheless be finished by 
the time its character count reaches zero, since by that time all formulas are checked and so no further rules can be applied.  
Actually, the character count of an open path cannot drop as far as zero, since some unchecked atomic formulas or negations 
of atomic formulas remain on the path.  



 

 

somewhere in Tn.  Thus in particular T
1
 is the result of applying a single rule to a formula or 

pair of formulas of P.  Since no single application of a rule can split a path into more than two 
paths, T

1
 contains at most two paths—maybe only one.   

Now suppose for reductio that P does not have a nonterminating one-step extension.  
This means that no path of T

1
 is nonterminating.  Hence there can't be an infinite 

succession of rule-applications starting with any path of T
1
.  But since T

1
 has at most 

two paths, it follows that there can't be an infinite succession of rule-applications to T
1
 

itself, since the total number of rule-applications for T
1
 is just the total number for its 

paths, and this number, being the sum of at most two finite quantities, is finite.  
Hence, there is no infinite series T

0
, T

1
, ... such that T

0
 = P and, for each n, Tn+1 is 

the result of applying a single rule somewhere in Tn, in contradiction to what we 

concluded earlier. 
 Hence, contrary to our supposition, P does have a nonterminating one-step extension. 
Thus we have shown that if P is a nonterminating path, then P has a nonterminating one-step 
extension. 
 
The next lemma, which shows that a path can't grow infinitely in any sense without being infinitely 
prolonged, is historically known as König's Lemma: 
 
Lemma 3 (König's Lemma):  If L is a nonterminating path, then L is infinitely prolongable. 
Proof: Suppose (for conditional proof) that L is a nonterminating path.  This means that there exists 

an infinite series T
0
, T

1
, ... of trees such that T

0
 = L and, for each n, Tn+1

 is the result of 

applying a single rule somewhere in Tn.  We now define an infinite series P
0
, P

1
, ... of paths 

such that P
0
 = L and, for each n, Pn+1

 is a one-step extension of Pn.  First let P
0
 = L.  Now by 

Lemma 2, P
0
 has at least one nonterminating one-step extension.  Call it P

1
.  (If there is more 

than one, let P
1
 be the leftmost.)  Now again by Lemma 2, since P

1
 is nonterminating, it must 

have a nonterminating one-step extension P
2
, and so on ad infinitum.  Clearly, then P

0
, P

1
, ... 

is an infinite series of paths such that P
0
 = L and, for each n, Pn+1

 is a one-step extension of 

Pn.  But this means that L is infinitely prolongable. 

Thus we have shown that if L is a nonterminating path, then L is infinitely prolongable. 
 
We are ready at last to combine Lemmas 1 and 3 into the major result of this section: 
 
METATHEOREM:  Any tree for any finite list of formulas of propositional logic is finished after some 
finite number of applications of the tree rules. 
Proof: Suppose for reductio that this is not the case, i.e., that there is a finite list L of formulas of 

propositional logic that yields a tree that is not finished after any finite number of applications 
of the rules.  This means that, starting with L, rules can be applied infinitely, so that there is 
an infinite series T

0
, T

1
, ... such that T

0
 = L and, for each n, Tn+1

 is the result of applying a 

single rule somewhere in Tn. L, that is to say, is  nonterminating.  Hence by Lemma 3, L is 

infinitely prolongable.  But since L is a finite list of formulas, it must have a finite character 
count, n.  Hence by Lemma 1 each path of L's tree must be finished after at most n 
applications of tree rules to formulas on that path, where n is finite.  So L is not infinitely 
prolongable, and we have a contradiction. 

Therefore the tree for any finite list of formulas of propositional logic is finished after some finite 
number of applications of the tree rules.  QED 
 
Since sequents are always finite lists, and they remain finite when we negate their conclusions, it 
follows that the tree test peformed on a sequent will always finish in a finite number of steps.  The 
tree test is, in other words, a terminating algorithm. 
 



 

 

5.8  SOUNDNESS OF THE TREE TEST 

 A test for validity is said to be sound  if whenever that test classifies a sequent as valid, it is 

in fact valid.  In this section, we will show that the tree test is sound.26  We shall do this proof in two 
stages.  First we will prove as a metatheorem that any tree constructed from a consistent initial list 
has an open path.  Then we will derive the soundness result explicitly as a corollary, i.e., a result that 
follows easily from something previously established. 
 To prove the conditional that if an initial list is consistent, then it always yields an open path, 
we suppose for conditional proof that we have a consistent initial list.  We then unpack the notion of 

consistency as truth on some valuation—which we shall call V.  The heart of the argument is to show 

that each time we apply a tree rule, the resulting tree contains a path P whose formulas are all true on 

V.  But since all P's formulas are true on V, P cannot be closed because it cannot contain both a 

formula and its negation (since these could not both be true on V).  Hence P must be an open path. 

 That's the proof in a nutshell.  Here it is in greater detail: 
 
METATHEOREM:  If an initial list of formulas is consistent, then there is an open path through any 
(finished or unfinished) tree obtainable from that list by the tree rules. 
Proof: Suppose (for conditional proof) that some initial list of formulas, call it L, is consistent.   

 This means that there is some valuation V on which all the members of L are true.  Now let T 

be any tree obtainable from L by the tree rules.  To create T, a series T1, ..., Tz of trees was 

successively constructed, whose first member T1 was L, whose final member Tz is T, and 

whose  (n+1)st member Tn+1, for each n (1≤n≤z), was obtained from the nth, Tn, by the 

application of a single tree rule.  We shall prove that each member of this series contains an 
open path, whence it follows that T itself (i.e., Tz) contains an open path.  To prove this, it 

suffices to show that every tree in the sequence contains a path whose formulas are all true 
on V.  For if all formulas of a path are true on V, then (by valuation rule 1) that path cannot 

contain both a formula and its negation, and hence must be open.  To prove that each tree in 

the series contains a path all formulas of which are true on V, we use mathematical induction: 

BASIS CASE:  The first member of the series is T1, which is L itself, and by hypothesis each 

member of L is true on V.27 

 INDUCTIVE STEP:  Suppose (inductive hypothesis) that the nth item Tn of  

 the series (where n<z) contains a path P all of whose formulas are true on V.  Now 

the (n+1)st item, Tn+1, is formed by a single application of a rule to Tn.  There are 

two possibilities concerning the point of application of this rule:  either the formula or 
formulas to which it is applied are on P, or not.  If the rule is applied to formulas on P, 

then by the inductive hypothesis these formulas are true on V.  Hence the rule used 

can't have been the negation rule, which closes paths, since a formula and its 

negation cannot both be true on V.  So it must have been one of the other nine rules.  

Now when applied to a formula on a path whose formulas are all true on some 
valuation, each of these rules produces at least one one-step extension of that path 
whose formulas are all true on that valuation.  (It is easy to check this for each rule, 

and you should do so.28)  So at least one of the one-step extensions of P is a path of 

                                                      
26This is a different use of the term when we speak of a sound argument -- i.e., a valid argument with true premises.  The 
soundness of the tree rules (or of the rules of inference; see Section 5.10) implies nothing at all about the truth or falisty of the 
premises.  It is unfortunate that the same word 'sound' is used in both these ways, but the usage is so firmly established in the 
logical literature that there is no point in bucking it. 
27When I say that this is true "by hypothesis," I refer to the fact that we are operating under the supposition (for conditional 
proof) that L is consistent, which means there must be a valuation on which all its members are true.  We have labelled that 

valuation " ".  Thus each member of L is true on . 
28Take, for example, the disjunction rule .  Suppose this is applied to a formula    which occurs on a path all of whose 

formulas are true on some valuation .  Then, since    itself is true on , by the valuation rule for disjunction either  or  

must be true on .  Therefore, since the rule  produces two one-step extensions the path, one of which appends  to it and 

the other of which appends , all the formulas of at least one of these one-step extensions of the path must be true on .  



 

 

Tn+1 whose formulas are all true on V.  If, on the other hand, the formula or formulas 

to which the rule is applied are not on P, then nothing will be added to P in moving 
from Tn to Tn+1.  Hence in this case P itself is a path of Tn+1 whose formulas are all 

true on V.  So either way Tn+1 contains a path whose formulas are all true on V. 

 Thus (by conditional proof) we have shown that  for any n (n<z), if Tn contains a path whose 

formulas areall  true on V, so does Tn+1.  So (by mathematical induction) each tree in the 

sequence T1, ... Tz contains a path  whose formulas are all true on V.  Hence T (Tz) must 

itself contain a path whose formulas are all true on V.  Hence (as explained above) T 

contains an open path.   
Hence we have shown (by conditional proof) that if L is consistent, then there is an open path through 
any (finished or unfinished) tree T obtainable from L by the tree rules.  QED. 
 
We now use this metatheorem to prove that the tree test is sound.  A test for validity is sound, once 
again, if whenever that test classifies a sequent as valid, that sequent is in fact valid.  What it means 
for the tree test to classify a sequent as valid is that, given the premises and the negation of the 
conclusion as an initial list, we get a tree all of whose paths close.  The argument from our 
metatheorem to soundness is relatively simple: 
 
COROLLARY (SOUNDNESS):   If the tree test classifies a sequent as valid, it is in fact valid. 
Proof: Suppose (for conditional proof) that the tree test classifies a sequent   

 1,...,n ├  as valid.  This means that the tree's initial list is  1,...,n,  , and that all 

paths of the tree close.  But by the previous metatheorem, if that initial list is consistent, then 
there is an open path through any tree constructed from it.  Since all paths close, there is no 
open path through the finished tree.  So (by modus tollens), the initial list is inconsistent.  But 
then by the metatheorem proved at the end of Section 5.2, the sequent is valid. 

Therefore if the tree test classifies a sequent as valid, it is in fact valid.  QED 
 
 A radical sceptic might wonder what this soundness proof really proves.  If, for example, 

someone had doubts about the validity of sequents proved by I, those doubts would hardly be 
allayed by a metatheorem established by conditional proof—i.e., the same pattern of reasoning at a 
different linguistic level.  As a response to such a person, the metaproof would be circular—assuming 
the validity of one of the very patterns whose validity it purported to prove. 
 Metatheoretic proofs are not, however, intended as responses to radical sceptics.  To a 
person who doggedly doubts the elementary rules of logic, there is no effective logical response.  
Rather, the point of this soundess proof is to show, given a prior understanding of logic, that any 
sequent judged valid by the tree test is valid on classical semantics—i.e., the semantics described in 
chapter 3.  The soundness proof provides, not a wholesale assurance that classical reasoning is 
irrefutable, but the more modest assurance that the tree rules validate only sequents they ought to 
validate, given classical semantics.  It presupposes, moreover, a willingness to use what are in effect 
the rules of classical logic in the metalanguage.  But what alternative is there?  If we did not grant the 
validity of some sort of reasoning somewhere, we would never accept any conclusion and never 
come to systematic insight about anything.   That is the radical sceptic's game, but it is a game that 
precludes much intellectual adventure. 
 
EXERCISE 5.8.1:  In the proof of the main metatheorem of this section, it is necessary to verify for 

each tree rule other than  that when applied to a path whose formulas are all true on some valuation 
V, it yields at least on one-step extension of that path whose formulas are all true on V.  I did this for 

the  rule in a footnote.  Write out the necessary verifications for the rules , &, &, , , , , 

and .
 
EXERCISE 5.8.2: Using the metatheorem of this section as an assumption, prove the following 
corollaries: 
1 If the tree test classifies a formula as inconsistent, it is in fact inconsistent. 
2 If the tree test classifies a formula as valid, it is in fact valid. 



 

 

3 If a formula is contingent, the tree test classifies it as contingent. 
 

5.9  COMPLETENESS OF THE TREE TEST 

 In this section we prove the completeness of the tree test.  A test for validity of sequents is 
complete iff it classifies all the valid sequents as valid; in other words, if a sequent is valid, the test 
classifies that sequent as valid.  To prove that the tree test is complete, we proceed as we did in 
proving that it is sound.  That is, we first prove a general metatheorem and then append a simple 
corollary that proves the completeness result. 
 The general metatheorem is expressed as the following conditional: 
 
  If there is an open path through a finished tree, then its initial list is  
  consistent. 
 
To prove this conditional, the first step is to suppose for conditional proof that there is an open path P 

through a finished tree.  We then show how to construct a valuation V on which all the members of P 

are true.  But given that all members of P—including the initial list itself—are true on V, by the 

definition of consistency the initial list is consistent.   

 In showing how to construct V we first define the notion of formula length.  The length of a 

formula is the number of characters it contains, excluding subscripts.  Thus, for example, the length of 

'(P & Q)' is 6 and the length of 'P12' is 3.  Here is the proof in full regalia: 

 
METATHEOREM:  If there is an open path through a finished tree, then its initial list is consistent. 
Proof: Suppose for conditional proof that there is an open path P through a finished tree.  Since this 

tree is finished, any formula of P having length 3 or more has been checked.29  Now consider 

the valuation V which makes formulas of length 1 (sentence letters) occurring on P true and 

all other sentence letters false.30  Since P is open and the tree is finished, P cannot contain 
both an atomic formula and its negation.  So all formulas of P having length 1 or 2 are true on 

V.31  We use this fact to show that all formulas of P are true on V, and hence that all 

members of the initial list are true on V (since these are formulas of any path, including P).  

To do so, we proceed by reductio: 

Suppose for reductio that some formula of P is not true on V.  Then there must be 

some formula  of P which is not true on V, such that all formulas of P shorter than  

are true on V.  Now the length of  is at least 3, for otherwise  would be true on V, 

as noted above.  And since the tree is finished and P is open, some rule has been 

applied to .32  Except for the negation rule (which closes paths and hence could not 
have been applied on P), applying any rule to any formula yields only shorter 

formulas.  Hence P contains at least one formula shorter than  that is obtained from 

 by one of the rules.  But since  is the shortest formula on P that is not true on V, 

all formulas shorter than  on P are true on V.  Hence all formulas on P obtained 

from  by the rules are true on V.  But it is a property of each of the rules that if they 

                                                      
29That is, only atomic formulas or negations of atomic formulas remain unchecked.  This must be the case, since otherwise 
more rules could be applied on P, which is open, and so the tree would not be finished. 
30Recall that formulas count as occurring on a path only if they are listed there as whole formulas, not if they are merely parts 
of other formulas.   
 The point of making all sentence letters that do not occur on P false is that some sentence letters in the initial list 
may not occur either negated or unnegated along the path.  This signifies that, given the other truth values determined by the 

path, their truth value does not affect the truth of formulas of the initial list.  For the sake of definiteness, we define  in a way 

that makes them false, but this choice is arbitrary.   Our definition also, of course, makes sentence letters whose negations 
occur on P false, and this is not arbitrary. 
31Those of length 1 (sentence letters) are true because they are assigned the value T by  directly.  And those of length 2 

(negated sentence letters) are true because, since their sentence letters do occur on path P, these sentence letters have been 
assigned the value F by . 
32We know this because a finished path by definition contains no unchecked sentences of length 3 or more.  Any checked 
sentence is a sentence to which a rule has been applied. 



 

 

yield only true formulas on some path, then the formula to which they were applied is 

true.  (Check this for each rule.33)  Hence  itself must be true on V.  But by 

hypothesis  is not true on V  and so we have a contradiction. 

This contradiction shows that our reductio hypothesis (namely that some formula of P is not 

true on V) is false; hence all formulas of P are true on V, whence it follows (as noted above) 

that the initial list was consistent. 
But all of this was proved under the assumption (for conditional proof) that the finished tree contains 
an open path.  Hence in sum what we have proved is that if a finished tree contains an open path, 
then the tree's initial list was consistent.  QED 
 
COROLLARY (COMPLETENESS):  If a sequent is valid, the tree test classifies that sequent as valid. 

Proof: Suppose that  1,...,n ├   is a valid sequent.  It follows by the metatheorem at the end of 

Section 5.2 that the set  {1,...,n,   is inconsistent.  But by the previous metatheorem, if 

there is an open path through the finished tree whose initial list is this set, then that initial list 
is consistent.  Hence (by modus tollens), there is no open path through the tree constructed 

by  using 1,...,n,  as the initial list.  But this is to say that the tree test classifies the 

sequent  1,...,n ├  as vaild. 

Therefore, if a sequent is valid, then the tree test classifies that sequent as valid.  QED 
   
EXERCISE 5.9:  Using the metatheorem of this section as an assumption, prove the following 
corollaries: 
1 If a formula is inconsistent, then the tree test classifies it as inconsistent. 
2 If a formula is valid, then the tree test classifies it as valid. 
3 If the tree test classifies a formula as contingent, then it is contingent. 
 

5.10  SOUNDNESS AND COMPLETENESS OF THE NATURAL DEDUCTION 
RULES 

 Having shown that the tree test is sound and complete—i.e., that it classifies a sequent as 
valid iff it is in fact valid—our next task is to show that the ten natural deduction rules presented in 
Sections 4.2 and 4.3 are also sound and complete.  A system of inference rules is sound iff each 
sequent provable by these rules is valid, and it is complete iff each valid sequent is provable by the 
rules.  The soundness of these ten basic inference rules provides a guarantee that that no sequent 
provable by these rules has a counterexample.  The completeness of these rules guarantees that 
they alone suffice to prove every valid sequent expressible in the language of propositional logic. 
 The ten rules by themselves, however, do not constitute a decision procedure, since 
applications of the rules need not terminate.  Consider, for example, the following infinite "proof" that 

uses only the rules &I and &E34: 
 
  1 P & Q   A 
  2 P   1 &E 
  3 Q   1 &E 
  4 P & Q   2,3 &I 
  5 P   4 &E 
  6 Q   4 &E 
  7 P & Q   5,6 &I 
  8 P   7 &E 

                                                      
33If, for example, the rule & is applied to a conjunction  & , it will produce the formulas  and  on each path below it.  But 

by the valuation rule for conjunction if these two formulas are true, then  &  itself must be true.  Similarly, if  is applied to a 

disjunction   , each new path it produces will contain either  or .  But by the valuation rule for disjunction if either of 

these two formulas are true, then    is true.  Thus if either of these rules yields only true formulas along a given path, then 

the formula to which it is applied must be true. The same result holds for the other rules. 
34I put the word 'proof' in quotation marks, because an infinite structure like this is not a genuine proof.  A proof always has a 
final line on which its conclusion is displayed. 



 

 

  9 Q   7 &E 
   . 
   . 
   . 
 
This pattern can clearly be iterated ad infinitum.  Nobody would do this in practice, of course, but it is 
a common experience in working with inference rules to reason in circles, repeatedly deriving what 
you have already proved or assumed.  This simple example shows that in principle you could do so 
forever. 
 So inference rules by themselves are not a decision procedure in the way that truth tables or 
trees are.  It is, however, possible to design a terminating algorithm for generating proofs by 
rigorously specifying the order of application of the inference rules.  One way to do this is to make 
proofs mimic trees.  If a sequent is valid, we know from the completeness of the tree test that all the 

paths of the tree for that sequent close.  The tree procedure is closely akin to a reductio (I) proof in 
which the negation of the conclusion is shown to lead to contradiction.  If we had a terminating 
algorithm for reliably converting trees for valid sequents into such proofs, then by using it we could 
avoid the kind of infinite regress illustrated above.   The whole procedure would, however, be 
parasitic upon the tree test.  That is, we would need to construct a tree first to determine whether or 
not the sequent was valid; then, if all paths closed, we would convert that tree into a proof.  For invalid 
sequents, whose paths do not all close, prior performance of the tree test would prevent us from 
attempting a proof.  Thus an algorithm for converting trees of valid sequents to proofs would have 
little value in itself, since once we have determined the validity of a sequent by the tree test, it is 
redundant to construct a proof.  
 Yet such an algorithm would have at least one valuable implication:  it would demonstrate the 
completeness of the ten basic rules.  For if we could convert any tree for valid a sequent into a proof 
of that sequent, then the following would be true: 
 
 (1) If the tree test classifies a sequent as valid, then that sequent  
  can be proved using only the ten basic inference rules. 
 
Putting this together with the completeness of the tree test (which we proved in the last section): 
 
 (2) If a sequent is valid, the tree test classifies that sequent as valid, 
 
we obtain the conclusion: 
 
 (3) If a sequent is valid, then that sequent can be proved using only the  
  ten basic inference rules. 
 
But (3) asserts that the rules are complete.  Since we have already proved (2), to prove the 
completeness of the inference rules, then, we need only prove (1)—that is, to show how to convert a 
tree for a valid sequent (a tree all of whose paths close) into a proof that uses only the ten rules.  
Before defining a general method for doing this, let's do the conversion for some specific examples.   

 Our first example is the valid sequent 'P & Q  ├  P  R'.  Our aim is to show how to convert 
the tree for this sequent into a proof.  We shall do this by constructing the tree and the corresponding 
proof side by side.  The first step of the tree test is to write the initial list, consisting of the premises 
and the negation of the conclusion.  The tree test reveals the inconsistency of this initial list 
(assuming the sequent it represents is valid) by showing that each possible way in which all its 
formulas might be true leads to contradiction.  We may think of this as a reductio strategy in which the 
negation of the conclusion is hypothesized in order to show that, given the premises, it leads to 
absurdity.  Thus we can begin to construct a proof that mimics the tree test by assuming the 
sequent's premises and hypothesizing the negation of its conclusion for indirect proof.  Thus for the 

sequent 'P & Q  ├  P  R', the tree and the corresponding proof begin as follows: 
 
TREE     CORRESPONDING PROOF 
1 P & Q  Premise 1 P & Q   A 



 

 

2 (P  R) Neg. Concl. 2 | (P  R) H (for I) 
 
In the tree, both formulas require nonbranching rules, so that the order of application is unimportant.  

Let's being by analyzing 'P & Q'.  The corresponding move in the proof is to apply &E twice35: 
 
3 P  1 &  3 | P  1 &E   
4 Q  1 &  4 | Q  1 &E 
 
The occurrence of 'P & Q' in the tree should now be checked off.  The next step in constructing the 

tree is to check '(P  R)' and analyze it into 'P' and 'R' using the  rule.  In the proof these same 

formulas may be deduced by converting '(P  R)' into 'P & R' by DeMorgan's Law (DM) and then 
using two steps of &E: 
 

5 P  1   5 | P & R 2 DM 

6 R  1   6 | P  5 &E 

     7 | R  5 &E 
 
DM, of course, is a derived rule, not one of the ten basic rules.  We saw in Section 4.4, however, that 
derived rules are merely abbreviatory devices; anything proved with derived rules can also be proved 
with the ten basic rules, so that the use of derived rules here is quite legitimate. 

 Both 'P' and 'P' now appear on the tree's one path.  The next step in the tree, therefore, is to 
close this path using the negation rule.  We shall think of the 'X' that closes the path as representing a 

contradictory formula—specifically 'P & P'.  The proof also contains both 'P' and 'P'; thus the 

corresponding move in the proof is to derive 'P & P' by &I:  
 

7 X  3,5  8 | P & P 3,6 &I 
 
The tree, which represents only the derivation of a contradiction from the premises and the 
hypothesis of the negationed conclusion, is now complete.  But to finish the proof we need to end the 

hypothetical derivation and deduce the conclusion.  This takes two more steps, one of I and one of 

E: 
 

     9 (P  R)  1-8 I 

     10 P  R   9 E 
 

We have now converted the tree for the sequent 'P & Q  ├  P  R' into a proof of that sequent. 
 This example was unusually simple, since the tree did not branch.  When trees branch, the 

corresponding proofs involve uses of vE within the overall I strategy, and things become a bit more 

complicated.  Take, for example, the valid sequent 'P  Q, P  ├  Q', which expresses one version of 
disjunctive syllogism.  As before, we begin the tree by listing the premises and negation of the 
conclusion, and we begin the corresponding proof by assuming the premises and hypothesizing the 
negation of the conclusion: 
 
TREE      CORRESPONDING PROOF 

1 P  Q  Premise 1 P  Q   A 

2 P  Premise 2 P   A 

3 Q  Neg. Concl. 3 | Q  H (for I) 
 
 The next step of the tree is to check the disjunction and break it into its components, drawing 
out the consequences of each component separately along distinct paths.  However, if the initial list is 
inconsistent (as this one is), then each path closes because each contains a contradiction.  Thus if a 

disjunction    occurs in a tree with an inconsistent initial list, the tree will show that  and  each 
                                                      
35Only the first application of &E, the one at line 3, is essential to the proof, but we are concerned here with proofs that mimic 
trees, not with proofs that are maximally compact.  The extra steps are harmless. 



 

 

lead to contradiction, which shows that the disjunction itself, together with the other statements on its 
path, implies a contradiction.   

 To mimic this in a proof, we need to prove    and   , for some contradiction , then 

use vE to derive  directly from   .  Thus a single application of the  rule in the tree becomes a 

disjunction elimination (vE) with two subsidary conditional proofs in the corresponding proof (here  

is 'P',  is 'Q' and  is 'P & P): 
 

 4     | |     P   H (for I) 

 5     | |     P & P  2,4 &I 

 6     | P  (P & P)  4-5 I 

4        P         Q  1v 7     | |     Q   H (for I) 

5        X 2,4        X  3,4 8     | |     P & P  3,7 EFQ 

     9     | Q  (P & P)  7-8 I 

     10   | P & P   1,6,9 vE 
 
The two conditional proofs constructed in preparation for vE represent the two branches of the tree.  
The hypothetical derivation at lines 4-5 of the proof represents the left branch of the tree.  The 'X' on 

the left branch of the tree corresponds to the contradiction 'P P' at line 5 of the proof.  The 
hypothetical derivation at lines 7-8 respresents the right branch of the tree, and the contradiction 'P & 

P' in the proof (line 8) represents 'X' that ends the right branch of  the tree.  But here 'P & P' is 

obtained, not by &I from 'P' and 'P', but by the derived rule EFQ (ex falso quodlibet; see Section 4.4) 

from 'Q' and 'Q'.   

 This use of EFQ is important.  Though different formulas (such as 'P' and 'P' or 'Q' and 'Q) 
may lead us to close paths in the tree, each occurrence of 'X' must be represented by the same 
contradictory formula in the proof.  This is because each of the two conditionals used in vE (here the 
conditionals appearing at lines 6 and 9) must have the same consequent.  So to apply vE (which we 
do here at line 10) we need to derive the same contradiction from each hypothesis.  EFQ will always 
enable us to do this.  (EFQ is, of course, not one of the ten basic rules, but we saw above that use of 
derived rules here is legitimate.)  In fact, to standardize our procedure, we shall arbitrarily stipulate 

that 'X' in any tree always represents the formula 'P & P' in the proof.   
 The conditionals on lines 6 and 9 of the proof and the conclusion derived by vE at line 10 do 
not correspond to any particular formulas in the tree.  They are, rather, part of the apparatus of 
disjunction elminination, which ensures that contraditions derived along different branches of the tree 
also follow from the formula from which those branches stem. 
 As in the previous example, the tree represents only the derivation of a contradiction from the 
hypothesized negation of the sequent's conclusion.  To complete the proof, we must end this 

hypothetical derivation and apply final steps of I and E: 
 

      11 Q   3-10 I 

      12 Q   11 E 
 
Indeed, any proof derived from a tree by the method illustrated here must end in this way. 
 The full algorithm for converting trees for valid sequents into proofs may be stated as follows: 
 1 List the premises of the sequent as assumptions, then hypothesize  
  the negation of the conclusion. 

 2 Derive 'P & P' from this hypothesis by converting each step in the  
  tree into a series of proof steps as described in the table below. 

 3 Deduce the double negation of the sequent's conclusion by I, and  

  thendeduce the conclusion itself by E. 
 
The following table, as noted in step 2 above, provides instructions for converting each application of 
a tree rule into a series steps in the proof: 
 

TREE RULE CORRESPONDING STEP(S) IN PROOF 

 

 



 

 

Negation ():  If an open path contains 

both a formula  and its negation, place 
an 'X' at the bottom of the path. 

Deduce from  and  the contradiction 'P & P', 

either directly by &I (if  is 'P) or by EFQ. 

Negated Negation ():  If an open path 
contains an unchecked formula of the 

form , check it and write  at the 
bottom of every open path that contains 
this newly checked formula. 

Deduce  from  by E. 

Conjunction (&):  If an open path 
contains an unchecked formula of the 

form ( & ), check it and list  and  at 
the bottom of every open path that 
contains this newly checked formula. 

Apply &E twice to ( & ) to obtain  and  on 
separate lines. 

Negated Conjunction (&):  If an open 
path contains an unchecked formula of 

the form ( & ), check it and split the 
bottom of each open path containing this 
newly checked formula into two 

branches; at the end of the first write  

and at the end of the second write . 

Apply DM to ( & ) to obtain   , then apply 

the directions for disjunction to   . 

Disjunction ()— If an open path 
contains an unchecked formula of the 

form (  ) check it and split the bottom 
of each open path containing this newly 
checked formula into two branches; at 

the end of the first write  and at the end 

of the second write . 

Hypothesize , aiming to derive 'P & P' and then 

deduce   (P & P) by I.  Next, hypothesize , 

again derive 'P & P', and then obtain   (P & P) by 

I.  Finally, use vE to deduce 'P & P' from (  ), 

   (P & P), and    (P & P).  This procedure 
always works if the sequent being tested on the tree is 

valid, since in that case all the paths below (  ) 
must close, and each closed path is converted into a 

derivation of 'P & P' in the proof (see negation rule).  If 
there are further applications of branching rules below 

(  ), these will also be converted into derivations of 

'P & P' by further applications of the procedure for 
disjunction. 

Negated Disjunction ():  If an open 
path contains an unchecked formula of 

the form (  ), check it and list both 

 and  at the bottom of every open 
path that contains this newly checked 
formula. 

Apply DM to (  ) to obtain  & , then use &E 

twice to obtain  and  on separate lines. 

Conditional ():  If an open path 
contains an unchecked formula of the 

form (  ), check it and split the 
bottom of each open path containing this 
newly checked formula into two 

branches; at the end of the first write  

and at the end of the second write . 

Apply MI to (  ) to obtain   , then apply the 

directions for disjunction to   .  



 

 

Negated Conditional ():  If an open 
path contains an unchecked formula of 

the form (  ), check it and list both 

 and  at the bottom of every open 
path that contains this newly checked 
formula. 

From (  ), reason as follows (line numbers are 
represented by letters, starting with 'a): 

a  (  ) 

b  |      H (for I) 

c  |     b MI 

d  | (& a,c &I

e  (  )   b-d I 

f    &    e DM 

g      f &E 

h      g E 

i       f &E 

(Here  is proved at line h and  at line i.) 

Biconditional ():  If an open path 
contains an unchecked formula of the 

form (  ), check it and split the 
bottom of each open path containing this 
newly checked formula into two 
branches; at the end of the first list both 

 and , and at the end of the second 

list both  and . 

From (  ), reason as follows: 

a     

b  | ( & )  ( & )) H (for I) 

c  | |    H (for I) 

d  | |    a,c MP 

e  | | ( & )  c,d &I 

f   | | ( & )  ( & ) e I 

g  | | ( & )  ( & ) & 

                          ( & )  ( & )) b,f &I 

h  |     c-g I 

i   |     a,h MT 

j   |  &    h,i &I 

k  | ( & )  ( & )  j I 

l   | ( & )  ( & ) & 

         ( & )  ( & )) b,k &I 

m ( & )  ( & ))  b-l I 

n  ( & )  ( & )  m E 

Then apply the directions for disjunction to ( & )  

( & ) 

Negated Biconditional ():  If an 
open path contains an unchecked 

formula of the form (  ), check it 
and split the bottom of each open path 
containing this newly checked formula 
into two branches; at the end of the first 

list both  and , and at the end of the 

second list both  and . 

From (  ), reason as follows: 

a  (  ) 

b  | (( & )  ( & )) H (for I) 

c  | ( & ) & ( & ) b DM 

d  | ( & )   c &E 

e  |      d MI 

f   | ( & )   c &E 

g  |      f DM 

h  |      g COM 

i   | ( & )   h DM 

j   |      i MI 

k  |       e,j I 

l   | (  ) & (  )  a,k &I 

m (( & )  ( & ))  b-l I 

n  ( & )  ( & )  m E 

Then apply the directions for disjunction to ( & )  

( & ) 

  

 
It remains only to verify that this algorithm performs as advertised. 
 



 

 

METATHEOREM:  If the tree test classifies a sequent as valid, then that sequent can be proved 
using only the ten basic inference rules. 

Proof:  Suppose that the tree test classifies a sequent 1,...,n ├  as valid.  Then all paths of the 

tree whose initial list is 1,...,n, close.  To construct a proof of 1,...,n ├  using only 

the ten basic inference rules, apply the algorithm described above.  Now either the tree 
contains applications of branching rules or it does not.  If it does not, then it is evident by 
inspection of the algorithm that each formula in the tree obtained by the tree rules is deduced 
from the initial assumptions and the hypothesis in the proof, and that where the final 'X' 

appears in the tree, the corresponding formula derived in the proof is 'P & P'.  Hence the 

portion of the proof corresponding to the tree is just a straightforward derivation of 'P & P' 

from the assumptions 1,...,n and the hypothesis .  If, on the other hand, the tree 

employs branching rules, the formulas that begin new branches of the tree constitute 

additional hypotheses in the proof.36  Yet since each path of the tree closes, each of these 

hypothetical derivations still ends with 'P & P'.  So, in accordance with the procedures for 
disjunction and for the other branching rules, each time a branching rule is applied to some 

formula  in the tree, the portion of the proof generated by the algorithm is a derivation by vE 

of 'P & P' from .  Even if the branches themselves branch, the result is the same, since 'P 

&P' will be derived in the portion of the proof corresponding to each branch and hence (by 
vE) from the formula from which the subbranches originate. Thus, whether or not the tree 
branches, the portion of the proof corresponding to the tree as a whole is a derivation of 'P & 

P' from the assumptions 1,...,n and the hypothesis .   Therefore we may apply step 3 

of the algorithm (obtain  by I and then  by E), completing the proof of 1,...,n ├ .  

Though portions of the proof may use derived rules, these can be replaced as explained in 
Section 4.4 by derivations using only the ten basic rules.  In this way we obtain a proof of 

1,...,n ├  using only the ten basic rules. 

Therefore, if the tree test classifies a sequent as valid, then that sequent can be proved using only the 
ten basic inference rules.  QED 
 
COROLLARY (COMPLETENESS OF THE INFERENCE RULES):    If a sequent is valid, then that 
sequent can be proved using only the ten basic inference rules. 
Proof:  From the completeness of the tree test, we know that if a sequent is valid, then the tree test 
classifies it as valid.  Together with the previous metatheorem, this implies that if a sequent is valid, 
then that sequent can be proved using only the ten basic rules.  QED 
 
 Finally, we shall show that the system consisting of the ten basic inference rules is sound—
i.e., that any sequent provable by these rules is valid.  We have already seen in Sections 4.2 and 4.3 
that each rule individually is valid—i.e. that there is no counterexample to any instance of any of 
these rules.  To prove a sequent, however, we apply these rules successively.  We must, then, show 
that invalidity does not somehow creep into a proof as a result of this succession.  In order to show 
this, it will be useful to define the notion of a corresponding sequent to a line of a proof. 
 
DEFINITION:  The corresponding sequent for a given line of a proof is the sequent whose 
conclusion is the formula on that line, and whose premises are all the assumptions and all the 
hypotheses whose derivations have not yet ended that are listed on that line or at any previous lines. 
 
The corresponding sequent for a given line is in effect what is proved at that line.  To illustrate, 

consider this proof of 'P  Q, Q  ├ P'.  Corresponding sequents are listed to the right. 
 
LINE OF PROOF     CORRESPONDING SEQUENT 

1 P  Q    A  P  Q  ├  P  Q 

2 Q    A  P  Q, Q  ├  Q 

                                                      
36In the case of the two rules for the biconditional,  and , which produce branches beginning with two formulas each, the 
hypothesis corresponding to each branch in the proof is a single formula -- the conjunction of these two formulas. 



 

 

3 | P   H (for I) P  Q, Q, P  ├  P 

4 | Q   1,3 E  P  Q, Q, P  ├  Q 

5 | Q & Q   2,3 &I  P  Q, Q, P  ├  Q & Q 

6 P    3-5 I  P  Q, Q  ├  P 
 
 Since all hypothetical derivations must end before a proof is finished, the corresponding 
sequent for the last line of any proof is just the sequent whose premises are the proof's assumptions 
and whose conclusion is the proof's conclusion—i.e., the sequent to be proved.  Thus if we can show 
that the corresponding sequent for any line of any proof is valid, it will follow that the corresponding 
sequent for the last line of any proof is valid, and hence that any sequent provable by the ten basic 
inference rules is valid.  Actually, since inference rules may apply to any earlier lines, it is easier to 
prove something apparently a little stronger than this—namely that each line and all lines preceeding 
it correspond to valid sequents.  This can be done by mathematical induction on the number of lines 
in the proof.  The induction appeals frequently to the following lemma, which was problem 4 of 
Exercise 5.4: 
 

LEMMA:  If 1,...,m ├  and ,1,...,n ├  are valid sequents (where m0 and n0), then 

1,...,m,1,...,n ├  is a valid sequent. 

 
Here is the induction itself: 
 
METATHEOREM:  Let P be any proof using only the ten basic inference rules; then for each line of P, 
the corresponding sequents for all lines up to and including that line are valid. 
Proof: The lines of P form a series, so we may proceed by mathematical induction.  The property 
which we show belongs to each line is rather convoluted.  It is the property of being a line of P such 
that the corresponding sequents for it and all previous lines are valid. 

Basis case:  The first line of any proof is always the assumption or hypothesis of some formula .  

Since there are no lines previous to this first line, the corresponding sequent is  ├ .  This is clearly 
valid (see problem 7 of Exercise 5.3).  Hence the first line of P has the property of being such that the 
corresponding sequents for it and all previous lines are valid. 

Inductive step:  Suppose that the corresponding sequents of all lines up to and including the nth line 
are valid.  We must show that the corresponding sequents of all lines up to and including the 

(n+1)st line are valid.  To do this, it suffices to show just that the corresponding sequent for 

the (n+1)st line is valid.  Now in a proof using only the ten basic inference rules there are only 

twelve ways in which the (n+1)st line can be obtained:  it may either be an assumption, or a 
hypothesis, or a conclusion obtained by one of the ten basic rules.   If it is an assumption or 

hypothesis , then the corresponding sequent must also have  as both premise and 
conclusion (though it may have other premises as well), and so it is clearly valid.  (This 
follows from problem 7 of Exercise 5.3 together with problem 3 of exercise 5.4.)  Now we 
must show for each of the ten rules that when applied to lines whose corresponding sequents 

are valid it produces  a line whose corresponding sequent is valid.  We shall do this for E, 

E and I, leaving the remaining seven cases as exercises.  First, we show that if E is 
applied to a line whose corresponding sequent is valid, the resulting conclusion is a line 
whose corresponding sequent is valid.  To do this, we proceed by conditional proof.  

Suppose E is applied to a line whose corresponding sequent is valid.  Now since E 

is applied to this line, the formula it contains must be of the form .  Since the 
conclusion of the corresponding sequent for this line must be the formula that 

appears on this line, the corresponding sequent must have the form 1,...,m ├ , 

where m0.  Now E has been applied to  to obtain .  Therefore the sequent 

corresponding to the line obtained by E is of the form 1,...,m,1,...,n ├ , where 

n0.  (Here 1,...,n are any hypotheses or assumptions that may have been 



 

 

introduced after the line at which  appears.37)  Now since 1,...,m ├  is 

valid, and we saw in Section 4.2 that  ├  is valid, it follows by the Lemma that 

1,...,m ├  is valid.  (In terms of the Lemma  is  and n = 0.)  And since 

1,...,m ├  is valid, by problem 7 of Exercise 5.3, 1,...,m,1,...,n ├  is valid. 

Hence we have shown that if E is applied to a line whose corresponding sequent is valid, 
the resulting conclusion is a line whose corresponding sequent is valid.  Next, we shall show, 

again by conditional proof, that if E is applied to a pair of lines, each of whose 
corresponding sequents is valid, the result is a line whose corresponding sequent is valid. 

Suppose that E is applied to two lines each of whose corresponding sequents is 

valid.  The formulas on these lines are therefore of the forms    and , and their 

corresponding sequents have the forms 1,...,m ├    and 1,...,n ├ , where 

m0 and n0  The line obtained by the application of E is of the form  and its 

corresponding sequent has the form 1,...,p ├ , where p0 and 1,...,m and 

1,...,n are included among 1,...,p.38  Now we saw in Section 4.2 that   ,   

├   is a valid form.  Hence since 1,...,m ├     is valid, it follows by the lemma 

that 1,...,m,   ├   is valid.  Given this and the fact that 1,...,n ├  is valid, it 

follows again by the lemma that 1,...,m,1,...,n  ├ .  But since 1,...,m and 

1,...,n are included among 1,...,p, from this by problem 3 of Exercise 5.4 we may 

infer that 1,...,p ├  is valid.  But this is the corresponding sequent for the line 

obtained by E. 

Therefore if E is applied to a pair of lines, each of whose corresponding sequents is valid, 

the result is a line whose corresponding sequent is valid.  Finally, we show that if I is applied 
to a series of lines all of whose corresponding sequents are valid, the result is a line whose 
corresponding sequent is valid. 

Suppose that I is applied to a series of lines all of whose corresponding sequents 

are valid.  For I to be applicable, the first such line must contain a hypothesized 

formula  and the last must contain a contradiction  &  that is derived from .  

The corresponding sequent of this last line must therefore have the form ,1,...,m  

├   & , where m0.  Since we have supposed this sequent to be valid, there is 

no valuation on which ,1,...,m are all true and  &  is untrue.  But since  & 

 is untrue on all valuations, there is no valuation on which ,1,...,m are all true.  

Hence by valuation rule 1, there is no valuation on which 1,...,m are all true and 

 is not true.  Therefore, the sequent 1,...,m  ├   is valid.  But since application 

of I ends the hypothetical derivation from , leaving only 1,...,m as the 

assumptions or hypotheses whose derivations have not ended, this sequent is just 

the corresponding sequent for the line obtained by I. 

Therefore if I is applied to a series of lines all of whose corresponding sequents are valid, 
the result is a line whose corresponding sequent is valid.  Similar results may be obtained for 

each of the remaining seven rules:  &I, &E, I, vE, E, I and E.    Hence no matter by 

which of the twelve possible ways the (n+1)st line is obtained, the corresponding sequent for 

the (n+1)st line is valid. 

Therefore if the corresponding sequents of all lines of P up to and including the nth line are valid, then 

so are the corresponding sequents for all lines up to and including the (n+1)st.  Hence by 
mathematical induction, for each line of P, the corresponding sequents for all lines up to and including 
that line are valid.  QED 

                                                      
37Notice that none of the original hypotheses or assumptions 1,...,m can be dropped, since that would indicate that  

appears in a hypothetical derivation that has ended, so that neither E nor any other rule may be applied to it. 
38The reason for this inclusion is explained in the previous footnote. 



 

 

 
From this result, the soundess of the ten rules follows as a corollary: 
 
COROLLARY (SOUNDNESS OF THE TEN BASIC INFERENCE RULES):  If a sequent can be 
proved using only the ten basic inference rules, then that sequent is valid. 

Proof: Let 1,...,n ├  be a sequent provable using only the ten basic rules.  Then there exists a 

proof of this sequent whose assumptions are 1,...,n and whose last line contains the 

formula .  Since all hypothetical derivations used in this proof must have ended before the 

last line, the corresponding sequent for this last line is just 1,...,n ├  (see definition of 

corresponding sequent).  But by the previous metatheorem, the corresponding sequent for 

any line of any proof is valid.  Hence 1,...,n ├  is valid. 

Hence if a sequent can be proved using only the ten basic inference rules, then that sequent is valid.  
QED 
 
 Having shown that the ten basic inference rules are sound and complete (that is, that they 
enable us to prove a sequent of propositional logic iff it is valid), we now know that they enable us to 
prove exactly the sequents we should be able to prove, given the classical notion of validity. 
 

EXERCISE 5.10.1:  Prove for each of the rules &I, &E, I, vE, E, I and E that if applied to lines 
whose corresponding sequents are valid, they yield a conclusion whose corresponding sequent is 
valid. 
 
EXERCISE 5.10.2:   

1 A set of rules is consistent iff there is no formula  such that both  and  are provable as 
theorems from these rules.  Use the soundness of the ten basic inference rules to prove that 
these rules are consistent. 

2 Use the soundness and completeness of the ten basic inference rules to prove that a formula 
of propositional logic is valid (tautologous) iff it is a theorem. 

  



 

 

CHAPTER 6 
CLASSICAL PREDICATE LOGIC:  SYNTAX 

 

6. 1  QUANTIFIERS, PREDICATES, AND NAMES 

 Propositional logic is the study of how validity and related properties arise from formal 

configurations of the operators '', '&', '', '' and ''.  But these are not the only logical operators.  
Other expressions also contribute to validity.  Consider, for example, the argument: 
 
  All women are mortal. 
  Cleopatra is a woman. 

  Cleopatra is mortal. 
 
This is clearly valid in the informal sense described in Chapter 1.  But what makes it valid?  None of 
the five propositional operators are seem to occur here, so that if we were to attempt a symbolization 
in propositional logic, the best we could do would be something like 'P, Q  ├ R'.  But this sequent 
represents any argument with two premises, and it is invalid.  Plainly there is some syntactic and 
semantic structure within these sentences that accounts for the argument's validity, but just as plainly 
propositional logic does not enable us to represent it. 
 The atoms of propositional logic are sentence letters.  But, as in the argument above, the 
sentences these letters represent have internal components—subjects, predicates, and modifiers of 
various sorts—whose arrangement may affect the argument's validity.  To adequately conceptualize 
such arguments, we need ways of representing this "subatomic" structure.  We must turn up the 
power of our conceptual microscope, as it were, to reveal details where previously we had seen only 
structureless units.  Predicate logic, then, is the study of this "subatomic" realm. 
 We give the microscope its first twist by teasing out the structure of the argument's initial 
premise: 
 
  All women are mortal. 
 
Ideally, formalization produces intelligible connections to previous work.  So it is progress of a sort to 
recognize that the same thing could be said by the more awkward sentence: 
 
  For any thing, if it is a woman, then it is mortal. 
 
Though more awkward, this makes a potentially illuminating connection, since it contains a 
conditional—something we already know how to formalize.  Hence we could begin the process of 
formalization like this: 
 

  For any thing (it is a woman    it is mortal). 
 
Now the term 'thing' and the two occurrences of the word 'it' are simply placeholders—variables 
standing for any individual whatsoever.  We could therefore replace them with a symbol formally 
recognized as a variable—say 'x': 
 

  For any x (x is a woman    x is mortal). 
 
The variable 'x' may stand for any object.  We shall use the lower case letters 'u' through 'z' as 
variables in this way.   

 Next we adopt the symbol '' to stand for the English words 'For any'.  This symbol is called 
the universal quantifier.  We may now write: 
 

  x(x is a woman   x is mortal). 
 



 

 

This is still a specific sentence, though written in a motley hybrid of logic and English.  It says exactly 
what our original sentence said—namely, that all women are mortal. 
 Two fragments of English remain:  'is a woman' and 'is mortal'.  In English grammar these are 
called "predicate phrases"; in logic, we just call them predicates.  We next adopt a new category of 
symbols:  capital letters, to stand for predicates.  Like the sentence letters of propositional logic, these 
are placeholders that have variable interpretations; they don't mean anything until we assign them an 
interpretation, and we may assign them different interpretations in different contexts.  Here we will 
use 'W' to stand for "is a woman" and 'M' for "is mortal".  In predicate logic it is customary to write the 

predicate first followed by the subject, so that 'x is a woman', for example, is symbolized as 'Wx'.39  
Thus we we obtain: 
 

  x(Wx  Mx). 
 
 This is a formula of predicate logic.  Unlike the other expressions we wrote to produce it, this 
formula is not a sentence, but (like the formulas of propositional logic) a representation of a sentence 
form.  By itself, it has no specific meaning, though when we assign meanings to the predicate letters 
(as we have done) it does mean something—in this case, "All women are mortal." 
 The remaining two sentences of our argument both contain the name 'Cleopatra'.  We shall 
use lower case letters 'a' through 't' as names for people or things, so 'c' is the obvious choice for 
Cleopatra.  Since, as we noted above, subjects customarily are written after predicates, 'Cleopatra is 
a woman' becomes 'Wc', and 'Cleopatra is mortal' is 'Mc'.  Thus the entire argument may be 

formalized as the sequent 'x(Wx  Mx),  Wc  ├  Mc'.   

 Now it is obvious that from 'x(Wx  Mx)' we may validly deduce 'Wc  Mc'—in English: 
 
  All women are mortal 

  If Cleopatra is a woman, then Cleopatra is mortal. 
 

And from'Wc  Mc' and the second premise 'Wc', the conclusion 'Mc' follows by modus ponens 

(E).  So already we have begun so see a bit more clearly why the argument is valid.  But we will 
leave the detailed analysis of inference in predicate logic for later chapters.  Our goal in this chapter is 
to become familiar with the language of predicate logic and develop the skill of formaliztion. 
 Let's consider some variations.  Suppose we want to formalize 'Everything is mortal'.  That 
means that for any x, x is mortal—in symbols: 
 

  xMx.  
 
We might also want to say that everything is immortal.  (This is not true, of course, but we might want 

to say it anyway.)  This is to say of each thing that it is not mortal.40  So 'Everything is immortal' 
means: 
 
  For any x, x is not mortal.   
 

Now 'Mx" says that x is mortal, so 'Mx' says that x is not mortal.  Therefore the formula we want is  

  xMx.   
 
Notice that 'Everything is immortal' is just another way of saying that nothing is mortal.  We could also 

say that nothing is a woman in the same way:  'xWx'. 

                                                      
39This curious backwardness is the fault of Gottlob Frege, who invented predicate logic late in the nineteenth century.  Frege 
thought of predicates as functions which produce truth values when applied to names.  Function symbols in mathematics are 
usually written before the names of objects to which they apply, and Frege adopted this mathematical convention. 
40We assume here that 'immortal' means simply "deathless," so that it makes sense to say of nonliving as well as living things 
that they are immortal -- as, for example, when we speak of the "immortal words of Shakespeare" or "the immortal realm of 
ideas."  If, instead, we use 'mortal' to mean "living and doomed to die" and 'immortal' mean "living and deathless," then 
'immortal' does not mean the same thing as 'not mortal' -- unless we confine the domain of discourse (see Section 7.1) to living 
things. 



 

 

 It would be wrong to symbolize 'Nothing is mortal' with the quantifier and negation sign 
reversed as: 

   xMx.   
 
This is a perfectly intelligible formula, but what it says is "it is not the case that for all x, x is mortal"—
or, more compactly, "not everything is mortal."  This statement, unlike 'Nothing is mortal', is 
compatible with the existence of some mortal things.   
 Consider now the sentence:  
 
  No women are mortal. 
 
This means: 
 
  For any x, if x is a woman, then x is not mortal 
 
i.e., 
 

  x(Wx  Mx). 
 
'No' in this context is thus analyzed into universal quantification over a conditional whose consequent 
is negated. 

 In addition to '', which means "for any" or "for all," predicate logic contains a second 

quantifier, '', that means "for at least one."  The English word that it is most commonly used to 
symbolize is 'some'.  Consider, for example, the sentence: 
 
  Some fathers are gorillas. 
 
This means the same thing as: 
 
  For at least one x, x is a father and x is a gorilla. 
 
Using 'F' for the predicate 'is a father' and 'G' for 'is a gorilla', we may symbolize this sentence as: 
 

  x(Fx & Gx) 
 
which is an existentially quantified conjunction.  Actually, in English, the word 'some' tends to mean 
"at least two," so there may be some slippage of meaning in the formalization.  This slippage is 
usually not too troublesome, but it should not be forgotten.  The English expressions 'there is' and 

'there exists' are perhaps better translations of '' than 'some' is.  Hence the formula above can also 
be read as: 
 
  There is an x such that x is a father and x is a gorilla. 
 
or 
 
  There exists an x such that x is a father and x is a gorilla. 
 

Accordingly, '' is called the existential quantifier. 
 We might also want to say (because it is true) that some fathers aren't gorillas.  This means: 
 
  There exists an x such that x is a father and x is not a gorilla 
 
which in symbolic terms is: 
 



 

 

  x(Fx & Gx). 
 
Notice that it is wrong to render the true statement 'some fathers aren't gorillas' as: 
 

  x(Fx & Gx). 
 
This is the denial of 'some fathers are gorillas'.  In English it says: 
 
  It is not true that some fathers are gorillas, 
 

which is to say that no fathers are gorillas—which, of course, is false.41  But this itself tells us 
something interesting:  statements beginning with 'no' can be rendered into predicate logic in either of 
two equivalent ways.  For example, we can symbolize the statement 'No women are mortal' either 
with the universal quantifier as: 
 

  x(Wx  Mx) 
 
as we did above, or with the existential quantifier as: 
 

  x(Wx & Mx). 
 

These are two equivalent ways of saying "no W are M", just as '(P  Q)' and 'P & Q' are in 
propositional logic two equivalent ways of saying "neither P nor Q." 
 Notice that the universal quantifier tends to go with the conditional operator, while the 
existential quantifier tends to go with conjunction.  Existential quantifiers are, in fact, rarely if ever 
applied to conditional statements, because the result would be something we would virtually never 
have occasion to say.  Consider, for example, the statement, 'There exists a unicorn with one horn'.  
Using 'U' for 'is a unicorn' and 'H' for 'has one horn', this is correctly symbolized as an existentially 
quantified conjunction: 
 

  x(Ux & Hx). 
 
That is,"there exists an x such that x is a unicorn and x has one horn."  This, of course, is false, since 
unicorns don't exist.  Suppose, however, that we incorrectly formulated this same statement using the 
conditional operator instead of conjunction, i.e.: 
 

  x(Ux  Hx).  (WRONG!!!) 
 
Now what we have said is something true but strange:  there exists something such that if it is a 
unicorn, then it has one horn.  We are not saying that anything is a unicorn, nor are we saying that 
anything has a horn.  (The statement we were trying to formalize said both these things.)  The sort of 
object described by this erroneous formulation might be anything at all.  It is true of my neighbor's cat, 
or the state of Alaska, or even the number 47 that if it is a unicorn, then it has one horn. 
 The point is that when you apply an existential quantifier to a conditional, often you say 
something so strange that it is unlikely to be what you mean. So if you find yourself formalizing a 
statement that way, think again. 
 But universal quantifiers typically do govern conditionals, and they are seldom applied to 
conjunctions.  It is wrong, for example, to formalize 'All women are mortal' as: 
 

  x(Wx & Mx). 
 
This means "for all x, x is both a woman and mortal"—that is, the whole universe consists of nothing 
but mortal women (a much less pleasing prospect than the actual arrangement—and nothing like 

                                                      
41At least as of this writing.  Gorillas being an endangered species, it may soon to our sorrow become true. 



 

 

what we meant to say).  However, universally quantified conjunctions are occasionally useful, as in 
the statement: 
 
  Everything is located in space and time. 
 
Using 'S' for "is located in space" and 'T' for "is located in time,"  this is: 
 

  x(Sx & Tx). 
 
 Both existential and universal quantifiers can be combined with the other propositional 
operators as well—in infinite variety.  The sentence 
 
  Everything is either mortal or not mortal, 
 
for example, combines disjunction, negation, and universal quantification as follows: 
 

  x(Mx  Mx). 
 
That is a logical truth—not to be confused with the contingent statement: 
 
  Either everything is mortal or everything is immortal, 
 
which is a disjunction whose disjuncts are both universally quantified statements: 
 

  xMx  xMx. 
 
 And, of course, much greater complexity is possible.  One way to increase the complexity of 
an English sentence is to add adjectives.   Adjectival modification in English is usually represented by 
conjunction in predicate logic.  Thus, for example, in the sentence: 
 
  All mortal women are located in space and time 
 
the modification of the noun 'women' by adjective 'mortal' is represented in predicate logic by a 
conjunction of two predicates.  We may render this as: 
 
  For any x, if x is mortal and x is a woman, then x is located in space 
  and x is located in time 
 
which goes over into predicate logic as: 
 

  x((Mx & Wx)   (Sx & Tx)).  
 
 Some English predicates, such as 'loathes', are transitive, taking both a subject and an 
object.  These need two names to make a complete sentence and hence are called two-place 
predicates.   The usual convention is to write them in the order predicate-subject-object.  So, for 
example, the statement 'Beth loathes Carl' may (using 'b' for 'Beth', 'c' for 'Carl' and 'L' for loathes) be 
formalized as 'Lbc'.   Two-place predicates may be combined with quantifiers and the propositional 
operators for still greater variety of expression.  Here are some examples: 
 
 ENGLISH SENTENCE    FORMALIZATION 
 Carl loathes Beth    Lcb 
 Carl loathes himself    Lcc 

 Carl loathes everything    xLcx 

 Something loathes Carl    xLxc 

 Something loathes itself    xLxx 



 

 

 Beth loathes nothing    xLbx  or  xLbx 

 Beth does not loathe everything   xLbx 

 Something loathes something   xyLxy 
 
 For 'Beth loathes nothing', there are two equivalent formulations, each equally correct.  There 
are various equivalent ways of writing the others as well, but I have given the simplest or most 
obvious formalization in each case.  One way to obtain an equivalent formalization of any quantified 

formula is to replace the quantified variable with a different one.  'xLxx' and 'yLyy', for example, say 
the same thing.  The replacement, however, must be uniform.  We may not replace some occurences 

of a variable and not others.  The expression 'xLyy', for example, does not mean the same thing as 

'xLxx'.  In fact, it is not even a formula, as we shall see in the next section. 

 The last formula in the list, 'xyLxy', boasts two existential quantifiers, an arrangement which 
requires two different variables.  Read literally, it means "there exists an x such that there exists a y 
such that x loathes y" or (what comes to the same thing) "for at least one x and at least one y, x 
loathes y." 
 It is important to note that, as in mathematics, different variables may stand for the same 

object.  'xyLxy' may be true, for example, because 'Lcc' is true—that is, because Carl loathes 
himself.  If so, 'x' and 'y' both stand for Carl. 
 Moreover, the same variable stands for the same thing only so long as it is governed by the 

same occurrence of a quantifier.  The variable 'x' in 'xLxx' stands for the same individual or 
individuals in each of its occurrences.  That is why it means "something loathes itself."  But consider 
the statement: 
 
  Something loathes itself and something doesn't loathe itself 
 
—or, perhaps more colloquially: 
 
  There are things that loathe themselves and things that don't. 
 
This may be formalized as: 
 

  xLxx  & xLxx 
 
Here the first three occurrences of 'x', being governed by the first existential quantifier, refer to the 
things that loathe themselves, and the second three occurrences, being governed by the second 
existential quantifier, refer to the things that don't.  Thus two occurrences of the same variable must 
refer to the same thing only if they are governed by the same quantifier.  Some people find this 
confusing and would prefer to formalize this conjunction as: 
 

  xLxx & yLyy. 
 
That's fine.  But so is the first way we did it. 

 It is not fine, however, to have two quantifiers governing the same variable, as in 'xxLxx'.  
Here we can't tell which variable is governed by which quantifier.  We shall not even count such 
expressions as formulas. 
 When universal and existential quantifiers occur together in the same sentence, the sentence 
is usually ambiguous.  Consider the sentence 'something loathes everything'.  This can has the 
following two meanings: 
 
 1 There is some one being (think of Dante's Lucifer, for example) that 
  loathes everything, or 
 2 Everything is loathed, but not necessarily by the same being in each  
  case.  (Thus Beth may be loathed by Carl, Carl by himself, and so on,  
  though perhaps no one being loathes everything.) 
 



 

 

Because the founders of predicate logic were trying to create an ideal language, formulas of predicate 
logic are, by design, perfectly unambiguous.   Consequently, when we formalize 'something loathes 
everything', we must decide on one or the other of these meanings.  The difference between them is 
reflected in the formalism by the ordering of the quantfiers.  Converting each reading into semilogical 
English, we obtain: 
 
 1 There exists an x such that for any y, x loathes y 
 2 For any y, there exists an x such that x loathes y 
 
and these, when formalized, become: 
 

 1 xyLxy 

 2 yxLxy. 
 
By forcing us to choose one meaning or the other, predicate logic sensitizes us to ambiguities of 
natural language that might otherwise go unnoticed. 
 Ambiguity that arises from mixing universal and existential quantifiers in English is called a 
quantifier scope ambiguity.  Because English grammar allows much greater flexibility in the 
placement of quantifiers within a sentence than do the formation rules of predicate logic (which we 
shall consider in the next section), it has no reliable way of indicating their scope (the part of the 
sentence they govern).  But, as we shall see, the scope of a quantifier in a formula of predicate logic 
is always definite and clear. 
 The order of the quantifiers matters, however, only when universal and existential quantifiers 

are mixed.  There is no difference in meaning, for example, between 'xyLxy' and 'yxLxy'.  They 
both express the thesis of universal loathing:  everything loathes everything.  
 Two-place predicates do not always represent transitive verbs.   Some represent predicate 
phrases of other sorts.  The phrase 'is north of', for example, would typically be formalized as a two-
place predicate.  We might, for instance, write 'Knoxville is north of Atlanta' as 'Nka'.   
 Some predicates have three or even more places.  The English phrase 'is between' links 
three names, as in the sentence 'Nashville is between Memphis and Knoxville', which may be written 
as 'Bnmk'.  There is no overall convention governing the order of the names in such cases; what 
matters is that within a given problem we keep the order consistent. 
 Predicates with two or more places are called relational or polyadic predicates.  Those with 
only one place are, by contrast, said to be nonrelational or monadic.  Sentence letters are, as we 
shall see in the next section, sometimes regarded as zero-place predicates. 
 One final word about formalization:  keep quantifiers as close as possible to the variables 
they govern.  This prevents mistakes.  Consider, for example, the sentence 'All lovers are happy', 

which is correctly formalized, using 'L' for "loves" and 'H' for "is happy," as 'x(yLxy  Hx)'—i.e., "for 
all x, if there exists a y such that x loves y, then x is happy."  Here the existential quantifier is inside 
the brackets, taking the narrowest possible scope—as it should be.  (Since the universal quantifier 
governs the variable 'x', which occurs in both the antecedent and consequent of the conditional, it 
must contain the whole conditional within its scope.)  Sometimes beginners are tempted to draw the 

existential quantifier out of the conditional, like this:   xy(Lxy  Hx).  THIS IS WRONG!  What it 
says is that for any x there exists a y such that if x loves y then x is happy.  This, given the meaning of 
the material conditional, is true in any possible situation in which each x loves nothing.  It does not 
even come close to saying that all lovers are happy. 
 This mistaken formula exhibits another warning signal that should have prevented us from 
writing it in the first place.  It contains an existentially quantified conditional, and existentially 
quantified conditionals, as we noted above, have meanings so strange that they are virtually never 
what we intend to say. 
 
EXERCISE 6.1:  Using the following interpretation, formalize the arguments below in predicate logic.  
(All incidentally, are valid, but not all are sound.) 



 

 

         Two-Place 
Names  Sentence Letters One-Place Predicates   Predicates 

aAl  Hhappiness is  Ais an act   L loves 

bBeth        maximized  Bis blameworthy  Rrespects 

cCarl     Gis good    

hhealing    Fis fortunate 

ssleeping    Jis just 

ttheft     Pis praiseworthy 
 
1 Beth is fortunate.  So is Carl.  Therefore, both Carl and Beth are fortunate. 
2 Theft is not praiseworthy, but blameworthy.   Hence theft is blameworthy. 
3 Healing is good.  So something is good. 
4 Healing is a good act.  Therefore some acts are good. 
5 Everything is good.  Consequently, theft is good. 
6 Theft is not good.  Therefore not everything is good. 
7 Everything good is praiseworthy.   Healing is good.  Therefore, healing is praiseworthy. 
8 All just things are praiseworthy.  All praiseworthy things are good.  Therefore any just thing is 

good. 
9 Healing is a praiseworthy act.   Nothing praiseworthy is blameworthy.  Therefore, healing is 

not blameworthy. 
10 Healing is good, but theft is not.  Therefore some things are good and some things aren't. 
11 Everything is good and everything is just.  Therefore, everything is both good and just. 
12 Either everything is praiseworthy or everything is blameworthy.  So everything is either 

praiseworthy or blameworthy. 
13 If everything is good, then happiness is maximized.  So, since happiness is not maximized, 

not everything is good. 
14 Not all acts are just.  Therefore there are acts that are not just. 
15 Not every act is just.  Hence some acts are unjust. 
16 Some acts are just.  Nothing just is blameworthy.  Therefore, some acts are not blameworthy. 
17 If all acts are just, then happiness is maximized.  So if happiness is not maximized, then  

some acts are not just. 
18 Sleeping is an act, but it is not praiseworthy and it is not blameworthy.  Therefore some acts 

are neither praiseworthy nor blameworthy.   
19 No acts are both praiseworthy and blameworthy.  Theft is a blameworthy act.  Therefore, theft 

is not praiseworthy. 
20 All acts that are not good are blameworthy.  No good acts are blameworthy.  Therefore acts 

are blameworthy if and only if they are not good. 
21 If Beth loves and respects Al, then Al is fortunate.  But then Beth does not love Al, since Al is 

not fortunate, though Beth respects him. 
22 Although Carl doesn't love Beth, Al does.  Therefore, Beth is loved. 
23 Beth loves everything.  Everything loves Beth.  It follows that Al loves Beth and Beth loves Al. 
24 Al loves both himself and Beth, since everything loves everything. 
25 Since Al loves Beth, something loves something. 
26 Everything loves itself.  Hence, Beth and Al both love themselves. 
27 Nothing loves anything.  So Al loves neither himself nor Beth. 
28 Al loves anything that Beth loves.  Beth loves Al.  Therefore, Al loves something. 
29 If happiness is maximized, then there is some one thing that loves everything.  Carl is 

unloved.  So happiness is not maximized. 
30 To love a thing is to respect it.  So, since Beth loves Al, Beth respects Al. 
31 There is nothing which both Al and Carl love.  Al loves Beth.  Hence Carl doesn't. 
32 All those who love themselves respect themselves.  All those who love anything love 

themselves.  Beth loves Al.  Therefore, Beth respects herself. 
33 Beth does not love Al.  For Al loves everything if and only if Beth loves Al.  And Al does not 

love Carl. 



 

 

34 For any two things x and y, if x loves y, then y does not love x.  Therefore, nothing loves 
itself. 

35 Al respects a thing if and only if it does not respect itself.  Ergo, happiness is maximized. 
 

6.2 SYNTAX FOR PREDICATE LOGIC 
 In this section we formalize the language of predicate logic, as we did for the lanaguage of 
propositional logic in Section 2.3.  We begin by listing the character set for predicate logic, which 
consists of six distinct categories of characters: 
 

 Logical Operators:42    &             
 Brackets:   (   ) 
 Names:    lower case letters from 'a' through 't' 
 Variables:    lower case letters from 'u' through 'z' 
 Predicates:  upper case letters 

 Numerals:  0  1  2  3  4  5  6  7  8  9 

 
 As in propositional logic, the numerals are used for subscripts, which may be added to 
predicates, names, or variables.  Though seldom used in practice, subscripts are needed to ensure 
that the language contains enough symbols for very complex problems. 
 We define an atomic formula as a predicate followed by zero or more names.  (A predicate 
followed by zero names is just a sentence letter, as in propositional logic.)    If the number of names 
following a predicate in an atomic formula is n, then that predicate is an n-place predicate.   
 As in Section 2.3, we will define the the notion of a formula recursively by a set of formation 
rules.  Before stating the rules, however, it will be useful to introduce some new notation into the 
metalanguage.  We will use upper case Greek variables, as usual, to stand for formulas.  But from 

now on these will be used for predicates as well.  And we will use lower case Greek letters—'', '', 

'', '', etc.—to represent unspecified variables or names.   
 We sometimes need to describe in a general way the substitution of names or variables for 
one another within a formula.  We might wish, for example, to describe the sort of transformation that 

turns the formula 'Laa', into the quantified formula 'xLxa'.  The transformation is achieved in this 

instance by replacing the first 'a' with 'x' and prefixing the result with 'x'.   But to describe this 
transformation in general (i.e., for other formulas as well as this one) we might say this:   

Let  be a formula containing some name  and / (read " with  replacing ") be 

the result of replacing one or more occurrences of  in  by some variable  not 

already in .  Then transform  into /.   

With regard to the specific instance given above,  stands for 'a',  for 'x',  for 'Laa', / for 'Lxa', 

and / for 'xLxa'.  The Greek, however, enables us to describe this transformation so generally 
that it could be applied to any formula containing a name.  Formation rule 4 uses precisely this 
transformation to define the construction of grammatically correct quantified formulas.  Here is the 
complete list of formation rules: 
 
 FORMATION RULES FOR PREDICATE LOGIC 
 1 Any atomic formula is a formula. 

 2 If  is a formula, so is . 

 3 If  and  are formulas, so are ( & ), (  ), (  ), and  

  (  ). 

 4 If  is a formula containing a name , then any expression of the  

  form / or /  is a formula, where /is the result of  

  replacing one or more occurrences of  in  by some variable   

                                                      
42As with the propositional operators, there is some variety in the notation for quantifiers.  Sometimes brackets are used so 

that 'for any x' is written as '(x)' and 'for at least one x' as '(x)', but the brackets are superfluous.  When brackets are used, 

the symbol '' may be omitted so that 'for any x' is written simply as '(x)'. 



 

 

  not already in . 
 
Anything that is not a formula by finitely many applications of these rules is not a formula.  
 Rules 2 and 3 are the same as for propositional logic.  Rule 1 expands the corresponding rule 
of propositional logic, for the class of atomic formulas now includes not only sentence letters but any 
n-place predicate followed by n names. 
 As in propositional logic, rule 3 is the only rule that introduces brackets.  Brackets, therefore, 
occur only with binary connectives.  We retain the convention that outer brackets may be dropped, so 

that instead of '(xFx & xGx)', for example, we may write 'xFx & xGx'.  However, the brackets in a 

formula such as 'x(Fx & Gx)' are not outer brackets (since the quantifier occurs outside of them) and 
may not be dropped. 
 Variables are introduced only by rule 4, and each variable is attached to a particular 

occurrence of a quantifier.  Expressions such as 'Lxx', 'xLxy', and '(xFx & Gx)' are therefore not 
formulas.  (In the last of these, the variable attached to 'G' has no corresponding quantifier, since the 

scope of the existential quantifier is just 'xFx'.)  
 Moreover, in a formula each variable occurs at least twice—once following its quantifier and 

at least once again where it has replaced a name.  Thus, for example, 'xLaa' is not a formula, since 
'x' does not have a second occurrence. 

 The phrase 'by some variable  not already in ' in rule 4 ensures that quantifiers of the 
same variable never have overlapping scopes.  So, for example, 'Laa' is a formula by formation rule 

1, from which it follows by rule 4 that 'xLxa' is a formula, but we may not conclude from this by 

another application of rule 4 that 'xxLxx' is a formula, since 'x' already occurs in 'xLxa'.  Rule 4 

does, however, license the conclusion that 'yxLxy' is a formula, since 'y' does not already occur in 

'xLxa'.  Quantifiers of different variables, then, may have overlapping scopes.  
 Two quantifiers of the same variable may occur in the same formula, provided that their 
scopes do not overlap.  For example, by formation rule 1, both Fa and Gb are formulas.  Applying rule 

4 to each of these, we deduce that 'xFx' and 'xGx' are both formulas.  And then, applying rule 3 to 

these two, we obtain the conclusion that '(xFx & xGx)' is a formula.  In this formula there are two 
quantifiers of 'x', but their scopes do not overlap. 
 The formation rules are used, as in propositional logic, to verify that formalizations are 
grammatical—that is, that they make sense in the language of predicate logic.  Take, for example, the 

expression, 'xy(Fxy  Gx)'.  We can see that this is a formula as follows. 
 

'Fab' and 'Ga' are both formulas by formation rule 1.  Since 'Ga' is a formula, 'Ga' is a 

formula by rule 2.  But then since 'Fab' and 'Ga' are both formulas, by rule 3 '(Fab  Ga)' 

is a formula.  From this it follows by rule 4 that 'y(Fay  Ga)' is a formula, and again by 

rule 4 that 'xy(Fxy  Gx)' is a formula. 
 
EXERCISE 6.2.1:  Some of the expressions below are formulas; others are not.  For those that are, 
tell how they are constructed from the formation rules, as in the example immediately above.  For 
those that are not, explain why they are not. 

1 xLxx 

2 xxLxx 

3 aFa 

4 xFa 

5 xy(Lxy  Lyx) 
6 (Laa) 

7 xFx 

8 (xFx  xFx) 

9 (P  xFx) 

10  Lab  Lba 
 
EXERCISE 6.2.2:  Formalize the sentences below, using the indicated interpretation, and check your 
formalization with the formation rules to make sure that it results in a genuine formula. 



 

 

 
 SYMBOL  INTERPRETATION 
 NAMES 

 a  Aristotle 
 n  Nietzsche 
 p  Plato 
 ONE-PLACE PREDICATES   
 F  is a feminist 
 G  is Greek 
 P  is a philosopher 
 TWO-PLACE PREDICATES 
 R  ridicules 
 S  is smarter than 
 W  wrote 
 
1 Aristotle is Greek. 
2 Plato is a Greek feminist. 
3 If Plato is a feminist, then a Greek feminist exists. 
4 No Greeks are feminists. 
5 All feminists are philosophers. 
6 All Greek feminists are philosophers. 
7 Aristotle wrote something. 
8 Aristotle wrote everything. 
9 Aristotle wrote nothing. 
10 Nietzsche ridicules everything that Plato wrote. 
11 Nietzsche ridicules all feminists. 
12 Nietzsche ridicules everyone smarter than he is. 
13 Some Greeks are philosophers and some are not. 
14 Some Greeks both are and are not philosophers.  
15 Nietzsche ridicules a thing if and only if it does not ridicule itself. 
16 Some philosophers ridicule themselves. 
17 Some philosophers ridicule everything. 
18 All things that are ridiculed ridicule their ridiculers. 
19 If one thing is smarter than a second, then the second is not smarter  
 than the first. 
20 Nietzsche ridicules all Greek philosophers. 
 

6.3 IDENTITY 

 Another logical operator which is often employed in predicate logic is '=', a symbol which is 
familiar from mathematics.  But unlike any logical operator we have so far considered, '=' is a 
predicate—a two-place predicate to be precise.  What makes it a logical operator, rather than an 
ordinary predicate, like 'F' or 'L', is that its meaning is fixed.  It always means "is indentical to" or "is 
the same thing as,"  whereas other predicates are interpreted to mean different things in different 
contexts.  Also, in deference to custom, it is written between the two names to which it applies, rather 
than before them as with other two-place predicates.  But this syntactic arrangement may create 
some confusion when identities are negated.  For example, let 'a' stand for Alice and 'b', for Bob.  

Then the formula 'a=b'  means "Alice is not Bob.  Beginners sometimes mistakenly read this as 
saying "not-Alice is identical to Bob," but this misconstrues the scope of the negation operator.  As 
with any atomic formula, the negation operator's scope extends over the entire formula.  Besides, 
what on earth is not-Alice?  
 To avoid this misreading, some authors introduce brackets around the negation sign, like this:  

(a=b).  But this requires more writing and further differentiates '=' from other two-place predicates.  

Another solution, often used in mathematics, is to abbreviate 'a=b' as 'a =/  b', but this has the 

disadvantage of obscuring logical form.  The double negation of 'a=b', for example, becomes 'a=/ b', 
which no longer looks like a double negation and, moreover, invites the same sorts of misreadings 



 

 

that 'a=b' does.  We shall therefore use neither the brackets nor the slash in our object language, 
though we shall sometimes use '=/ ' in the metalanguage. 
 In adding the identity predicate to our language, we need to modify our definition of atomic 
formulas.  That definition should now read: 
 
 Any predicate followed by zero or more names or any formula 

 of the form , where  and  are names is an atomic formula.  
 
The formation rules then remain the same.  The identity predicate in combination with the other 
operators enables us to express a wealth of new concepts. 
 ELSE, OTHER THAN, EXCEPT:  The expressions 'else', 'other than', and 'except' often express 
the idea of difference, i.e. nonidentity.  The statement 'God is more perfect than anything else', for 

example, can be symbolized as 'x(x=g  Pgx)', reading 'g' as "God" and 'P' as "more perfect than."  

Notice that the statement 'God is more perfect than anything', 'xPgx', is absurd, since it implies that 
God is more perfect than himself, i.e. 'Pgg'.  The notion that God is more perfect than anything else is 
inexpressible without the identity predicate.   
 The terms 'other than' and 'except' work similarly.  The statement 'Al will go with anyone other 

than Beth', for example, may be symbolized as 'x(x=b  Gax)'.  This formula may also symbolize 
the sentence 'Al will go with anyone except Beth'.  'Except', however, often carries an implication of 
exclusion, so that 'Al will go with anyone except Beth' may mean not only that Al will go with anyone 

who is not Beth, but also that Al will not go with Beth.  If so, then a better formalization is 'x(x=b  

Gax) & Gab'—or, more compactly, 'x(x=b  Gax)'.  (This compact formulation is equivalent to the 

first, since 'Gab' is equivalent to 'x(Gax  x=b)'.) This might even be what is meant in some 
contexts by the sentence 'Al will go with anyone other than Beth'.  But neither 'other than' nor 'except' 
always carries this implication of exclusion.  If, for example, we know that Al will go with anyone who 
is not Beth but are unsure of whether he would go with Beth, we might still say, "Al will go with 
anyone except Beth," without thereby committing ourselves on the question of whether he will go with 
Beth.  English uses of 'except' and 'other than' are thus potentially ambiguous. 
 'Else', 'other than' and 'except' can also be applied to more than one individual.  The sentence 

'Everyone except Al and Beth is happy', for example, may be represented as 'x((x=a & x=b)  

Hx)'—or, if it is meant to assert that Al and Beth are not happy, as 'x((x=a & x=b)  Hx) & (Ha & 

Hb)', which, in most compact terms, is 'x((x=a & x=b)  Hx)' 
 SUPERLATIVES:  Expressions such as 'the greatest', 'the fastest', 'the most expensive', 'the 
most perfect', and so on are called superlatives.  They are used to denote the highest degree of a 
comparative quality.  The comparative expressions associated with the superlatives just mentioned 
are, respectively, 'greater', 'faster', 'more expensive' and 'more perfect'.  Superlatives can be analyzed 
in terms of comparatives together with the identity predicate.  To say that Al is the fastest runner, for 
example, is to say that Al is faster than all other runners --i.e., that Al is a runner who is faster than all 
runners who are not Al.  Using 'a' for 'Al', 'R' for 'is a runner' and 'F' for 'is faster than', this goes over 

into predicate logic as 'Ra & x((Rx & x=a)  Fax)'.  Other statements containing superlatives may 
be analyzed similarly.  The statement 'There is no largest number', for example, may be written as 

'x(Nx & y((Ny & y=x)  Lxy))', reading "is a number" for 'N' and "is larger than" for 'L'. 
 ONLY:  Etymologically, 'only' is a contraction of 'onely'.  To say that a particular individual has 
a certain property onely is to say that it alone has that property, i.e., that anything that has that 

property is identical with it.  Thus the statement 'Only Al is happy' may be formalized as 'Ha & x(Hx 

 x=a)'—or, more compactly, as 'x(Hx  x=a)'.  'Only' is tricky with multiple individuals.  It might 

seem that we could formalize 'Only Al and Beth are happy' as 'x(Hx  (x=a & x=b))', but this says 
that a thing is happy if and only if it is both Al and Beth.  If Al and Beth are different individuals, this is 

absurd.  What is really meant is 'x(Hx  (x=a  x=b))', but we are misled because in English we say 
'and' instead of 'or'.  
 AT LEAST:  Since the existential quantifier means 'for at least one', the formalization of the 
expression 'at least one' is simple.  The statement 'There is at least one mind', for example, is 

formalized as 'xMx', where 'M' means "is a mind."  But what about 'There are at least two minds'?  

An obvious suggestion is 'xy(Mx & My)'.  This, however, will not do, because nothing guarantees 
that the variables 'x' and 'y' designate different objects.  In fact, this is just a redundant way of saying 



 

 

xMx; the two formulas are equivalent.  To guarantee that x and y are distinct, we need to say so.  A 

proper formalization is 'xy((Mx & My)  & x=y)'.  Similarly, we can formalize 'There are at least three 

minds' as 'xyz(((Mx & My) & Mz)  & ((x=y & y=z) & x=z))', and so on. 
 AT MOST:  Suppose we want to say that there is at most one mind.  This means that no two 
distinct things are minds; that is, if we choose any object x and any object y and they turn out both to 

be minds, then they are identical.  Thus one way to formalize this statement is 'xy((Mx & My)  
x=y)'.  Another way to go at it is to notice that 'There is at most one mind' is the denial of 'There are at 

least two minds'.  This produces the formalization 'xy((Mx & My)  & x=y)'  The two formalizations 
are equivalent and equally correct.    
 But both formalizations are ungainly for formalizing 'at most' with numbers larger than one.  

'There are at most two minds', for example, is 'xyz((Mx & My) & Mz)  ((x=y  y=z)  x=z))' by 

analogy with the first method, 'xyz(((Mx & My)  & Mz) & ((x=y & y=z) & x=z))' by analogy with 
the second.  The first formula says that for any things x, y and z that are minds, at least two of them 
are identical.  The second says that there do not exist three distinct minds. 

 A simpler and more subtle formalization of 'There are at most two minds' is 'xyz(Mz  

(z=x  z=y))'.  That is, there are objects x and y such that anything that is a mind is one of these.  This 
does not assert that x and y are distinct (so they might be the same thing), nor does it assert that they 
are minds (only that if there are minds, then they are identical with either x or y).  Thus it is compatible 
with there being one mind or no minds, as well as two.  But it is not compatible with there being three, 
since it asserts that every mind is one or the other of x or y.  It is thus equivalent to both of our earlier 
formulations of 'there are at most two minds'. 

 Using this more subtle formalization scheme, 'there is at most one mind' is simply 'xy(My 

 y =x)', and 'there are at most three minds' is 'xyzw(Mw  ((w=x  w=y)  w=z))'.    This is the 
simplest way to express 'at most' in predicate logic. 
 We can also say there is at most one thing—where 'thing' is not a predicate but a placeholder 

for a variable.  (Certain mystics hold something like this.)  One simple formalization is 'xy y=x'.  
Can you think of others? 
 NUMERICAL QUANTIFIERS:  How can we say there is exactly one mind?  This means that there 

is at least one mind and at most one mind, so that one formalization is 'xMx & xy(My  y =x)'.  A 

more compact way of saying the same thing is 'xy(My  y=x)'.  This combines into a single 

quantified biconditional the statement 'there is at least one mind'—which is normally just 'xMx', but 

which may be equivalently written as 'xy(y=x  My)'—and 'there is at most one mind'—'xy(My 

 y =x)'. 

 Generalizing, we may formalize 'There are exactly two minds' as 'xy(x=y & z(Mz  (z=x 

 z=y)))'.  This formula says that there are two distinct objects x and y and that a thing is a mind if and 

only if it is identical to one of these.  'There are exactly three minds' is 'xyz(((x=y & y=z) & x=z) 

& w(Mw  ((w=x  w=y)  w=z)))'—and so on.  In this way we can formalize numerical 
quantifiers, i.e. phrases of the form 'there are exactly n ...', where 'n' stands for a number. 
 RUSSELL'S THEORY OF DEFINITE DESCRIPTIONS:  France is no longer a monarchy.  What, then, 
are we to make of the sentence 'The present king of France is bald'?  Is it true or false—and what 
makes it so?  Bertrand Russell's consideration of this and similar examples led him early in this 
century to the theory of descriptions that bears his name and which still stands out as a paradigm of 
logical analysis.  A definite description, according to Russell, is a phrase of the form 'the so-and-so'.  
Examples are 'the present king of France', 'the positive square root of two', 'the supreme being', and 
'the woman I met last week'. 
 Russell's quarry was the logical form of sentences containing definite descriptions.  
Superficially, a sentence like 'The present king of France is bald' seems to be of subject-predicate 
form, with the definite description 'the present king of France' functioning as a name.  Thus we might 
symbolize it as 'Bk', where 'B' means "is bald" and 'k' means "the present king of France."  But 
difficulties ensue, for if 'the present king of France' is a name, what does it name, and what 
determines whether or not what it names is bald?   These questions lead into dim metaphysics.  
(What sort of entity is the present king of France, anyway?) 
 Logical paradox is not far behind.  Presumably the statement 'The present king of France is 

bald' is false—from which it follows that 'The present king of France is not bald', i.e., 'Bk' is true.  But 



 

 

there is no present king of France of whom it can be said that he is not bald.  Hence 'The present king 

of France is not bald' also seems false.  Is 'Bk', then, both true and false? 
 The problem, according to Russell, lies in thinking that the logical form of 'The present king of 
France is bald' is 'Bk'.  Definite descriptions, he argues, are not simple names; sentences containing 
them have a logical structure quite different from their surface grammar.  A statement of the form 'The 
F is G' means: 
  1 There is at least one F, and 
  2 it alone is F, and 
  3 it is G. 
In symbols this is: 

  x((Fx & y(Fy  y=x)) & Gx).43   
 Applied to the statement 'The present king of France is bald', Russell's analysis dissolves the 
purported name 'k' into a complex of logical relationships involving the one-place predicate 'is 
presently king of France'.  Using 'K' to represent this predicate and 'B' for 'is bald', this statement 
becomes: 

  (A) x((Kx & y(Ky  y=x)) & Bx). 
Translating back into English we get: 
  1 There is at least one thing which is presently king of France, 
  2 it alone is presently king of France, and 
  3 it is bald. 
This, as we expect, is false, since the first conjunct claims falsely that there is a present king of 
France.  Since (A) is false, its negation:  

  (B) x((Kx & y(Ky  y=x)) & Bx), 
that is: 
  (i) It is not the case that there is at least one present king of  
   France, who alone is presently king of France, and who is  
   bald, 
is true.  This accounts for our sense that 'The present king of France is not bald' is true.  But what of 
our sense that this same sentence is false?  That is also right, according to Russell!  For the sentence 
is ambiguous; it can also mean: 
  (ii) There is at least one present king of France, who alone  
   is presently king of France, and who is not bald, 
i.e., in symbols: 

  (C) x((Kx & y(Ky  y=x)) & Bx). 
Statement (ii) and its formalization (C) are both false for the same reason that (A) is: there is no 
present king of France.  The difference between (B) and (C) lies in the scope of the negation 
operator.  The ambiguity is therefore a matter of scope, like the ambiguities that arise from the mixing 
of universal and existential quantifiers in English.  Formalization reveals the ambiguity; the English 
sentence that appears to be both true and false is from a logical point of view really two sentences.  
What troubled us, then, was merely a grammatical illusion. 
 In summary, Russell shows how certain sentences containing expressions that seem to refer 
to nonexistent entities can be analyzed into formulas containing only well-understood quantifiers and 
predicates.  This both dispels logical paradox and forestalls a metaphysical snipe hunt. 
 
EXERCISE 6.3:  Formalize each of the following arguments using the interpretation indicated below.  
The arguments, by the way, are all valid. 
 
NAMES   ONE-PLACE PREDICATES   TWO-PLACE PREDICATES 

aAl   Cis a carpenter   Bis a brother of 

bBud   Dis a doctor    Lloves 

cCindy  His happy    Ris richer than 

dDeb   Sis a smoker  

                                                      
43We could compress this to 'x(y(Fy  y=x) & Gx)', but we shall stick with the formulation above, -- which is Russell's -- 
because it is the most widely used. 



 

 

eEd   Wwrites novels 
 
1 Bud is Al.  Therefore, if Bud is a carpenter, so is Al. 
2 Al and Bud are identical, but Al is not Cindy.  So Cindy is not Bud. 
3 Al is Bud. So Bud is Al. 
4 Al is not Al.  Hence Cindy is a carpenter who writes novels. 
5 Al is a brother of Cindy's.  Cindy is not one of Al's brothers.  Therefore Al is not Cindy. 
6 Since Al is a carpenter and Cindy is not, at least two things exist. 
7 Cindy's only brother is Al.  Ed writes novels.  Al doesn't.  So Ed isn't a brother of Cindy's. 
8 Everything except Al loves Cindy.  Therefore, Ed loves Cindy, since Al is a carpenter, but Ed 

isn't. 
9 Al loves Cindy, but really the only thing one can love is oneself.  It follows that Cindy loves Al. 
10 If one of two things is richer than the other, then the two are not identical.  Therefore, nothing 

is richer than itself. 
11 Cindy is the richest doctor.  Deb is a doctor.  Therefore unless Cindy is Deb, Cindy is richer 

than Deb. 
12 There is at most one thing.  Hence Al and Bud are one and the same thing. 
13 There are at most two things.  Something other than Cindy is happy.  Therefore, there are 

exactly two things. 
14 All who are loved are happy.  Something that is unhappy loves Al.  So Al is not the only thing 

that exists. 
15 Only Al and Ed love Cindy.  Cindy loves Al but not Ed.  Cindy is loved only by her brothers.  

Therefore Cindy has exactly two brothers. 
16 Except for Cindy and Bud, everything is happy.  Al is unhappy.  Hence Al is either Cindy or 

Bud. 
(Hint:  The remaining problems all use Russell's theory of descriptions.) 
17 The brother of Cindy is happy.  Therefore Cindy has a brother. 
18 Al is the only one who writes novels.  Al is happy.  Therefore, the writer of novels is happy. 
19 Al is one of Cindy's brothers and he is happy.  Ed is one of Cindy's brothers and he is not 

happy.  Therefore, it is not true that the brother of Cindy is happy. 
20 The doctor is a nonsmoker.  Therefore, it is not the case that the doctor is a  
 smoker. 
 

6.4 FUNCTIONS 
 An n-place predicate is an expression which forms a sentence when applied to n names.  But 
in both natural and mathematical languages there are expressions which form names when applied to 
names.  These expressions are function symbols.  Like predicates, function symbols may apply to 
one name or to many.  There are even zero-place function symbols, but these are just names 
themselves. 
 Consider for example, the English expression 'the father of'.  When prefixed to the name of a 
person, this expression produces a new name that denotes a different person.  If, for example, we 
prefix it to the name 'Martin Luther King, Jr.' to produce the expression 'the father of Martin Luther 
King, Jr.', this new expression is a complex name denoting the individual Martin Luther King, Sr.  'The 
father of' is a one-place function symbol. 
 Or, to take a different example, consider the expression 'the sum of ... and ...', which is 
represented in mathematics by the symbol '+'.  Applied to the names of two numbers, it produces a 
complex name which denotes a third number.  Thus the expression 'the sum of two and three'—or in 

mathematical notation '23'—is a complex name for the number five.  Thus either expression—'the 
sum of ... and ...' or '+'—is a two-place function symbol. 
 In both natural and formal languages functional notation is quite varied.  Some function 
symbols are written before the names to which they apply.  An example is the mathematical symbol '-
', used as a one-place function to mean "negative."  Such function symbols are said to be written in 
prefix position.  Other function symbols, such as '¢' (which, when applied to a numeral yields the 
name of a price in cents) are written after the names to which they apply;  these are said to be written 
in postfix position.  Two-place function symbols, like '+', are often written in infix position—that is, 
between the names to which they apply. 



 

 

 The objects denoted by the names to which a function symbol is applied on a specific 

occasion are called arguments of the function.44  The object denoted by the complex symbol 
consisting of the function symbol and the names to which it applies is called the value of the function.  

Thus for the expression '23' the arguments are 2 and 3 (in that order) and the value is 5. 
 Corresponding to each function symbol is a domain of objects to which the symbol applies 
and a range of objects which the resulting complex names denote.  The domain is the set of possible 
arguments and the range the set of possible values.  The domain of the expression 'the father of' is 
the set of all sons and daughters; its range is the set of all fathers.  The domain of '+' is the set of all 
pairs of numbers; its range is the set of all numbers.   
 The range and domain may contain very different sorts of objects.  For example, the 
expression 'the birthday of' is a one-place function symbol which when applied to the name of a 
person produces a complex expression that names a date.  Thus its range is the set of people and its 
domain is a set of dates.  Here are some examples of function symbols, along with the kinds of 
objects that constitute their domains and ranges: 
 
    NUMBER OF 
FUNCTION SYMBOL  PLACES  DOMAIN   RANGE 
the mother of                   1  children              mothers 
the square of    1  numbers  numbers 
¢                                    1          numbers  prices 
the prime factors of  1  positive whole  sets of prime  
      numbers  numbers 
the midpoint between ...  2           pairs of points        points 
 and ... 
x  (the product of ... and ...) 2  pairs of numbers numbers 
 
 Perhaps the most important thing to remember about function symbols is this:  An expression 
counts as a function symbol only if it has a unique denotation for every object in its domain.  The 
expression 'the child of' is not a function symbol over the domain of people because some people 
have no children and some have more than one; hence when prefixed to the name of a person, this 
expression does not always produce a uniquely referring name.  The expression 'the child of' is a 
function symbol, however, relative to the domain of parents who have one and only one child.  If 
prefixed to the name of any person in that domain, it does produce a uniquely referring name.  Or, to 
take another example, the familiar arithmetic operators '+', '-' (used to indicate subtraction), and 'x' 
(multiplication) are all two-place function symbols (provided, in the case of subtraction, that negative 
numbers are included in the range).  But '/' (the division sign) is not a function symbol; for the 
expression '1/0', for example, is denotationless, since division by zero is undefined. 
 The domains of the function symbols that we shall consider here will always be the same as 
the domain of quantification—that is, the domain of the particular valuation we are considering (see 
Section 7.2).  For this reason, we will accept as function symbols only expressions which when 
applied to the name of a member of this domain yield a complex name that refers to a member of that 
domain.  We shall not consider function symbols like 'the birthday of', whose ranges are not included 
in their domains. 
 We shall take as function symbols the same letters we use for names—lower case letters 
from 'a' through 't'.  There are always written before the names of their arguments, which are 
surrounded by small brackets.  Multiple argument names are separated by commas.  Thus, for 
example, if 'f' means "the father of" and 'a' means "Alice", then 'f(a)' is a complex name meaning "the 
father of  Alice."  Likewise, if 'm' means "the midpoint between" and 'a' and 'b' denote points, then 
'm(a,b)' means "the midpoint between a and b." 
 The arguments of function symbols may be quantified.  So, for example, where 'm' means "is 
the mother of", the sentence 'Everyone loves their mother' may be symbolized as: 

   xLxm(x) 

                                                      
44This is a wholly new use of the term 'argument'.  It has nothing to do with the by now familiar use, according to which an 
argument is a set of premises together with a conclusion.  



 

 

which, literally transcribed, means "For all x, x loves the mother of x."  (We here assume a domain of 
people.)  Here are some further examples, using 'm' for "the mother of", 'L' for "loves" and 'o' for 
"Olaf": 
 
 SENTENCE      FORMALIZATION 
  Olaf loves his mother     Lom(o)  
  Olaf loves his maternal grandmother.   Lom(m(o)) 

     Olaf loves someone's mother.    xLom(x) 
 Olaf's maternal grandmother loves his mother. Lm(m(o))m(o) 

 Nobody is his/her own mother    x x=m(x) 
 
When adding function symbols to predicate logic, we must again modify our definition a name.  
Instead of defining a name simply as any lower case letter 'a' through 't', we give the following 
recursive definition, which allows the complex names formed by function symbols to count officially as 
names: 
 
  1 Any lower case letter 'a' through 't' is a name. 

  2 If  is an n-place function symbol and 1,...,n are names, 

   then (1,...,n) is a name. 

 
Anything not obtainable by repeated application of clauses 1 and 2 is not a name.  The recursiveness 
of this definition allows us to construct names in which other names are nested, as in some of the 
examples above.  The formation rules and other definitions remain the same. 
 
EXERCISE 6.4:  Translate the following arguments into prediate logic with functions.  Assume a that 
the domain of discourse is the set of nonnegative integers {0,1,2,...}.   All these arguments are valid—
and sound! 
 
  1-PLACE  2 PLACE   
  FUNCTION FUNCTION 1-PLACE  2-PLACE 
NAME  SYMBOLS SYMBOLS PREDICATES PREDICATES 

ozero  fthe square pthe product Eis even Gis greater than 
  of  of (i.e. “times”) 

ione  sthe suc-   Ois odd Lis less than 
  cessor of 
         (i.e., the next 
          number after) 
 
1 The square of zero is even.  Therefore, something is even. 
2 The square of one is odd.  Therefore, the square of something is odd. 
3 Zero times the successor of zero is zero.  The successor of zero is one.   
 One is odd.  Therefore there is an odd number whose product with zero  
 is zero. 
4 The successor of any odd number is even.  One is odd.  Therefore, the  
 successor of one is even. 
5 For any two numbers x and y, the product of x and y equals the product of  
 y and x. The product of zero and any number is zero.  Therefore, the product  
 of any number and zero is zero. 
6 The square of any number is its product with itself.  Zero times any number  
 is zero.  Therefore, the square of zero is zero. 
7 For any two numbers, the first is greater than the second if and only if the  
 second is less than the first.  The successor of a number is greater than that  
 number.  Therefore, every number is less than its successor. 
8 The successor of zero does not equal the successor of the successor of  



 

 

 zero.  Hence zero does not equal the successor of zero. 
9 Every number is distinct from its successor.  Thus there are at least two  
 things. 
10 One is the square of one.  One is odd.  No odd numbers are even.  Therefore  
 not all square numbers are even. 
11 Zero is even.  So every number has a successor. 
12 Since any number's successor is greater than that number, there is no  
 greatest number.  For no number is its own successor, and if one number is  
 greater than another, the second is not greater than the first. 
  



 

 

CHAPTER 7 
CLASSICAL PREDICATE LOGIC:  SEMANTICS 

 
 This chapter introduces the classical semantics and the tree test for predicate logic.  As a 
preliminary, however, we begin with a little elementary set theory, since set theory is the basis for the 
semantics. 
 

7.1  SETS AND N-TUPLES   
 To understand the semantics of predicate logic, it is necessary to know a bit about sets.  This 

section provides only that bit.  It is not a general introduction to set theory.45 
 A set is a multiplicity of objects considered without regard to order or repetition.  Small sets 
are usually represented by listing the names the objects that comprise them (their members), 
separated by commas and surrounded by curly brackets.  Thus, for example, the set consisting of the 
numbers 1, 2 and 3 is represented by the notation '{1,2,3}'. 
 To say that a set is a multiplicity considered without regard to order means, for example, that 
the set {2,1,3} is the same set as the set {1,2,3}—i.e., {2,1,3} = {1,2,3}.  In other words, the order in 
which the names are listed does not matter.   To say that the objects are considered without regard to 
repetition means that repeated names are superfluous.  Thus, for example, the set {1,2,2,1,3} is 
identical to the set {1,2,3).  In general, sets with the same members, regardless of how those 
members are listed, are identical. 
 Set identity is also insensitive to the ways in which the members of the sets are described or 
named.  So, for example, the set {2,5} is the same set as the set {1+1,5}.  The fact that the number 
two is described in two different ways makes no difference to the set. 
 It is, we should admit, a bit misleading to say that a set is a multiplicity of objects, since in 
some cases a set has only one member and in one case—the empty or null set—it has none.  Sets 
with only one member are called unit sets or singletons.  The set {Socrates}, for example, is the unit 
set of Socrates—i.e., the set whose sole member is Socrates.  However {Socrates} and Socrates are 
not the same.  The former is a set, the latter an Athenian philosopher.  The former has one member, 
Socrates; but Socrates—who is an individual, not a set—has no members in the set-theoretic sense.   

 We shall use the obvious notation '{ }' to designate the empty set, though often '0/ ' or '' are 
used.  Since sets having the same members are identical, there is only one empty set—for any two 
empty sets, having the same members (i.e. no members at all), must be identical. 

 The symbol '' is used in set theory to mean "is a member of."  Thus '1  {1,2,3}' and 

'Socrates  {Socrates}' are true statements, but '0  {1,2,3}' and 'Socrates  { }' are false.  In general, 

to indicate that it is not the case that A  B, we may write 'A  B' 
 Sets may contain other sets.  The set {{1,2},{3}}, for example, has two members, the sets 

{1,2} and {3}.  Thus {1,2}  {{1,2},{3}} and {3}  {{1,2},{3}}, but, for example, 1  {{1,2},{3}}, though 1 
{1,2}. 
 Sets which are infinite or too big to specify as lists may usually be defined by one-place 
predicate phrases.  For example, the set of all mathematicians is defined by the phrase 'is a 
mathematician'.  For this, it is common to use the notation '{x|x is a mathematician}', which is read as 
"the set of all x such that x is a mathematician."  Thus, for example, since Descartes is a 

mathematician, the statement 'Descartes  {x|x is a mathematician}' is true. 
 Another way to specify infinite sets, if their members have a natural order, is to list the first 
few members within curly brackets and follow them with three dots, indicating that the list is to be 
continued infinitely.  Thus, for example, we may denote the set of all natural numbers (whole numbers 
greater than 0) in either as '{x|x is a natural number}' or as '{1,2,3,...}'.  However, in the second case 
the ordering serves only as a convenient way to indicate which objects we are taliking about.  It does 
not mean that the integers are ordered within the set. 
 If we wish to consider ordered lists (provided these are finite), we shall use instead the 
concept of an n-tuple.  The simplest example of an n-tuple is an ordered pair.  An ordered pair is 

                                                      
45One of the best introductions to elementary set theory is Robert R. Stoll, Set Theory and Logic, San Francisco, W. H. 
Freeman and Company, 1961. 



 

 

(unsurprisingly) a pair of objects taken in a certain order, but without regard to how the objects are 
described.   For example, the ordered pair consisting of the numbers 1 and 2, in that order, is different 
from the ordered pair consisting of the numbers 2 and 1, in that order.  We denote ordered pairs by 
listing their members in order and separated by commas in between angle brackets.  Thus the first of 

these pairs is 1,2 and the second is 2,1. 
 The manner of description of the objects makes no difference to the identity of the pair.  So, 

for example, given that x = √2, 1,x2 is the same pair as 1,2. 
 In addition to ordered pairs, there are ordered triples, ordered quadruples, and so on.  In 
general, ordered lists of n items called ordered n-tuples.  There are also ordered 1-tuples, but only in 
a trivial sense, since there is no order to consider when there is only one item.  Ordered 1-tuples, 

unlike unit sets, are the same thing as the object they contain.  Thus, for example, Socrates = 

Socrates; and, more generally, for any object x, x = x.    

 Repetition matters with ordered n-tuples.  The pair 1,1, for example, is not the same as the 

triple 1,1,1; the former is a list of two items, the latter of three. 
 A set of ordered n-tuples, for some specific n, is an n-place relation.  For example, this 
infinite set of ordered pairs of natural numbers: 
 

  {1,2,2,3,3,4,4,5,...} 
  
is a two-place relation.  It is called the successor relation on the natural numbers, since it contains all 
pairs of natural numbers such that the second item of each pair is the number that comes after, or 
succeeds, the first.   
 Here is another infinite two-place relation on natural numbers: 
 

  {1,2,1,3,2,3,1,4,2,4,3,4...} 
 
This one is the less-than relation, since it is the set of all pairs of natural numbers such that the first 
item in the pair is less than the second. 
 Or, to take yet another example, this finite set of ordered triples of truth values is a three-
place relation: 
 

  {T,T,T,T,F,F,F,T,F,F,F,F}. 
 
It is the set of all triples of truth values such that the third item of each pair is the truth value of any 
conjunction whose two conjuncts have, respectively, the first two items as values.  We may therefore 
think of it as the conjunction relation. 
 There are also nameless random or arbitrary relations, such as this three-place relation on 
the natural numbers: 
 

  {1,147,3,3,3,2,82,9,1} 
 
 Relations may be null, in which case they are just the empty set.  For example, the two place 
both-less-than-and-greater-than relation on the natural numbers is null, since there is no pair of 
natural numbers such that the first item in the pair is both less than and greater than the second item. 
 
EXERCISE 7.1:  Tell which of the following statements are true and which are false, and explain why: 
1 {1,2} = {2,1} 
2 {1,2} = {2,1,2} 
3 {1} = 1 

4 1,2 = 2,1 

5 1,1 = 1 
6 If x = 1, then {1,x} = {1} 

7 If x = 1, then 1,x = x,x 

8 1  {1} 

9 1,2  {1,2,2,4} 



 

 

10 1  {1,2,2,4} 
11 {x|x=1}  =  {1} 

12 1  {x|x is a number} 

13 {1,2}  {x|x is a number}  

14 {2,3} is a two-place relation. 

15 {1,2} = {1,2} 
 

7.2 SEMANTICS FOR PREDICATE LOGIC 

 In laying out the semantics for propositional logic, we assumed that the logical meaning of a 
term is given by the truth conditions for sentences containing it.  We retain that assumption here.  
Therefore, our task in this section is to describe truth conditions for sentences containing names, 
predicates, and quantifiers. 
 We shall divide this task into three components:  first, an informal description of the 
semantics of predicate logic; second, an informal account of two kinds interpretations for this 
semantics; and finally a detailed formal presentation of the semantics. 
 We begin our informal description of the semantics with a look at simple subject-predicate 
sentences.  Take the sentence 'Bertrand [Russell] is a philosopher', which we may symbolize as 'Pb'.  
The following points seem fairly obvious: 
 
 1 The name 'Bertrand' denotes an individual object:  the man 
  Bertrand Russell. 
 2 The predicate 'is a philosopher' in effect denotes a set:  the set 
  of all philosophers. 
 3 The sentence 'Bertrand is a philosopher' is true in a given situation 
  if and only if the object denoted by the name in that situation is a  
  member of the set denoted by the predicate in that situation. 
 
Since Bertrand is in the actual situation a member of the set of all philosophers, principle 3 implies 
(correctly) that the sentence 'Bertrand is a philosopher' is actually true.  But we are talking here of the 
English sentence.  What of the corresponding formula 'Pb'?   
 In propositional logic, the sentence letters have no truth value of their own but are assigned 
various truth values on various valuations.  Moreover, their interpretation is not fixed but varies from 
problem to problem.  We specify an interpretation by associating sentence letters with ordinary 
statements.  A valuation and an intepretation together define a possible situation. 
 The same thing is true in predicate logic, but valuations and interpretations are somewhat 
more complex.  For, like sentence letters, the names and predicates of predicate logic have no values 
on their own and (except for the identity predicate) no fixed interpretation.  Their values are assigned 
by a valuation.  But these values cannot be truth values, for predicates and names are neither true 
nor false.  Rather, as items 1 and 2 above suggest, the value of a name is an object and the value of 
a one-place predicate is a set.  Hence a valuation for predicate logic assigns objects to names and 
sets of objects to one-place predicates.   
 The set assigned to a one-place predicate may be empty.  For example, the predicate phrase 
'is an even prime number other than 2' applies to nothing at all and hence denotes the empty set.  
Thus if we wanted to represent this predicate phrase by a corresponding predicate in predicate logic, 
we would assign to that predicate the empty set.  
 As item 3 suggests, a valuation for predicate logic assigns truth conditions of the following 
sort to simple subject-predicate sentences: 
 

A formula consisting of a one-place predicate followed by a name is true on a given 
valuation if and only if the value assigned to that name (the object denoted by the 
name) on that valuation is a member of the value assigned to the predicate (the set 
denoted by the predicate) on that valuation. 

 
 The truth conditions for atomic formulas containing predicates of more than one place 
(relational predicates) are only slightly more complex.  Consider the relational predicate 'was a 



 

 

teacher of'.  This predicate is true of just those pairs of individuals such that the first was a teacher of 

the second.  So, for example, it is true of Socrates, Plato, but not of Plato, Socrates, since 
Socrates was Plato's teacher, but not vice versa.  If we suppose that Socrates was his own teacher, 

this predicate is also true of the pair Socrates, Socrates.    In general, then, a two place-predicate 
denotes a set, not of individuals, but of ordered pairs of individuals—that is, a two-place relation.   
 Accordingly, a valuation for predicate logic assigns to each two-place predicate a two-place 
relation.  And the truth conditions for such a sentence look something like this: 
 

A formula consisting of a two-place predicate followed by two names is true on a 
given valuation if and only if the pair consisting of the values assigned to those 
names (the objects they denote) in the order of the names' occurrence is a member 
of the value assigned to the predicate (the set of ordered pairs of individuals it 
denotes) on that valuation. 

 
What has just been said of two-place predicates can be generalized to all relational predicates.  To 
each three-place predicate a valuation assigns a set of ordered triples, to each four-place predicate a 
set of ordered quadruples, and so on—and the truth conditions for sentences formed from these more 
complex relational predicates function analogously. 
 Like one-place predicates, relational predicates may be empty.  If we assign the empty set to 
a relational predicate, that indicates that nothing in the domain has the corresponding relation to 
anything.  If the predicate means "loves" for example, assigning it the empty set means contemplating 
a loveless situation. 
 Unlike ordinary two-place predicates, the two-place identity predicate '=' has an unvarying 

interpretation.  It always denotes an identity relation:  the set of all pairs of the form d,d, where d is 

a member of the valuation's domain (the notion of a domain is introduced below).  But it comes to the 
same thing to think of the identity predicate as forming a true sentence whenever the names flanking 
it denote the same object, and a false sentence otherwise.  That is how we shall express the truth 
conditions for the identity predicate in the valuation rules below. 
  Zero-place predicates (sentence letters) are treated exactly as in propositional logic; a 
valuation assigns to a zero-place predicate a truth value.  Valuations in predicate logic thus include 
the valuations of propositional logic, while going beyond them. 
 That brings us to quantifiers.  Consider the sentence 'Everything is messy'.  Using the 

predicate 'M' for 'is messy', we can symbolize it as 'xMx', but this is highly ambiguous.  Just what is 
meant by 'everything'?  Uttered by a parent upon entering a child's room, the sentence may refer to 
the room's contents.  Uttered by a corporate accountant, it may refer to all aspects of the 
corporation's finances.  Uttered by an environmentalist, it may denote contents of the biosphere.  
Uttered by a cosmologist, it may characterize reality at large.  Thus 'everything' has different 
meanings in different contexts.  Context, in other words, determines the universe or domain of the 
discourse for ordinary language.   
 Now our aim is to formulate the truth conditions for quantified statements—that is, to 
characterize the possible situations in which these statements are true and those in which they are 
false.  And we have begun to see that to define situations sharply enough to state these truth 
conditions, we must say exactly which objects are involved in those situations; we must, in other 
words, specify their domains. 
 Suppose that we take the domain of the statement 'Everything is messy' to be the objects in a 
certain child's room.  This statement's meaning is now clear:  each object in the room is messy.  (This 
might be the case, for example, if the child has decorated each object in the room with peanut butter.)  
Now, to keep things simple, let's suppose further that the child's room contains only four objects:  
Dolly, Bear, Truck, and Ball.  Then, assuming that these consitute the domain for a given situation,  
the statement 'Everything is messy' is true in that situation if and only if in it each of the following 
statements is true: 
 
   Dolly is messy. 
   Bear is messy. 
   Truck is messy. 
   Ball is messy. 



 

 

 
Correlatively, 'Everything is messy' is untrue in a situation with the same domain if and only if at least 
one of these four statements is untrue. 
 Valuations in predicate logic, then, must not only assign values to names and predicates; but 
in addition, as this example illustrates, they must also specify the domain of discourse over which the 
quantifiers are to be interpreted. 
 This domain figures into the truth conditions for the existential as well as for the universal 
quantifier.  The existentially quantified statement 'Something is messy', for example, is true in a 
situation whose domain consists just of Dolly, Bear, Truck and Ball iff at least one of the four 
statements listed above is true.  The domain delimits the set of objects among which the 'something' 
of this statement is to be found. 

 Mixing predicate logic and English we might say that 'x x is messy' is true in a situation iff 
some statement of the form 'a is messy' is true in that situation, where 'a' is a name of some object in 

the situation's domain.  Likewise 'x x is messy' is true in a situation iff every statement of the form 'a 
is messy' is true for any name a of an object in the relevant domain. 

 Indeed, given this domain, we can think of 'x x is messy' as shorthand for the conjunction: 
 
 Dolly is messy & Bear is messy & Truck is messy & Ball is messy. 
 

And similarly, we may regard 'x x is messy' as abbreviating the disjunction: 
 

 Dolly is messy  Bear is messy  Truck is messy  Ball is messy. 
 
This analysis eliminates quantifiers altogether, reducing them to the familiar operators of propositional 
logic.  The Austrian philosopher and logician Ludwig Wittgenstein advocated just such a reduction in 
his influential work Tractatus Logico-Philosophicus (1921).  But this reduction depends on two 
assumptions that are not always true: 
 
 (1) Each object in the domain has a name (for otherwise we cannot formulate the 
conjunction or disjunction into which a quantified statement is to be analyzed), and 
 (2) The number of objects in the domain is finite (for otherwise the conjunction or 
disjunction into which the quantified statement is to be analyzed has infinitely many conjuncts or 
disjuncts, and we have not given meanings to such infinite statements). 
 
 These assumptions are unnecessary encumbrances, and so contemporary logicians 
generally reject Wittgenstein's analysis.  They see quantifiers as playing a role not reducible to that of 
conjunction or disjunction:  namely, expressing general statements about domains whose objects 
need be neither named nor finite in number.  We shall see shortly how that is accomplished. 
 First, however, we should note that differences in the domain may result in significant 
differences in formalization.  If, for example, the domain is limited to people, then the existential 
quantifier may be read as "somebody" and the universal quantifier as "everybody."    The statement 

'Everybody is happy', for example, is then just 'xHx'.  But if the domain contains things other than 
people, then the quantifiers range over them as well, and this reading is no longer permissible.  To 
assert 'Everybody is happy' given a domain including nonpersons, we must distinguish the people 
from the nonpeople.  This can be done by using the predicate 'P' to represent 'is a person'.  

'Everybody is happy' then becomes 'x(Px  Hx)'—that is, "every person is happy."  Similarly, the 

statement 'Somebody is happy' is 'x(Px & Hx)'. 
 We have so far seen that a valuation in predicate logic consists of two parts: 
 
 1 A domain or "universe" of discourse, the set of objects out of which  
  situations are to be constructed, and 
 2 An assignment of appropriate values to predicates and names. 
 
 The values assigned to predicates and names are called their extensions.  The concept of 
an extension is a generalization of the concept of denotation—a concept that is most at home when 



 

 

applied to names.  Each name denotes a particular individual.  But we can also think of one-place 
predicates as denoting sets of individuals, n-place predicates as denoting sets of n-tuples of 

individuals, and even sentence letters as denoting truth values.46  This, however, stretches the 
ordinary concept of denotation uncomfortably.  Generally, we shall use the technical term 'extension' 
to designate all these kinds of values. 
 The two parts of a paritcular valuation together comprise a structure capable of modelling 
possible situations of a certain form.  In fact, valuations in predicate logic are often called models.  
Just as a set of toy soldiers may model a battle, a map may model a stretch of terrain, or a 
configuration of electrical potentials in a computer may model almost anything, so a valuation (that is, 
a domain plus assignments of extensions from that domain to names and predicates) may model 
possible situations.  It usually makes little difference which objects we choose to comprise the 
domain, since most often they are only stand-ins for the things they model.  We shall usually work 
with domains of numbers, but that is merely for convenience.  The important property of a domain is 
how many objects it contains, for that limits the complexity of situations we can model.  The domain of 
a valuation must contain at least one object, but there is no maximum.  Even infinite domains are 
permitted. 
 A valuation becomes a model of a particular possible situation when it is interpreted.  To 
interpret a model, we associate formal names and predicates with English names or predicate 
phrases.  But we may also consider uninterpreted models.  To illustrate, let's construct a valuation for 

the formula '(Ma & Lab) & Fa'.   
 We shall take as the domain for this valuation the set of numbers {1,2,3}, and we shall assign 
to the names 'a' and 'b' the numbers 1 and 2, respectively.  Thus we are modeling possible situations 
involving three entities, two of which have the names 'a' and 'b', and one of which is unnamed.  There 
is no requirement that everything be named. 
 Furthermore, let's assign to the one-place predicate 'M' the set {1,2}.  This means that 'M' is 
true of 1 and 2 but not of 3.  One-place predicates may also be empty; that is they may apply to 
nothing in the domain, so that their extension is the empty set { }.  Suppose we assign the empty set 
to the one-place predicate 'F'; that means that nothing in the domain (i.e. nothing in the situations we 
are modeling) has the property indicated by this predicate.     

 Finally, let's assign the set {1,1,1,2,2,2} to the two-place predicate 'L'.  This indicates that 
these three pairs stand in the relation indicated by 'L'—whatever that is.   
 When, as in this example, we have not associated any particular meanings with names or 
predicates, the model is uninterpreted.  Like a valuation in propositional logic, an uninterpreted 
model in predicate logic is not a representation of a possible situation, but something more abstract:  
a representation of a form that many possible situations could share.   
 A name in an uninterpreted model arbitrarily designates whatever object is assigned to it, as 
in the following figure: 
 

 
 An uninterpreted model comes to represent a specific possible situation when we interpret it 
by associating English names or predicate phrases with the formal names and predicates.  Thus we 
might let 'a' mean "Al" and 'b' mean "Beth".  Then the number 1 stands for Al in our model and 2 
stands for Beth.  We have not said what 3 stands for; it merely represents some unspecified object.  
Furthermore, let's interpret 'M' to mean "is mortal," 'F' to mean "is a fish," and 'L' to mean "loves."  
Since we have assigned the set {1,2} to 'M', the situation we are considering is one in which Al and 
Beth are both mortal, but the unspecified object is not.  Nothing in this situation is a fish, since the 

value assigned to 'F' is { }.  And, finally, since the value assigned to 'L' is {1,1,1,2,2,2}, our 

                                                      
46Gottlob Frege, who invented the modern concept of an extension while he was inventing predicate logic, thought of truth 
values in this way.  A true sentence, he held, denotes The True and a false sentence denotes The False.   



 

 

situation is one in which Al and Beth both love themselves and he loves her, though his love is 
unrequited.  The unspecified object neither loves nor is loved by anything.   
 When we interpret a model in this way, so that the objects in the domain are stand-ins for 
other objects, we shall call it a surrogate model.  Unlike an uninterpreted model, a surrogate model 
stands for a specific possible situation.  In a surrogate model, reference relations become a bit more 
complicated: 

 
 We can also create models that are not merely models but the reality itself.  To do this we let 
the domain consist of the actual objects of our English discourse.  Thus instead of {1,2,3}, we might 
select the domain {Al,Beth,Carl}.  Now 'a' denotes Al himself, rather than a stand-in.  This kind of 
interpreted model is called a natural model. 

 
Natural models are defined by associating English expressions with relevant predicates and names 
and then assigning those predicates and names the objects and sets that they actually denote. 
 To summarize, models may be either uninterpreted or interpreted.  Uninterpreted models 
represent the forms of possible situations; interpreted models represent specific possible situations.  
There are two kinds of interpreted models—surrogate models, in which the objects of the domain 
stand for something other than themselves, and natural models, in which the objects in the domain 
are the very objects denoted by the corresponding English terms. 



 

 

 Just as propositional logic can be done entirely by assigning truth values to meaningless 
sentence letters, so predicate logic can be done entirely with uninterpreted models.  Usually, 
however, we will interpret our models in order to clarify their significance.  

 We may now consider the formal semantics for predicate logic.  Let  be any predicate or 

name.  Then where V is a valuation, we shall use the expression 'V()' to designate the extension 

that V assigns to .  Using this notation, we may define the concept of a valuation as follows: 

 
DEFINITION:  A valuation or model for a formula or set of formulas of predicate logic consists of: 

 1 A nonempty set D of objects, which is called the domain, and 

 2 An assignment to each predicate or name  in that formula or set of  

  formulas an extension V() which meets the following conditions: 

  i If  is a name, V() is a member of D. 

  ii If  is a zero-place predicate, V() is one (but not both) of the  

   values T or F. 

  iii If  is a one-place predicate, V() is a set of members of D. 

  iv If  is an n-place predicate (n>1), V() is a set of ordered  

   n-tuples of members of D. 

 
Note once again that although the domain must contain at least one member, the sets mentioned in 
items iii and iv may be empty.   
 Like propositional logic, predicate logic is truth-functional; that is, the truth values of complex 
formulas are determined from the truth values of simpler formulas by a set of valuation rules.  The 
valuation rules for the quantifiers, however, introduce some novelties. 

 Consider, for example, the formula 'xFx'.  It seems initially reasonable to suppose, as 

Wittgenstein did, that this formula is true if and only if F is true for any name —that is, if 'Fa', 'Fb', 

'Fc', and so on are all true, where this list includes a statement F for each name .  If we drop 
Wittgenstein's idea that a universally quantified statement is a conjunction and allow the list to be 
infinite, the resulting understanding of the quantifier is called the substitutional interpretation.  But 
the substitutional interpretation is still problematic if the domain contains unnamed objects, because it 
treats these objects as if they don't exist.  Consider, for example, the valuation on the domain {1,2,3} 
on which the names 'a' and 'b' name 1 and 2 respectively, 3 is unnamed, and the extension of 'F' is 

{1,2}.  Then F is true for all names , but 'xFx' ought to be false, since 'F' is not true of the 

unnamed object 3.  The substitutional interpretation, however, would make 'xFx' true. 

 To remedy this, we adopt slightly different truth conditions:  'xFx' is true if and only if 
 

 1 F is true for every name  that already has an extension, and 

 2 F would still be true for any new name  that has not yet received  
  an extension, no matter which object from the domain we assigned  

  to .   
 
This modified quantifier semantics is called the objectual interpretation, because it takes direct 
account of the objects in the domain, not merely of their names.  It is the standard quantifier 
semantics for classical predicate logic. 

 Like the substitutional interpretation, the objectual interpretation implies that 'xFx' is true if 

and only if each member of a list of sentences of the form F is true.  But on the objectual 

interpretation the names  are not limited to our current vocabulary; they may also be new names 
added by expanding our current vocabulary to name formerly unnamed objects.  Thus an object in 
the domain need not actually be named in order to count for quantificational purposes.  It is enough 
that it could in principle be named.  Of course, we wouldn't want to name it with a name that already 
denotes something else, since that name would then become ambiguous.  So the potential names 
of an object are limited to those it already has and those we might give it that do not already name 
something else.  Let's put this in formal terms: 
 



 

 

DEFINITION:   Let V be any valuation, d any object in the domain of V, and  any name.  Then  is a 

potential name of d with respect to V if and only if either V() = d or V assigns nothing to . 

  
When we name an object that previously had been nameless, we expand our valuation.  So we need 
to define the idea of an expansion as well: 
 

DEFINITION:  Let V be any valuation, d any object in the domain of V, and  any potential name of d 

with respect to V.  Then the expansion V
(, )

 of V is the valuation that assigns to  the extension d, 

but is in all other respects just like V.   

 

It follows that if V already assigns the extension d to , then V
(, )

 is just V.  Thus the definition of an 

expansion permits expansions of a valuation with respect to names that already have extensions.  
We shall call these trivial expansions, since they leave the original valuation unaltered.  Expansions 
which assign extensions to names that previously did not have them we shall call nontrivial 
expansions.  A trivial expansion is not, of course, an expansion in the ordinary sense.  But this 
terminological twist will simplify formulation of the valuation rules for the quantifiers.  To illustrate, 

consider again the formula 'xFx'.  This should be true if some formula of the form F is true, where  
is a name that already has an extension, but it should also be true if 'F' is true only of some nameless 
object to which we could assign a potential name.  We can say this using our new terminology, as 
follows: 
 

 'xFx' is true on a valuation V if and only if for some object d in the domain  

 of V, and some potential name  of d, F is true on V
(, )

. 

 

Here V
(, )

 is either V itself (if V() = d) or a valuation just like V except that it also assigns the 

extension d to  (if V assigns no extension to ).  This is the idea behind rule 10 below.  Rule 9 works 

similarly.   
 We may now state the valuation rules: 
 
 VALUATION RULES FOR PREDICATE LOGIC 

 For all valuations V: 

 1 If  is a one-place predicate and  is a name, then  

   V() = T iff V()  V();  

   V() = F iff V()  V(). 

 2 If  is an n-place predicate (n>1) and n are names, then  

   V(n ) = T iff V(),...,V(n)  V(); 

  V(n ) = F iff V(),...,V(n)  V(). 

 3 If  and  are names then V(=) = T iff V() = V(); 

  V(=) = F iff V() =/  V(). 

 For the next five rules,  and  are any formulas: 

 4 V() = T iff V() =/  T;

  V() = F iff V() = T. 

 5 V( & ) = T iff both V() = T and V() = T; 

  V( & ) = F iff either V() =/  T or V() =/  T, or both. 

 6 V(  ) = T iff either V() = T or V() = T, or both; 

  V(  ) = F iff both V() =/  T and V() =/  T. 

 7 V(  ) = T iff either V() =/  T or V() = T, or both; 

  V(  ) = F iff both V() = T and V() =/  T. 

 8 V(  ) = T iff either V() = T and V() = T, or V() =/  T and  

   V() =/  T; 

  V(  ) = F iff either V() = T and V() =/  T, or V() =/  T and  



 

 

   V() = T  

 For the next two rules,  stands for the result of replacing each  

 occurrence of the variable  in  by , and D is the domain of V.   

 9 V() = T iff for all potential names  of all objects d in D,  

   V
(, )

() = T; 

  V() = F iff for some potential name  of some object d in D,   

   V
(, )

() =/  T.  

 10 V() = T iff for some potential name  of some object d in D,  

   V
(, )

() = T; 

  V() = F iff for all potential names  of all objects d in D,  

   V
(, )

() =/  T. 

 
Rules 4-8 constitute the semantics for propositional logic, which is thus included in the semantics for 
predicate logic.  But predicate logic contains more:  rules 1-3 give the semantics for atomic formulas 
containing names, and rules 9 and 10 present the semantics for quantifiers. 
 Rule 1 stipulates that a formula consisting of a one-place predicate followed by a name is 
true if the extension assigned to the name (i.e., an object) is a member of the extension assigned to 
the predicate (i.e., a set of objects).  Consider the formula 'Pa', interpreted to mean "Al is a predator."  
This means that 'Pa' is true if Al is a member of the set of predators—or, rather, if the object modeling 
Al on our valuation is a member of the set of objects that models the predators.  'Pa' is false, by 
contrast, iff the extension of 'a' is not a member of the extension of 'P'. 
 According to rule 2, a formula consisting of an n-place predicate followed by n names is true 
if the n-tuple consisting of the extensions assigned to the names (arranged in the same order as the 
names) is a member of the extension assigned to the predicate (i.e., a set of ordered n-tuples).  
Consider the formula 'Lab', interpreted to mean "Al loves Beth."  This means that 'Lab' is true if the 

pair Al,Beth is a member of the set of pairs such that the first loves the second—or, rather, if the pair 
of objects modeling Al and Beth on our valuation is a member of the set of pairs that models the 
relation "loves".  'Lab' is false iff this is not the case. 
 Rule 3 says that an identity statement is true iff the names flanking the identity sign have the 

same extension and false iff they don't.  The '=' in the expression 'V() = V()' is an expression of the 

metalanguage, not the identity predicate of the object language. 
 In propositional logic, the valuation rules are just the rules for constructing truth tables.  But 
the more complex semantics of predicate logic cannot be presented in a neat tabular form.  Since 
domains may be of any size and may consist of any objects, each formula or set of formulas has 
infinitely many valuations; thus we cannot represent all its valuations on a finite table, as we could in 
propositional logic.  Still, we can use the semantics to calculate the truth values of formulas from the 
values (extensions) assigned to their parts, just as we did in propositional logic. 
 Listed below is a set of formulas: 
  1 Fa & Fb 
  2 a=d 

  3 xFx 

  4 xFx 

  5 x(Fx & Gx) 

  6 P  Q 

  7 Q  xFx 
  8 Lab 

  9 xyLxy 

  10 xyLxy 
Now consider the following valuation V of these formulas: 

  Domain = {1,2,3,4,5} 

  V(a) = 1 

  V(b) = 2 

  V(d) = 1 



 

 

  V(P) = T 

  V(Q) = F 

  V(F) = {1,2,3} 

  V(G) = {4,5} 

  V(L) = {1,2,2,1,4,4,5,4} 

Which of the formulas above is true and which is false on this valuation?  The solutions are as 
follows: 
 

1 Since  1  {1,2,3}, V(a)  V(F).  So by rule 1 V(Fa) = T.  Likewise, since 2  {1,2,3}, 

V(b)  V(F).  So again by rule 1 V(Fb) = T.  Hence by rule 5, V(Fa & Fb) = T. 

2 V(a) = V(d) = 1.  Hence by rule 3, V(a=d) = T. 

3 The name 'c', since it is not assigned any denotation by V, is a potential name of 4 

with respect to V.  So consider the nontrivial expansion V
(c,4) of V.  Since 4   {1,2,3}, 

V
(c',4)

(c)   
('c',4)

(F).  Hence by rule 1 V
(c',4)

(Fc) =/  T.  So by rule 9 V(xFx) = F. 

4 Since V(a) = 1, V
(a',1)

 is a trivial expansion of V, and 'a' is a potential name of 1 with 

respect to V.  Since 1  {1,2,3}, V
(a',1)

(a)  V
(a',1)

(F).  So by rule 1, V
(a',1)

(Fa) = T  

Hence by rule 10, V(xFx) = T. 

5 No member of the domain {1,2,3,4,5} is an element of both V(F), i.e. {1,2,3} and 

V(G), i.e. {4,5}.  Hence there is no potential name  and object d in {1,2,3,4,5} such 

that V
(, )

('F & G) = T.  (For if V
(, )

('F & G) = T, then by rule 5, both V
(, )

(F) = 

T and V
(, )

(G) = T, which by rule 1 would mean that d would be in both {1,2,3} and 

{4,5}, which is impossible.)  Therefore by rule 10 V(x(Fx & Gx)) = F. 

6 V(P) = T, and V(Q) = F so that V(Q) =/  T; it follows by rule 7 that V(P  Q)  = F. 

7 V(Q) = F; it follows by rule 7 that V(Q  xFx) = T. 

8 Since 1,2  {1,2,2,1,4,4,5,4}, V(a),V(b)  V(L).  Thus by rule 2, V(Lab) = T. 

9 In problem 8 we saw that V(Lab) = T.  But then since V(b) = 2, V
((b',2)

(Lab) = T and 'b' 

is a potential name of 2 with respect to V   So by rule 10, V(yLay) = T.  Moreover, 

since V(a) = 1,  V
(a',1)

(yLay) = T and 'a' is a potential name of 1 with respect to V.  

Hence again by rule 10, V(xyLxy) = T. 

10 The name 'c', not being assigned any denotation by V, is a potential name of 3 with 

respect to V.  So consider the nontrivial expansion V
(c',3)

 of V.  Now there is no 

member d of the domain {1,2,3,4,5} such that 3,d  V(L).  Hence by rule 2 there is 

no potential name  and object d in {1,2,3,4,5} such that V
(c,3)(, )

(Lc) = T.  Hence by 

rule 10 V
(c',3)

(yLcy) =/  T.  Therefore by rule 9 V(xyLxy) = F. 

 
In problem 10 we use the notation 'V

(c,3)(, )
' to stand for the expansion of V

(c,3)
 with respect to an 

unspecified name  and object d.  V
(c,3)

 itself, of course, is the expansion of V with respect to 'c' and 3.  

It is often necessary to consider expansions of expansions (and expansions of expansions of 
expansions ... and so on!) when working with multiple quantifiers. 
 
EXERCISE 7.2.1:  Some additional formulas are listed below.  Which of them are true and which are 
false on the valuation given above?  (Show your work as in the solutions to that example.) 

 1 Fa  Fb 

 2 a=b 

 3 xGx 

 4 xGx 

 5 xGx 

 6 xGx 

 7 x(Fx  Gx) 

 8 x(Fx & Gx) 



 

 

 9 xLxx 

 10 yxLxy 
 
 We have so far ignored function symbols.  Though we shall not need to use of the semantics 
of function symbols in this book, for completeness we shall consider them briefly here. 
 In addition to assigning the usual extensions to predicates and names, a valuation of a 
formula or set of formulas containing function symbols assigns to each function symbol an n-place 

function.  An n-place function  is a set of ordered pairs that meets two conditions: 

 
 1 The first item in each pair is an ordered n-tuple. 

 2 For any pairs x,y and x,z in , y = z.  

 
For example, the two-place addition function on the natural numbers is the set: 
 

  {1,1,2, 1,2,3, 2,1,3, 2,2,4,1,3,4, ...}. 
 
Each pair in this set has as its first item a pair of numbers, whose sum is the second item.  For a 

given pair x,y,z, x and y are arguments of the function, and z is the value for those arguments. 
 Since a 1-tuple is just the object it contains, a one-place function is just a set of ordered 
pairs—i.e., a simple relation.  Thus, for example, the one-place successor function is the set: 
 

  {1,2,2,3,3,4,4,5,...} 
  
(Notice that the one-place successor function and the two-place successor relation discussed in 
Section 7.1 are in fact the same set.)  Here the first member of each pair is the argument and the 
second is the value for that argument. 
 Condition 2 of the definition of a function requires that each argument yield a unique value.  

Thus, for example, since 2,3 is a member of the successor function, there can be no member of the 

form 2,x, where x =/  3.   
 The semantics for function symbols in predicate logic is defined by the valuation rule for 
function symbols, which assigns an extension to a complex name by considering the extensions of its 
parts.  The rule is: 
 

  For any n-place function symbol  and any names 1,...n,  

  V((1,...n)) = d iff V(1),...V(n),d  V(). 

 

Here V() is the n-place function assigned by V to , and d is the value of that function for the 

arguments V(1),...V(n).  Since an n-place function has only one value for each n-tuple of 

arguments, there is only one object d that the complex name (1,...n) denotes.   

 Let's take a specific example.  Suppose some valuation V assign to the two-place function 

symbol 'f' the addition function mentioned above.  Furthermore, for the names 'a' and 'b', let V(a) = 1 

and V(b) = 2.  We wish to use the valuation rule for function symbols to determine the extension of 

the complex name 'f(a,b)'.  The rule stipulates that: 
 

  V(f(a,b)) = d iff V(a),V(b),d  V(f). 

 

But since V(a) = 1, V(b) = 2, and V(f) = {1,1,2, 1,2,3, 2,1,3, 2,2,4,1,3,4, ...}, this means 

that 
 

V(f(a,b)) = d iff 1,2,d {1,1,2, 1,2,3, 2,1,3, 2,2,4,1,3,4, ...} 

 

Now the only number d such that 1,2,d  {1,1,2, 1,2,3, 2,1,3, 2,2,4,1,3,4, ...} is 3.  

Hence: 



 

 

 

  V(f(a,b)) = 3. 

 

 Or, again, suppose that 's' is a one-place function symbol to which V assigns the successor 

function and that 'a' is a name such that V(a) = 2.  To calculate V(s(a)), we apply the rule as follows: 

 

  V(s(a)) = d iff V(a),d  V(s). 

 
However, since a one-tuple of a given object is just that object itself, it follows that: 
 

  V(s(a)) = d iff V(a),d  V(s). 

 

And since V(a) = 2 and V(s) = {1,2,2,3,3,4,4,5,...}, we have: 

 

  V(s(a)) = d iff 2,d  {1,2,2,3,3,4,4,5,...}. 

 

But the only d such that 2,d  {1,2,2,3,3,4,4,5,...} is 3.  Hence: 

 

  V(s(a)) = 3. 

 
EXERCISE 7.2.2:  Let 'a', 'b', and 'c' be names, 's' a one-place function symbol, and 'f' a two-place 
function symbol, and let: 

  V(a) = 1 

  V(b) = 2 

  V(c) = 3 

  V(s) = {1,2,2,3,3,4,4,5,...} 

  V(f) = {1,1,2, 1,2,3, 2,1,3, 2,2,4,1,3,4, ...} 

Use the valuation rule for functions (together in problem 5 with the valuation rule for identity) to 
calculate the following values.  Show your work in the way exemplified above. 

1 V(s(b)) 

2 V(s(s(a))) 

3 V(f(a,a)) 

4 V(f(a,s(a))) 

5 V(s(b)=c) 

 

7.3 USING THE SEMANTICS 

 We now consider how to use the semantics of predicate logic to prove metatheorems about 
such important properties as consistency and validity.  The material in this section presupposes 
familiarity with Sections 5.1-5.4.   
 The metalinguistic terms 'consistent', 'valid', and so on, have the same definitions in predicate 
logic as in propositional logic.  Thus, for example, a sequent in predicate logic is valid if and only if 
there is no valuation on which its premises are all true and its conclusion is false.  But valuations are 
no longer merely lines on a truth table.  Still, the general idea is the same:  the truth values of 
complex formulas are determined by the values assigned to their components.  The following 
metatheorems illustrate how the valuation rules can be used to determine validity, consistency, etc.: 
 
METATHEOREM:  The sequent 'Lab ├  Lba' is invalid. 

Proof: Let V be the valuation on domain {1,2} such that: 

  V(a) = 1 

  V(b) =  2 

  V(L) = {1,2}. 

Since 1,2  {1,2}, clearly V(a),V(b)  V(L), and so by valuation rule 2, V(Lab) = T.  However, 

2,1  {1,2}, so that V(b),V(a)  V(L).  Thus by rule 2 V(Lba) =/  T.  Thus, since V(Lab) = T and 

V(Lba) =/  T, it follows (by the definition of validity) that 'Lab  ├  Lba' is not valid, i.e., invalid.  QED 



 

 

 
The strategy for proving a sequent invalid is simply to produce a counterexample.  The challenge, 
then, is to understand the problem well enough to see how the premises could be true while the 
conclusion is false.  Once you see this, it's a fairly routine job, requiring care but little insight, to 
construct the appropriate valuation and show using the valuation rules that it is a counterexample.  In 
the problem above, if we think of 'L' as 'loves', 'a' as 'Al' and 'b' as 'Beth' then the counterexample is 
obvious: it's perfectly possible for Al to love Beth without her loving him.  We then construct a 
valuation which expresses the form of this situation.  An uninterpreted model suffices for a 
counterexample, though usually we will suggest an interpretation that makes it a surrogate model, as 
we just did here. 
 The best strategy for proving a sequent valid is usually reductio.  We suppose that the 
sequent is not valid and then deduce a contradiction.  The reasoning proceeds through the usual 
stages of unpacking, logical manipulation, and repacking, as in the following example: 
 

METATHEOREM:  The sequent 'Fa  ├  xFx' is valid. 

Proof: Suppose for reductio that this sequent is not valid, i.e., that there is some valuation V 

 such that V(Fa) = T and V(xFx) =/  T.  Since V(Fa) = T, by valuation rule 1 V(a)  V(F).  Now 

since V is a valuation of 'Fa', V must assign some extension d to 'a'.  Therefore, 'a' is a 

potential name of d with respect to V and V(
a', )

('Fa) = T.  It follows by rule 10 that V(xFx) =T.  

But we supposed that  V(xFx) =/  T, and so we have a contradiction. 

Therefore, the sequent 'Fa   ├   xFx' is valid.  QED 
 
 The reductio strategy also serves for proving the validity of formulas, as the following 
example illustrates: 
 

METATHEOREM:   'x(Fx  Fx)' is a valid formula. 

Proof: Suppose for reductio that 'x(Fx  Fx)' is not valid.  Then there is some  

 valuation V such that V(x(Fx  Fx)) =/  T.  Hence by rule 9, there is some potential name  

of some object d in the domain of V such that V
(, )

(F  F) =/  T.  Thus by rule 7, V
(, )

(F) = 

T and V
(, )

(F) =/  T, which is absurd. 

Hence, contrary to our supposition, 'x(Fx  Fx)' is valid.  QED 
 
In this last problem, after stating the reductio hypothesis we used the valuation rules to analyze the 
formula into its components until we reached a contradiction.  This is a standard strategy. 
 To prove the consistency of a set of formulas, by contrast, we construct a valuation on which 
they are all true.  The strategy here is similar to the strategy for showing a sequent to be invalid: 
 

METATHEOREM:   The set {xFx, xFx} is consistent. 

Proof: Let V be the valuation on domain {1,2} such that: 

  V(F) = {1} 

Now the name 'a', since it is not assigned any denotation by V, is a potential name of 1 with respect 

to V.  So consider the nontrivial expansion V
(a,1)

 of V.  Since 1  {1}, by rule 1 V
(a,1)

(Fa) = T.  Hence by 

rule 10, V(xFx) = T.  Furthermore, because 'a' is not assigned any denotation by V, it is also a 

potential name for 2.  So we may also consider the expansion V
(a,2)

 of V.  Since 2  {1}, V
(a,2)

(a)  

V
(a,2)

(F).  So by rule 1, V
(a,2)

(Fa) = F; and so by rule 4 V
(a,2)

(Fa) = T.  Hence by rule 10, V(xFx) = T.  

Thus we have shown both that V(xFx) = T and that V(xFx) = T, whence it follows (by the definition 

of consistency for a set) that {xFx, xFx} is consistent.  QED 
 
This proof is easy to understand informally.  We create a valuation containing two objects, one of 
which is F and the other of which is not F.  Clearly on this valuation, something is F and something is 
not F, and so the valuation shows the set to be consistent.  We could have used V

(b,2)
 instead of V

(a,2)
 



 

 

for our second expansion of V, but there is no reason not to consider two different expansions with 

respect to the same letter, so long as we are looking at subformulas whose quantifiers do not overlap. 
 To prove inconsistency, it's usually best to suppose consistency and proceed by reductio: 
 

METATHEOREM:  The formula 'xFx & xFx' is inconsistent. 

Proof: Suppose for reductio that 'xFx & xFx' is consistent, i.e., that there is some valuation V on 

which 'xFx & xFx' is true.  Then by rule 5 both V(xFx) = T and V(xFx) = T.  Since 

V(xFx) = T, by rule 10 there is some potential name  of some object d in the domain of V 

such that V
(, )

(F) = T.  Hence by rule 4 V
(, )

(F) =/  T.  Therefore by rule 9 V(xFx) =/  T.  

But we said above that V(xFx) = T, and so we have a contradiction. 

Consequently, 'xFx & xFx' is inconsistent.  QED 
 
 To summarize, problems such as those we have been doing are usually most efficiently 
handled by one of two general strategies: 
 
1 To prove sequents invalid, formulas or sets consistent, or formulas contingent, construct 

appropriate valuations, and then show,  using the valuation rules, that these valuations make 
the desired truth value assignments.  To prove a sequent invalid, the appropriate valuation is 
one which makes its premises true and its conclusion false (a counterexample).  To prove a 
formula consistent, use a valuation which makes it true.  To prove a set of formulas 
consistent, use a valuation which makes all members of the set true.  And to prove a formula 
contingent, use two valuations, one which makes the formula true and one which makes it 
false. 

 
2 To prove sequents or formulas valid and formulas or sets inconsistent, proceed by reductio.  

Begin, as usual, by supposing the denial of the desired metatheorem.  Then unpack this 
supposition, using the definition of its central term (e.g., 'valid', 'inconsistent).  This unpacking 
will yield a statement about some valuation V.  (For example, if the supposition is that a 

certain sequent is not valid, then unpacking will yield the statement that there is some 

valuation V on which the sequent's premises are true and its conclusion is false.)  Now further 

unpack this statement about V, using the valuation rules to analyze the truth conditions for 

complex formulas into the truth conditions of their simpler components.  The desired 
contradiction should eventually emerge from this analysis. 

 
 The next metatheorem follows strategy 2, but the result is a bit surprising.  If we interpret 'a' 
as meaning "God," for example, the metatheorem seems to assert that it is a logical truth that God 
exists (more literally, that there is something identical to God).   
 

METATHEOREM:  'x x=a' is a valid formula. 

Proof: Suppose for reductio that 'x x=a' is not valid, i.e., that there is some 

 valuation V such that V(x x=a) =/  T.  Then by rule 9 there is no potential name of an object 

d such that V
(, )

(=a) = T.  Now by the definition of a valuation, V must assign to 'a' some 

denotation V(a) of which it is a potential name.  So in particular, putting 'a' for  and V(a) for 

d, so that V
(, )

 is just V, it follows that V(a=a) =/  T.  But since (obviously) V(a) = V(a), by rule 3 

V(a=a) = T—and so we have a contradiction. 

Hence, contrary to our supposition, 'x x=a' is valid.  QED 
 
Theology on the cheap!  Unfortunately, however, if we interpret 'a' as meaning "the Easter Bunny," 
we get a similar result.  This shocking anomaly reveals that classical predicate logic cannot 
adequately represent names that do not or might not denote, for it tacitly presupposes that every 
name denotes some existing thing.  This presupposition is embodied in the definition of a valuation, 
which stipulates that each name be given some object in the domain as its extension.  This prejudices 
the question of whether or not there is anything corresponding to the name.  Once we understand 



 

 

how this prejudice is built into the semantics, it is easy to see why according to that semantics 'x 
x=a' is valid. 
 But, having accepted this result, we must admit that predicate logic is inapplicable to 

expressions containing names that do not or might not name.  Thus from the validity of 'x x=a' we 
cannot legitimately infer that it is a logical truth that God exists; for God's existence is a matter of 
dispute, and so 'a' cannot legitimately be interpreted as naming God.  
 There are forms of logic, called free logics, which dispense with the presupposition that all 
names denote—at the cost of additional complexities.  Logicians have generally found it easier to 
presuppose that all the names they are using denote than to grapple with with these complexities.  I 
concur, at least for pedagogical purposes, which is why I don't begin with free logic.  But we'll look 
into it in Section 15.1. 
 In addition to the presupposition that each name names, predicate logic has another 
presuppostion that creates somewhat dubious valid formulas.  This is the assumption, stated in the 
definition of a valuation, that the domain is nonempty.  Given this assumption, there are no valuations 
in which nothing exists.  Yet it seems in some sense possible for nothing to exist—particularly in 
certain restricted domains of quantification.  So here again some modification may be desirable.  That 
modification, too, will be discussed in Section 15.1. 
 Predicate logic has some other rough edges, the most prominent of which involves statement 
of the form 'All F are G' where the extension of 'F' is the empty set.  Consider, for example, the 
statement 'All frogs over a hundred feet tall are green', where 'F' means "is a frog over a hundred feet 
tall" and 'G' means "is green."  (There are, I assume, no frogs over a hundred feet tall.)  Is this 
statement true or false? 
 The question is baffling, for English has no clear conventions to deal with such cases.  On the 
one hand, the fact that there are no frogs that tall seems to make the statement false.  But, on the 
other, since the set of all such frogs is empty, it is true of each thing x that if x is a frog over a hundred 
feet tall , then x is green—at least when we read 'if ... then' as the material conditional—because for 
each thing x it is false that it is a frog over a hundred feet tall.  Thus understood, this sentence—and, 
indeed, every quantified conditional whose antecedent term is similarly empty—is true.  Hence it is 
also true that all frogs over a hundred feet tall are red—and yellow,  and pink, and colorless ... !  This 
is the understanding that prevails, given the conventions of predicate logic.  Thus, for example, the 

sequent 'xFx  ├  x(Fx  Gx)' is valid.  We leave the proof as an exercise. 
 It is possible to prove results of greater generality than those so far considered.  The next 

metatheorem establishes that for any variable , the expressions  and  are equivalent in the 
sense that any formula beginning with one keeps its truth value if we replace it with the other.  (This is 

right, since both expressions mean "for no .")  This equivalence is important; in the next section we 
use it to justify the tree rule for negated existential statements. 
 

METATHEOREM:  For any two formulas of the forms  and  and any valuation V, V() 

= V(). 

Proof: By valuation rule 10 there are two possibilities: either V() = T or  V() = F.  We 

consider each in turn.   

 Suppose, first, that V() = T.  Then by valuation rule 4, V() =/  T.  Hence by rule 10 

there is no potential name  of an object d in the domain of V such that V
(, )

() = T.  Thus 

by rule 4, V
(, )

(/) = T for all potential names  of objects d in the domain of V.  It follows 

by rule 9 that V() = T, so that V() = V(). 

Hence we have shown that if V() = T, then V() = V(). 

 Suppose, then, to consider the second case, that  V() = F.  It follows by rule 4 that 

V() = T.  Then by rule 10 there is a potential name  of an object d such that V
(, )

() = 

T.  Hence by rule 4 V
(, )

() =/  T.  But then by rule 9, V() = F, so that once again 

V() = V(). 

Hence we have shown that if V() = F, then V() = V().  Since the same conclusion 

follows in either case, it must be the case that V() = V().  QED 

 



 

 

The strategy here is often called constructive dilemma, or argument by cases.  We begin with a 

disjunctive premise—in this case either V() = T or  V() = F—and prove that each of its 

disjuncts leads to the same conclusion.  (These subsidiary proofs may be thought of as conditional 
proofs.)  Then it follows that that conclusion must be true. 
 To those already familiar with object language systems of deduction, like the one presented 
in Chapter 8, these metatheoretic proofs may seem extravagant.  The former rely on a small number 
of simple syntactic rules, whereas our metaproofs use more cumbersome semantic methods.  But 
these semantic methods are more powerful.  Object language proofs can establish the validity of 
sequents, but not their invalidity.  If we construct a proof for a sequent, we know it is valid; but if we 
can't, we don't know anything.  It might be invalid, or we might just not have hit upon the way to prove 
it.  Using the semantic techniques of this section, we can prove both validity and invalidity—and deal 
as well with the related concepts of consistency, validity, etc.  Moreover, the semantics presented in 
this section provides the background needed to understand trees in predicate logic.  And trees handle 
much of what we have been doing here with metatheorems while avoiding much of the 
cumbersomeness. 
  
EXERCISE 7.3:  Prove the following metatheorems, using the valuation rules and appropriate 
definitions: 

1 'xFx   ├ Fa' is a valid sequent. 

2 'xFx   ├   xFx' is an invalid sequent. 

3 'x x=a' is a consistent formula. 

4 The formula 'x(Fx & Fx)' is inconsistent. 

5 The formula 'xFx  xFx' is valid. 

6 The formula 'xFx' is contingent. 

7 The sequent 'Fa   ├   xFx' is invalid. 

8 'a=a' is inconsistent. 

9 'x x=x' is inconsistent. 

10 For any two formulas of the forms  and  and any valuation V,  

 V() = V(). 

 

7.4 TREES FOR PREDICATE LOGIC 

 The tree test for predicate logic retains all the tree rules for propositional logic (Section 3.3) 
and adds six more—two each to deal with the two quantifiers and the identity predicate.  As in 
propositional logic, the purpose of a tree is to display valuations on which all the formulas of the initial 
list are true.  However, while trees in propositional logic display all such valuations, trees in predicate 
logic do not.  Formulas true on one valuation in predicate logic are true on infinitely many others (we 
can always, for example, replace the objects in the domain of that valuation by other surrogate 
objects), while in propositional logic the number of valuations of a given set of formulas is finite.   
 Still, a tree in predicate logic displays all the general classes of valuations on which its initial 
list of formulas might be true—and, as in propositional logic, each open path of a finished tree can be 
interpreted as displaying at least one valuation on which the initial list is true.  Moreover, as in 
propositional logic, if all paths close, the initial list is inconsistent. 
 We shall begin our examination of trees in predicate logic by considering the tree rule 

governing unnegated existentially quantified formulas.  An existentially quantified formula  is true 

on a valuation V iff there is an object d in the domain such that for some potential name  of d, —

the result of replacing every occurrence of  in  by  is true on V.  So to display in a tree the way 

in which an existentially quantified formula can be true, we give d a name  and assert .  To 

assure that  is a potential name for d, no matter which object d is, we require that it be new to the 

path so that no value has been assigned to it by valuations of the initial list.  Thus the rule may be 
stated as follows: 



 

 

 

Existential Rule ():  If an unchecked formula of the form  appears on an open path, check it.  

Then choose a name  that does not yet appear anywhere on that path and write ,the result of 

replacing every occurrence of  in  by  at the bottom of every open path that contains the newly 
checked formula. 
 

We shall illustrate the use of this rule by constructing a tree for the sequent 'xFx   ├   Fa': 
 

  1           xFx  premise 

  2  F  negation of conclusion 

  3  Fb  1  
 

Once we introduce the new name 'b' by  at 3, there is nothing more to be done.  The unchecked 
formulas are atomic, and no further rules apply.  So the tree is finished, and its one path has not 
closed.  This indicates that the sequent is invalid. 
 What counterexample is displayed here?  Recall that a counterexample is a valuation that 
makes the premises true and the conclusion untrue, and a valuation in predicate logic has two 
components:  a domain and an assignment of extensions to predicates and names.  In general, we 
shall take the domain of the valuation defined by an open path to consist just of the objects 
mentioned by name in the formulas on that path.  Here, for example, the only names appearing in the 
formulas of the open path are 'a' and 'b'.  Since in uninterpreted models the identity of the objects in 
the domain is a matter of indifference, we'll let them be numbers.   To keep things simple and uniform, 
let's stipulate that in all problems the name 'a' denotes the number 1, 'b' the number 2, 'c' the number 

3, and so on.47  Thus if an open path on a tree contains the names 'a' and 'b', and no others, as in our 
example, the domain of the valuation defined by that path is {1,2}. 
 The stipulation announced in the previous paragraph already determines the extensions 
assigned to 'a' and 'b'.  They are 1 and 2, respectively.  To complete the counterexample, we need 
only to specify the extension of the one-place predicate 'F'. 
 In general, extensions are assigned to predicates in the following ways:   for any atomic 
formula that occurs unnegated on the path, if it is a zero-place predicate, then the valuation assigns 
that predicate the extension T; if it is a one-place predicate followed by a name, then the number 
denoted by that name is in the extension of that predicate; and if it is an n-place predicate followed by 
n names, then the n-tuple of numbers denoted by those names in the order of their occurrence is a 
member of the extension of the predicate.  Zero-place predicates which either do not appear on the 
path or appear negated on the path are assigned the value F; and single numbers or n-tuples not 
explictly included in a predicate's extension by the occurence of the corresponding atomic sentence 
on the path are assumed not to be in that predicate's extension. 
 Therefore, since 'Fb' appears on the path, the number 2, which is the object denoted by 'b', is 

in the extension of 'F'.  And since there is no atomic formula of the form F on the path for any other 

name , 2 is the only member of the extension of 'F'.  The extension of 'F', therefore, is {2}.   
 Accordingly, the valuation V defined by the open path of this tree is: 

 

  Domain of V =  {1,2} 

  V(a) =   1 

  V(b) =   2 

  V(F) =   {2} 

 

It is easy to see, using the valuation rules of predicate logic, that this is a valuation on which 'xFx' is 
true and 'Fa' is false and hence a counterexample. 
 This is, of course, an unintepreted valuation.  To make it meaningful, we might convert it into 
a surrogate valuation by taking 'a' to mean "Al", 'b' to mean "Beth," and 'F' to mean, say, "is female".  
Thus the number 1 is a surrogate for Al and 2 is a surrogate for Beth.  Then the specific possible 

                                                      
47We could also give naming conventions for subscripted names, but we won't bother since in practice we won't use them. 



 

 

situation it represents is a situation involving only Al and Beth in which Beth is female, but Al isn't.  
And that situation is a clear counterexample to the argument: 
 
   Something is female. 

   Al is female. 
 

Thus we can see why the sequent 'xFx  ├  Fa' is invalid. 
 Let's now turn to the rules for negated quantifiers: 
 

Negated Existential Rule ( ):  If an unchecked formula of the form  appears on an open path, 

check it and write  at the bottom of every open path that contains the newly checked formula. 
 

Negated Universal Rule ( ):  If an unchecked formula of the form  appears on an open path, 

check it and write  at the bottom of every open path that contains the newly checked formula. 
 
 These rules convert negated existential or universal statements into quantified negations, 
which can then be analyzed with the rules for unnegated existential or universal formulas.  The 

negated existential rule depends on the fact that '' and '' are equivalent, which was proved as 
a metatheorem near the end of Section 7.3.   Similarly, the negated universal rule depends on the 

equivalence of '' and '' (see Problem 10 of Exercise 7.3). 

 The tree for the sequent 'xFx  ├  xFx' provides a simple illustration of the use of the  
rule: 
 

  1          xFx  premise 

  2 xFx  negation of conclusion 

  3 xFx  1  

  4 X  2,3   
 

Here application of  to the formula at line 1 produces an immediate contradiction and closes the 
path.  The sequent is valid.  There is no counterexample. 

 Notice that the annotation at line 4 specifically mentions that the  rule was used to close the 

path.  In predicate logic there are two path-closing rules:  the familiar rule  and a new rule, =, which 
will be introduced shortly.  It is useful, therefore, to begin to get into the habit of specifying which we 
are using when closing a path. 

 The tree for the sequent 'Fa & Ga  ├  x(Fx & Gx)' illustrates the use of the  rule: 
 
  1           Fa & Ga  premise 

  2           x(Fx & Gx)  negation of conclusion 
  3  Fa   1 & 
  4  Ga   1 & 

  5           x(Fx & Gx)  2  

  6           (Fb & Gb)  5 

 
  7 Fb 6 & Gb  6 & 
 
At this point all nonatomic formulas are checked, and there is nothing left to do, so the tree is 

complete.  This tree has two open paths, but both represent the same valuation V: 

 

  Domain of V =  {1,2} 

  V(a) =   1 

  V(b) =   2 

  V(F) =   {1} 



 

 

  V(G'} =   {1} 

 
And this valuation is a counterexample to the sequent.  If we interpret 'a' to mean "Al," 'b' to mean 
"Beth," 'F' to mean "is foolish" and 'G' to mean "is greedy," then the sequent says that since Al is 
foolish and greedy, everyone is foolish and greedy.  The valuation defined by the tree represents a 
conterexample to this inference.  The counterexample is a situation involving only Al and Beth in 
which Al is both foolish and greedy but Beth is neither.  
 The final quantifier rule is the rule for the unnegated universal quantifier.  What makes a 

universally quantifed statement  true on a valuation V is that each instance of the form  is 

true, where  is the result of replacing all occurrences of  in  by a potential name  of an object 
in the domain.  This suggests that the tree rule for the universal quantifier should enable us to 
produce an instance of the quantified formula for each object in the domain.   
 However, in constructing trees, we construct the domain associated with each open path as 
we go.  Since existential formulas may introduce new names onto the path, we cannot in all cases be 
sure what the ultimate domain will be until the path is complete.  (Of course, if the path closes, there 
is no domain to worry about.)  Therefore, even if we instantiate a universal formula for each name 
currently on the path, so long as the path is not finished, that is no guarantee that the path contains 
each instance of the universal formula required to make that formula true.  New objects may be 
added to the domain later.  Thus we cannot be sure that we are done using a universal formula until 
the path is finished.  This means that, unlike other formulas, universal formulas should not be 
checked when we apply their tree rule. 
 Ultimately, unless the path closes, we should obtain an instance of each universal formula for 
each name on the path.  But what if we need to apply the universal rule to a formula on a path that 
does not yet contain any names at all?  For an answer, we must recall the stipulation contained within 
the definition of a valuation that the domain must be nonempty.  There must, in other words, be at 
least one object in the domain.  We therefore introduce a new name for that object and instantiate the 
quantified formula with that name. 
 The universal rule may thus be stated as follows: 
 

Universal Rule ():  If a formula of the form  appears on an open path and  is a name that 

occurs in a formula on that path, write  (the result of replacing all occurrences of  in  by ) at 
the bottom of the path.  If no formula containing a name appears on the path, then choose some 

name  and write at the bottom of the path.  In either case, do not check . 
 

Let's use the tree for the sequent 'x(Fx  Gx), xFx   ├   Ga' to illustrate this rule: 
 

  1  x(Fx  Gx)  premise 

  2  xFx   premise 

  3  Ga   negation of conclusion 

  4           Fa  Ga  1  

  5  Fa   2  

 
  6 Fa  4 Ga  4  

  7 X  5,6   X  3,6   
 
Since the only name on the path is 'a', this is the name used to instantiate the quantified formulas on 

lines 1 and 2 by   The results appear at lines 4 and 5.  Note that neither universal formula is 
checked.  Since both paths close, the sequent is valid. 

 The sequent 'xFx  ├  xFx' provides an example of the use of  on a path initially containing 
no names: 
 

  1 xFx   premise 

  2          xFx   negation of conclusion 



 

 

  3 xFx   2  

  4 Fa   1  

  5 Fa   3  
  6 X   4,5 
 

At line 4, since no name yet appears on the path, we choose the new name 'a' and instantiate 'xFx' 
with 'a' to obtain 'Fa'.  But at line 5, since 'a' now appears at line 4, we use 'a' again to instantiate 

'xFx'.  This yields a contradiction and closes the path, showing the sequent to be valid. 

 Consider now the tree for the sequent 'xFx & xGx   ├   x(Fx & Gx)': 
 

  1           xFx & xGx  premise 

  2           x(Fx & Gx)  negation of conclusion 

  3           xFx   1 & 

  4           xGx   1 & 

  5  Fa   3  

  6  Gb   4  

  7  x(Fx & Gx)  2  

  8           (Fa & Ga)  7  

  9           (Fb & Gb)  7  

 
  10 Fa  8 & Ga  8 & 

  

11 X  5,10 

 
  12  Fb  9 & Gb  9 & 

  13    X     6,12 



Note, first, that in each of its applications (lines 5 and 6) the rule  introduces a new name.  Notice, 
too, that the universal formula at line 7 is unchecked.  But since it has been instantiated for each 

name on the path (at lines 8 and 9), nothing further can be done with it ( introduces a new name 
only if the path does not yet contain any names).  All the other unchecked formulas are atomic.  
Therefore tree is finished.   

 The open path represents the following valuation V: 

 

  Domain of V = {1,2} 

  V(a) =  1 

  V(b) =  2 

  V(F) =  {1} 

  V(G) =  {2} 

 
 When multiple quantifiers are present, there must be multiple applications of the quantifier 

rules, as the tree for the sequent 'xy(Fxy  Fyx)   ├   xFxx' illustrates: 
 

  1  xy(Fxy  Fyx) premise 

  2           xFxx  negation of conclusion 

  3           xFxx   2  

  4  Faa   3   

  5  y(Fay  Fya) 1  



 

 

  6           Faa  Faa  5  

 
  7 Faa  6  Faa  6  

  8 X  4,7  X  4,7  
 
The sequent is valid. 
 Trees for predicate logic may also contain sentence letters, as in propositional logic.  Here is 

the tree for 'xFx  P  Fa  ├  P': 
 

  1           xFx  P  premise 

  2  Fa   premise 

  3  P   negation of conclusion 

 
  4          xFx 1    P  1  

  5          xFx    4    X  3,4 

  6 Fb         5  
 

Note the introduction of the new name 'b' at step 6.   requires a new name and does not allow us to 
conclude 'Fa'.  Thus the left path remains open.  It represents the following valuation V: 

   Domain of V =  {1,2} 

   V(a) =   1 

   V(b) =   2 

   V(F) =   {2} 

   V(P) =   F 

 
 The tree tests for consistency, contingency, the validity of formulas, and other semantic 
properties are the same as in propositional logic.  The following tree, for example tests the formula 

'(xFx & xFx)' for valdity: 
 

  1           (xFx & xFx) negation of given formula 

  2           xFx & xFx  1  

  3  xFx   2 & 

  4           xFx   2 & 

  5  Fa   4  

  6  Fa   3  

  7  X   5,6 



The formula is valid.  Note that I apply  at line 5 before applying  at line 6.  As a general policy, this 

saves work.  If I had applied  first, I would have had to introduce a new name with it and then 

introduce a second new name with the application of  to line 4.  Then I would have had to apply  to 
line 3 again for this second new name.  The path would still have closed, but the way I did it is much 
simpler. 
 Next, we consider an example unlike any that we have so far examined—the tree for the 

sequent 'xyCxy   ├   Caa': 
 

  1  xyCxy premise 

  2  Caa  negation of conclusion 

  3           yCay  1  

  4  Cab  3  



 

 

  5           yCby  1  

  6  Cbc  5  

  7           yCcy  1  

  8  Ccd  7  
      . 
      . 
      . 
 
This tree goes on forever.  Each time we instantiate the universal formula at line 1, we get a new 

existential formula.  Then we must apply  to this existential formula.  But that produces a new name, 
and we must go back and instantiate 1 again with that new name.  This produces yet another 
existential formula, and the cycle begins anew.  Yet the infinite path specifies a counterexample.  The 

counterexample is the valution V such that:  

 
  Domain of V=  {1,2,3,4, ...} 

  V(a) =    1 

  V(b) =   2 

  . 
  . 
  . 

  V(C) =   {1,2,2,3,3,4, ...} 

 
Both the domain and the extension of 'C' are infinite sets, and infinitely many names (indicated by the 
three dots) receive extensions.   
 To understand this example, think of 'C' as meaning "is caused by."  Then the premise 

'xyCxy' means that everything is caused by something—i.e., everything has a cause—and the 
conclusion means "a is caused by itself."   The counterexample, then, represents a situation in which 
everything has a cause and the succession of causes is infinite.  We might think of the numbers in the 
domain as representing events.  Then for each number n, n+1 represents the cause of n.  In this 
situation it is true that each event has a cause, but false that event a is self-caused.  Hence it is clear 
that the sequent is invalid. 
 Yet the tree itself can never be completed.  We know the answer it would give if we could 
complete it:  the sequent is invalid.  But in fact the tree test is in this case nonterminating.  That fact is 
profoundly significant, but we shall not explore its significance until Chapter 10. 
 In the meantime, we have two other tree rules to consider—the identity rules.  An identity 

statement—that is, a statement of the form =—is true iff  and  name the same object.  Hence 

anything that is true of the object named by  must also be true of the object named by .  Thus if one 
of these names occurs in a formula, we should be able to substitute the other name for it without 
changing that formula's truth value.  This leads us to the rule for unnegated identity statements: 
 

Identity (=):  If a formula of the form = appears on an open path, then if another formula 

containing either  or  appears unchecked on that path, write at the bottom of the path any 
formula not already occurring (checked or unchecked) on the path which results from replacing one or 

more occurrences of either of these names by the other in .  Do not check either = or . 
 
The stipulation that the formula obtained should not have occurred previously, either checked on 
unchecked, on the path, prevents repetition—and hence useless work. 
 Notice, that like a universally quantified statement, an identity statement is never checked.  
This is because, like a universally quantified statement, it may be reused repeatedly as new formulas 
to which it is applicable are added to the path.  This tree for the sequent 'a=b, Lab  ├  Lba' illustrates 
its use: 
    
  1  a=b   premise 
  2  Lab   premise 

  3  Lba   negation of conclusion 



 

 

  4  Lbb   1,2 = 

  5  Lbb   1,3 = 
  6  X   4,5 
 
At step 3 we replace the 'a' in 'Lab' by 'b' to obtain 'Lbb'.  Similarly, at step 4 we replace the 'a' in 

'Lba' by 'b' to obtain 'Lbb'. 
 Getting the tree to close this quickly requires some foresight; many of the subsututions of 'a' 
for 'b' or 'b' for 'a' that we could have made would not help in closing the tree.  However, by making all 
possible substitutions of this sort in all the unchecked formulas of the tree, we would eventually hit 
upon one that would close the tree.  But such "blind" substitution is inefficient; intelligent planning is 
better. 
 The negated identity rule is encouragingly simple: 
 

Negated Identity (=):  Close any open path on which a formula of the form =occurs. 
 

Clearly any formula of the form = is inconsistent, which is what justifies this rule.   The tree for the 
sequent 'a=b   ├   b=a' illustrates it: 
 
  1  a=b  premise 

  2  b=a  negation of conclusion 

  3  b=b  1,2 = 

  4   X  3 = 

The sequent is valid.  At 3 we replace the occurrence of 'a' in 'b=a' by 'b' to obtain 'b=b', which 

closes the tree by =. 
 Consider now the tree for the sequent 'Fa,  Fb   ├   a=b': 
 
  1  Fa  premise 
  2  Fb  premise 

  3  a=b  negation of conclusion 
 
Nothing more can be done here.  Neither the identity rule nor the negated identity rule applies to 

formulas of the form , where  and  are different names.  So the tree is finished and the 
sequent is invalid.  The open path represents the following valuation: 
 
  Domain = {1,2} 

  V(a) =  1 

  V(b) =  2 

  V(F) =  {1,2} 

 

Finally, let's consider the sequent 'a=b,  b=c   ├   a=c': 
 

  1  a=b  premise 

   2  b=c  premise 

  3           a=c  negation of conclusion 

  4  a=c  3 

  5  c=b  1,4 = 

  6  b=a  2,4 = 
 
The only identity statement here is at line 4.  We apply this statement to each formula to which it can 
be applied, but still the tree does not close.  Hence the sequent is invalid.   
 When open paths contain unnegated identity statements, we must modify our conventions 
regarding how open paths define valuations.  The formula 'a=c' can be true only if 'a' and 'c' name the 

same object.  To insure that, we adopt the following stipulation:   when formulas of the form = 
appear on an open path, the extension assigned to each name is the lowest number assigned to any 



 

 

name with which it is identified, either directly or via a series of intermediate identity statements.  
Names not occurring in identity statements, however, have their usual denotations.  For example, in 
the tree above, 'a' would normally denote 1 and 'c' would normally denote 3.  But since 'a=c' appears 
on the open path, we change the denotation of 'c' to the lesser denotation 1.  Thus the valuation 
specified by this tree is: 
 
  Domain = {1,2} 

  V(a) =  1 

  V(b) =  2 

  V(c) =  1 

 
This is clearly a counterexample. 
 Though I have dropped a number of hints along the way, I have not yet said explicitly how to 
determine whether or not a tree is finished.  I do so now:  a tree in predicate logic is finished when 
either all its paths close or no more rules can be applied to any of the formulas left on its open paths.  
No more rules apply to the formulas of a path when each formula on that path is either 
 1 checked, or 

 2 an atomic formula not of the form =, or 
 3 the negation of an atomic formula (including formulas of the form  

  =), or 

 4 a universal formula to which the rule  has been applied for each  
  name on the path, or 

 5 a formula of the form =  which has been applied to each formula  

   (not including = itself) that contains either the name  or the  

  name to produce every possible consequence obtainable by the  
  = rule. 
Whenever you produce a tree that contains open paths, you should check each path with this five-
item checklist to make sure that it is really finished. 
 The following table summarizes the six new tree rules for predicate logic with identity, along 
with the valuation rules to which they correspond (for a similar summary of the tree rules for 
propositional logic, see Section 3.3.): 
 

VALUATION RULE CORRESPONDING TREE RULE 

V() = T iff for some potential name  of 

some object d in D, V
(, )

() = T 

 
  
 
 
 

Existential Quantification ():  If an unchecked 

formula of the form  appears on an open 

path, check it.  Then choose a name  that does 
not yet appear anywhere on that path and write 

the result of replacing every occurrence of 

 in  by  at the bottom of every open path 
that contains the newly checked formula. 

V() = F iff for all potential names  of all 

objects d in D, V
(, )

() =/  T. 

Negated Existential Quantification ( ):  If an 

unchecked formula of the form  appears 

on an open path, check it and write  at the 
bottom of every open path that contains the 
newly checked formula. 

V() = T iff for all potential names  of all 

objects d in D, V
(, )

() = T. 

Universal Quantification ():  If a formula of 

the form  appears on an open path and  is 
a name that occurs in a formula on that path, 

write   (the result of replacing all 

occurrences of  in  by ) at the bottom of the 
path.  If no formula containing a name appears 

on the path, then choose some name  and 

write at the bottom of the path.  In either 

case, do not check . 



 

 

V() = F iff for some potential name  of 

some object d in D, V
(, )

() =/  T. 

Negated Universal Quantification ( ):  If an 

unchecked formula of the form  appears 

on an open path, check it and write  at the 
bottom of every open path that contains the 
newly checked formula. 

V(=) = T iff V() = V(). Identity (=):  If a formula of the form = 
appears on an open path, then if another 

formula containing either  or  appears 
unchecked on that path, write at the bottom of 
the path any formula not already occurring 
(checked or unchecked) on the path which 
results from replacing one or more occurrences 

of either of these names by the other in .  Do 

not check either = or . 

V(=) = F iff V() =/  V(); more to the point 

than this general rule is this more specific 

consequence of it:  V(=) = F iff V() =/  V() 

Negated Identity (=):  Close any open path on 

which a formula of the form =occurs. 

 
ORDER OF APPLICATION 
 In propositional logic the order in which rules were applied made no difference, except as a 
matter of keeping things simple.  We get the correct answer if we apply the rules correctly, no matter 
what the order of application.  In predicate logic this is no longer true:  order of application matters.  If 
we apply rules in the wrong order, we may get an infinite tree even if the tree can be closed.   

Consider, for example, the inconsistent set {xyFyx, xyFyx}.  (To see informally that it is 
inconsistent, think of 'F' as meaning "is the father of".  Then the first of the two formulas says that 
everything has a father and the second that something is fatherless.)  Now suppose we test the set 
for inconsistency by applying the rules in the following incorrect order: 
 

   1 xyFyx given 

   2          xyFyx given 

   3          yFya  1   WRONG! 

   4 Fba  3   WRONG! 

   5          yFyb  1   WRONG! 

   6 Fcb  5   WRONG! 

   7          yFyc  1   WRONG! 

   8 Fcd  7   WRONG!

    

    

     
 

We can continue applying  to 1 and then  to the resulting formula forever.  Yet since the set is 
inconsistent the tree ought to close.  In fact, it does close if we apply the rules in a different order: 
 

   1 xyFyx given 

   2          xyFyx given 

   3 yFya  2  

   4          yFya  1 

   5 Fba  4  

   6 Fba  3  
   7 X   5,6 
 
The problem with the first tree was that we never used line 2; we simply ignored it.  If, instead, we 
switch back and forth among the usable lines, rather than getting stuck in some subset of them, we 
can guarantee that trees whose initial lists are inconsistent will always close.  (This will not, however, 



 

 

always prevent infinite trees for consistent initial lists.)  The simplest way to do this is to impose a 
prescribed order on the application of rules.  One such order is specified below.  Apply every rule you 
can under item A before going to item B; every rule you can under item B before going to item C, and 
so on.  When you finish with item F, go back and start at the beginning of the list again, and repeat 
this procedure until the tree is finished: 
 

 A Path closing rules (, =) 

 B Nonbranching rules other than =, , and  (that is, the rules , &,  

  , ) 

 C Branching rules (that is, the rules , , &, , ) 
 D = 

 E  

 F  
 
 Using this order of application rigidly and mechanically will guarantee that the tree will close if 
its initial list is inconsistent.  (We proved this in Section 9.2.)  But sometimes you can get the tree to 
close more quickly by deviating from the prescribed order.  I did this in the second tree above (the 
one that closes).  At the beginning (line 3) I followed the prescribed order.  Unable to apply any rules 

from items A through D, I applied , as directed in item E.  At that point the only unchecked formulas 

left were universal, so I moved to item F, applying  to line 1 at line 4  So far so good; I was still 

conforming to the prescribed order.  But if I had continued to do so, I would have applied  again at 

line 5 to get 'Faa' from line 3; for the procedure is to apply every rule possible under item F before 
going back to the beginning of the list.  But instead I skipped that step—knowing that the formula 

'Faa' would not be useful in closing the tree—and went back up to item E, applying  at line 5.  If I 

had followed the order of application exactly, my tree would have had one extra line ('Faa', inserted 
between the current lines 4 and 5), but still it would have closed.  Instead, I thought ahead and saved 
a step. 
 In practice, you can usually ignore the prescribed order of application.  If a tree is going to 
close, intelligence and forethought usually reveal a way to close it without resorting to this clumsy and 
inefficient procedure. 
 But in theory, this prescribed order officially governs tree construction.  By assuming that the 
rules are always applied in this order, we will be able to show that the tree test detects inconsistency 
(or validity) without fail—that is, that it never goes on infinitely if the initial list is inconsistent.  This 
assumption is essential to the completeness proof of Section 9.2.  If we don't constrain rule 
application, the tree test becomes incomplete. 
 
EXERCISE 7.4.1:  Construct a tree for each of the following sequents to decide whether it is valid.  If 
it is invalid, specify one of the valuations defined by an open path of its tree that serves as a 
counterexample. 

1 xFx   ├   Fa 

2 xFx   ├   xFx 

3 Fa   ├   xFx 

4 Fa   ├   xFx 

5 xFx   ├   xFx 

6 xFx   ├   xFx 

7 xFx   ├   xFx 

8 xFx   ├   xFx 

9 x(Fx & Gx)   ├   Fa 

10 Fa  Gb, xFx   ├   Gb

11 x(Fx  Gx), xGx   ├   Fa 

12 x(Fx  Gx), xGx   ├   Fa 

13 xFx  xGx, xGx   ├   xFx 

14 x(Fx & Gx)   ├   xFx & xGx 



 

 

15 xFx  xGx   ├   x(Fx  Gx) 

16 x(Fx  Gx)   ├   xFx  xGx 

17 x(Fx & Fx)   ├   P 

18 xFx & xFx   ├   P 

19 xy(Lxy  Lyx),  xLax   ├   xLxa 

20 xyLxy   ├   xLxx 

21 xyLxy   ├   xyLyx 

22 x(Fx   yGy),  Fa   ├   xGx 

23 x(yGy   Fx),  Ga   ├   xFx 
24 Fa, Gb  ├  a=b 

25 Fa, Fb  ├  a=b 

26 x(Fx  Gx),  Fa   ├   xx=a 

27 L   ├   xyx=y 

28 ├  x x=x 

29 ├  xy(x=y  y=x) 

30 ├  xyz((x=y & y=z)  x=z) 
 
EXERCISE 7.4.2:  What follows is one of many versions of the famous ontological argument for the 
existence of God:  
  God is (by definition) the most perfect being.  Anything that exists is 
  more perfect than anything that does not exist.  Therefore, God  
  exists. 
Formalize this argument using the name 'g' for 'God' and the two-place predicate 'P' for 'is more 
perfect (hint:  review the treatment of superlatives in Section 6.3).  Then use a tree to test the 
argument for validity.  Explain what the tree test shows. 
 
TREES WITH FUNCTION SYMBOLS 
 The addition of function symbols to predicate logic requires no additional tree rules, but 
because it expands our notion of a name (see Section 6.4), complex names formed with function 
symbols may now be used with the universal quantifier and identity rules.   There are four points to 
keep in mind: 
 

1 For the purposes of the universal quantifier rule (), each complex name formed by a 
function symbol is a name; a path is therefore not complete until the quantifier rule 
has been applied for each of these names that occurs on that path.  In the formula 
'Lom(m(o))', for example, there are three names: 

   m(m(o)) 
   m(o) 
   o 
 The universal quantifier rule applies to all three.   
2 When instantiating universally quantified formulas, instantiate all names containing 

no function symbols first, then all names containing one function symbol, then all 
names containing two function symbols, and so on—unless you can see a quick way 
to close the path by not doing so.  This ensures that you don't go on infinitely 
instantiating, having skipped a name that might close the path.  If you break this rule, 
the tree test may fail to give an answer even for valid arguments. 

3 The universal quantifier rule (), when applied to paths containing no names, and the 

existential quantifier rule() produce only noncompound names; that is, the names 
used to replace the variables when these rules are applied never contain function 
symbols. 

4 The identity rules (= and =) may be used with either simple or complex names. 
 

Consider, for example, the tree for the sequent 'x Lf(x)x   ├   Lf(f(a))f(a)': 
 



 

 

  1 x Lf(x)x premise 

  2 Lf(f(a))f(a) negation of conclusion 

  3 Lf(f(a))f(a) 1  

  4 X  2,3  
 
At step 3 we apply the universal rule, replacing both occurrences of the variable 'x' in 'Lf(x)x' by the 
name 'f(a)'.  This closes the tree, showing that the sequent is valid.  Note that here we instantiate with 
'f(a)' before instantiating with 'a', taking advantage of the 'unless' clause in rule 2 above. 

 The following tree tests the sequent 'x Lxf(x)   ├   Lof(o)' for validity: 
 

  1          x Lxf(x) premise 

  2 Lof(o)  negation of conclusion 

  3 Laf(a)  1  
 
We apply the existential rule as usual to line 1, introducing a new name 'a'.  This leaves only atomic 
formulas.  The tree shows that in a domain containing four objects (corresponding to the four names, 
'o', 'f(o)', 'a', and 'f(a)' there is an obvious counterexample.  Technically, we need to specify the value 
of the function f for each object in the domain.  Since 'f(o)' and 'f(a)' designate objects in the domain, a 
complete valuation will specify the extensions of 'f(f(o))', 'f(f(f(o)))', 'f(f(a))', etc.  But since these 
expressions do not occur in any formula in the tree, the extension we assign to them doesn't matter, 
so we may as well just set their extensions all conventionally as 1. 
 An important law governing functions is that for any argument they yield a unique value.  The 

formula 'xy(y=f(a)  y=x)' expresses this law for one-place functions.  It is valid, as the following 
tree reveals: 
 

  1           xy(y=f(a)  y=x) negation of given 
         formula 

  2  xy(y=f(a)  y=x)  1  

  3           y(y=f(a)  y=f(a))  2 

             y(y=f(a)  y=f(a))  3  

  5           (b=f(a)  b=f(a))  4 

 
  6 b=f(a)    5  b=f(a)  5  

  7 b=f(a)  5  b=f(a)    5  

  8 X 6,7     X 6,7     
 
EXERCISE 7.4.3:  Demonstrate the validity of the sequents formalized in Exercise 6.4 by constructing 
a tree for each. 
  



 

 

CHAPTER 8 
CLASSICAL PREDICATE LOGIC:  INFERENCE 

 
 Predicate logic adds three new operators to those of propositional logic:  the two quantifiers 
and the identity predicate.  This chapter presents a natural deduction system for predicate logic by 
adding six new inference rules—an introduction rule and an elimination rule for each of the three new 
operators.  We then consider the role of function symbols in proofs. 
 

8.1  EXISTENTIAL INTRODUCTION 

 The ten inference rules and all the derived rules for propositional logic are retained in 
predicate logic.  Some proofs of predicate logic use only these propositional rules.  The sequent 'Fa, 

Fa   xFx,  xFx  xGx ├  xGx', for example, can be proved simply by two steps of E: 
 
  1 Fa    A 

  2 Fa  xFx   A 

  3 xFx  xGx   A 

  4 xFx    1,2 E 

  5 xGx    3,4 E 
 
More commonly, however, proofs in predicate logic employ one or more of the six new inference rules 
required by the introduction of the quantifiers and the identity predicate.  We shall consider each of 
these new rules in turn, beginning in this section with the quantfier rules. 

 Perhaps the simplest quantifier rule is the introduction rule for the existential quantifier, I.  I 
introduces existentially quantified conclusions.  The basic idea is obvious:  whatever is true of a 
named object is true of something.  If, for example, it is true of Alice that she is a frisbee player, then 

something is a frisbee player.  In symbols:  'Fa  ├  xFx'.  Similarly, given that Alice likes herself, we 
may draw any of three conclusions:  that Alice likes something (namely herself), that something (Alice 
again!) likes Alice, and that something (guess who) likes itself.  Symbolically: 
 

  Laa  ├  xLax 

  Laa  ├  xLxa 

  Laa  ├  xLxx 
 

All these inferences, and others of a similar nature, are licensed by the rule I, which may be 
expressed formally as follows: 
 

Existential Introduction (I)— Let  be any formula containing some name  and  be 

the result of replacing at least one occurrence of  in  by some variable  not already in .  

Then from  infer . 
 

Each of the three sequents above may be proved by a single step of I.  With respect to the first of 

these sequents,  is 'Laa',  is 'a',  is 'x', and  is 'Lax'.  For the other two, , and  are the 

same, but  is 'Lxa' or 'Lxx', respectively.  The proof of the first sequent looks like this: 
 
  1 Laa    A 

  2 xLax    1 I 
 

The proofs of the other two are the same, except for the identity of the formula on line 2.  Thus I may 
sometimes be applied to the same formula in several different ways. 

 I may also be applied to complex formulas, as in this proof of the sequent 'Fa, Ga  ├  x(Fx 
& Gx)': 
 
  1 Fa    A 



 

 

  2 Ga    A 
  3 Fa & Ga   1,2 &I 

  4 x(Fx & Gx)   3 I 
 

Notice that in performingI we must add the outer brackets that had been dropped by convention 

from the conjunction.  If we do not do so, the result, 'xFx & Gx', is not a formula. 

 I never introduces more than one quantifier at a time.  To prove a conclusion with two 

existential quantifiers, we need two steps of I.  Consider, for example, this argument:   
 
  Alice despises Bill and Bill despises Alice. 

  There are two things that despise each other. 
 

In symbols:  'Dab & Dba  ├  xy(Dxy & Dyx)'.  Because the conclusion contains two existential 

quantifiers, the proof uses two steps of I: 
 
  1 Dab & Dba   A 

  2 y(Day & Dya)   1 I 

  3 xy(Dxy & Dyx)  2 I 
 

Since the quantifier added by I is always the leftmost quantifier, quantifiers must be introduced in 
reverse order, from right to left.  So in this problem we quantify the name 'b' at line 2, using the 

variable 'y', before quantifying the name 'a' using the variable 'x'.  If we had applied I to the name 'a' 

first, replacing it with the variable 'y', the result would have been 'xy(Dyx & Dxy)', which is not the 

conclusion we symbolized, though it is its equivalent and does follow validly by I from the premise.    

 Notice that the variable introduced by the I rule may not already occur in .  Thus we could 

not at line 3 have inferred 'yy(Dyy & Dyy)', since that would violate the formal statement of the rule.  

The purpose of the qualification 'not already in ' in that statement is to prevent just such an 
introduction of two quantifiers on the same variable with overlapping scopes.  Such an expression is 
not even a formula, as was explained in Section 6.2. 

 Proof of the sequent 'Fa & Ga  ├  xFx & xGx' also requires two uses of I, though here 
because the scopes of the two quantifiers do not overlap, we may use the same variable in each case 

without violating either the I rule or the formation rules: 
 
  1 Fa & Ga   A 
  2 Fa    1 &E 
  3 Ga    1 &E 

  4 xFx    2 I 

  5 xGx    3 I 

  6 xFx & xGx   4,5 &I 
 
However, the premise 'Fa & Ga' must be dissected into its conjuncts 'Fa' and 'Ga' before EI can be 
applied in order to obtain the conjuncts of the conclusion. 

 Sometimes the use of I is less obvious and direct, as in the reductio strategy used in this 

proof of 'xFx  ├ Fa': 
 

  1 xFx    A 

  2 | Fa   H (for I) 

  3 | xFx   2 I 

  4 | xFx & xFx  1,3 &I 

  5 Fa    2-4 I 
 

Here, since the conclusion 'Fa' is negative, we hypothesize 'Fa' for indirect proof at line 2.  Then at 

line 3 we obtain by I a statement that contradicts assumption 1.  The resulting contradiction enables 

us to deduce the desired conclusion by I at line 5. 



 

 

 Sometimes I is combined in complex ways with other rules.  In this proof of 'Fa  Gb  ├  

xFx  xGx', for example, it is used with vE:  
 

  1 Fa  Gb   A 

  2 | Fa   H (for I) 

  3 | xFx   2 I 

  4 | xFx  xGx  3 I 

  5 Fa  (xFx  xGx)  2-4 I 

  6 | Gb   H (for I) 

  7 | xGx   6 I 

  8 | xFx  xGx  7 I 

  9 Gb  (xFx  xGx)  6-8 I 

  10 xFx  xGx   1,5,9 vE 
 
The replacement here of both 'a' and 'b' by the same variable 'x' is legitimate because of the 
nonoverlapping scopes of the two existential quantifiers. 
 But a quantified variable may only replace one name at a time (though it may replace several 

occurrences of that name).  The inference illustrated below violates the I rule by attempting to 
replace two different names: 
 
  1 Tab    A 

  2 xTxx    1 I  (WRONG!!!). 
 
From the premise that Alice is taller than Bob, it certainly does not follow that something is taller than 
itself! 
 

EXERCISE 8.1:  Prove the following sequents, using I together with the inference rules of 
propositional logic: 

1 Lab ├ xLxb 

2 Lab ├ xLax 

3 Lab ├ xLxx 

4 Lab ├ xyLxy 

5 Fa  Ga  ├  x(Fx  Gx) 

6 Fa  Ga  ├  xFx  xGx 

7 xyRxy  ├  Rab 

8 xyRxy  ├  Raa 

9 ├ Fa  xFx 

10 xFx  ├ xFx 
 

8.2 EXISTENTIAL ELIMINATION 

 The elimination rule for the existential quantifier, E, is the rule which enables us to reason 

from existential premises.  It is the most complicated of the quantifier rules because, like I and I, it 
employs a hypothetical derivation.  As usual, the idea is best be explained by example.  Consider the 
argument: 
 
   Some fish are guppies 

   Some guppies are fish. 
 

We may represent this as the sequent 'x(Fx & Gx)  ├  x(Gx & Fx)'.  This sequent is valid.  But how 
might we break it down into simple inferences that also have application elsewhere?  The premise 
asserts that some fish (i.e., at least one) are guppies, but it does not identify this fish or (if there is 
more than one) these fish.  Yet their identities are not really germane to the inference; the conclusion 
ought to follow no matter who or what they are. So we might as well choose some individual arbitrarily 
and suppose that it is one of these fish who are guppies.  We might then reason as follows: 



 

 

Take Al here and suppose that he is one of these fish who are guppies.  Then Al is a fish.  
Moreover, Al is a guppy as well.  Therefore Al is both a guppy and a fish.  So some guppies 
are fish. 

But now since we have shown that guppies are fish from the supposition (hypothesis) that Al is a fish 
who is a guppy, and since (apart from this supposition) we have assumed nothing specifically about 
Al, then no matter which object or objects are actually the fish who are guppies, it must be the case 
that some guppies are fish. 
 
I have indented the hypothetical part of the argument—the part based on the supposition that Al is 
one of the fish who are guppies.  Since we are not told which objects are both fish and guppies, we 
call on Al to serve as a representative individual—that is, a stand-in for each of a certain set of 
objects—in this case the objects that are both fish and guppies.  We suppose, then, that Al is both a 
fish and a guppy.  We shall call the statement 'Al is both a fish and a guppy' a representative 
instance of 'Some fish are guppies,' since it takes the representative individual Al to be an instance 
of that premise.  Now by a dull but valid argument we deduce from from this supposition the 
conclusion that some guppies are fish.  But this conclusion is at first derived only hypothetically—i.e., 
only from the hypothesis that Al is one of the fish who are guppies.  That hypothesis, however, may 
be wildly false (Al might, for example, be my pet rattlesnake).  Yet—and this is the crux of the 
reasoning—so long as we have made no additional assumptions about Al, the steps of the 
hypothetical argument must apply as well to the actual individuals of unknown identity who are both 
fish and guppies—i.e., to all the individuals Al represents.  In other words, if we had names for these 
individuals, we could subsitute their names for Al's in the argument and still draw the same 
conclusion.  Hence the conclusion deduced hypothetically (provided that it does not mention Al, who 
is only a stand-in) may be asserted nonhypothetically—even if the hypothesis from which it was 
originally drawn is false.  In our example, the conclusion is that some guppies are fish.  So we 
reassert this conclusion nonhypothetically—not because Al is a fish and a guppy, but because the 
hypothetical derivation shows that this conclusion must be true no matter which object or objects are 
both fish and guppies. 
 Formally, the reasoning looks like this: 
 

  1 x(Fx & Gx)    A 

  2 | Fa & Ga   H (for E) 
  3 | Fa    2 &E 
  4 | Ga    2 &E 
  5 | Ga & Fa   3,4 &I 

  6 | x(Gx & Fx)   5 I 

  7 x(Gx & Fx)    1,2-6 E 
 

The conclusion 'x(Gx & Fx)' is derived twice—once hypothetically, from the supposition 'Fa & Ga', 

and a second time nonhyothetically (this time by the rule E).  This is always the case in applications 

of E.  What justifes the step of E (the conclusion's change of status of from hypothetical to 
nonhypothetical) is that in the hypothetical derivation we could substitute any name for the name of 
the representative individual (in this case 'a) and still reach that conclusion.  Thus, in this proof, no 
matter which individuals are both F and G (provided only that at least one is—which we assumed at 

line 1), the conclusion 'x(Fx & Gx)' must be true.   

 It is crucial for the application of E that the name of the representative individual not appear 
in any assumptions or hypotheses other than the supposition of the representative instance in which it 
is introduced and that it not appear in the conclusion of the hypothetical argument from that 
supposition, for otherwise there would be no guarantee that our hypothetical reasoning applies 
indifferently to any of the unknown objects that the representative individual represents.  There would 
be no guarantee, in other words, that the representative individual is truly representative. 

 In annotating an inference by E (see line 7 above), we always cite the line of the existential 
premise to which it was applied (in this case line 1), together with the lines of the hypothetical 
derivation in which the desired conclusion is derived from the supposition of a representative instance 
of that existential premise (here, lines 2-6). 



 

 

 The E rule is stated formally below.  If you have followed the discussion so far, you should 
see the need for the various qualifications that make it rather ugly: 
 

Existential Elimination (E)— Let  be any existential formula,  any formula, and  any 

name that occurs neither in  nor in .  And let  be the result of replacing all occurrences 

of the variable  in  by .  Then given a derivation of  from the hypothesis , end the 

hypothetical derivation and from  infer , provided that  does not occur in any other 
hypothesis whose hypothetical derivation has not ended or in any assumption. 
 

In the proof given above,  is 'x(Fx & Gx)',  is 'x',  is 'x(Gx & Fx)',  is 'a', and  is 'Fa & 
Ga'.  

 In summary, to use an existential premise  to prove a conclusion , we hypothesize a 

representative instance  of that premise and derive  hypothetically.  So long as  does not 
appear in any other hypothesis whose derivation has not ended, nor in any assumption, nor in the 

conclusion , we may then end the hypothetical derivation and infer  by E.  As justification for this 

step, we cite the line on which the existential premise  occurs and the lines of the hypothetical 

derivation in which  is derived from . 

 This proof of the sequent 'xLxx  ├  xyLxy' provides another example of the use of E: 
 

  1 xLxx    A 

  2 | Laa   H (for E) 

  3 | yLay   2 I 

  4 | xyLxy  3 I 

  5 xyLxy   1,2-4 E 
 

We hypothesize a representative instance of the premise 'xLxx' at line 2.  From this we derive the 

conclusion 'xyLxy' at line 4.  E then enables us to end the hypothetical derivation and assert 

'xyLxy' on the strength of the assumption 'xLxx' alone. 

 In the examples we have examined so far, the conclusion  obtained by E is an existential 

formula.  But in general  may have any form.   In the case of the sequent 'x(Fx & Fx)  ├ P', for 

example, it is the sentence letter 'P'.   The premise of this sequent, 'x(Fx & Fx)', is self-
contradictory, and so of course it implies anything. 
 

  1 x(Fx & Fx)   A 

  2 | Fa & Fa  H (for E) 
  3 | Fa   2 &E 

  4 | Fa   2 &E 
  5 | P   3,4 EFQ 

  6 P    1,2-5 E 
 

We take 'Fa & Fa' as the representative instance of 'x(Fx & Fx)' at line 2.  The hypothetical 

derivation uses the derived rule EFQ (see Section 4.4).  Notice that all the restrictions on E are met:  
'a' does not occur in hypothesis other than 2, nor in any assumption, nor in 'P'. 
 Violating these restrictions breeds trouble.  Consider, for example, this erroneous reasoning: 
 

  1 x(Fx & Gx)   A 

  2 | Fa & Ga  H (for E) 
  3 | Fa   2 &E 

  4 Fa    1,2-3 E  (WRONG!!!) 
 



 

 

Everything is fine down to the last step.  But the conclusion , i.e., 'Fa', of the hypothetical derivation 
contains 'a', the name of the representative individual.  So this conclusion is not, as it ought to be, 

provable regardless of which individual is both F and G.  Hence the step of E at line 4 is illegitimate.  

It is no surprise, then, that the resulting sequent, 'x(Fx & Gx)  ├ Fa', is invalid.  From the assumption 
that some fish are guppies it does not follow that Al is a guppy (Al might not be a fish at all)! 
 We also brew trouble if we use as the name of the representative individual a name that 
already occurs in an assumption or in a hypothesis whose hypothetical derivation has not ended, as 
in this reasoning: 
 

  1 xLxa    A 

  2 | Laa   H (for E) 

  3 | xLxx   2 I 

  4 xLxx    1,2-3 E  (WRONG!!!) 
 
Here the name 'a' occurs in the assumption.  Therefore in using 'a' as a name for our representative 
individual at line 2, we have named an individual that is not truly representative.  Suppose 'L' means 
"loves" and 'a' means "Al."  Then the assumption at line 1 says that something loves Al.  But we are 
not told what this "something" is.  By supposing at line 2 that it is Al himself (instead of a truly 
representative individual about whom we previously had assumed nothing), we illegitimately introduce 
information about this individual's identity.  This enables us to derive an excessively strong conclusion 
at line 4.  For from the premise that something loves Al, it does not follow that Al loves himself. 

 If a premise begins with two existential quantifers, then two uses of of E are required.  We 

shall illustrate this with a proof of the sequent 'xyLxy  ├  yxLyx'.  The premise and the conclusion 
of this sequent are equivalent.  They say exactly the same thing—which is why the sequent is valid. 
 

  1 xyLxy    A 

  2 | yLay    H (for E) 

  3 | | Lab   H (for E) 

  4 | | xLax   3 I 

  5 | | yxLyx  4 I 

  6 | yxLyx   2,3-5 E 

  7 yxLyx    1,2-6 E 
 

At line 2 we hypothesize 'yLay' as a representative instance of 'xyLxy'.  Then at line 3 we 

hypothesize 'Lab' as a representative instance of 'yLay'.  Now we have two repesentative 

individuals, denoted by the names 'a' and 'b'.  Since neither our conclusion 'yxLyx' nor any 

assumption or hypothesis other than line 3 contains 'b', when E is used at line 6 all the restrictions 

on the E rule are satisfied.  Similarly, since neither 'yxLyx' nor any assumption or hypothesis 

whose derivation has not ended other than line 2 contains 'a', the use of E at line 7 is legitimate.48  

 Our next example illustrates the use of E within an indirect proof.  The sequent we shall 

prove in this case is 'x(Fx  Gx)  ├  xFx': 
  

  1 x(Fx  Gx)     A 

  2 | xFx     H (for E) 

  3 | | Fa    H (for I) 

  4 | | Fa  Ga   3 I 

  5 | | x(Fx  Gx)   4 I 

  6 | | x(Fx  Gx) & x(Fx  Gx) 1,5 &I 

  7 | x(Fx  Gx) & x(Fx  Gx)  2,3-6 E 

  8 xFx      2-7 I 
 

                                                      
48The hypothetical derivation from line 3 has ended by line 8 (indeed it ends at line 5), so that the fact that its hypothesis 

contains 'a' is of no concern when we apply the E rule at line 8. 



 

 

The conclusion is negative, so we employ indirect proof, hypothesizing 'xFx' at line 2 is for I.  Then 

at line 3 we hypothesize a representative instance of 'xFx' for E.  The contradiction obtained at line 

6 from this second hypothesis is shown by E at line 7 to follow just from 'xFx' together with the 

asssumption.  This allows us to reject 'xFx' and affirm 'xFx' by I at line 8. 

 We conclude our discussion of E with another proof that uses E within an indirect proof.  
Here, however, the contradiction most directly obtainable from the representative instance contains 
the name of the representative individual.  We therefore use EFQ to derive a contradiction not 

containing this name before applying E.  The sequent in this case is the theorem '├ x(Fx  Fx)': 
 

  1 | x(Fx  Fx)   H (for I) 

  2 | | Fa  Fa  H (for E) 

  3 | | | Fa  H (for I) 

  4 | | | Fa  2,3 MP 

  5 | | | Fa & Fa 3,4 &I 

  6 | | Fa   3-5 I 

  7 | | Fa   2,6 MP 

  8 | | P & P   6,7 EFQ 

  9 | P & P    1,2-8 E 

  10 x(Fx  Fx)    1-9 I 
 

Since the conclusion 'x(Fx  Fx)' is negative, we proceed by indirect proof.  We hypothesize 

'x(Fx  Fx)' for I at line 1, its representative instance 'Fa  Fa' for E at line 2, and 'Fa' for a 

second I at line 3.  The obvious move at line 8 would have been to infer 'Fa & Fa' by &I, as we did 

at line 5.  But if we do that here, then since 'Fa & Fa' contains 'a', the name of the representative 

individual, the E rule would be inapplicable at line 9.  Hence instead we use EFQ to obtain the 

arbitrary contradiction 'P & P'.  Since this does not contain 'a', and since the other requirements on 

E are met, the use of E at line 9 is legitimate. 
 
EXERCISE 8.2:  Prove the following sequents: 

1 x(Fx & Gx)  ├  xFx & xGx 

2 xFx  ├  x(Fx  Gx) 

3 xFx  Ga  ├  Fb  xGx  

4 xFx  ├ xFx 

5 xFx  ├ xFx 

6 xFx  ├  x(Fx & Gx) 

7 ├  x(Fx & Fx) 

8 ├  xFx  yFy 

9 x(Fx  Gx)  ├  xFx  xGx 

10 xFx  xGx  ├  x(Fx  Gx) 
 

8.3 UNIVERSAL ELIMINATION 

 Universal elimination (E) is the rule usually used for reasoning from universal premises.  It is 
as simple as EI, and is in a sense its opposite.  The idea is this:  given that everything has certain 
characteristics, it follows that a particular individual has them.  For example, if everything is located in 
space and time, then it follows that Alice is located in space and time.  Using 'S' for "is located in 

space" and 'T' for "is located in time," we may symbolize that inference as 'x(Sx & Tx)  ├  Sa & Ta'.  

This sequent is provable by a single step of E: 
 

   1  x(Sx & Tx)   A 

   2 Sa & Ta   1 E 
 
Stated formally, the rule is as follows: 
 



 

 

Universal Elimination (E)— Let  be any universally quantified formula and  be the 

result of replacing all occurrences of the variable  in  by some name .  Then from  

infer . 
 

In the inference above,  is 'x(Sx & Tx)',  is 'Sa & Ta',  is 'x', and  is 'a'. 

 The application of E is in most instances simple and obvious.  Here it is used in a proof of 

the sequent 'x(Fx  Gx), Fa  ├  Ga': 
 

  1 x(Fx  Gx)   A 
  2 Fa    A 

  3 Fa  Ga   1 E 

  4 Ga    2,3 E 
 

 As with the other quantifier rules, more than one use of E is required to eliminate more than 

one quantifier.  This proof of the sequent 'xyz((Lxy & Lyz)  Lxz), Lab, Lbc  ├  Lac' provides a 
good illustration (think of 'L', for example, as "is longer than"): 
 

  1 xyz((Lxy & Lyz)  Lxz)  A 
  2 Lab     A 
  3 Lbc     A 

  4 yz((Lay & Lyz)  Laz)  1 E 

  5 z((Lab & Lbz)  Laz)   4 E 

  6 (Lab & Lbc)  Lac   5 E 
  7 Lab & Lbc    2,3 &I 

  8 Lac     6,7 E 
 
It is crucial here to instantiate each variable with the right name.  For example, at step 4 we could 

have used E to obtain: 
 

  4' yz((Lby & Lyz)  Lbz)  1 E 
 

but that would not have been useful with the assumptions given.  Use of E with multiple quantifiers 
and multiple names thus requires circumspection and careful planning. 

 Our final example, a proof of 'xFx  ├  xFx', contains several twists, requiring in addition 

to E the use of EFQ with an E strategy that in turn is nested in an indirect proof: 
 

  1 xFx    A 

  2 | xFx   H (for I) 

  3 | | Fa  H (for E) 

  4 | | Fa  2 E 

  5 | | P & P  3,4 EFQ 

  6 | P & P   2,3-5 E 

  7 xFx    2-6 I 
 

Since the conclusion is negative, we proceed by indirect proof, hypothesizing 'xFx' at line 2 for I.  

The hypothesis at line 3 is a representative instance of assumption 1 for E.  As in the example at the 

end of Section 8.2, we use EFQ to obtain an arbitrary contradiction free of the name 'a' so that E 
may be applied at line 6. 
 
EXERCISE 8.3.1:  Prove the following sequents: 

1 xFx  Fa 

2 Fa  ├  xFx 

3 x(Fx  Gx), Ga  ├  Fa 

4 x(Fx  Gx), Ga  Ha  ├  Fa  Ha 



 

 

5 xy(Rxy  Ryx), Rab  ├  Rba 

6 x(Fx  Gx), xFx  ├  x(Fx & Gx) 

7 x(Fx  Gx), xGx  ├  xFx 

8 x(Fx  Gx), xGx  ├  xFx 

9 x(Fx  Gx), xGx  ├  xFx 

10 xFx  xGx, Ga  ├  xFx 
 
EXERCISE 8.3.2:  Formalize this argument, using the symbol scheme given below: 

 
Triticale, an artificial cross between wheat and rye, is superior to both.  Since wheat and rye 
are natural, this proves that it is not the case that everything natural is superior to everything 
artificial. 

 
   ONE-PLACE  TWO-PLACE  THREE-PLACE 
NAMES   PREDICATES  PREDICATE  PREDICATE 

ttriticale  Ais artificial  Sis superior to Cis a cross 

hwheat  Nis natural     between 

rrye 
 
Now attempt to prove the resulting sequent.  If you symbolized just what was said, you will find that 
the sequent cannot be proved; it is in fact invalid.  In attempting the proof, however, you should notice 
that adding a certain obvious assumption would make the sequent valid.  Identify this assumption, 
formalize it, and then prove the resulting sequent. 
 
 

8.4 UNIVERSAL INTRODUCTION 

 The last of the four quantifier rules is univeral introduction (I).  Like E, it makes use of a 
representative instance.  Nevertheless, it is simpler, since it does not require a hypothetical 
derivation.  To illustrate it, we shall consider the valid but unsound argument: 
 
  All frogs are green 
  Everything is a frog 

  Everything is green. 
 
To obtain the conclusion from these premises, we may reason as follows: 
 

Since all frogs are green, if Alice is a frog then Alice is green.  And since everything is a frog, 
Alice is a frog.  It follows that Alice is green.  But since we have made no assumptions about 
Alice, she is a representative individual for any object whatsoever.  What we have proved of 
her must be true of everything.  Therefore, everything is green. 

 

The last step of this reasoning is a step of I.  Its validity depends upon the fact that nothing is 
assumed about Alice—i.e. that her name does not appear in any hypothesis whose derivation has not 
yet ended or in any assumption.  This makes her a representative individual for everything in the 
domain of discourse.  Thus what we prove of her could equally well have been proved of anything—
which is why we can legitimately infer that everything is green. 

 If we symbolize the argument in the obvious way, we obtain the sequent 'x(Fx  Gx), xFx  

├  xGx'.   Our reasoning may now be formalized as follows: 
 

  1 x(Fx  Gx)   A 

  2 xFx    A 

  3 Fa  Ga   1 E 

  4 Fa    2 E 

  5 Ga    3,4 E 



 

 

  6 xGx    5 I 
 
Step 6 is legitimate only because 'a' does not appear in any assumption or hypothesis, so that we 
could validly have substituted any other name for 'a' in steps 3-5.  This shows that we could have 

proved G for any name , which is why we may validly infer 'xGx' at step 6. 

 Here is the formal statement of the I rule: 
 

Universal Introduction (I)— Let  be a formula containing a name , and let  be the 

result of replacing all occurrences of  in  by some variable  not already in .   Then from 

 infer , provided that  does not occur in any hypothesis whose hypothetical 
derivation has not yet ended or in any assumption. 

 

In terms of our example,  is 'Ga',  is 'a',  is 'x',  is 'Gx', and, consequently,  is 'xGx'.  

The qualification 'not already in ' is needed to ensure that we do not introduce quantifiers of the 
same variable with overlapping scopes and so infer something that is not even a formula. 
 To prove a universally quantified statement, then, we prove a representative instance of it, 
making sure that the representative individual is not named in any hypothesis whose hypothetical 

derivation has not yet ended or in any assumption.  Then we apply I.  In annotating uses of I, we 
cite only the line number of the representative instance. 

 With the addition of I our quantifier rules are complete, and we can now prove any valid 
sequent of predicate logic that does not involve identity.  Let's consider another simple example, a 

proof of the sequent 'x(Fx  Gx), x(Gx  Hx)  ├  x(Fx  Hx)': 
 

  1 x(Fx  Gx)   A 

  2 x(Gx  Hx)   A 

  3 | Fa   H (for I) 

  4 | Fa  Ga  1 E 

  5 | Ga   3,4 E 

  6 | Ga  Ha  2 E 

  7 | Ha   5,6 E 

  8 Fa  Ha   3-7 I 

  9 x(Fx  Hx)   8 I 
 
The strategy of the proof is governed by the structure of the conclusion.  Here the conclusion is the 

universal formula 'x(Fx  Hx)', so we must prove a representative instance of it—that is, a 

conditional of the form F  H.  To do that we proceed by conditional proof.  We hypothesize 'Fa', 

taking 'a' as the name of the representative individual, at line 3.  The conditional 'Fa  Ha' is proved 
at line 8.  Since now at line 9 'a' does not appear in any hypothesis whose hypothetical derivation has 

not yet ended or in any assumption, we may apply I, knowing that we could have proved F  H 

for any name . 

 The next example combines I with a reductio strategy.  The sequent to be proved is 'xFx  

├  xFx': 
 

  1 xFx    A 

  2 | Fa   H (for I) 

  3 | xFx   2 I 

  4 | xFx & xFx  1,3 &I 

  5 Fa    2-4 I 

  6 xFx    5 I 
 

Since the desired conclusion is the universal formula 'xFx', to prove it by I we need a 

representative instance of the form F.  But this is negative, so to prove it we must hypothesize F 

and seek a contradiction.  The name 'a' will do for  since it does not appear in any assumption and 



 

 

there are as yet (at step 1) no hypotheses.  So at step 2 we hypothesize 'Fa' for indirect proof.  

Having obtained a contradiction at line 4, we deduce 'Fa' and then, as planned, apply I to reach the 
conclusion at line 6.  Though 'a' appears in the hypothesis 'Fa' at line 2, the derivation from that 

hypothesis has ended by line 6 (indeed, it ends at line 5) so that I may legitimately be applied. 

 The following proof of 'xFx  ├  xFx', uses a double reductio strategy: 
 

  1 xFx     A 

  2 | xFx    H (for I) 

  3 | | Fa   H (for I) 

  4 | | xFx   3 I 

  5 | | xFx & xFx 2,4 &I 

  6 | Fa    3-5 I 

  7 | Fa    6 E 

  8 | xFx    7 I 

  9 | xFx & xFx   1,8 &I 

  10 xFx    2-9 I 

  11 xFx     10 E 
 
There is no obvious way to proceed once the assumption has been set out, so we hypothesize the 
negation of the desired conclusion for indirect proof at line 2.  Now we notice that we could contradict 

assumption 1 if we could prove 'Fa' and then get 'xFx' by I.  To prove 'Fa' we work once again by 

indirect proof, hypothesizing 'Fa' at line 3.  From there the rest of the proof plays itself out as 
planned. 
 The next example illustrates once again the utility of EFQ within quantifier proofs.  It is a proof 

of the sequent 'xFx  ├  x(Fx  Gx)':  
 

  1 xFx    A 

  2 | Fa   H (for I) 

  3 | xFx   2 I 
  4 | Ga   1,3 EFQ 

  5 Fa  Ga   2-4 I 

  6 x(Fx  Gx)   5 I 
 

We could have avoided the use of EFQ by hypothesizing 'Ga' for I at line 3, but this would have 
made the proof several steps longer.  This sequent is of intrinsic interest, since it says that from the 
premise that nothing is F we may infer that all F are G.  Here we see once again (recall the 
discussion in Section 7.3) the odd behavior of universally quantified material conditionals whose 
antecedent terms are empty. 
 As in propositional logic, the general strategy for proving a sequent in predicate logic is 
determined by the form of the conclusion or subconclusion for which you are aiming.  The following 
table of strategies supplements those given in Section 4.3, and should be used in combination with 
them: 
 

PROOF STRATEGIES 

If the conclusion or 
subconclusion you are 
trying to prove is of the 
form: 

 
 
 
Then try this strategy: 



 

 

 Work toward a subconclusion of the form , where  is a name that 

does not occur in , in order to obtain  by I.  If there is an 

existential premise, it is likely that the subconclusion  will have to 
be derived hypothetically after a representative instance of this 

premise has been hypothesized for E.  In that case, to avoid misuing 

E, obtain  by I before ending the hypothetical derivation with 

E.  If all else fails, hypothesize  and work toward a 

subconclusion of the form  &  in order to obtain  by I and E. 

 Work toward a subconclusion of the form , where  is a name that 

does not occur in  or in any assumption or hypothesis whose 

hypothetical derivation has not yet ended, in order to obtain  by 

I.  If there are universal premises, it is likely that some or all of them 

will have to be instantiated with  by E before this can be done.  

 

Thus, for example, if the conclusion to be proved is of the form 'xFx  xGx', which is a conditional, 

first apply the strategy for conditionals from the table of Section 4.3.  Thus we hypothesize 'xFx' and 

aim to derive the subconclusion 'xGx'.  This subconclusion is of the form , so that we next apply 
the stategy for that form from the table above.  Using the two strategy tables together in this way, 
most problems can be solved fairly easily.  However, some proofs in predicate logic demand 
ingenuity that cannot be encoded in a simple set of instructions. 
 

Quantifier Exchange Rules 

 Eight derived rules are of particular importance in predicate logic.  These are called the 
quantifier exchange rules (QE): 
 

  From , infer   From , infer  

  From , infer   From , infer  

  From , infer   From , infer  

  From , infer   From , infer 
 

The expression  in each of these rules is not a formula itself, but the result of replacing all 

occurrences of some name in a formula by the variable .  For example, we may take  as 'x' and  

as 'Fx', or  as 'x' and  as '(Fx & Gx)', or, again,  as 'y' and  as 'xLxy'.  In each case the 

expression  is called an open sentence, and the variable  in such an open sentence is called a 
free variable. 
 We may verify that each instance of the quantifier exchange rules can be proved using only 
the fourteen basic rules (ten propositional rules and four quantifier rules) of predicate logic by proving 

the corresponding sequent in which  is 'x' and  is the open sentence 'Fx'.  For given such a proof, it 
is easily seen that any instance of the corresponding rule may be proved by precisely the same 

sequence of steps—i.e., by a proof of precisely the same form.  Take the rule 'From , infer 

', for example.  We proved the corresponding sequent 'xFx  ├  xFx' above.  But by 

precisely the same steps we could have proved 'x(Fx & Gx)  ├  xFx & Gx)' or 'yGy  ├  yGy' 

or 'yxLxy  ├  yxLxy'—or any other sequent having the form indicated by the rule.  To show 

this, we shall rewrite the proof of 'xFx  ├  xFx' in full generality, using the Greek metavariables  

and  in place of the variable 'x' and the open sentence 'Fx', respectively.  It is evident by inspection 

of this proof form that no matter which variable we use for  or which open sentence with free variable 

 we use for , the resulting sequent can still be proved using only the basic rules: 
 

  1      A 

  2 |     H (for I) 

  3 | | /   H (for I) 

  4 | |    3 I 

  5 | |  &   2,4 &I 



 

 

  6 | /    3-5 I 

  7 | /    6 E 

  8 |     7 I 

  9 |  &    1,8 &I 

  10     2-9 I 

  11      10 E 
 

Here / is a formula that results from replacing each occurrence of  in the open sentence  by 

some name  not already in .  From this proof form it is clear that 'From , infer ' is a 
derived rule. 
 In the same way, we can see for each of the other quantifier exchange rules that by proving 
its corresponding sequent, we have in effect shown that every instance of that rule can be proved 
using only the fourteen basic rules of predicate logic.   That is, we can see that the quantifier 
exchange rules are in fact derived rules. 
 
EXERCISE 8.4.1:  In the text we verified that three of the eight quantifier exchange rules are derived 

rules by proving the sequents 'xFx  ├  xFx', 'xFx  ├  xFx', and 'xFx  ├  xFx'.  Verify this 
for the other five by proving the following sequents using only the fourteen basic rules: 

1 xFx  ├  xFx 

2 xFx  ├  xFx 

3 xFx  ├  xFx 

4 xFx  ├  xFx 

5 xFx  ├  xFx 
 
EXERCISE 8.4.2:  Prove the following sequents, using basic or derived rules: 

1 x(Fx  Gx)  ├  x(Gx  Fx) 

2 x(Fx  Gx)  ├  xFx  xGx

3 x(Fx  Gx)  ├  x(Fx & Gx) 

4 x(Fx  Gx)  ├  x(Gx  Fx) 

5 x(Fx  Gx), xGx  ├  xFx 

6 x(Fx  Gx), xGx  ├  xFx 

7 x(Fx  Gx), xGx  ├  xFx 

8 x(Fx  Gx), xGx  ├  xFx 

9 xRxx ├ xyRxy 

10 xyRxy  ├  yxRxy 

11 ├ x(Fx & Gx)  x(Fx  Gx) 

12 ├ xFx  xFx 

13 ├ xFx  xFx 

14 ├ x(Fx  Fx) 

15 x(yFy  Gx), Fa  ├  xGx 
 
EXERCISE 8.4.3:  Prove the sequents formalized in Exercise 6.1, using basic or derived rules. 
 

8.5  IDENTITY 

 To prove sequents involving identity, we need two more rules, =I and =E.  The identity 
introduction rule is utterly simple: 
 

Identity Introduction (=I):  Where  is any name, assert =. 
 
In a sense, this is not even a rule of inference, since it employs no premise.  It simply licenses us to 

assert a logical truth of the form = at any line of a proof.  Clearly this is a valid procedure since a 
logical truth must be true given any premises—or none at all.  For annotation, we simply write '=I' to 

the right.  Since no premise is used, no line number is listed.  This proof of the sequent 'xy(x=y  
Rxy)  ├  Raa' illustrates a simple use of =I: 



 

 

 

  1 xy(x=y  Rxy)   A 

  2 y(a=y  Ray)   1 E 

  3 a=a  Raa    2 E 
  4 a=a     =I 

  5 Raa     3,4 E 
 

 The following proof of the theorem '├ xx=x' exemplifies another typical use of =I: 
 

  1 | xx=x   H (for I) 

  2 | | a=a   H (for E) 
  3 | | a=a   =I 

  4 | | P & P   2,3 EFQ 

  5 | P & P    1,2-4 E 

  6 xx=x    1-5 I 
 

Since the desired conclusion 'xx=x' is negative, we hypothesize 'xx=x' for indirect proof at line 

1.  But this is an existential formula, and so we hypothesize 'a=a', a representative instance of it, at 

line 2 for E.  We can now contradict line 2 by applying =I at line 3, but to obtain a contradiction that 

does not contain the name 'a' of the representative individual, we must use EFQ.  Steps of E and I 
then complete the proof. 
 The elimination rule for identity is familiar from arithmetic as the rule that allows us to 
substitute equals for equals—only in logic, since we are not dealing only with quantities, it is more 
accurate to say "identicals for identicals."  It is sometimes called the rule of identity substitution: 
 

Identity Elimination (=E):   From a premise of the form = and a formula containing 

either  or , infer any formula which results from replacing one or more occurrences of either 

of these names by the other in . 
 

Uses of =E are annotated by citing two line numbers:  the number of the line on which = occurs 

and the number of the line on which  occurs. 
 The validity of =E is fairly obvious, but to prove rigorously that it is valid takes considerable 
work, and we will postpone that task until Section 9.1.  In the meantime, we shall simply use it.  Here 

it is used in a simple proof of the theorem '├  (Fa & a=b)   Fb': 
 

  1 | Fa & a=b  H (for I) 
  2 | Fa   1 &E 
  3 | a=b   1 &E 
  4 | Fb   2,3 =E 

  5 (Fa & a=b)  Fb  1-4 I 
 
The theorem is a conditional, so the overall strategy is conditional proof.  With respect to the formal 

statement of the =E rule, = is 'a=b', and  is 'Fa'.   

 If  or  occurs more than once in , then =E may be applied in several ways.  For example, 
from the premises 'Laa' and 'a=b', =E enables us to infer 'Lab', 'Lba' or 'Lbb'.  Actually, we can infer 

even more conclusions, since we can apply 'a=b' to itself—i.e, take 'a=b' instead of 'Laa' as .   Thus 

from = (i.e. 'a=b) and  ('a=b' again) we may infer 'a=a' and 'b=b', each by a single step of =E.  To 
get the conclusion 'b=a', however, takes two steps of =E, as in this proof of the sequent 'a=b ├ b=a': 
 
  1 a=b   A 
  2 b=b   1,1 =E 
  3 b=a   1,2 =E 
 



 

 

In the first step at line 2 we have as premises 'a=b' and 'a=b'.  We use the first of these as = in the 

rule to replace the occurence of 'a' in the second (which plays the role of  in the rule) with 'b' and 
hence to deduce 'b=b'.  (Alternatively, 'b=b' could be obtained by a step of =I.)  Then at step 3 we use 

'a=b' again to replace the second occurrence of 'b' in 'b=b' (which is now playing the role of ) with 'a'.  
This cannot all be done in a single step, since the =E rule allows us to replace only one name at a 
time (though, as noted above, we may replace several occurrences of it).  To get from 'a=b' to 'b=a', 
we must replace 'a' with 'b' and 'b' with 'a'.  Since we are replacing two distinct names, we need at 
least two steps. 
 
EXERCISE 8.5.1:  Prove the following sequents: 

1 Fa, Fa  ├ a=b 

2 ├ xy(x=y  (Rxy  Ryx)) 

3 ├ x x=a 

4 ├ xy x=y 

5 ├  x x=x 

6 ├  x(x=y  y=x) 

7 ├  xyz((x=y & y=z)  x=z) 

8 ├ xy(x=y  (Fx  Fy)) 

9 x(x=a  x=b), Fa  ├  xFx  Fb 

10 xy(Rxy  x=y), Fa, Fb  ├  Rab 
 
EXERCISE 8.5.2:  Prove the sequents that were formalized in Exercise 6.3. 
 

8.6  FUNCTIONS 

 The addition of function symbols to the language of predicate logic requires no new rules.  
However, because function symbols create new names (see Section 6.4), the quantifier and identity 
rules must be reinterpreted to allow for the new complex names that they provide.  The names 

mentioned in the rules I,E,=I, and =E may be either simple or complex.  However, the names of 

representative individuals used in the rules E and I must always be simple—i.e. just lower case 
letters, 'a' through 't'.  To use a complex name for a representative individual would import into the 
proof information that would make that individual nonrepresentative. 
 To illustrate the use of function symbols in proofs, we shall prove two theorems governing 

one-place functions.  The first of these, '├ xy(x=y  f(x) = f(y))', says that for identical arguments, a 
function takes identical values: 
 

  1 | a=b   H (for I) 
  2 | f(a) = f(a)  =I 
  3 | f(a) = f(b)  1,2 =E 

  4 a=b  f(a) = f(b)   1-3 I 

  5 y(a=y  f(a) = f(y))  4 I 

  6 xy(x=y  f(x) = f(y))  5 I 
 
Note the use of =I with the complex name 'f(a)' at line 2 and the quantification of simple names 
contained in complex names at steps 5 and 6. 

 The second of our two theorems, '├ xyz(z=f(x)  z=y)', says that for each argument 
(represented here by the variable 'x) a function has a unique value (represented by 'y): 
 

  1 | b=f(a)    H (for I) 

  2 b=f(a)  b=f(a)   1-1 I 

  3 b=f(a)  b=f(a)   2,2 I 

  4 z(z=f(a)  z=f(a))  3 I 

  5 yz(z=f(a)  z=y)  4 I 

  6 xyz(z=f(x)  z=y)  5 I 
 



 

 

Of special interest in this example is the use of I with the complex name 'f(a)' at line 5. 
 
EXERCISE 8.6:  Prove the sequents formalized in Exercise 6.4. 
  



 

 

CHAPTER 9 
CLASSICAL PREDICATE LOGIC: 

SOUNDNESS, COMPLETENESS AND 
INEXPRESSIBILITY 

 
 Because it sometimes produces infinite trees, the tree test is not a decision procedure for 
predicate logic.  In the first two sections of this chapter we shall prove that it is nevertheless sound 
and complete.  We also prove soundness and completeness for the derivation rules in Section 9.3.  
And finally in Section 9.4 we consider a wholly different reason why predicate logic may be unable to 
decide the validity of an argument:  it may not be able adequately to represent the argument's form. 
 

9.1  SOUNDNESS OF THE TREE TEST 

  Recall that a test for validity is sound if whenever the test classifies a sequent as valid it is 
valid.  A test is complete if (conversely) whenever an argument is valid, the test classifies it as valid.  
Thus to say that a test is sound and complete is to say: 
 
 (1) The test classifies a sequent as valid if and only if it is valid. 
 
But if this is the case, it would seem that the test is, after all, a decision procedure—for wouldn't it 
have to give a correct answer in every case in order to be sound and complete? 
 Actually not.  For this does not tell us exactly what will happen if the sequent is invalid.  What 
it does tell us (by contraposition) is this: 
 
 (2) A sequent is invalid if and only if it is not the case that the test  
  classifies it as valid. 
 
Now there are two ways that the tree test might fail to classify a sequent as valid: 
 
 (i) the test might classify it as invalid; that is, the tree might terminate  
  with an open path, or   
 (ii) the test might not classify it at all; it might go on forever and never  
  return an answer.   
 
This second possibility is not excluded by soundness and completeness.  What soundness and 
completeness do guarantee is that the test always terminates with a correct answer when applied to a 
valid sequent.  They also guarantee that if the test gives an answer for an invalid sequent, that 
answer will be correct.  But for invalid sequents they do not guarantee that the test always gives an 
answer.   And we have seen that the tree test for predicate logic does indeed fail to classify some 
invalid sequents.   
 Is this a fault of the tree test (so that it could be remedied by some modification of the test—
or, lacking that, by an entirely new test for validity)—or must any test inevitably fail in this way?  We 
shall prove in Section 10.6 that any test must fail. 
 In this section and the next, we examine the proofs of soundness and completeness for the 
tree test predicate logic with identity but without function symbols.  We put function symbols aside 
(though consistency and completeness can still be proved if they are present), because retaining 
them would complicate the proofs considerably without much gain in insight.   
 Once again, a test for validity is sound  if whenever that test classifies an argument sequent 
as valid, it is valid.  In this section, we will show that the tree test for predicate logic (with identity but 
without function symbols) is sound.  As in the soundess proof for propositional logic in Section 5.8, we 
do this in two stages.  First we prove that any tree constructed by finitely many applications of the 
rules from a consistent initial list contains an open path.  Then we derive the soundness result as a 
corollary. 



 

 

 In Section 5.8 to prove that any tree constructed from a consistent initial list contains an open 
path we reasoned as follows.  Since the initial list is consistent, it is true on some valuation, which we 

called V.  Then we showed that any tree constructible from this list contains a path P all of whose 

formulas are true on V.  Since all formulas on P are true on V, the path cannot contain both a formula 

and its negation (which could not both be true on any valuation).  Hence P must be open.  Our 
reasoning here is similar, except that the valuation on which all members of the path are true need 

not be the same as the valuation V which makes the initial list true.  It may instead be derived from V 

by a series of expansions—one for each new name introduced to the path by  or (in cases where the 

path contains a universal formula but no names) .  Hence we argue, not that the tree contains a 

path all formulas of which are true on V, but that it contains a path all formulas of which are true on 
some valuation—the valuation in question being an expansion (or an expansion of an expansion, 

etc.) of V. 

 Moreover, because the quantifier rules and the =E rule work by replacing names with 
variables or other names, we must ensure that such exchanges result in formulas with appropriate 
truth values.  Formulas whose names (if any) may be replaced without change in truth value by other 
names denoting the same objects are called extensional formulas.  The soundness proof depends 
on the assumption that all formulas are extensional.  We shall prove this assumption in two different 
forms, a general version involving two expansions of a given valuation, and a more particular version 
involving only a single valuation, before proving the soundess of the tree test. 
 The proof of the first general version proceeds by mathematical induction, using the concept 
of complexity.  The complexity of a formula is the number of occurrences of logical operators it 
contains, not counting the identity operator.  Thus the complexity of atomic formulas (including 

identity formulas) is 0.  The complexity of 'x(Fx  Gx)', for example, is 4, since there are four 

occurrences of operators, one each of '' and '' and two of ''.   
 Now consider the infinite series S of sets of formulas, whose first member is the set of all 
formulas of complexity 0, whose second member is the set of all formulas of complexity 0 or 1,  

whose third member is the set of all formulas of complexity 0, 1, or 2, and so on.  (In general, for n0, 

the (n+1)st member of S is the set of all formulas of complexity n or less.)  We shall show that each 
set in this series has the property of containing only extensional members.  (This is the property F in 
the induction schema of Section 5.5.)  Since every formula must belong to some member of S, we 
may then conclude that all formulas are extensional.  Formally, we define extensionality as follows: 
 

DEFINITION:  A formula  is extensional iff for any valuation V of  and any object d of which both 

 and  are potential names with respect to V, if  occurs in  and / is a result of replacing one or 

more occurrences of  in  by , then V
(, )

() = V
(, )

(/).   

 
The following lemma, then, demonstrates the extensionality of all formulas.  (Incidentally, this lemma 
illustrates in great detail the strategy of arguing by cases—a strategy analogous to vE in the object 
language.) 
 
METATHEOREM (GENERAL EXTENSIONALITY LEMMA):  All formulas are extensional. 
Proof:  We shall show by induction on the series S that all the members of each set in S are 
extensional.  Since each formula, being obtained by finitely many applications of the formation rules, 
is of finite complexity, each must belong to some set in the series S (indeed, to infinitely many!).  
Thus it follows that all formulas are extensional. 
BASIS CASE:  We must show that the first item of S, the set of all formulas of complexity 0, has the 
property of containing only extensional members.  Inspection of the formation rules reveals that a 
formula of complexity 0 may have one of four forms.  It may be either a sentence letter, a one-place 
predicate followed by a name, an n-place predicate (n>1) followed by n names, or an identity 

statement.  We consider each form in turn.  Take first the case in which  is a sentence letter.  Then 

no names occur in .  Hence it is trivially the case that if  occurs in  and / is a result of 

replacing one or more occurrences of  in  by , then V
(, )

() = V
(, )

(/).49  Consider, next, the 

                                                      
49Since any conditional with a false antecedent is true! 



 

 

case in which  is of the form , where  is a one-place predicate and  is a name.  Let V be any 

valuation of  such that  and  are both potential names of d with respect to V.  We shall show by 

conditional proof that  is extensional. 

Suppose for conditional proof that  occurs in  and / is a result of replacing one or more 

occurrences of  in  by   Then since only one name, , occurs in ,  is .  In other words, 

 is , and, likewise, / is .  Now by valuation rule 1,  

  V
(, )

() = T iff V
(, )

()  V
(, )

(). 

But, given that  and  are both potential names of d with respect to V, the definition of an 

expansion implies that V
(, )

() = d = V
(, )

().  Moreover (since expansions do not change the 

extensions of predicates) V
(, )

() = V() = V
(, )

().  Hence: 

  V
(, )

() = T iff V
(, )

()  V
(, )

(). 

However, again by valuation rule 1, V
(, )

()  V
(, )

() iff V
(, )

() = T.  Therefore: 

  V
(, )

() = T iff V
(, )

() = T. 

Hence by bivalence: 

  V
(, )

() =  V
(, )

(). 

Thus, since  =  and  = /: 

  V
(, )

() =  V
(, )

(/). 

We have thus shown for any formula  of the form , where  is a one-place predicate and  is a 

name, that for any valuation V of  and any object d of which both  and  are potential names with 

respect to V, if  occurs in  and / is a result of replacing one or more occurrences of  in  by , 

then V
(, )

() = V
(, )

(/).  That is, we have shown that all formulas consisting of a one-place 

predicate followed by a name are extensional.  Next we show this for all formulas consisting of an n-

place predicate followed by n names (n>1).  So we must consider the case in which  is of the form 

1,...,n, where  is an n-place predicate and 1,...,n are names.  Let V be any valuation of  such 

that  and  are both potential names of d with respect to V. 

Now suppose for conditional proof that  occurs in  and / is a result of replacing one or 

more occurrences of  in  by   Since  occurs in , at least one of the names 1,...,n 

must be .  Morever, / is of the form 1,...,n, where for each of the names i (1in) in 

the list 1,...,n, either i =  and i = , or i = i.  We shall show that in either case V
(, )

(i) = 

V
(, )

(i).   

Suppose, first that i =  and i = .  Then, given that  and  are both potential 

names of d with respect to V, the definition of an expansion implies that V
(, )

(i) = 

V
(, )

() = d = V
(, )

() =V
(, )

(i).   

Therefore, if i =  and i = , then V
(, )

(i) = V
(, )

(i). 

Suppose, to consider the other possibility, that i = i.  Now there are three subcases.   

Either i =  (not all occurences of  need be replaced by !) or i =  or neither (i.e., 

i =/   and i =/  ).   

Suppose, to take the first case, that i = .  Then since V is a valuation of  

and thus assigns some extension to i, and since  is a potential name of d 

with respect to V, the extension V assigns to i must be d.  That is, V(i) = 

V() = d.  Therefore V
(, )

 is a trivial expansion of V, so that V
(, )

(i) = V(i) = 

d.  Moreover, by the definiton of an expansion, d = V
(, )

(i).  Hence since i = 

i, d = V
(, )

(i).  But then V
(, )

(i) = V
(, )

(i).  

Hence if i = , then V
(, )

(i) = V
(, )

(i). 



 

 

Suppose now, to take the second of these three subcases, that i = .  Then 

again since V is a valuation of  and so assigns some extension to i, and 

since  is a potential name of d with respect to V, V(i) = V() = d.  That is, 

V
(, )

 is a trivial expansion of V, so that V
(, )

(i) = V(i) = d.  Hence since i = 

i, V(, )
(i) = d.   Yet by the definiton of an expansion, d = V

(, )
(i).  Therefore 

V
(, )

(i) = V
(, )

(i). 

Hence if i = , then V
(, )

(i) = V
(, )

(i). 

Finally, to take the third subcase, suppose that i is neither  nor .  Then by 

the definiton of an expansion both V
(, )

 and V
(, )

 must assign the same 

extension to i that V does.  Hence since i = i, V(, )
(i) = V

(, )
(i). 

So if i is neither  nor , then V
(, )

(i) = V
(, )

(i).  

Therefore in any of the three subcases in which i = i, V(, )
(i) = V

(, )
(i).  So regardless of 

whether i =  and i =  or i = i, V(, )
(i) = V

(, )
(i).  Thus we know that for each i (1in), 

V
(, )

(i) = V
(, )

(i).  Now by valuation rule 2:  

  V
(, )

(1,...,n) = T iff V
(, )

(1),...,V
(, )

(n)  V
(, )

(). 

Hence: 

  V
(, )

(1,...,n) = T iff V
(, )

(1),...,V
(, )

(n)  V
(, )

(). 

But by the definition of an expansion (since expansions don't affect the denotations of 

predicates), V
(, )

() = V() = V
(, )

().  Hence: 

  V
(, )

(1,...,n) = T iff V
(, )

(1),...,V
(, )

(n)  V
(, )

(). 

But, again by valuation rule 2, this implies: 

  V
(, )

(1,...,n) = T iff V
(, )

(1,...,n) = T. 

But since 1,...,n =  and 1,...,n = /, this means that: 

  V
(, )

() = T iff V
(, )

(/) = T. 

Hence by bivalence: 

  V
(, )

() =  V
(, )

(/). 

Thus we have shown for any formula  of the form 1,...,n that for any valuation V and any object d 

of which both  and  are potential names with respect to V, if  occurs in  and / is a result of 

replacing one or more occurrences of  in  by , then V
(, )

() = V
(, )

(/).  That is, we have shown 

that all formulas consisting of an n-place predicate followed by n names are extensional.  It remains 
to be seen that all identify formulas are extensional, but the proof is left to the reader as an exercise.  
(It is much like that for n-place predicates (n>1), except that it uses valuation rule 3 rather than 
valuation rule 2.)  This establishes that all formulas of complexity 0 are extensional. 

INDUCTIVE STEP:  Suppose, for our inductive hypothesis, that the nth member of series S contains 

only extensional formulas—i.e. that for all formulas  of complexity n or less if  contains  

and / is the result of replacing one or more occurrences of  in  by , then V
(, )

() = 

V
(, )

(/).  We must show that the (n+1)st set in S also contains only extensional formulas.  

That is, we must show that all formulas of complexity n+1 are extensional.  Now by the 
formation rules any formula of complexity n+1 must have one of the following forms: 

   negation  biconditional 
   conjunction  existentially quantified formula 
   disjunction  universally quantified formula 
   conditional 

(All other formulas are atomic and hence of complexity 0, which is less than n+1.)  We must 
now show, given the inductive hypothesis, that no matter which of these forms a formula of 



 

 

complexity n+1 has, that formula is extensional.  I shall do this only for the case of 
conjunction, leaving the others (which are quite similar) as exercises.  Consider any 

conjunction  of complexity n+1, and let V be any valuation of  such that  and  are both 

potential names of d with respect to V. 

Suppose for conditional proof that  occurs in  and / is a result of replacing one 

or more occurrences of  in  by .  Now , being a conjunction, is of the form ( & 

) for some formulas  and , and  must occur either in  or in  or in both.  Let 

/ and / be the results, respectively, of the substitutions of  for  (if any) made 

in  and  to obtain / from .  Now by the valuation rule for conjunction (rule 5): 

  V
(, )

() = T iff V
(, )

() = T and V
(, )

() = T.   

But since  has complexity n+1, each of  and  having fewer operators than  
itself, must be of complexity n or less.  Hence by the inductive hypothesis: 

  V
(, )

() = T iff V
(, )

(/) = T, and  

  V
(, )

() = T iff V
(, )

(/) = T.   

But, again by valuation rule 5:  

  V
(, )

(/) = T iff both V
(, )

(/) = T and V
(, )

(/) =  

  T.   
Thus:  

  V
(, )

() = T iff V
(, )

(/) = T.   

So by bivalence:  

  V
(, )

() = V
(, )

(/). 

Therefore we have shown that for any conjunction  of complexity n+1 and any valuation V 

of  such that  and  are both potential names of d with respect to V, if / is the result of 

replacing one or more occurrences of  in  by , thenV
(, )

() = V
(, )

(/).  We have 

shown, in other words, that all conjunctions of complexity n+1 are extensional.  By similar 
arguments, it can be shown that all formulas of complexity n+1 having any of the other forms 
mentioned above are also extensional.  Hence, given the inductive hypothesis, all members 

of the (n+1)st set in series S are extensional. 

Thus if all members of the nth set in S are extensional, so are all members of the (n+1)st.  Hence, by 
mathematical induction, all the formulas in all the the sets of S are extensional.  Therefore all 
formulas are extensional.  QED 
 
We now prove a second extensionality lemma, which is simple corollary of the first:  
 

COROLLARY (SPECIAL EXTENSIONALITY LEMMA):  Let  and  be any names and  any 

formula containing , and let / be the result of replacing one or more occurrences of  in  by .  

Then if V() = V(), then V() = V(/). 

Proof:  Suppose V() = V().  Then on V both  and  denote the same object, which we shall call d.  

Hence both are potential names of d with respect to V.  So by the General Extensionality 

Lemma, V
(, )

() = V
(, )

(/).  But both V
(, )

 and V
(, )

 are trivial expansions of V and hence 

are identical to V.  Thus  V() = V(/). 

Therefore if V() = V(), then V() = V(/).  QED 

 
 Incidentally, the validity of the inference rule =E, which we did not have the means to confirm 
in Section 8.5, follows directly from the Special Extensionality Lemma.  The proof is left as an 
exercise. 
 Having established these lemmas, we are now ready to prove the soundess of the tree test.  
We prove first that if the initial list is consistent, there is an open path through any tree obtainable 
from it, and from this the soundness result follows as a corollary. 
 



 

 

METATHEOREM:  If an initial list of formulas of predicate logic with identity (but no function symbols) 
is consistent, then there is an open path through any (finished or unfinished) tree obtained 
from that list by finitely many applications of the tree rules. 
Proof: Suppose (for conditional proof) that some initial list of formulas of predicate logic with 
identity, call it L, is consistent.  This means that there is some valuation on which all the 
members of L are true.  Now let T be any tree constructed from L by finitely many 
applications of the tree rules for predicate logic.  To create T, a series T1, ..., Tz of trees was 

successively constructed, whose first member T1 was L, whose final member Tz is T, and 

whose  (n+1)st member Tn+1, for each n (1<nz), was obtained from the nth, Tn, by the 

application of a single tree rule.  We shall prove that each member of this series contains an 
open path, whence it follows that T itself contains an open path.  To prove this, it suffices to 
show that every tree in the sequence contains a path all formulas of which are true on some 
valuation.  For if all formulas of a path are true on some valuation, then that path cannot 
contain both a formula and its negation (which cannot both be true on any valuation) or a 

formula of the form = (which cannot be true on any valuation), and hence must be open.  
We assumed above that there is some valuation on which all formulas of the initial list L are 

true.  Then there must be some valuation V which makes all the members of L true but 

assigns no extensions to any names not in L, since any extensions assigned to names not in 
L could not affect the truth values of formulas in L.  To prove that each tree in the series 
contains a path all of whose formulas are true on some valuation, it will be convenient to first 
prove a slightly stronger result, namely that each tree in the series contains a path all 
formulas of which are true on some valuation which assigns no extensions to names not on 
that path.  For this we use mathematical induction: 
BASIS CASE:  The first member of the series is T1, which is L itself, and by hypothesis each 

member of L is true on V and hence true on some valuation (namely V!).  Moreover, V, as 

noted above, assigns no extensions to names not appearing in L. 

 INDUCTIVE STEP:  Suppose (inductive hypothesis) that the nth item Tn of  

 the series (where 1n<z) contains a path P all of whose formulas are true on some 

valuation V' which assigns no extensions to names not on P.  Now the (n+1)st item, 

Tn+1, is formed by a single application of a rule to Tn.  There are two possibilities 

concerning the point of application of this rule:  either the formula or formulas to 
which it is applied are on P, or not.  If the rule is applied to formulas on P, then by the 

inductive hypothesis these formulas are true on V'.  Hence the rule used can't have 

been  or =, which close paths, since neither a formula and its negation nor a 
negated self-identity can be true on any valuation.  So it must have been one of the 
other rules.  Now these rules, when applied to a path all of whose formulas are true 
on a valuation, yield at least one one-step extension all of whose formulas are true 

either on that valuation or (in the case of —and  when used to introduce a new 

name) on an expansion of that valuation with respect to the new name.50  (Check this 

for each rule.  The reasoning for rules  and  requires the General Extensionality 

Lemma;51 the Special Extensionality Lemma is needed for =.)  So at least one of the 

                                                      
50This is the case for  and , provided that the original valuation ' did not assign any extension to 

the new name, i.e. that it is a potential name for each object in the domain with respect to '; but 

these rules require that the new name not appear on the path P and our inductive hypothesis ensures 
that ' assigns no extensions to names not on P. 
51Suppose, for example, that  is applied to some formula  to yield a new formula /, which is 

the result of replacing each occurrence of  in  by some new name .  Now if there is some 

valuation  with domain  such that () = T, then by valuation rule 10 there is some potential 

name  of some object  in  such that (, )(
/) = T.  Now since  is a new name, it is not assigned 

any value by , and so it is also a potential name for .  And since (, )() = (, )()= , it follows by 



 

 

one-step extensions of P is a path of Tn+1 all formulas of which are true on some 

valuation.  (And if there is an expansion which gives a new name an extension, that 
name has been introduced to the path, so this expansion still assigns no extensions 
to names not on the path.)  If, on the other hand, the formula or formulas to which the 
rule is applied are not on P, then nothing will be added to P in moving from Tn to 

Tn+1.  Hence in this case P itself is a path of Tn+1 all of whose formulas are true on 

V', and hence true on some valuation.  So either way Tn+1 contains a path all of 

whose formulas are true on some valuation which assigns no extensions to names 
not on that path. 

 Thus (by conditional proof) we have shown that  for any n, if Tn contains a path all of whose 

formulas are true on some valuation which assigns no extensions to names not on that path, 
so does Tn+1.  So (by mathematical induction) each tree in the sequence T1, T2, ..., Tz  

contains a path all of whose formulas are true on some valuation which assigns no 
extensions to names not on that path.  Hence T must itself contain a path all of whose 
formulas are true on some valuation.  So (as explained above) T contains an open path.   

Hence we have shown (by conditional proof) that if L is consistent, then there is an open path through 
any finished tree T obtainable from L by finitely many applications of the tree rules.  QED 
 
Soundness now follows by essentially the same reasoning used in Section 5.8: 
 
COROLLARY (SOUNDNESS):  If the tree test classifies a sequent of predicate logic with identity (but 
no function symbols) as valid, it is in fact valid. 
Proof: Suppose (for conditional proof) that the tree test classifies a sequent   

 1,...,n ├  of predicate logic with identity (but no function symbols) as valid.  This means 

that the tree's initial list is  1,...,n,  , and that all paths of the tree close after finitely many 

applications of the rules; hence after a finite number of applications of the rules this tree 
contains no open paths.  But by the previous metatheorem, if the initial list is consistent, then 
there is an open path through any tree constructed from it by finitely many applications of 
rules.  So (by modus tollens), the initial list is inconsistent.  But then by the metatheorem 
proved at the end of Section 5.2 (a sequent is valid if and only if the set consisting of its 
premises and the negation of its conclusion is inconsistent), the sequent is valid. 

Therefore if the tree test classifies such a sequent as valid, it is in fact valid.  QED 
 
EXERCISE 9.1: 
1 In the basis case of the proof of the General Extensionality Lemma, we left unproved the 

assertion that all identity statements (statements of the form  = ) are extensional.  Prove 
this. 

2 In the inductive step of the proof of the General Extensionality Lemma we showed, given the 
hypothesis that all formulas of complexity n or less are extensional, that all conjunctions of 
complexity n+1 are extensional.  Complete the proof of this lemma by showing, given this 
hypothesis, that all negations, disjunctions, conditionals, biconditionals, existentially 
quantified formulas, and universally quantified formulas of complexity n+1 are also 
extensional. 

3 In the proof of the main metatheorem of this section, it is necessary to verify for each tree rule 

other than  or = that when applied to a path all of whose formulas are true on some 
valuation V, it yields at least one one-step extension of that path whose formulas are all true 

on V or on some expansion of V.  The propositional rules were covered in Section 5.8, and I 

did the checking for  in a footnote.  Complete the necessary verifications for , , , and 
=. 

                                                                                                                                                                     

the General Extensionality Lemma that (, )(
/) = (, )(

/) = T.  Therefore there is some 

expansion of  -- namely (, ) -- that makes / true. 



 

 

4 Prove, using the Special Extensionality Lemma, that all instances of the inference rule =E are 
valid. 

 

9.2 COMPLETENESS OF THE TREE TEST 
 A test for validity is complete if whenever an argument is valid, the test classifies it as valid.  
In this section we prove the completeness of the tree test for predicate logic with identity but no 
function symbols.  As usual, we first prove a metatheorem and then derive the completeness result as 
a corollary.  The metatheorem asserts that if a tree never closes, its initial list is consistent.  To prove 
this, we use a strategy like that of Section 5.9.  We begin by supposing for conditional proof that we 
have a tree that never closes.  In propositional logic, where all trees are finished after a finite number 
of steps, this would simply mean that the finished tree contains an open path; but in predicate logic it 
is also possible that the tree fails to close because it is nonterminating, i.e., infinite.  Yet if it is 
nonterminating, we know by König's Lemma (Lemma 3, Section 5.7) that it contains an infinitely 
prolongable path.  Hence (whether or not the tree is infinite) if it never closes, it contains a specific 
path that never closes.  We saw in a practical way in Section 7.4 that such a path, whether infinite or 

not, defines a valuation V which makes each of its members, including the entire initial list, true.52  

But the existence of such a valuation establishes (by the definition of consistency) that the initial list is 
consistent, thus completing the conditional proof.   

 In outline, then, the proof is straightforward.  The real work comes in defining V and proving 

that it really does make each member of the open path true.  Here are the details:  
 
METATHEOREM:  If a tree consisting of formulas of predicate logic with identity (but no function 
symbols) never closes, then its initial list is consistent. 
Proof: Suppose for conditional proof that L is a list of formulas of predicate logic with identity (but no 

function symbols) which produces a tree that never closes.  Then either L is nonterminating 
or not.  If L is nonterminating, by König's Lemma, it produces an infinitely prolongable path.  If 
L is not nonterminating, then L yields a finished tree after finitely many applications of the 
rules; and this tree, since it never closes, contains at least one open path.  Hence in either 
case L yields a path P which never closes.  We now show how to define a valuation V that 

makes every formula on P (and hence every formula of L) true.  The definition is as follows.  

Let the domain of V and the extensions it assigns to names be as described in Section 7.4—

that is, the domain D consists of a set of numbers, where the name 'a' denotes the number 1, 

'b' denotes the number 2, and so on, except that where names flank identity signs each name 
has as its extension the lowest number designated by a name with which it is identified by an 
identity statement on P.  This ensures that whenever two names flank an identity sign they 

designate the same number.  For predicates, V is defined as follows: 

  if  is a 0-place predicate, then V() = T iff  appears as a line on P; 

  if  is a 1-place predicate, then for each number d in D, d  V() iff  

   there is a name  such that V() = d and  appears as a line  

   of P; and 

  if  is an n-place predicate (n>1), then for any numbers  

   1, ..., n in D,  1, ..., n  V() iff there are names  

   1,...,n such that for each i, 1in, V(i) = i, and  

   1...n appears as a line of P. 

 It is easy to verify that this definition makes all the atomic formulas, including identities, of P 

true on V.  Moreover, it makes all negations of atomic formulas true.  For if the negation of an 

atomic formula  appears as a line on P, then  itself cannot appear on P; otherwise, 

applying the rules in the prescribed order, P would eventually close.  And since  does not 

appear on P, it follows by the definition of V and the valuation rule for negation that V() = T 

(check this for each sort of atomic formula).  

                                                      
52In particular, if we are testing for validity,  is the counterexample specified by that open path.  If the 

path is infinitely prolongable,  may have an infinite domain. 



 

 

Suppose now for reductio that some formula of P is not true on V.  Then there must 

be some formula  of P which is not true on V, such that all formulas of P shorter 

than  are true on V.  Now  is neither an atomic formula nor the negation of an 

atomic formula, for otherwise  would be true on V, as noted above.  Thus  must 

be of one of the following forms: 
   conjunction  negated conjunction 
   disjunction  negated disjunction 
   conditional  negated conditional 
   biconditional  negated biconditional 
   universal  negated universal 
   existential  negated existential 
   double negation  

And since P never closes, the prescribed order of rule application guarantees that 

any rule which can be applied to  eventually will be, as many times as possible.  So 

the rule for one of the forms listed above must eventually be applied to  as often as 

it can be.53  Applying any of these rules except for  or  to any formula yields 

only shorter formulas.  But even  and  yield shorter formulas after two steps.  

Hence P will eventually contain at least one formula shorter than  that is obtained 

from  by at most two applications of these rules.  But since  is the shortest formula 

on P that is not true on V, all formulas shorter than  on P are true on V.  Hence all 

formulas on P obtained from  by these rules are true on V.  But it is a property of 

each of the rules except for  that if they yield only formulas true on V on some path, 

then the formula to which they were applied is true in V.  (As in Section 5.9, it is easy 

to check this, at least for each rule other than .)  In the exceptional case where  is 

a universal formula,  must be true on V if every formula derived from it by  is true 

on V, since V is constructed so that its domain contains only objects denoted by 

names on P, and since, given the prescribed order of application,  will eventually be 

applied to  for each name on P.  But every formula derived from , being shorter 

than , must be true on V.  Hence  itself, if it is a universal formula, must be true on 

V.  Thus we have shown that no matter what F's form is,  must be true on V.  But by 

hypothesis  is not true on V, and so we have a contradiction. 

Thus, contrary to our reductio hypothesis, all formulas of P are true on V.  So in particular, 

each formula of the initial list L is true on V, and hence L is consistent. 

Hence if such a tree never closes, then its initial list is consistent.  QED 
 
COROLLARY (COMPLETENESS):  If a sequent of predicate logic with identity (but no function 
symbols) is valid, the tree test classifies that sequent as valid. 

Proof: Suppose that  1,...,n ├   is a valid sequent of predicate logic with identity (but no function 

symbols).  It follows by the metatheorem at the end of Section 5.2 (a sequent is valid if and 
only if the set consisting of its premises and the negation of its conclusion is inconsistent) that 

the set  {1,...,n, }  is inconsistent.  But by the previous metatheorem, if a tree whose 

initial list is this set never closes, then that initial list is consistent.  Consequently (by modus 
tollens), it is not the case that the tree whose initial list is this set never closes; that is, this 
tree eventually does close.  But this is to say that the tree test classifies the sequent  

1,...,n ├  as vaild. 

Therefore, if such a sequent is valid, then the tree test classifies that sequent as valid.  QED 
 
 We have now shown that the tree test is both sound and complete for predicate logic with 
identity but no function symbols; that is, it classifies a sequent of this logic as valid if and only if that 
sequent is valid.  Conversely, this means that the tree test fails to classify a sequent as valid if and 

                                                      
53The identity rule might also be applied to formulas of any of these forms, but whether it is or not, still 
one of the rules listed must eventually be applied. 



 

 

only if it is not valid.  But failing to classify a sequent as valid is not the same thing as classifying it as 
invalid.  Nonterminating trees fail to give an answer either way, and we know that such trees exist.  
So, though we are guaranteed a right answer if we apply the test to a valid sequent, and though we 
are guaranteed that if we apply the test to an invalid sequent and get an answer that answer will also 
be right, there is no guarantee that we will get any answer at all when we apply the test to an invalid 
sequent.  This means, further, that if we apply the test to a sequent which we neither know to be valid 
nor know to be invalid, we can't be sure in advance that we will learn anything.  The tree test for 
predicate logic, then, is not a decision procedure. 
 This raises the question of whether we might modify the tree test somehow to make it a 
decision procedure—or invent some wholly different procedure to decide the question of validity in 
predicate logic.  The answer to this question is no.  To prove that, we will need to say more precisely 
what a decision procedure is.  We have defined a decision procedure as a terminating algorithm 
which determines for each sequent of a given logic whether or not that sequent is valid.  The term in 
this definition which needs clarification is 'algorithm'.  We shall clarify it in Chapter 10. 
  

9.3 SOUNDNESS AND COMPLETENESS OF THE RULES OF INFERENCE 

  As in Section 5.10, we shall demonstrate the completeness of the inference rules by 
providing an algorithm for converting any tree for a valid sequent into a proof of that sequent.  If 
Section 5.10 is not fresh in your mind, you should review it before reading this one, since what is said 
here is dependent upon that earlier section.  To expand the completeness result of Section 5.10 to 
predicate logic, we simply add to the algorithm described there the following directions, which tell how 
to construct portions of the proof that correspond to applications of the the quantifier or identity rules 
in the tree: 
 

TREE RULE CORRESPONDING STEP(S) IN PROOF 

Universal Quantification ():  If a formula of 

the form  appears on an open path and  is 
a name that occurs in a formula on that path, 

write /  (the result of replacing all 

occurrences of  in  by ) at the bottom of the 
path.  If no formula containing a name appears 

on the path, then choose some name  and 

write / at the bottom of the path.  In either 

case, do not check . 

In either case, infer / from  by E. 

Negated Universal Quantification ():  If an 

unchecked formula of the form  appears 

on an open path, check it and write  at the 
bottom of every open path that contains the 
newly checked formula. 

Infer  from  by QE. 

Existential Quantification ():  If an unchecked 

formula of the form  appears on an open 

path, check it.  Then choose a name  that does 
not yet appear anywhere on that path and write 

/, the result of replacing every occurrence of 

 in  by , at the bottom of every open path 
that contains the newly checked formula. 

Given , hypothesize /. When a 

contradiction of the form 'P & P' is deduced 

from / (all subsequent hypothetical 
derivations having ended) end the hypothetical 

derivation from / and deduce 'P & P' by E. 

Negated Existential Quantification ():  If an 

unchecked formula of the form  appears 

on an open path, check it and write  at the 
bottom of every open path that contains the 
newly checked formula. 

Infer  from  by QE. 



 

 

Identity (=):  If a formula of the form = 
appears on an open path, then if another 

formula  containing either  or  appears 
unchecked on that path, write at the bottom of 

the path any formula  not already occurring 
(checked or unchecked) on the path which 
results from replacing one or more occurrences 

of either of these names by the other in .  Do 

not check either = or . 

Infer  from  and = by =E. 

Negated Identity ():  Close any open path on 

which a formula of the form = occurs. 

Introduce = by =I, then from = and =, 

deduce 'P & P' by EFQ. 

 
 If we now review the reasoning of the completeness proof in Section 5.10, we shall see that it 
still applies to the algorithm that includes these new directions.  (The relevant completeness proof for 
the tree rules of predicate logic is, of course, the one of given in Section 9.2, not the proof for 
propositional logic given in Section 5.9.  Note that the negated identity rule given above ensures that 

each 'X' still stands for 'P & P'.)  Thus we can see that the inference rules for predicate logic are 
complete. 
 The soundness proof for the inference rules of predicate logic is also the same as in Section 
5.10, except that the basis case now must take account of =I, and each of the six new inference rules 
must be checked in the induction to ensure that they yield valid corresponding sequents.  The proofs 
are relatively straightforward and are left as an exercise.  We thus are able to show that the inference 
rules for predicate logic are sound. 
 To summarize:  The inference rules for predicate logic are both sound and complete.  That is, 
a sequent is valid iff it can be proved.  But we have been unable to formulate, as we did for 
propositional logic, a terminating algorithm for telling which sequents are valid and which are not.  As 
a result, when given a sequent of predicate logic, we cannot always tell whether or not it is provable.  
In Chapter 10, we shall see that no teminating algorithm of any kind can decide that question in every 
case.  In the meantime, however, we shall consider another sort of reason why we cannot always tell 
whether an argument is valid. 
 
EXERCISE 9.3:   
1 Write out in full the completeness proof for the inference rules of predicate logic, using the 

completeness proof of Section 5.10 as a model.   
2 Show that the soundness proof of Section 5.10 may still be applied to predicate logic by 

proving for each of the rules I, E, I, E, =I, and =E that when applied to lines whose 
corresponding sequents are valid, they yield a conclusion whose corresponding sequent is 
valid.  (Hint; for =E use the Special Extensionality Lemma of Section 9.1.) 

 

9.4 INEXPRESSIBILITY 

 Predicate logic does not automatically decide the validity of every argument.  Even if we 
manage to formalize an argument satisfactorily, there is no guarantee that we will be able to decide 
the validity of the corresponding sequent.  But sometimes we cannot even get that far.  In these 
cases the problem may lie in the  inexpressibility in predicate logic of crucial elements of the 
argument's form. 
 The fact that some forms of reasoning are not expressible in predicate logic is hardly 

surprising.  Predicate logic deals with a mere eight operators:  '', '&', '', '', '', '', '' and '='—

together with the operators expressible by combining these eight.54  But why suppose that these are 
the only expressions whose semantics can affect validity?  The validity of an argument form could 
conceivably depend, for example, on the semantics of certain predicates, such as 'is a part of' or 'is 
greater than'; adverbs, such as 'quickly' or 'necessarily'; or sentence operators, such as '... knows that 
...' or 'it should be the case that ...'.  In such cases predicate logic might misjudge validity, for it takes 
no account of the semantics of such expressions.   

                                                      
54'Neither ... nor', for example, or 'the' (using Russell's theory of descriptions). 



 

 

 A natural response to the problem of inexpressibility is to expand predicate logic to include 
more and more of these "nonstandard" operators.  Part IV of this book explores that response.  Not 
all logicians endorse it.  'Nonstandard' is an epithet used derisively by some, who argue that some or 
all of operators we shall examine in Part IV are not really logical, or not really intelligible, or both, and 
that logic proper ends with predicate logic.  This, however, is not my view. 
 In this section we consider some arguments whose validity is not decided, or seems to be 
incorrectly decided, by predicate logic.  In each case, we shall see that the problem originates with 
one or more expressions whose semantics is not fully representable in predicate logic.  Then we shall 
consider ways of expanding predicate logic to accomodate the semantics of some of these terms.  
Our first example is: 
 
   This finger is part of this hand 
   This hand is part of my body 

   This finger is part of my body. 
 
Using 'f' for 'this finger', 'h' for 'this hand', 'b' for 'my body', and 'P' for 'is a part of', this argument may 
be formalized as: 
 
  Pfh, Phb  ├  Pfb. 
 
But while the argument is valid, the sequent is invalid.  What has gone wrong? 
 The stock response is that this argument has a missing premise, namely that if one thing is a 
part of a second and the second a part of a third, then the first is a part of the third.  In symbols this is: 
 

  xyz((Pxy & Pyz)  Pxz). 
 
Or we might add merely the relevant instance of this generalization: 
 

  (Pfh & Phb)    Pfb. 
 
Adding either premise does indeed make the sequent valid in predicate logic, but it evades the 
question.  We wanted to know whether the original argument had a valid form; not whether the 
argument that results from adding either premise does.   
 The point can be illuminated by a somewhat different example.  Suppose someone were to 
claim that the argument: 
 
  All men are mortal 
  Socrates is a man 

  Socrates is mortal 
 
assumes the premise: 
 
  If all men are mortal and Socrates is a man, then Socrates is mortal 
 
so that the argument really is: 
 
  If all men are mortal and Socrates is a man, then Socrates is mortal. 
  All men are mortal 
  Socrates is a man 

  Socrates is mortal. 
 
This is clearly an arbitrary addition.  Why stop here?  We could as well argue that this augmented 
argument is still incomplete, since it in turn "really assumes" the further premise: 
 
  If it is the case that if all men are mortal and Socrates is a man, then 
  Socrates is mortal, and in addition all men are mortal and Socrates  



 

 

  is a man; then Socrates is mortal. 
 
We have started on an infinite regress, so we had better call a halt.  The only nonarbitrary stopping 

place is the original argument.  It was valid as it stood.55 
 Analogously, the argument: 
 
   This finger is part of this hand. 
   This hand is part of my body. 

   This finger is part of my body. 
 
is arguably valid as it stands.  Why do some people want to add a premise to this argument, even 
though they would not be tempted to do so with the Socrates argument?  The answer, I think, is that if 
they didn't postulate the hidden assumption, they would have to admit that predicate logic, which 
pronounces the argument's form invalid, gives the wrong result.  The addition is made ad hoc, to 
salvage agreement between formalism and ordinary understanding.  As a result, it is not the 
formalism that decides the argument's validity.  The question of validity is decided before the decision 
to add or not to add a premise is made; since the form is seen to be valid , a premise is added to 
square predicate logic with what we know informally. 
 In this way, any argument that we think is valid can be made formally valid by the addition of 
premises.  But so can arguments that are clearly invalid.  There are many ways to do this.  One that 

always works is conditionalization.  Given any argument 1, ..., n  ├  , simply conjoin the 

premises and make their conjunction the antecedent of a conditional whose consequent is the 
conclusion.  Adding this conditional as a premise yields the valid form: 
 

  ((1& ... & n)  ),1, ..., n  ├  56   

 
So, for example, even such classical fallacies as this ad hominem: 
 
  Bill believes that God exists. 
  Bill is an idiot. 

  God does not exist 
 
become valid in virtue of their "hidden" premises.  Using conditionalization, the "hidden" premise is: 
 
  If Bill believes that God exists and Bill is an idiot,  
  then God does not exist. 
 
With so flexible a procedure, it's no wonder that predicate logic can be made to yield correct results. 
 But because it can transform any argument into a valid argument, this procedure will err 
unless the decision to add or not to add premises is based on an accurate informal assessment of the 
validity of the argument before the addition of premises.  It is our informal understanding, not the 
formalism, that decides initially whether or not the argument is valid and thus guides our decision to 
add or not to add premises. 
 This is not to deny the general usefulness of adding premises.  On the contrary, making 

unstated premises explicit is often essential to accurate argument analysis.57  The point is only that it 

                                                      
55Lewis Carroll, who was a logician as well as a writer of children's literature, discusses this regress 
of premises enlighteningly and entertainingly in a well known article entitled "What the Tortoise Said 
to Achilles," Mind 4 (1895), pp. 278-80. 
56I have suppressed brackets in the conditional's antecedent.  They must be added to make the 
conditional a formula, but all ways of adding them are equivalent, so that their exact placement does 
not matter. 
57But it is essential only where the suppressed premise is not logically true.  The addition of a 
logically true premise does not alter the validity of an argument and so is merely redundant.  That is 
why it is pointless to add a premise like 'If all men are mortal and Socrates is a man, then Socrates is 



 

 

is possible to evaluate arguments informally before adding premises, as well as afterwards, and that 
in many cases when we evaluate them before adding premises we seem to find them valid, though 
predicate logic pronounces their forms invalid.  We can always compensate for this, because we can 
always transform an invalid argument into a valid one by adding a premise.  But still it seems that 
predicate logic incorrectly classifies the original. 
 Why?  With our example, specifically, the argument's validity seems to hinge on the meaning 
of 'is a part of', i.e., of the semantics of this term.  Except for the identity predicate, predicate logic 
makes no provision for representing the semantics of specific predicates.  In fact, it systematically 
ignores their meanings.  The sequent: 
 
  Pfh, Phb  ├  Pfb 
 
which represents our argument could as well be used to symbolize the argument: 
 
  Fred praised Hannah 
  Hannah praised Bill 

  Fred praised Bill 
 
or any of an infinite number of other arguments, both valid and invalid, with wildly unrelated 
meanings.  The meanings of individual predicates (other than the identity predicate) are lost in the 
process of formalization.  Thus it can be argued that the appropriate form and the relevant semantics 
for this argument are inexpressible in predicate logic, just as the appropriate forms and the relevant 
semantics for quantificational arguments are inexpressible in propositional logic.  Where validity 
depends on the semantics of terms other than the eight operators mentioned above, predicate logic is 

insensitive to it.58 
 In fact, predicate logic seems incapable of symbolizing whole categories of terms.  Consider 
adverbs.  Predicates are at least syntactically representable in predicate logic, though formalization 
strips away their meaning; but we don't even have the syntax to symbolize adverbs.  In the argument: 
 
   Bill is working quietly. 

   Bill is working. 
 

                                                                                                                                                                     
mortal'.  Likewise the principle 'if one thing is a part of a second and the second a part of a third, then 
the first is a part of the third' is arguably a logical truth (by the semantics of the predicate 'is a part of'), 
though predicate logic takes no account of this.  It would follow that adding this premise, too, is 
pointless, except to make predicate logic square with what we already know by intuition. 
 The addition of a premise that is not a logical truth is, by contrast, not redundant.  In the 
argument: 
  Jill is human 

 ... Jill is fallible 
for example, the nonlogical premise: 
  All humans are fallible 
is suppressed and should for accuracy's sake be added, regardless of whether we are working 
informally or in the formalism of predicate logic.  The question at issue here, of course, is:  what 
counts as a logical truth?  The classical answer is "any statement whose form is a valid formula of 
predicate logic."  The burden of this section is to suggest that this answer might be too narrow. 
  A more thorough treatment of the problem of implicit premises may be found in John Nolt, 
Informal Logic:  Possible Worlds and Imagination, New York, McGraw-Hill, 1984, Chapter 4.  
58Some contemporary philosophers, notably W.V.O. Quine and Donald Davidson, deny that terms 
other than the logical operators have individualizable meanings.  These philosophers hold that 
meaning is a wholistic property of language that cannot be parceled out neatly to individual terms.  
Yet they seem to grant clear and distinct meanings to the classical logical operators.  Why just these 
words and no others? 



 

 

for example, 'is working quietly' is a different predicate from 'is working', so that in predicate logic they 
must be represented by different predicate letters.   But this conceals their obvious relatedness.  
Using 'b' for 'Bill', 'Q' for 'is working quietly' and 'W' for 'is working', we obtain: 
 
   Qb  ├  Wb 
 
which is invalid.  Yet the argument seems valid. 
 There is, however, a way of conceptualizing the argument's form within predicate logic  that 
just might work.  Donald Davidson has devised an ingenious analysis in which adverbs, prepositional 

phrases, predicates, and several other grammatical forms are treated as predicates of events.59  It 
requires adding to each predicate a place for a variable interpreted over a domain of events.  Instead 

of writing 'Bill is working' as 'Wb', Davidson would write it as 'eWeb', which means "there is an event 

e such that e is a working by Bill."60  Adverbs are symbolized as predicates of events.  Thus, using 
this interpretation: 
  b - Bill 
  W - is a working by 
  Q - occurs quietly 
'Bill is working quietly' becomes 

  e(Web & Qe),  
which means "there is an event e such that e is a working by Bill and e occurs quietly."  Davidson 
would formalize our argument as: 
 

  e(Web & Qe)  ├  eWeb 
 
which is valid in predicate logic.  The logical relationship between 'is working' and 'is working quietly', 
which we had assumed to be inexpressible, is resolved into the familiar syntax of existential 
quantification and conjunction.   
 The same analysis applies to prepositional phrases.  The argument: 
 
   Bill is working in the kitchen. 

   Bill is working. 
 
is also valid.  For Davidson, the preposition 'in' is, like an adverb, simply an event-predicate, though it 
is binary rather than monadic.  Using these symbols: 
  b - the kitchen 
  I - is in,  
we can formalize this as: 
 

  e(Web & Iek)  ├  eWeb 
 
which again is formally valid in predicate logic. 
 Davidson's analysis also handles gerunds and infinitives.  The sentence 'Driving through 
Palermo is harrowing',  whose subject is the gerund 'driving through Palermo', can be treated as: 
 

  e((De & Tep) & He) 
 
Where 'D' stands for 'is a driving', 'T' for 'is through', 'p' for 'Palermo', and 'H' for 'is harrowing'.  The 
same formalization could be used for 'It is harrowing to drive through Palermo', which uses the 
infinitive 'to drive through Palermo' instead of the gerund. 

                                                      
59"The Logical Form of Action Sentences," in Nicholas Rescher, ed., The Logic of Decision and 
Action, Pittsburgh, University of Pittsburgh Press, 1967. 
60The letter 'e' is, of course, a name, not a variable, in our version of predicate logic.  Davidson's 
notation differs from ours in this respect. 



 

 

 Thus Davidson's analysis is widely applicable.  But it succeeds only at the price of awkwardly 
complicating the syntax of predicates and of treating events as objects.  As a result, it has its critics.   
 Yet this analysis stands for us as a caution.  Because predicate logic contains no explicit 
symbols for adverbs and prepositions, it would be easy to conclude that it cannot deal with them.  
This, as Davidson reminds us, does not follow.  The expressive capacity of predicate logic, 
intelligently deployed, may surprise us. 
 So far we have considered arguments whose intuitive validity seems obvious; the problem is 
that intuition doesn't agree with predicate logic.  Whether our next and final example is valid is not 
intuitively clear.  Suppose Bad Bart, who is at this very moment oozing in through the window, is bent 
on murdering me and can be stopped only by being killed.  Then (if I have time) I may reason as 
follows:   
 
   I should live. 
   It is necessarily the case that if I live Bad Bart dies. 

   Bad Bart should die. 
 
Is this valid, or not?  If we try to translate the argument into predicate logic to find out, we are stymied.  
The argument's validity, or lack thereof, hinges on two expressions, 'ought to' and 'necessarily', for 
which we have devised no adequate representation in predicate logic.  The form relevant to 
determining its validity is therefore apparently inexpressible.  Fortunately, there are extensions of 
predicate logic, namely, modal deontic logics, in which this form can be expressed.  Since these 
make their appearance in Section 13.1, we postpone further discussion of this argument until then. 
 
EXERCISE 9.4:  Each of the following arguments is, or might reasonably be thought to be, intuitively 
valid.  Try to express the form of each in predicate logic.  If you fail to produce a valid sequent, 
discuss the reasons for your failure.  Don't add any premises! 
 
1 Cindy is taller than Bob; so Bob isn't taller than Cindy. 
2 I know that I am alive.  Therefore I am alive. 
3 He pried the safe open with a crowbar.  Hence he pried something open. 
4 Since this figure is square, it is equiangular. 
5 There are more people than hairs on anyone's head.  No one is completely  
 bald.  Consequently, at least two people have the same number of hairs on  
 their heads. 
6 Salt is sodium chloride.  Consequently, if salt is soluble so is sodium  
 chloride. 
7 For each number there is a greater.  Thus there is no greatest number. 
8 She was once a beauty queen.  So it will always be the case that she was  
 once a beauty queen. 
9 If something is poisonous, it's dangerous.  Therefore, mercury is dangerous,  
 because it is poisonous. 
10 The pool is open whenever the lifeguard is on duty.  The lifeguard is on duty  
 now.  So the pool is open now. 
11 Since you have a right not to be killed, I have an obligation not to kill you. 
12 God has all perfections.  To exist is a perfection.  Ergo God exists. 
  



 

 

CHAPTER 10 
CLASSICAL PREDICATE LOGIC:  UNDECIDABILITY 

 
 At the end of Section  9.2, we asked whether, despite the failure of the tree test as a decision 
procedure for predicate logic, there might not be some other test which would do the job.  The job is 
to provide a terminating algorithm that determines for each sequent of predicate logic whether or not 
that sequent is valid.  To determine whether that job can be done, we need a precise definition of an 
algorithm.  The first four sections of this chapter provide that definition by equating algorithms with the 
programs of an abacus, a primitive sort of computer.  Then in Sections 10.5 and 10.6 we use this 
concept to explain and prove the undecidability of predicate logic with function symbols.  Finally, in 
Section 10.7 we discuss the extent of this undecidability, showing, among other things, that it doesn't 

go away if we eliminate the function symbols.61  
 

10.1  ABACI 
 In this section we discuss the design and operation of a rudimentary sort of computer called 
an abacus (plural abaci), or register machine.  Our goal is to analyze the notion of an algorithm, 
which, as we shall see, turns out to be definable as an abacus program.  Having understood this, we 
will be in a position to prove that predicate logic is undecidable—i.e., that it is in principle impossible 
to devise an algorithm that tells for any sequent of predicate logic whether or not it is valid. 
 Abaci should not be confused with the ancient counting devices of the same name, though 
they have some similar features.  An abacus can be thought of as a series of bins, called registers, 
together with a control mechanism for moving counters (which you might think of as stones or 
marbles) one at a time into and out of these bins.  Progamming an abacus means telling this 
mechanism when and where to add or remove a counter.  In theory, the abacus has an unlimited 
number of registers and an unlimited supply of counters, and each register can hold an unlimited 
number of counters.  But in any real machine these quantities must be finite. 

 Abaci are simpler in design than ordinary computers, but they work in much the same way.  
Ordinary computers have a large number of registers, each of which is capable of storing a small 
number of zeros and ones, coded electronically.  The list of zeros and ones in a register can be 
thought of as a number in binary code, and this number in turn may be regarded as representing the 
number of "counters" in the register.  Programming a computer amounts to instructing its "control 
mechanism" (central processing unit) to move and manipulate these "counters", as in an abacus; but 

                                                      
61For the material in this chapter, I am indebted to Richard Jeffrey's elegant treatment in Formal 
Logic:  Its Scope and Limits, 3rd ed., New York, McGraw-Hill, 1991, Chapters 7 and 8.   



 

 

the instructions may be more sophisticated than just "add one" or "subtract one", which are the only 
commands that an abacus "understands." 
 Yet this seemingly important difference is actually rather superficial; for by giving the abacus 
sufficiently complex concatenations of "add one" and "subtract one" commands, we could make it 
mimic any of the operations of an ordinary computer.  It would, however, be very slow, since it would 
have to perform many separate additions and subtractions to mimic a single operation of an ordinary 
computer. 
  Not only can an abacus do anything any actual computer can do; there is good reason to 
believe that it could do anything that any possible computer could do (this claim is Church's Thesis).  
What is interesting, then, is to find out what an abacus can't do, since that sets limits on the capability 
of any possible computer.   
 But let's first see what it can do.  Suppose we want to program an abacus to add two 
numbers.  For this we need two registers, register A and register B, to store the numbers.  To add 
numbers x and y, we put x counters in register A and y counters in register B and instruct the 
machine to begin taking counters out of register B, and to put a counter in register A for each one it 
removes from register B.  The process is completed when register B becomes empty.  Register A 

then contains xy counters, the sum of x and y. 
 Putting the counters in the registers initially is not part of programming the machine.  The 
program is merely a general list of instructions for creating a sum.  What registers A and B contain to 
begin with is called the input.  Once a program is written, we provide different inputs each time we 
run it.  To program an abacus to do a particular task, we must analyze that task into an ordered series 
of simple operations.  Fundamentally, an abacus can perform only two operations: 
 
  (1) add a single counter to a specified register 
 
  (2) remove one counter from a specified register, 
       provided that is is not empty; if it is already 
       empty, do nothing. 
 
But these two types can be combined and repeated in any order, and what is done after applying 
operation (2) to a register depends on whether or not that register was empty when the operation 
began.  The two kinds of operations may be depicted graphically as follows: 
 

 
 
These diagrams are called instruction nodes (or just nodes for short).  Don't confuse nodes with 
registers.  The registers are not pictured in the diagrams, though the capital letters inside the circles 
(represented here by 'X) refer to them.  Every abacus program can be written as a combination of 
addition and subtraction nodes, plus an entry arrow, which indicates where to start.  The order in 
which the instructions are to be carried out is indicated by the way in which arrows from one node 
lead to another.  Exactly one arrow emerges from each addition node.  Its function is to point to the 
instruction to be followed after a counter has been added to the indicated register (register X in the 
diagram above).  Exactly two arrows emerge from each subtraction node, one of which is marked 
with a minus sign and the other of which is marked with an 'e'.  The minus sign marks the arrow 



 

 

indicating the instruction to be followed next if a counter has been removed from the indicated 
register.  The 'e' marks the arrow that is to be followed if the indicated register is empty when the 
node is first entered.  Any number of arrows may lead into a node, and arrows may be stretched and 
bent to lead to any node, including the one from which they emerged. 
 To program the machine to add the number in register B to the number in register A, we 
analyze the process of adding into some suitable arrangement of the two fundamental abacus 
operations.   Roughly, what we want the machine to do is this: 
 
  Remove a counter from register B. 
  Then add a counter to register A. 
  Remove another counter from register B. 
  And again add a counter to register A. ... 
  Keep going like this until register B is 
  empty; then stop. 
 
It is easy to see that this set of instructions will result in the adding of the number in register B to the 
number in register A, no matter how many counters the two registers contain initially. 
 We can represent these instructions a bit more perspicuously in a flow chart made up of 
addition and subtraction nodes: 
 

 
 
In this flow chart the node for register A is an addition node and the node for register B is a 
subtraction node.  The arrows are numbered for easy reference.  (This is not, however, merely a 
convenience; it will be crucial later, when we describe the program in logical notation.)  One and only 
one arrow leads into a flow chart; it is called the entry arrow.  The entry arrow must always be 
labelled as arrow 0, as it is here, since the mechanism that operates the program always looks for the 
0 arrow to begin the program.  The numbering of the remaining arrows is arbitrary, but usually there is 
a more or less natural way to do it.  Any arrow which, like arrow 3, leads out of the flow chart (i.e., 
which does not lead to further instructions) is called an exit arrow.  Exit arrows are the program's 
stopping points.  Not all programs have them. 
 The operation of an abacus program can be thought of as taking place in a discrete series of 
numbered times.  At each time, the machine is following an arrow in the program.  Operations are 
performed between one time and the next.  The program always begins with the machine on the entry 
arrow at time 0.  To see how to read the flow chart, suppose we start the machine with three counters 
in register B and one in register A.  Now at time 0 the machine is on arrow 0.  Arrow 0 directs it to the 
node for register B (the bottom node), which gives it the following instruction: 
 
  If register B is empty, move on to arrow 3. 
  If register B is not empty, remove a counter from it and 
   move on to arrow 1. 
 
Since register B is not empty, the machine removes a counter, leaving two counters in register B, and 
moves on to arrow 1.  It is on arrow 1 at time 1.  Arrow 1 leads it to the node for register A, (top node) 
where it obeys the instruction to add a counter to register A and move on to arrow 2.  Thus at time 2 
the machine is on arrow 2 with two counters in register B and two in register A.  Arrow 2 leads the 
machine back to the bottom node.  Since register B is still not empty, it again follows the instruction to 
remove a counter from register B and move on to arrow 1.  So at time 3 it is on arrow 1 with one 
counter in register B and two in register A.  It moves to the top node, adds a counter to register A, and 



 

 

passes on to arrow 2 again.  Thus at time 4 the machine is on arrow 2 with one counter in register B 
and three in register A.  It thus returns once again to the bottom node.  Since register B still contains 
a counter, it removes this counter and moves to arrow 1.  So at time 5 the machine is on arrow 1 with 
register B empty and three counters in register A.  By time 6 it is on arrow 2 again, having added a 
counter to register A.  Register A now contains four counters and register B is empty, so that when 
the machine gets back to the bottom node, it passes on to arrow 3 instead of going back to arrow 1.  
Thus at time 7 the machine is on arrow 3; and, having no more instructions to follow, it halts.  
Register A now contains four counters, the sum of the initial values of registers A and B.  The same 
program would likewise add any other two inputs for the two registers. 
 

10.2  LOGICAL PROGRAMMING NOTATION 

 In this section we see how programs can be written in logical notation.62  The logical notation 
uses an (n+2)-place predicate 'R', where n is the number of registers in the machine.  We shall 
illustrate by referring to the adding program whose flow chart we constructed above.  Since this 
program uses two registers, R will be a 4-place predicate.  The meaning of this predicate is as 
follows: 
 
  'R t w x y' means "At time t the machine is following arrow 
  w with x counters in register A and y counters in register B." 
 
This predicate thus allows us to describe the state of the machine at a given time.  Each of the four 
places stands for a positive whole number.  The first place following the predicate is always the time, 
the second always stands for the number of the arrow that the machine is following at that time, and 
the remaining places stand for the numbers of counters in the registers, the registers being listed in 
numerical order.  That is, the third place stands for the number of counters in register A, the fourth 
place for the number of counters in register B, etc.  So, for example, the statement  
 
  R 3 1 2 7 
says: 
  At time 3 the machine is on arrow 1 with 2 counters in register A  
  and 7 in register B.   
 
Arabic numerals such as '0', '1' or '147' are, grammatically speaking, just names.  We could introduce 
them as new names into the predicate calculus, or we could think of them as abbreviations for 
symbols constructed from the numeral 0 and the successor sign.  If we chose the latter course, we 
would write the number n as the zero symbol followed by n successor symbols (symbolized as 
apostrophes).  Thus the numeral '5', for example, would be an abbeviation for: 
    0''''' 
 
We'll use the successor symbol primarily with variables.  We'll generally write numerals in the more 
compact and familiar Arabic notation. 
 The program itself is written as a series of conditional statements, which say in effect "If the 

machine is in such-and-such state at moment t, then at the next moment t' (t1, i.e., t) it should be in 
such-and-such a new state."  For example, the statement: 
 

  R t 2 x 0    R t' 3 x 0 
 
tells the machine that if at time t it is on arrow 2 with x counters in register A and zero counters in 
register B, then at time t', it should be on arrow 3 with the same values in the two registers.  This is 
part of the adding program discussed in the previous section.  It tells the machine what to do if it 

                                                      
62Because this notation allows free (unquantified) variables, program statements aren't  formulas of 
predicate logic.  But they become formulas if we quantify the variables -- a fact of some importance, 
as we shall see in Section 10.6. 



 

 

enters the bottom node from arrow 2 and finds register B empty:  just go on to arrow 3; don't add or 
subtract anything. 
 To get the machine to add or subtract a counter, we use variables together with the 
successor sign.  For example: 
 

  R t 1 x y     R t' 2 x' y 
 
says that if at time t the machine is on arrow 1 with x in register A and y in register B, then at t' it 
should be on arrow 2 with x' in register A and y in register B.  This is the instruction corresponding to 
the top node of the flow chart.  It tells the machine that when it is on arrow 1, it should add a counter 
to register A and then wind up on arrow 2.  The following instruction illustrates subtraction:  
 

  R t 0 x y'    R t' 1 x y 
 
It tells the machine that if it is on the entry arrow (arrow 0) with x in register A and y' in register B, then 
at the next moment it should be on arrow 1 with register A unchanged but one less counter (y 
counters), in register B.  This is part of the instruction set for the bottom node of our flow chart.  It is 
important to notice that this instruction is not applicable if register B is empty, for then register B could 
not contain y', i.e. some positive whole number y, plus one, counters.   So we need a separate 
instruction for the case where the machine is on arrow 0 and finds register B empty: 
 

  R t 0 x 0    R t' 3 x 0 
 
This says that if at time t the machine is on arrow 0 with x in register A and register B empty, the 
machine should move to arrow 3 without changing either register.  This takes care of the case in 
which register B is empty when we start the adding program.  In that case, adding register B, i.e. 
zero, to register A will leave everything unchanged. 
 Only one more statement is needed to complete the program.  We told the machine what to 
do if it is on arrow 2 and finds register B empty, but we haven't yet told it what to do if it is on arrow 2 
and finds something in register B.  From the flow chart, we see that it is supposed to take a counter 
out of register B and then go on to arrow 1; so we write: 
 

  R t 2 x y'    R t' 1 x y 
 
The entire program, then, is: 
 

  R t 0 x y'    R t' 1 x y 

  R t 0 x 0     R t' 3 x 0 

  R t 1 x y     R t' 2 x'y 

  R t 2 x y'    R t' 1 x y 

  R t 2 x 0     R t' 3 x 0 
 
The first two and last two statements of this program together constitute the instruction set for the 
bottom node of the flow chart.  The third statement is the sole instruction for the top node. 
 The reason why the bottom node requires four statements while the top node requires only 
one is that the top node has only one arrow (arrow 1) entering it and only one (arrow 2) leaving, so all 
we have to do is tell the machine what to do in going from arrow 1 to arrow 2.  But there are two ways 
to enter the bottom node (arrows 0 and 2) and two ways to leave it (arrows 1 and 3).  Which arrow the 
machine takes out of this node depends on whether or not register B is empty.  Thus we need to tell 
the machine when and how to go from arrow 0 to arrow 1 or arrow 3 (the first two statements) and 
when and how to go from arrow 2 to arrow 1 or arrow 3 (the last two statements).  So it takes four 
statements to describe the bottom node, making a total of five statements for the program as a whole.   
 More generally, the number of program statements needed to describe a node is the number 
of arrows coming into the node multiplied by the number of arrows going out.  When designing a 
program, you should always check it for completeness by figuring the number of statements required 



 

 

for each node and then adding  these numbers together to get the total number of statements for the 
program.  If your program contains fewer statements, it's incomplete.  If it contains more, you've 
written too much. 
 

10.3 THE ABACUS PROGRAM 

  ABACUS is a computer program that enables you to construct, program, and run abaci that 
are simulated electronically within an ordinary computer.  Though in theory an abacus has infinitely 
many registers, each with infinite capacity, these simulacra have at most seven registers (you get to 
choose the number), each of which holds a maximum of 32,767 counters.  Because of the small 
number and capacity of their registers, they are not powerful enough to do any serious computing, 
much less to approach the performance of infinite abaci.  But they do enable you to get a feel for how 
an abacus operates. 
 
GETTING ABACUS STARTED 
 ABACUS runs on any IBM-compatible personal computer.  The program is stored in three 
files:  ABACUS.EXE, ABACUS.MSG and ABACUS.HLP.  You start ABACUS from any directory 
containing these three files, by loggin on to that directory and typing 'ABACUS'—without the quotation 
marks, of course!   
 
ABACUS PROGRAM EDITOR 
 When you run the ABACUS program, the first thing you will see is a title, like the title page of 
a book.  Press any key to remove the title.  The editing screen will then appear.  At the top of this 
screen are some abbreviated directions, and along the bottom is a menu of commands.  The 
appearance of this menu means that you are ready to begin writing (creating), modifying or running a 
program. 
 
CREATING PROGRAM STATEMENTS 
 To begin writing a program, press 'c' for 'CREATE' or use the arrow keys to move the 
highlighter to 'CREATE', and then press ENTER.  If this is the first statement in your program, 
ABACUS will ask you to specify the number of registers you want to program.  To know how many 
registers you need, you must have a pretty good idea of what your program will look like.  I 
recommend sketching it out ahead of time, using a flow chart as described above.  Once you start 
writing the program on the computer, you can't change the number of registers without rewriting 
everything you've done, so make sure you choose the right number before you begin. 
 If this is the first time you're using ABACUS, you might specify two registers and then 
experiment by writing the addition program described above.  When ABACUS says 
 
  Number of registers (1 - 7): 
 
Just type: 
 
  2 
 
and then ENTER. 
 You are now ready to enter a program statement.  The order in which you create statements 
is unimportant (ABACUS will arrange them in the order of their arrow numbers), but suppose we 
begin with the first statement of the adding program, i.e.: 
 

  R t 0 x y'    R t' 1 x y 
 
Now the first place after the R is always the same in all program statements.  In the statement's 
antecedent it always designates some time t and in the consequent it designates the next time t'.  
ABACUS supplies the R predicates, arrows, and time variables for each statement automatically.  
Thus what appears on the screen after you specify the number of registers is: 
 
  R t _ 



 

 

  Enter initial arrow number 
 
The program is asking for is the second place following the R in the antecedent of the program 
statement, which in this case is 0.  So type '0' and then press either ENTER or the space bar.  The 
screen now looks like this: 
 
  R t 0 _ 
  Enter initial value for register A 
 
Register values are designated either by the numeral '0' or by variables (lower case letters) with or 
without a single successor symbol.  In the program statement we are writing, the initial value for 
register A is designated by the variable 'x'.  So type 'x' and then press either the space bar or ENTER.  
The screen now looks like this: 
 
  R t 0 x _ 
  Enter initial value for register B 
 
The initial value for register B is 'y''.  After you enter this, ABACUS supplies the arrow, the second R 
predicate and the second time variable in your program statement, so you see this on the screen: 
 

  R t 0 x y'    R t' _ 
  Enter final arrow number 
 
The "final" settings are those mentioned in the consequent of the program statement.  ABACUS has 
automatically set the final time (the first place following R in the consequent) to t' and is asking you for 
the arrow number, which should be 1.  Enter this and then the final register values 'x' and 'y' to 
complete entry of the statement.  The finished statement is now part of your program and is displayed 
at the top of the screen. 
 
CORRECTING ERRORS 
 If you make a mistake while entering a statement, you can backspace over it and retype it, so 
long as you have not pressed ENTER or the spacebar, which enters data into the program.  If you 
have already entered the mistake, press ESC to abort the statement and start again. 
 If you've already entered an entire statment and then found that it contains a mistake, you 
can modify it.  Use the vertical arrow, Page Up, Page Down, Home or End keys to move the 
highlighter to the statement you want to modify.  Then press 'm' for MODIFY or use the horizontal 
arrow keys to move the highlighter at the bottom of the screen to MODIFY.  Press ENTER.  You will 
see a window like that used to create the statement originally, except that the statement to be 
modified is written at the top.  Proceed as if you were creating the statement anew.  When you finish 
typing it, the new version will replace the old in the program.  If you decide you don't want to modify 
the statement before you finish typing, press ESC to abort the modification. 
 You can also delete a statement without replacing it.  Choose the statement with the 
highlighter and then choose DELETE at the bottom of the screen and press ENTER. 
 If you want to delete all the statements from your program, choose ERASE from the bottom 
menu and press ENTER.  This erases the program from active memory but doesn't affect any work 
that you've saved to a disk. 
 
SAVING PROGRAMS 
 To preserve a program once it has been written, you must save it to a disk file; otherwise, 
when you start a new program or turn the computer off, the program will be irretrievably lost.  
Programs saved to disk files are stored permanently in a magnetic medium, much as a tape recording 
is stored on a tape.  Once saved, a program can be called up again into the program editor by using 
the GET command.  To save a program, choose SAVE from the menu at the bottom of the screen 
and press ENTER.  You will then see a message that looks like this: 
 
  Directory:   A:\ 



 

 

  Press ENTER to proceed, ESC to abandon, or type a new directory 
 
Unless you are familiar with IBM operating systems and want to use this feature to save to a floppy 
disk, you should not have to change the directory, so don't worry about this.  Just press ENTER.  If 
the program has not already been named, you will be asked to name it.  The name must consist of 
eight or fewer characters (no punctuation or spaces are allowed).  After you type in the name and 
press ENTER, ABACUS writes the program on your disk, using the name you typed, together with the 
suffix ".ABA" to tag it as an abacus program file.  You can use this name to retrieve the program later.  
Caution:  If you use the name of a file that is already on the disk, your current program will be written 
in place of the one that had that name originally, and the latter will be lost. 
 
STARTING A NEW PROGRAM 
 If you are done working on one program and want to start another, save it if you want to 
preserve it, then choose NEW_PROGRAM from the menu at the bottom of the screen and press 
ENTER.  The editing screen will be cleared and the old program will be erased from active memory.  
Caution:  if you don't save the old program before starting the new one, it will be lost. 
 
QUITTING 
 To exit from ABACUS, simply press ESC.  ABACUS will ask if you really want to quit.  To 
prevent quitting by accident, ABACUS asks whether you are sure.  Respond by typing 'y' for yes or 'n' 
for no.  If you have a program in memory, ABACUS also asks whether you want to save it on the disk, 
to make sure that you don't accidentally quit without recording your work.  If you're saving to a floppy 
disk, you can get your disk back by pressing the button next to the slot into which you put it. 
 
RUNNING YOUR PROGRAM 
 Once you have created a program with the program editor, it is ready to run.  ABACUS 
provides a display which allows you to watch the registers changing from moment to moment.  The 
counters are represented in the display by numbers. 
 To run your program, press 'r' from the editing menu.  You will then see a new display called 
the input menu.  Before starting your program you must give ABACUS some input by specifying the 
initial number of counters in each register.  To do this, press 'i' from the input menu.  You will then be 
asked for the number of counters in each register.  If you've written the addition program described 
above, you might, for example, tell ABACUS to start with one counter in register A and three in 
register B.  That would enable you to compare what you see on the screen with my earlier 
explanation of how the program runs. 
 Once you have entered the input, the ABACUS registers will appear at the right side of the 
screen along with their contents.  Below them is a clock which ticks off the moments of time that the 
program takes.  You control the clock by pressing the ENTER key.  Each time you press ENTER, the 
clock advances one moment.  If you hold the ENTER key down, the clock ticks very rapidly.  The 
speed of the clock controls the speed of the program, so you can make the program run as fast or as 
slowly as you like. 
 When ABACUS comes to a point in your program where it finds no more instructions (this will 
be an exit arrow if you've written the program correctly), the clock will stop and the message 'END 
PROGRAM' will appear on the screen.  If you unexpectedly get this message to start with, then your 
program probably contains an error, and you need to get back to the program editor by typing 'r' to 
revise the program. 
 You can stop the program before it finishes by pressing ESCAPE (ESC). 
 Once you have stopped the program or it has finished by itself, ABACUS returns you to the 
input menu.  From there, you can rerun the program with a new input, return to the program editor, or 
quit altogether. 
 
GETTING PROGRAMS FROM THE DISK 
 Any program stored on the disk can be called up into the program editor by selecting GET 
from the editing menu and pressing ENTER.  After seeing the message 
 
  Directory:   A:\ 



 

 

  Press ENTER to proceed, ESC to abandon, or type a new directory 
 
and pressing ENTER again, you will see a display of the names of the programs on file.  There is a 
highlighter in this display which can be shifted from name to name by using the arrow keys on the 
right side of your keyboard.  Move the highlighter to the name of the program you want to call up and 
then press ENTER.  The program will then appear on the screen, and you can run it or revise it as 
you like.  If you revise it, be sure to save the revised version onto the disk before you quit. 
 You can also delete programs from the disk by selecting KILL and pressing ENTER.  Notice 
that KILL is different from ERASE.  ERASE removes a program from the screen but does not affect 
the disk.  KILL deletes a program from the disk but does not affect what is on the screen. 
 Experiment and enjoy! 
 
EXERCISE 10.3.1  (CREATING PROGRAMS FROM FLOW CHARTS):  Translate the following flow 
charts into logical notation, type them into the ABACUS program editor, run them to test them, and 
save them under the names indicated. 
 
1 This program adds one to the quantity in register A and then halts.  Save it  
 under the name 'PLUS1'. 

 
 
2 This one repeatedly adds one to the quantity in register A and never halts.   
 Save it under the name 'COUNTS'. 

 
3 This one empties register A and then halts.  Save it under the name  
 'EMPTY'. 

 
 
4 This one empties register A and then just keeps on running without effect.   
 Save it under the name 'IDLER'. 

 
 
5 This one adds one to each of registers A and B, then halts; save it under the  
 name 'EACH1'. 

 
 
6 When started with register C empty, this program adds the contents of  
 register B to register A while retaining the contents of register B.  Save it  
 under the name 'ADD'. 
 



 

 

 
 
7 In the diagram below ADD functions as part of a program to multiply the  
 quantity in register A by the quantity in register B (registers C and D must  
 initially be empty).  If n is the number in register A, this program moves the  
 number n to register D (so that register A is empty), then adds the contents  
 of register B to register A n times, keeping track of this addition by removing  
 a counter from D each time.  It winds up with the answer in register A and  
 with the number that was originally in register B still there.  Save this  
 program under the name 'MULTIPLY'. 
 

 
 
EXERCISE 10.3.2  (CREATING PROGRAMS FROM SCRATCH):  To solve the following problems, 
you must invent the flow chart.  Once you have drawn it and numbered the arrows (remembering to 
number the entry arrow as 0), write, test, and save the program as in PART I. 
 
1 Write a program that adds two to the number in register A and then halts.  Use only one 

register.  Save this program under the name 'PLUS2'. 
 



 

 

2 Often in computer programs, the numbers 1 and 0 are interpreted as the answers "yes" and 

"no", respectively.63  Write a program which, started with any natural number in register A 
answers the question "Is this number even?".  If the number is even, it signals this by 
stopping with a 1 (yes) in register A.  If the number is odd, it signals this by stopping with a 0 
(no) in register A.  (Hint:  This program can be done with a single register, but its flow chart 
will contain several nodes.)  Save this program under the name 'EVEN'. 

 
3 Write a program that determines for any natural number whether it is evenly divisible by 

three.  That is, if it is divisible by three, the program should halt with a 1 in register A; if not, 
the program should halt with a 0 in register A.  Use only one register.  Save the program 
under the name 'DIV3'. 

 
4 Write a one-register program that answers the question "Is this number less than four?"  That 

is, when started with a number in register A, it outputs 1 if that number is less than four and 0 
if it is four or greater.  Save this program under the name 'LESS4'. 

 
5 Write a program that doubles the number in register A.  (Hint: use two registers; when the 

program is started, register B must be empty.)  Save this program under the name 
'DOUBLER'. 

 
6 Write programs to do truth tables for negation, conjunction and disjunction.  In a computer, 

truth values are typically represented by 0's and 1's.  We'll follow the usual convention of 
using 0 for false and 1 for true.  A truth table for conjunction, for example, will work like this: 

 If registers A and B (representing the two conjuncts) both contain 1 as input, then the 
program should halt with 1 in register A (which we conventionally declare to be the 
answer register) and nothing in any of the other registers.  (That is, if both conjuncts 
are true, the table yields true.)  If some other combination of 0's and 1's is in registers 
A and B, then the program should halt with 0 in all registers.  (Any other combination 
of truth and falsity yields falsehood.)  Don't worry about what the program does with 
numbers greater than 1, since for a truth table we simply won't allow larger numbers 
as input. 

 The negation program should reverse the value in register A.  The disjunction program 
should halt with a 1 in register A and 0 everywhere else if the input of either register A or 
register B was 1; otherwise it will halt with 0 in all registers.  Try to make these programs as 
simple as possible, using as few registers as possible.  Save them under the titles 'NEG', 
'CONJ' and 'DISJ'. 
 

7 Write a program for the operator neither ... nor.  (Hint:  this combined program might first 
compute disjunction as in problem 6 and then reverse the truth value of that computation.)  
Save this program under the label 'NOR'. 

 
8 Write a two-register program that empties the contents of register A into register B, then 

empties the contents of register B into register A, then empties the contents of register A 
back into register B again, and so on infinitely.  Make the program run infinitely even if both 
registers are initially empty.  Save it under the name 'SISYPHUS'. 

 
9 Write a program that answers the question "Are these two numbers equal?"; that is, it 

compares the contents of registers A and B and outputs a 1 in register A (with register B 
empty) if they are equal but 0 in both registers if they are unequal.  Use only two registers.  
Save this program under the name 'EQUAL'. 

 

                                                      
63The correspondence is, of course, arbitrary; we could let 1 be "no" and 0 be "yes", or adopt some 
other convention.   



 

 

10 Write a program to exchange the contents of registers A and B.  When the program halts, all 
the other registers (if any) should be empty.  Save this program under the name 
'EXCHANGE'.  (Hint:  use three registers.) 

 
11 One important arithmetical function is min (short for minimum), a two-place function which, for 

any numbers x any y gives as its value the smaller of the two.  If both are equal to some 
quantity n, then min gives n as its value.  More concisely: 

      min(x,y)   =   x ,  if  xy 
   min(x,y)   =   y ,  if  x>y. 
 Write a program that computes min.  Given any two numbers x and y as input in registers A 

and B, your program should eventually halt with min(x,y) in register A and all other registers 
empty.  (Hint:  use three registers.)  Save this program under the name 'MIN'. 

 
12 Write a program which computes the max function (short for maximum), which is defined as 

follows: 

   max(x,y) = x, if xy 
   max(x,y) = y, if y>x. 
 That is, given any two numbers in registers A and B, this program halts with the larger of the 

two in register A and all other registers empty.  Save this program under the name 'MAX'. 
 
13 Write a program that does division.  That is, given any dividend x in register A and any divisor 

y in register B, the program halts with the quotient (i.e. the number of times y goes into x) in 
register A and the remainder in register B.  Thus, for example, if the input to register A is 14 
and the input to register B is 3, the program gives the quotient 4 in register A with the 
remainder 2 in register B.  Save this program under the name 'DIVIDE'.  (Hint:  the program 
will be lengthy and will require four registers.) 

 
14 Write a program which when given any natural number n in register A (with all other registers 

empty) halts with n2 in register A and all other registers empty.  Save it under the name 
'SQUARE'. 

 

10.4 CHURCH'S THESIS 

 We have been examining the concept of an abacus in order to clarify the notion of an 
algorithm.  Specifically, we shall claim that any algorithm can be represented as an abacus program, 
and any abacus program is an algorithm.  In this sense, algorithms just are abacus programs, and 
vice versa.  This claim is a version of Church's thesis.   
 But why should we accept Church's thesis?  The answer is bound up with some remarkable 
developments in the history of logic.  In the earlier section on algorithms, I mentioned the formalist 
program of reducing logic and mathematics to finite mechanical calculation.  That research program 
was begun by the mathematician David Hilbert around the turn of the century.  Central to the 
program, of course, was the development of a clear concept of mechanical computation, i.e., of an 
algorithm.  In the 1930s, Hilbert's work inspired a flurry of independent attempts to make this idea 
clear.  Various authors defined the idea in various ways.  Kurt Gödel, in developing his historic proof 
of the incompleteness of arithmetic, in effect characterized computation in terms of the notion of a 
recursive function.  Alan Turing represented algorithms as programs for a simplified computer, now 
called a Turing machine.  Alonzo Church developed yet a third characterization, using what he called 
the lambda calculus.  The Russian mathematician A. A. Markov invented a fourth:  Markov 
processes.  And Emil Post created yet a fifth:  Post productions.  On the surface these ideas had little 
in common.  But they all proved to be equivalent in the sense that any calculation performable by any 
of them was performable by all. 
 This was convincing evidence that algorithms were a precisely-delineated "natural kind."   
Moreover, other ways of defining algorithmic process (such as the abacus or register machines used 
here) have also proven equivalent to these original formulations.  Furthermore, with the explosive 
development of computers and the theory of computation, literally millions of algorithms have been 
investigated.   Yet no one has ever developed a process that is obviously an algorithm, yet could not 



 

 

be performed by the procedures just mentioned.  (There is no doubt about the converse; that is, it is 
clear that anything these procedures can do is an algorithm.).  So today there is general agreement 
that algorithms are a precise and well-defined class of operations and that each of these procedures 
adequately characterizes that class. 
 This conviction, however, is not amenable to strict proof.  It's a philosophical thesis, 
supported by extensive experience.  It is called Church's thesis, because Church was one of the first 
thinkers to state it explicitly and to grasp its implications.  (Alan Turing also hit upon it at about the 
same time, so that it is sometimes called the Church/Turing thesis.)  In its most general version, it 
asserts that each of the formulations mentioned above is an adequate characterization of the idea of 
an algorithm.  We shall use a more specific version of it, namely that any algorithm can be 
represented as an abacus program.  
 But how can abacus programs, which operate on counters, represent algorithms, which 
operate on sequences of symbols?  The trick is to represent symbol sequences as numbers, i.e., to 
devise a numerical encoding.  An encoding is an effective way of assigning each of the things we 
want to talk about a distinct code number.  This must be a nonnegative whole number, so that it can 
be represented by counters in an abacus.  The numbers we use for a given code need not be 
consecutive, but they may not be repeated; that is, distinct objects may not be assigned the same 
number (which would make the code ambiguous).  Suppose, for example, that we want to encode the 
names of the three west coast states:  Washington, Oregon, and California.  These will be 
represented in the abacus as numbers.  One simple encoding looks like this: 
 
   Washington   Oregon California 
        1    2   3 
 
That is, the number 1 stands for the name 'Washington', 2 for 'Oregon' and 3 for 'California'.  The 
order, of course is arbitrary.  Here is a different encoding, using the same numbers: 
 
   Washington   Oregon California 
        3    2   1 
 
Since the numbers need not be consecutive, the following is also a perfectly good encoding: 
 
   Washington   Oregon California 
       363    0  1,297 
 
But the numbering below is not an encoding, since here the number 2 is used ambiguously to stand 
for two different states: 
 
   Washington   Oregon California 
        2    1    2 
 
But, while the definition of the term "encoding" excludes ambiguities, it admits the possibility that two 
different numbers from the same code might stand for the same object, just as a person might have 
two different names.  This is of little importance, however; the codes we consider will generally assign 
unique numbers to objects. 
 Encodings may be infinite as well as finite.  Suppose, for example, that we wish to encode 
the following infinite series of formulas: 
 

  P,  P,  P,  P, ... 
 
Perhaps the most natural ways to do so are: 
 

  P,  P,  P,  P, ... 
  1  2  3  4  ... 
 
and: 



 

 

 

  P,  P,  P,  P, ... 
  0  1  2  3  ...  
 
In each case, there is an algorithm that outputs a code number given a formula, and a second 
algorithm that outputs a formula given a code number.  To go from formulas to code numbers (i.e., to 
encode the formulas), the algorithm for the first encoding is: 
 
 Count the formula's negation signs and add 1. 
 
And the algorithm for the second is: 
 
 Count the formula's negation signs. 
 
To go from a code number n to its corresponding formula (i.e., to decode the number), the algorithm 
for the first encoding is: 
 

 Write 'P' and prefix it with n1 negation signs. 
 
And the algorithm for the second encoding is:  
 
 Write 'P' and prefix it with n negation signs. 
 
If there exist algorithms both for encoding and for decoding, as there do in these cases, we shall say 
the numbering is effective. 
 We shall insist by definition that all encodings be effective in this sense.  Numerical 
encodings of finite sets of symbol sequences (like the names for the Western states) are 
automatically effective if given as lists,  since a symbol sequence or its code number can always be 
found by a finite scan of the list.  Infinite encodings are effective, though, only if specified by a rule 
that allows us to get both from code number to symbol sequence and from symbol sequence to code 
number by finitely many well-defined steps, i.e., by a terminating algorithm. 
 In practice, most infinite numberings we are likely to invent are effective.  But there are 
numberings that are noneffective in the sense that infinite calulations may be required to determine 
which code number stands for which object or which object stands for which code number.  But these 
tend to be rather convoluted.  For an example, consider the following numbering of the even positive 
integers : 
 
  If the series of base ten digits that express an even integer n 

  appears in the decimal expansion of the number , then let n 

  encode itself; if not, let it be encoded by n1. 
 
To illustrate, consider the number fourteen.  The series of base ten digits that express this number is 

'14', that is, a '1' followed by a '4'.  Now the decimal expansion of  is an infinite nonrepeating 
decimal, which begins as follows:  3.14159... .  Sequences of digits appear within it more or less 
randomly.  The sequence '14' appears here (the second and third digits), and so in our numbering 
fourteen numbers itself.  In general, each even number will be numbered either by itself or by the odd 
number before it.  But we may not be able to tell which, without completing an infinite operation.  For 
consider the number 2,727,944.  Does the base ten sequence which expresses it—namely 

'2727944'—appear in the decimal expansion of ?  Maybe.  If we start cranking out the digits of  we 
may eventually find it.  But then again we may not.  If in fact it never turns up, so that the code for 

2,747,944 is 2,747,943, we'd have to search through the infinite decimal expansion of  to find out.  
Thus calculating a code from a number involves a potentially infinite operation.  It is therefore 
noneffective.  (Note that calculating the number from its code, however, is an effective procedure, 
assuming that we know that the code is a code.  For if the code number is even, then it stands for 
itself, and if it is odd, it stands for itself plus one.) 



 

 

 It's not that our sample numbering is ill-defined.  The rule defining it is perfectly clear and 
exact.  But it is not effective and therefore does not count as an encoding. 
 
 
EXERCISE 10.4  (DOING LOGIC ON A COMPUTER):  One way to illustrate the use of numerical 
encodings is to write ABACUS programs that solve logic problems, rather than numerical ones.  
Doing this for any substantial body of logic is a serious programming task, but we can get some taste 
of how computers can perform logical as well as numerical operations by considering narrowly 
circumscribed ranges of problems.  Consider, for example, the fragment of propositional logic whose 
character set is: 
 

  P Q R 
 
and whose formulas are defined by the following formation rules: 
 
 i The sentence letters, 'P', 'Q' and 'R' are formulas. 

 ii If  and  are sentence letters, then   is a formula. 
 
No formula of this fragment contains more than three characters.  Now consider the following 
numerical encoding of the character set: 
 

  P Q R 
 0 1 2 3 
 
We extend this encoding to formulas as follows: 
 
 i If a formula is a sentence letter, its code number is just the code  
  number for that letter. 

 ii If a formula is a conditional  , its code number is four times  

  the code number for  plus the code number for .  (Thus, for  

  example, the code number for 'P  Q' is (4 x 1)2 = 6.) 
 
This encoding of formulas does not specifically represent the conditional sign, but since that sign is 
the only logical operator available in this fragment of propositional logic, there is no need; we know in 
advance that every compound formula (i.e., formula represented by a number greater than three) is a 
conditional.   
 To decode the number for a conditional, we divide by 4; the quotient is the number of the 
antecedent and the remainder is the number of the consequent.  Thus the number 11 represents the 

formula 'Q  R', since 11 divided by 4 is 2 (the code number for 'Q) with a remainder of 3 (the code 
number for 'R). 
 Using this encoding, we can now program ABACUS to perform some simple logical tasks: 
 
1 Write a  program which, given the code for a conditional in register A and code numbers for 

sentence letters in registers B and C answers the question "Is the sequent consisting of the 
premises represented in registers A and B and the conclusion represented in register C an 
instance of modus ponens?"  That is, it halts with a 1 in register A and all other registers 
empty if this sequent is an instance of modus ponens and 0's in all registers if not. 

 
2 Generalize the program from problem 1 to test the validity of any two-premise sequent 

expressible in this fragment of propositional logic.  This involves testing not only for modus 
ponens, but also for hypothetical syllogism and for conclusions that merely repeat a premise. 

 
This exercise shows how a computer can be programmed to "recognize" logical form and employ 
logical rules.  Using the same ideas, we could devise encodings for all of propositional or predicate 
logic and develop software for perfoming deduction tasks, doing truth tables, or constructing trees.  



 

 

Programs to do these things would be much more complex than the programs of this exercise—but 
they would work in essentially the same way. 
 

10.5 THE HALTING PROBLEM 

 Church's thesis tells us that any algorithm can be carried out by an abacus.  But since an 
abacus operates only on counters, any data that we enter into it must first be numerically encoded, so 
that each potential item of input is represented by a specific number of counters.  Thus, for example, 
if we wanted an abacus to do tree tests, we would have to devise a way to encode trees as numbers.  
This is complicated, but feasible.  Individual formulas could be encoded along the lines illustrated in 
Exercise 10.4.  But an encoding for whole trees would also have to include symbols representing 
check marks, X's, and some kind of punctuation to separate formulas and paths from one another.  
Given as input the code number of an initial list of formulas for a tree, the abacus would perform a 
series of arithmetic operations on these numbers and, if it halted, output a new number representing 
the completed tree. 
 Such an abacus program would not solve the decision problem for predicate logic, however; 
for when given an infinitely productive initial list it would run forever and thus fail to return an answer.   
 Yet even though for some lists of formulas such a program would be unable to detect 
consistency, we might be able.  The infinite trees that we have seen so far are recognizable as infinite 
by the patterns of repetition they exhibit.  We don't have to carry them out very far before we notice 
this.  If all infinite trees exhibited such repetition, and if we could always recognize it, then the tree test 
coupled with our repetition-recognizing ability would, at least in principle, enable us to solve the 
decision problem.  For once we recognized (via the repetition) that a tree was going infinite, we would 
know that it must contain at least one open path, and we could deduce that the initial list was 
consistent without finishing the tree. 
 But, alas, not all infinite trees are regularly repetitive.  Some grow without any recognizable 
pattern.  Their apparent randomness foils the attempt to make the tree test into a decision procedure 
by coupling it with a test for pattern repetition.   
 Thus we see that our inability to create a decision procedure using the tree test is not due 
simply to the fact that some trees are infinite.  The deeper source of the failure is our inability to know 
for some trees whether they are infinite or not.  More generally, the problem is our inability to 
recognize of a potentially infinite process whether or not a given instance of it is actually infinite. 
 So let's try another approach.  Given an abacus program that constructs trees, we might, 
instead of looking for patterns of repetition in the trees themselves, simply ask:  "Does this trees 
program eventually halt, when given as input the code number of a particular initial list of formulas?"  
If the answer were yes, then we could simply run the trees program to find out whether or not the 
initial list was consistent; and if the answer were no, then we would know that the tree was infinite and 
hence that the initial list was consistent.  Either way, we'd have our answer. 
 This approach brings us to the halting problem, the problem of creating an algorithm that 
decides for each program and input whether or not that program halts given that input.  A solution to 
the halting problem, then, would give us a solution to the decision problem. 
 However, like the construction of trees, the running of an abacus program is a potentially 
infinite process.  Some abacus programs halt with a given input after a finite number of steps; others 
run forever.  Among the non-halters, some are readily recognizable as non-halters by the patterns of 
repetition they exhibit; others exhibit complex, non-repetitive behavior.  With the latter, we may find 
ourselves in a state of ignorance like that produced by infinite non-repetitive trees:  we seem to have 
no way of knowing whether the process would end if only we were to carry it a few (or a few trillion) 
steps further, or whether it never ends.  It seems unlikely, then, that we could ever produce an 
algorithm to decide whether or not programs halt.  But can we be sure? 
 Astonishingly, we can.  In this section, we shall show that the very idea of a solution to the 
halting problem is self-contradictory.  For if we had an algorithm (i.e., abacus program) that solved the 
halting problem, we could convert it into what we shall call a reverse halting program.  But, as we 
shall see, a reverse halting program is a logically impossible object.  Thus we conclude that the 
halting problem is unsolvable, and with that conclusion this section will end.  By then we may strongly 
suspect that the decision problem is likewise unsolvable—but we will not yet have proof. 
 The proof comes in Section 10.6.  Here we reverse direction.  Having seen that a solution to 
the halting problem would also be a solution to the decision problem, we consider the converse:  



 

 

would a solution to the decision problem also be a solution to the halting problem?  The answer is 
yes; thus, in essence, the decision problem and the halting problem are one and the same.  We prove 
this by showing how each abacus program and input can be translated into a sequent of predicate 
logic.  A test to decide the validity of each such sequent would determine for the corresponding 
program and input whether or not that program halts with that input—and so would solve the halting 
problem.  Having already seen that the halting problem is unsolvable, however, we must then infer 
that there can be no algorithmic test to decide the validity of each of these particular program-
representing sequents.  And this means that there can be no general solution to the decision 
problem. 
 In outline, the central argument of Sections 10.5 and 10.6 is as follows: 
 
 1 There is no reverse halting program for any encoding. 
 2 If there is an abacus program that solves the halting problem,  
   then there is a reverse halting program for some encoding. 

 3 There is no abacus program that solves the halting problem.   
   (from 1 and 2, by modus tollens) 
 4 If predicate logic with function symbols is decidable, then there is  
   an abacus program that solves the halting problem. 

 5 Predicate logic with function symbols is undecidable.   
   (from 3 and 4 by modus tollens) 
 
We prove premises 1 and 2 in this section, from which 3 follows immediately as a corollary.  Then in 
Section 10.6 we prove premise 4, from which, together with 3, 5 follows, also as a corollary.  When 
reading these proofs, there is some danger of getting lost in details.  To keep your bearings, refer 
back to this five-step outline from time to time. 
 
 As we just noted, the halting problem is the problem of determining whether a given 
program eventually halts with a given input.  We are entertaining the idea of a program that solves 
this problem—that is, a program that checks programs to see if they halt.  But how could a program 
take a program as input?  The trick, of course, is to encode the program taken as input as a number. 
This encoding must be effective; i.e., there must be both an algorithm for encoding and an algorithm 
for decoding.  This can be done; in fact there are endlessly many ways to do it.  We shall consider 
one example.  Our encoding begins with programs as expressed in logical notation.  Such programs 
are merely sequences of symbols.  In fact, the logical notation can be thought of as consisting merely 

of ten primitve symbols:64 
 

 0 t x y z  R ' * . 
 
You are familiar with the character for zero ('0); the variables 't', 'x', 'y', and 'z'; the arrow representing 
the conditional, the predicate letter 'R', and the successor symbol '''.  The asterisk ('*) is added to 
make new variables in case we need more than the four listed here.  Appending the asterisk to any 
variable produces a new variable.  (Thus, for example, 'x***' is a variable different from the variables 
'x', 'x*', and 'x**'.)  The final mark, the period, is a punctuation mark used to indicate the end of a 
program statement.  Numbers (to designate register contents or arrows in the program) are written in 
this notation as the zero character followed by the appropriate number of successor marks. 
 Now to develop a numerical code for programs written in this notation, we first assign each 
character in the notation a digit from 0 to 9.  Suppose we do it this way: 
 

 0 t x y z  R ' * . 
 0 1 2 3 4 5 6 7 8 9 

                                                      
64The number ten is serendipitous, since it allows us to use the familiar base ten notation in a very 
straightforward way.  With character sets containing other numbers of primitive characters, the same 
thing can be done in other bases.  This is confusing to people who are used to dealing in tens, but it 
is no problem at all for computers.   



 

 

 
To translate a program written in logical notation into a code number, we rewrite the entire program 
on a single line, converting numerals to successor notation and placing periods after program 
statements (for variables other than 't', 'x', 'y', and 'z', it may be necessary to use the asterisk); then 
simply replace each character by its corresponding digit.  The result, a single enormous number, is 
the program's numerical code.  Consider for example, the two-line program that we would write in the 
usual abacus notation as follows: 
 

 Rt0x'  Rt'1x 

 Rt00  Rt'20 
 
Rewriting this program as a single line in the new notation, we get: 
 

 Rt0x'  Rt'0'x . Rt00  Rt'0''0. 
 
And this codes up into the astronomical number: 
 
 61027561707296100561707709 
 
 Any program can be encoded in this way.  Moreover, the processes of encoding and 
decoding are both clearly algorithmic.  Of course, not all numbers represent programs.  The number 
123, for example, represents the nonsense sequence 'txy'.  But that's fine; code numbers need not be 
consecutive.  In discussing the two kinds of halting problems we will focus on what happens when we 
input code numbers for programs into programs.  Keep in mind that the encoding of programs 
illustrated here is just one of infinitely many that are possible; it merely provides a concrete 
understanding of what an encoding of abacus programs looks like.    
 We are now ready to give a precise definition of what it means to solve the halting problem.  
(NOTE:  In this definition, and in the ensuing discussion and proofs, when we say of an input or 
output that it is placed in some register or registers, we assume unless otherwise specified that all 
other registers are empty.)  
 
Definition:  An abacus program GH is said to solve the halting problem iff there is an encoding of 
abacus programs such that when given any program number e from the encoding (placed in register 
A) and any nonnegative whole number i (placed in register B): 
 (i) GH stops with 1 in register A, if the program numbered e eventually 

  halts when started with input i in register A65,  and  
 (ii) GH stops with 0 in register A, if the program numbered e never halts  
  when started with input i in register A.   
 
The number i represents the input provided to the program numbered e in register A.  We have 
specified the registers in which the inputs i and e and output of GH are to be placed merely for 
definiteness.  A machine which in effect solved this problem but took input or produced output 
elsewhere could easily be converted into a machine that fits our definitions, by adding operations to 
transfer the input or output to the appropriate registers.  Likewise, the specification of the output as 
being 0 or 1 is inessential.  Any output scheme would do, so long as there was an effective way to tell 
which outputs stood for halting and which for not halting.  But if there were an effective way to do this, 
then there would also be a way to program the machine to convert this nonstandard output into 0's or 
1's as described above.  (We might, for example, have as output any positive integer, the even ones 
standing for halting and the odd ones standing for nonhalting; then we would simply append a test for 
evenness to get the output to be either 0 or 1.)  So if there is any program that in effect solves this 

                                                      
65It will for our purposes be sufficient to restrict consideration of the behavior of programs examined 
by GH to cases in which their input is in register A (assuming all other registers to be empty); without 
this restriction we would need a coding scheme to represent the inputs to many registers as a single 
number; this is possible, but cumbersome, and so we'll avoid it. 



 

 

problem but doesn't fit our definitions, it can easily be converted into a program that solves the 
problem and does fit the definitions. 
 We are now poised to prove that a solution to the halting problem is impossible.  To do this, 
we will show that if some abacus program did solve the halting problem, it would enable us to create 
a reverse halting program, the very idea of which is self-contradictory.  The concept of a reverse 
halting program is convoluted; so rather than explaining it straight off, we'll first examine a simpler 

analog:  Bertrand Russell's barber.66 
 Consider an adult male barber living in a certain village, who for any man of the village, 
shaves that man if and only if the man does not shave himself.  This seems, on the face of it, 
perfectly possible.  Each of the village men either shaves himself or is shaved by the barber, but not 
both.  But trouble comes when we ask about the barber himself.  Since for any man M of the village, 
the barber shaves M if and only if M does not shave himself, and since the barber himself is a man of 
the village, it follows that he shaves himself if and only if he doesn't shave himself.  This is a 
contradiction, which shows that the very idea of such a barber is incoherent; no such barber can 

exist.67 
 Now a reverse halting program is like Russell's barber.  But wheres the barber's task is to 
shave, the task of a reverse halting program is to respond to program code numbers given to it as 
input.  Its response is to be the opposite of what the program indicated by the code number does 
when given its own number as input.  That is, if the encoded program halts when given its own code 
number as input, the reverse halting program runs forever with that same code number as input.  If 
the encoded program runs forever when given its own code number as input, the reverse halting 
program halts when given that number. 
 Consider, for example, the program P mentioned above: 
 

  Rt0x'  Rt'1x 

  Rt00  Rt'20 
 
P subtracts one from the input and halts—or, if the input is zero, halts without changing anything.   
Thus it halts no matter what input it is given.  So, in particular, P halts if given its own program 
number, 61027561707296100561707709, as input.   
 When a reverse halting program is given a program number, however, it does just the 
opposite of what the program that it stands for does with it.  So, since P halts when given its own 
number 61027561707296100561707709 as input, a reverse halting program would run forever given 
this number as input.   
 Thus, like Russell's barber, who does for each man the opposite with respect to shaving of 
what that man does in relation to himself, a reverse halting program does for each program the 
opposite with respect to halting of what that program does in relation to its own program number.  
More precisely: 
 
Definition:  A reverse halting program RH for an encoding of abacus programs is an abacus 
program which, when given a program number n from the encoding as input in register A, halts if and 
only if the program numbered n does not halt with input n in register A. 
  

                                                      
66I call this Russell's barber, because it was Russell who invented the example, though for a different 
purpose than it serves here. 
67The contradiction is the statement: 
  (*)  The barber shaves himself if and only if he doesn't shave himself 

which has the form 'S  S'.  This form is inconsistent, as you can check with a truth table or tree. Some people might be 

bothered by the fact that this contradiction is not in the usual 'P & P' form.  If you are one of these people, consider the 
following argument, which deduces a standard form contradiction from statement (*): 
 Suppose for reductio that the barber shaves himself.  Then by (*) and modus ponens he does  
 not shave himself.  Hence he both does and does not shave himself. 

Hence we must reject the reductio hypothesis and so we have shown that the barber does not shave 
himself.   But then again by (*) and modus ponens he does shave himself.  So it follows from (*) 
alone, that the barber both does and does not shave himself. 



 

 

Now RH, being by definition an abacus program, must itself have a code number.  And, just as we 
see that Russell's barber is an impossible object by asking whether or not he shaves himself, so we 
can see that RH is an impossible object by asking what it does when given its own code number as 
input: 
 
Metatheorem:  There is no reverse halting program for any encoding. 
Proof: Suppose for reductio that there is some reverse halting program RH for some encoding.  

Then when given a program code number n as input in register A, RH halts if and only if the 
program numbered n does not halt with input n in register A.  Now RH, being itself an abacus 
program, must have a code number r in the encoding.  Hence in particular when given r as 
input in register A, RH halts if and only if the program numbered r (i.e., RH itself) does not 
halt with input r in register A.  But this is a contradiction. 

Hence there is no reverse halting program for any encoding.  QED 
 
This establishes premise 1 of the argument outlined above.  Our next task is to prove premise 2—that 
is, to show that if there were a solution to the general halting problem, that would enable us to build a 
reverse halting program. 
 
Metatheorem:   If there is an abacus program that solves the halting problem, then there is a reverse 
halting program for some encoding. 
Proof: Suppose for conditional proof that some abacus program GH solves the 
 halting problem.  Then there is an encoding E of abacus programs such that  
 given any program number e from E and input number i,  
 (i) GH stops with 1 in register A if the program numbered e eventually 
  halts when started with input i in register A,  and  
 (ii) GH stops with 0 in register A if the program numbered e never halts  
  when started with input i in register A.   
 Since (we have assumed) GH exists, we can create a new program GH+ by  
 prefixing to GH a small program which puts a duplicate of the quantity in  
 register A into register B, as shown: 

 
We represent GH, which is a part of GH+, simply as a rectangle, since we don't know its 
internal structure.  Given any program code number n from encoding E in register A, GH+ 
duplicates n in register B and then runs GH with the number n in both register A and register 
B.  So when started with any program number n as input in register A, 
 (i)   GH+ stops with 1 in register A if the program numbered n  
  eventually halts with input n, and  
 (ii)  GH+ stops with 0 in register A if the program numbered n never  
  halts with input n. 
In effect, GH+ answers the question, "does this program halt, given its own program number 
as input?" for any program.  Now since we can build GH+, we can also build a slightly more 
complicated program RH by adding a two-node addendum to GH+, as illustrated below.  The 



 

 

addendum consists of a program which halts if the output of GH+ is 0 and loops forever if the 
output of GH+ is 1. 

 
Since GH+ always halts when given program numbers as inputs (because it gives 0 and 1 as 
answers), it must have at least one exit arrow; we represent it here as having exactly one, but 
the number doesn't matter; to construct RH we direct them all to the first node of the 
addendum. Inspection of this flow chart reveals that when given a program code number n as 
input in register A, RH halts if and only if the program numbered n does not halt with input n 
in register A.  RH is thus a reverse halting program for the encoding E. 

Therefore, if there is an abacus program that solves the halting problem, then there is a reverse 
halting program for some encoding.  QED 
 
 We now use the two metatheorems just proved to draw the following corollary, which is the major 
result of this section (this is statement 3 in the outline given above): 
 
COROLLARY:  There is no abacus program that solves the halting problem. 
Proof:  Immediate (by modus tollens) from the previous two metatheorems. 
 
In particular, this means that we can't solve the decision problem for predicate logic simply by 
applying a halting test to a trees program—for the very good reason that a halting test is an 
impossible object.  But maybe there is some specific halting test for trees programs, or maybe there 
is some other sort of algorithm altogether that could decide the validity of sequents of predicate 
logic... 
 No such luck. 
 

10.6 THE UNDECIDABILITY OF PREDICATE LOGIC 

 We are now ready to prove the central result of this chapter—the undecidability of predicate 

logic68.  The first proof of this result was published in 1936 by Alonzo Church; thus it has come to be 
known as Church's theorem (not to be confused with Chuch's thesis discussed above).  Our version 
of Church's argument will proceed in two steps:  statements 4 and 5 in the outline above.  First, to 
prove statement 4, we shall show that given any program and any number as input, we can construct 
a sequent which is valid if and only if that program halts with that input.  Thus if we had an algorithmic 
test for validity, we could use it to create an abacus program that solves the halting problem by 
testing these sequents for validity.   But since, as we saw in the last section, no abacus program can 
solve the halting problem, it follows that there can be no solution to the decision problem.  This is 
statement 5, the conclusion of the outline.  Our next task is to prove statement 4.  Notice that the 
proof of this statement, unlike our other proofs, uses Church's thesis as an assumption. 
 
METATHEOREM:  If predicate logic with function symbols is decidable, then there is an abacus 
program that solves the halting problem. 
Proof: Assume for conditional proof that predicate logic with function symbols is decidable.    

                                                      
68Specifically, our proof in this section applies to predicate logic with function symbols.  Whether or 
not the identity predicate is included makes no difference, since we make no use of the identity 
predicate in our proof.  In Section 10.7 we modify the proof to cover predicate logic without function 
symbols but with the identity predicate. 



 

 

 That is, there exists a terminating algorithm that determines for each of its sequents whether 
or not it is valid. Now by Church's thesis any algorithm can be represented by some abacus 
program.  Hence there exists an abacus program, call it D, that determines for each sequent 
whether or not it is valid and does so in a finite number of steps.  Since abacus programs 
take only numerically coded inputs, this means that there is some encoding E of the sequents 
of predicate logic such that when given a code number from E as input, D returns an output 
that effectively signals whether or not the sequent that has this code number is valid.  We 
lose no generality if we assume that this output is 1 if the sequent is valid and 0 if it is not, 
since if the output is encoded in some other way, it is a trivial matter to convert it into a 0 or a 
1.  Similarly, we can always arrange it so that this output appears in register A.  Thus we may 
suppose that given as input any number from the encoding E that represents some sequent 
F: 

  (i)   D stops with 1 in register A if F is valid, and  
 (ii)  D stops with 0 in register A if F is invalid.  
Now for each abacus program P and nonnegative integer i we can effectively define an 
associated sequent in predicate logic such that P halts with input i if and only if the sequent 
associated with P and i is valid.  (This is proved below; LEMMA 1.)   
 Using this construction, we can write a separate program, call it T  
(for translator), that takes as input a number representing a program P (in, we may suppose, 
our standard encoding of programs—or some other) and an integer i and then does two 
things: 
 (1)   constructs a representation of the associated sequent 
  for P and i, and 
 (2)   converts this representation of the associated sequent 
  into the code number for that sequent in E, and outputs 
  this code number. 
We know by Church's thesis that we can write an abacus program to do (1), for we can 
effectively define the construction of an associated sequent (this is done below).  And again 
by Church's thesis we know that we can write a program to do (2), since E, being an 
encoding, is effective. Now we prefix D with T, so that T's output is fed directly into D.  The 
result is a new program, H: 

 
 Now if we start H with a code number for a program P and an integer i as  
 input,  
 (i) H stops with 1 in register A if the program numbered e eventually 
   halts when started with input i in register A,  and  
 (ii) H stops with 0 in register A if the program numbered e never halts  
   when started with input i in register A.   
 But this is to say that H solves the halting problem. 
Hence we have shown that if predicate logic with function symbols is decidable, then there is an 
abacus program that solves the halting problem.  QED 
 
The undecidability of predicate logic with function symbols (statement 5 of the outline) now follows as 
a simple corollary: 
 
COROLLARY:  Predicate logic with function symbols is undecidable. 
Proof:  Immediate (by modus tollens) from the previous metatheorem and the fact (proved at the end 
of Section 10.5) that no abacus program can solve the halting problem. 
 
To cinch the proof of the metatheorem on which this corollary depends, we need to confirm that in 
fact we can effectively define the sort of associated sequent described above.  Here is the definition: 



 

 

 
The associated sequent for a program with r registers and input n has two sorts of premises: 
 
  (1)   A statement of the form R00i0...0.  This statement asserts that  
   at time 0 the machine is on arrow 0 with i counters in  

   register A and all other registers empty.69 
  (2)   The program statements with their variables universally  
   quantified. 
 
And the conclusion is defined as follows: 
 
  (1)   If there are one or more exit arrows, construct for each exit  

   arrow a statement of the form t x1 ... xr R t e x1...xr,  

   where e is the arrow number, t is a variable representing  
   time, and  x1...xr are variables indicating the contents of  

   the registers.  This statement says that the machine  
   reaches arrow number e at some time with some input.  Then  
   make the conclusion the disjunction of all such statements.  
   (The conclusion thus says that the program reaches  
   one of the exit arrows.) 
  (2)   If there are no exit arrows, let the conclusion be the negation of  
   the first premise, so that the argument is trivally invalid. 
 
The associated sequent for a given program and input is constructed so as to be valid if and only if 
the program eventually halts with that input. 
 
Example:  The associated sequent for the following program with input 5 is shown below: 

 
   R005   (Machine state when program begins) 

   t(Rt00  Rt'20) 

   tx(Rt0x'  Rt'1x) 

   t(Rt20  Rt'20) 

   tx(Rt2x'  Rt'1x) (Superfluous) 

     txRt1x  (Halt) 
 
This program, of course, halts with input 5 (it just subtracts one and stops); accordingly, the 
associated sequent is valid.  (The conclusion follows from the first and third premises.)   If, however, 
instead of 'R005', we made the first premise 'R000', then the sequent would be invalid.  This, too, is 
as it should be; for with an input of 0, the program does not halt; it runs forever, doing nothing. 
 Notice that for each moment that the program is running, the premises of this sequent imply a 
true description of the state of the abacus at that moment.  Trivially, for example, these premises 
imply: 
  R005 

                                                      
69We assume they are empty because the halting problem (as defined above) concerns inputs to 
register A only, and we are here designing associated forms so that a test for their validity would 
solve the halting problem. 



 

 

which describes the machine state at time 0, simply because this is the first premise.  This 
conclusion, together with the third premise implies: 
  R114 
which describes the state of the machine at time 1, which is the point at which the program halts.  If 
the first premise were 'R000' instead of 'R005', then the premises would imply the following infinite set 
of true descriptions: 
 
  1 R000  (given as the first premise) 
  2 R120  (from 1 and the second premise) 
  3 R220  (from 2 and the fourth premise) 
  4 R320  (from 3 and the fourth premise) 
  5 R420  (from 4 and the fourth premise) 
        . 
        . 
        . 
 
In general, where s is a number representing a time, e a number representing an arrow, and  c1, ..., 

cr are numbers representing the contents of the registers, we shall call a statement consisting of the 

predicate R s e c1...cr a true description of time s relative to a given input i and program P if and 

only if when P is started with input i, at time s it is on arrow e with c1, ..., cr in the respective registers. 

 
 Our next task is to confirm the following assumption, which was made in the proof of the 
METATHEOREM: 
 
LEMMA 1:  A program halts given a certain input i if and only if its associated sequent for input i is 
valid. 
Proof:  The conclusion is a biconditional.  We must therefore prove two conditionals: if the program 
halts given input i, its associated sequent for input i is valid; and if its associated sequent for input i is 
valid, it halts given input i.  This requires two conditional proofs.  It is easy to see that if the associated 
sequent is valid, the program halts: 

For suppose the associated sequent for program P with input i is valid.  Now its premises are 
true if P is given input i; thus since the sequent is valid, its conclusion must also be true if P is 
given input i.  But its conclusion asserts that P eventually halts.  Hence P eventually halts if 
given input i. 

It remains to prove that if the program halts with input i, then its associated sequent for input i is valid. 
Suppose for conditional proof that the program eventually halts with input i.  Then it halts at 
some time s on some exit arrow e with some numbers c1...cr in the registers.  Hence it did 

not halt before time s.  Now we make the following assumption (proved as LEMMA 2 below):  
For any time t, if a program has not halted before t, the premises of its associated sequent 
validly imply a true description of time t.  Thus by the lemma the premises of the associated 
sequent validly imply: 
 R s e c1...cr 

whence it follows validly that: 

 t y1...yr R t e y1...yr 

which is the conclusion or a disjunct of the conclusion of the associated sequent.  Hence the 
conclusion of the associated sequent validly follows from its premises, i.e., the associated 
sequent is valid. 

Thus P halts given input i if and only if its associated sequent for input i is valid.  QED 
 
The only remaining work is to prove LEMMA 2. 
 
LEMMA 2:  For any time t, if a program has not halted before t, the premises of its associated 
sequent validly imply a true description of time t. 



 

 

Proof:  The conclusion is a universal quantification over times, which are a linearly ordered series.  
Thus we can proceed by mathematical induction. 
Basis Case:  We must show that if a program has not halted before time 0, the premises of its 
associated sequent validly imply a true description of time 0.  But since the first premise is a true 
description of time 0, this is obviously true. 
Inductive Step: We must prove a conditional with a conditional antecedent and conditional 
consequent.  That is, we must prove that if (if a program has not halted before t, the premises of its 
associated sequent validly imply the true description of time t), then (if a program has not halted 

before t1, the premises of its associated sequent validly imply the true description of time t1). 
 Suppose for conditional proof that if a program has not halted before t,  
 the premises of its associated sequent validly imply the true  
 description of time t. (This is the inductive hypothesis.)  Now since  
 what we are trying to prove is a conditional, we make another conditional  
 proof hypothesis: 
  Suppose for conditional proof that a program has not halted before  

  time t1.  Then clearly it has not halted before time t.  So by  
  the inductive hypothesis (and modus ponens) the premises of its  
  associated sequent validly imply the true description of time  
  t.  Now since it hadn't halted at time t, the machine must have  
  been on some arrow that was not an exit arrow at time t.  Call this  
  arrow x.  Since x was not an exit arrow, there must be some clause  
  in the program description which tells the machine what to do when  
  it is on arrow x.  Given that the machine was on arrow x at time t,  
  this clause will imply a true description of the machine at time 

  t1.  However, the universal generalization of this clause is a  
  premise of the program's associated sequent.  Hence  
  since the premises of that sequent validly imply a true description  

  of time t, they also imply a true description of time t1, which  
  was to be proved. 
 Thus we have shown, given the inductive hypothesis, that if a program has  

 not halted before t1, the premises of its associated sequent validly  

 imply the true description of time t1. QED 
 
This completes the proof of the undecidability of predicate logic with function symbols.  We have 
shown that there can be no algorithmic procedure for determining whether or not any sequent of 
predicate logic is valid.  Some procedures (like the trees test) work for some sequents, but no 
procedure can work for all.  No matter what algorithms we create, no matter how sophisticated or fast 
we make our computers, there will always be logic problems that we cannot solve.   
 And we have just proved that—logically! 
 

10.7 HOW FAR DOES THE UNDECIDABILITY EXTEND? 

 Our proof of undecidability of predicate logic made explicit use of a function symbol (the 
successor symbol) in the construction of associated sequents.  Thus, strictly speaking, what we have 
proved is that predicate logic with function symbols is undecidable.  What if we dropped the function 
symbols?  Would we still have an undecidable logic? 
 We can fairly easily show that the answer is yes, provided that we still have the identity 
predicate.  The trick is to redefine the concept of an associated sequent, using a two-place predicate 
'S' meaning "is the successor of" rather than the successor function symbol.  To guarantee that S 
generates the appropriate implications, we will need to add two new premises to each associated 
inference.  These are: 

  xySyx, 
which means (given a domain of numbers) that every number has at least one successor and: 

  xyz((Syx & Szx)  y = z) 
which means that each number has at most one successor.  Together, these two statements imply 
that each number has exactly one successor.  We didn't need to say this explicitly when we used the 



 

 

successor function symbol, since it is built into the logic of functions that each function has exactly 
one value per argument.  More specifically, the corresponding formulas using the successor notation, 
i.e. the formula 

  xy y=x' 
and 

  xyz((y = x' & z = x)  y = z) 
are valid.   
 Notice that the second of our new assumptions about 'S' uses the identity predicate, which 
played no role in our old associated sequents.  Thus, using this new kind of associated sequent, 
though we will be able to show the undecidability of predicate logic without function symbols, it will be 
predicate logic with the identity predicate. 
 In addition to adding these new premises to associated sequents, we need to rewrite the 
formulas comprising the sequents, using 'S' instead of '''.  This calls for some rearrangement because 
of the grammatical differences between function symbols and predicates.  Roughly, all the 'S' 
predicates get packed into antecedents of conditionals.  The statement: 

  tx(Rt0x   Rt'0x) 
for example, becomes: 

  zytx(Szx  (Syt  (Rt0x  Ry0z))) 
This procedure eliminates all occurrences of ''' but adds a new universal quantifier and a new 
occurrence of 'S' in the antecedent of a conditional for each, so that formulas get pretty cumbersome.  
That's why we didn't define associated sequents this way in the first place.  Use of the successor 
function symbol makes both the abacus programming notation and the definition of an associated 
inference much simpler. 
 Even though these new-style associated sequents are more cumbersome, they work exactly 
the way the old ones did, and the undecidability proof of Section 10.6 can be redone,  substituting the 
new sort of associated sequent for the old sort in the proof.  This changes it from a proof of the 
undecidability of predicate logic with function symbols to a proof of the undecidability of predicate 
logic without function symbols but with the identity predicate.  
 In fact, predicate logic remains undecidable if we eliminate the identity predicate as well, but 

we will not show that here.70  In sum, the identity predicate and function symbols make no difference;  
predicate logic itself, with or without either, is undecidable.   But why?   
 The answer, as the infinite trees of Chapter 4 suggest, is that the only counterexamples for 
some invalid sequents are counterexamples with infinite domains—domains constructible only by an 
infinite process.  The ability to describe such infinities is one of predicate logic's virtues; without this 
ability, predicate logic would be of little use, for example, in higher mathematics, where it has in fact 
found many applications.  But with this virtue comes the corresponding vice of undecidability.    
    For some uses, however, we do not need the full power of predicate logic:  a mere part or 
fragment of predicate logic will do.  We have already seen that one such fragment, propositional logic, 
is decidable.  Are there other decidable fragments—fragments that include more than just 
propositional logic? 
 Indeed there are.  One is the fragment obtained by dropping the existential quantifier from 
predicate logic without function symbols and requiring all universal quantifiers to take wide scope (i.e., 
not to occur within the scopes of operators that are not universal quantifiers).  The resulting fragment 
of predicate logic, though quantified, is, like propositional logic, decidable.  It never generates infinite 
trees, because once each formula's initial string of quantifiers is instantiated for all names already on 
the path, no new names can appear and the tree can be finished simply by repeated application of 
the propositional rules.  This is true even when we negate a universal conclusion to test for validity, 

which will yield an existential formula by .  Once all the initial quantifiers of this formula are 

                                                      
70One way to do it is to use the sort of associated argument forms just illustrated but eliminate the 
identity predicate by defining it in terms of the other predicates used in those forms -- namely, 'R' and 
'S'.  The technique for eliminating the identity predicate is explained in W.V. Quine, Philosophy of 
Logic, Englewood Cliffs, New Jersey, Prentice-Hall, 1970, pp. 63-4. 



 

 

instantiated—by repeated steps of  and 71—this formula can generate no new names.  
Restricting predicate logic in this way would, of course, limit the things we could say, but it might be 
adequate for some uses. 
 There are other fragments of predicate logic that are decidable as well, so that if we restrict 
our attention to certain classes of problems, we may sometimes be sure of getting an answer even if 
we are using quantifiers.  Much technical work has been devoted to sorting out decidable fragments 
of predicate logic from the undecidable ones, but we shall pursue this theme no further. 
 Before we leave the topic of undecidability, one small but significant doubt needs airing.  The 
proof of premise 4 in our outline of the undecidability proof assumed Church's thesis.  But Church's 
thesis is not a logical truth.  It is a well-confirmed mathematical hypothesis—so well-confirmed that by 
now many theorists regard it as defining the notion of an algorithm.  It is conceivable, however, that 
we might some day discover something that is recognizably a computational process but which 
nevertheless is not representable as an abacus program.  How we would describe matters then 
would depend on whether we think of Church's thesis as a hypothesis or a definition.  If we think of it 
as an empirical hypothesis, then we would say that it proved to be false.  If we think of it as a 
definition, then we would simply announce the discovery of nonalgorithmic computational processes. 
 However we described it, such a discovery would undermine our our proof of the 
undecidability of predicate logic, but it would by no means show that predicate logic is decidable.  The 
new computational procedures might no more be capable of solving the decision problem than 
abacus programs are.  This whole scenario, however, is highly speculative. 
 
EXERCISE 10.7:  Is the fragment of predicate logic that results from allowing only existential 
quantification and requiring these quantifiers to take wide scope decidable?  Why or why not? 
 
  

                                                      
71Actually, having banned existential quantification, we would not really have the  rule for trees; we 

would need instead a modified  rule which combined the functions of our current  and  rules. 



 

 

CHAPTER 11 
LEIBNIZIAN MODAL LOGIC 

 

11.1 MODAL OPERATORS 

 Prominent among philosophically important operators that are apparently inexpressible in 
predicate logic are alethic modifiers, such as 'must', 'might', 'could', 'can', 'have to', 'possibly', 
'contingently', 'necessarily'.  The term 'alethic' comes from the Greek word for truth, alethea.  These 
words are said to express alethic modalities—that is, various modes of truth.  Modal logic, in the 
narrowest sense, is the study of the syntax and semantics of these alethic modalities. 
 But the term is also used in a broader sense, to designate the study of other sorts of 
propositional modalities.  These include deontic (ethical) modalities (expressed by such 
constructions as 'it ought to be the case that', 'it is forbidden that', 'it is permissible that', etc.); 
propositional attitudes (relations between sentient beings and propositions, expressed by such 
terms as 'believes that', 'knows that', 'hopes that', 'wonders whether', and so on); and tenses (for 
example, the past, present, and future tenses as expressed by the various modifications of the verb 
'to be':  'was', 'is', and 'will be). 
 The extension of the term 'modal' to these other forms of modality is no fluke; they share 
important logical properties with alethic modalities.  For one thing, all of them can be regarded as 
operators on propositions.  Consider, for example, these sentences, all of which involve the 
application of modal operators (in the broad sense) to the single proposition 'People communicate': 
 
 ALETHIC OPERATORS 
  It is possible that people communicate. 
  It must be the case that people communicate. 
  It is contingently the case that people communicate. 
  It could be the case that people communicate. 
  It is necessarily the case that people communicate. 
 DEONTIC OPERATORS 
  It is obligatory that people communicate. 
  It is permissible that  people communicate. 
  It is not allowed that people communicate. 
  It should be the case that people communicate. 
 OPERATORS EXPRESSING PROPOSITIONAL ATTITUDES 
  Ann knows that people communicate. 
  Bill believes that people communicate. 
  Cynthia fears that people communicate. 
  Don supposes that people communicate. 
  Everyone understands that people communicate. 
  Fred doubts that people communicate. 
 OPERATORS EXPRESSING TENSES 
  It was (at some time) the case that people communicated. 
  It was always the case that people communicated. 
  It will (at some time) be the case that people communicate. 
  It will always be the case that people communicate. 
 
There are, of course, many more operators in each category.  And some of those listed, such as 'It is 
possible that' and 'It could be the case that' are, at least in some contexts, semantically identical or 
synonymous.  With the exception of the operators expressing propositional attitudes, all those listed 
here are monadic; they function syntactically just like the negation operator 'it is not the case that', 
prefixing a sentence to produce a new sentence.  Thus, for example, the operators 'it is necessary 



 

 

that', usually symbolized by the box '□' and 'it is possible that', usually symbolized by the diamond 

sign '◊',72 are introduced by adding this clause to the formation rules: 

  If  is a formula, then so are □ and ◊. 

 The operators expressing propositional attitudes, however, are binary.  But unlike such binary 
operators as conjunction or disjunction, which unite a pair of sentences into a compound sentence, 
propositional attitude operators take a name and a sentence to make a sentence.  The place for this 
name may be quantified, as in 'Everyone understands that people communicate'. 
 Many modal operators have duals—operators which, when flanked by negation signs, form 

their equivalents.  The operators '□' and '◊', for example, are duals, as the following sentences assert: 

    □   ◊

    ◊   □ 

That is, it is necessary that  if and only if it is not possible that not-, and it is possible that  if and 

only if it is not necessary that not-. 
 There are other duals among these operators as well.  Consider the deontic operator 'it is 
obligatory that', which we shall symbolize as 'O' and the operator 'it is permissible that', which we 
shall write as 'P'.  These are similarly related: 

    O   P

    P   O 

That 'O' and 'P' should thus mimic '□' and '◊' is understandable, since obligation is a kind of moral 

necessity and permission a kind of moral possibility. 
 There are also epistemic (knowledge-related) duals.  The operator 'knows that' is dual with 
the operator 'it is epistemically possible, for ... that'—the former representing epistemic necessity 
(knowledge) and the latter epistemic possibilty.  (Something is epistemically possible for a person if 
so far as that person knows it might be the case.)  Symbolizing 'knows that' by 'K' and 'it is 
epistemically possible for ... that' by 'E', we have: 

    pK   pE

    pE   pK 

In English:  p knows that  if and only if it is not epistemically possible for p that not-; and it is 

epistemically possible for p that  if and only if p does not know that not- ('p', of course, stands for a 
person). 
 There are temporal duals as well.  Let 'P' mean 'it was (at some time) the case that' and 'H' 
mean 'it has always been the case the case that'.  Then: 

    H   P

    P   H 
Here 'H' represents a kind of past tense temporal necessity and 'P' a kind of past tense temporal 
possibility.  A similar relationship holds between 'it always will be the case that' and 'it sometimes will 
be the case that' and between other pairs of temporal operators. 
 These systematic logical relationships bear a striking resemblance to two familiar laws of 
predicate logic: 

    x    x 

    x    x 
Are these pairs of dual operators somehow analogous to quantifiers? 
 

11.2 LEIBNIZIAN SEMANTICS 

 Leibniz, who was among the first to investigate the logic of alethic operators, in effect 
suggested that they are.  His semantics for modal logic was founded upon a simple but 
metaphysically audacious idea:  our universe is only one of a myriad possible universes, or possible 
worlds.  Each of these possible worlds comprises a complete history, from the beginning (if there is a 
beginning) to the end (if there is an end) of time.   
 Such immodest entities may rouse scepticism, yet we are all familiar with something of the 
kind.  I wake up on a Saturday; several salient possibilities lie before me.  I could work on this book, 

                                                      
72Sometimes 'L' is used instead of '□' and 'M' instead of '◊'.  These abbreviate the German terms for 

logical (logisch) -- that is, necessary -- truth and possible (möglich) truth.   



 

 

or weed my garden, or take the kids to the park.  Whether or not I do any of these things, my ability to 
recognize and entertain such possibilities is a prominent feature of my life.  For ordinary purposes, my 
awareness of possibilities is confined to my doings and their immediate effects on the people and 
things around me.  Yet my choices affect the world.  If I spend the day gardening, the world that 
results is a different world than if I had chosen otherwise.  Leibnizian metaphysics, then, can be seen 
as a widening of our vision of possibility from the part to the whole, from mere possible situations to 
entire possible worlds. 
 Possible worlds figure most notoriously in Leibniz' theodicy.  God, in contemplating the 
Creation, surveyed all possible worlds, says Leibniz, and chose to actualize only the best—ours.  
Since ours is the best of all possible worlds, the degree of evil or suffering it contains is 

unavoidable—as we would see if only we had God's wisdom.73     
 What interests the logician, however, is not how Leibniz used possible worlds to rationalize 
actual miseries, but how he used them to adumbrate an alethic modal semantics.  On Leibniz' view: 
 

 □ is true if and only if  is true in all possible worlds 

 
and 
 

 ◊ is true if and only if  is true in at least one possible world. 

 

The operators '□' and '◊' are thus akin, respectively, to universal and existential quantifiers over a 

domain of possible worlds.  So, for example, to say that it is necessary that 22 = 4 is to say that in all 

possible worlds 22 = 4; and to say that it is possible for the earth to be destroyed by an asteroid is to 
say that there is at least one possible world (universe) in which an asteroid destroys the earth. 
 Generalizing where Leibniz did not, we can extend his analysis to other modalities.  Deontic 
operators are like quantifiers over morally possible (i.e. permissible) worlds—worlds that are ideal in 
the sense that within them all the dictates of morality are obeyed (exactly which morality is a question 
we shall defer!).  Epistemic operators are like quantifiers over epistemically possible worlds—i.e., 
over those worlds compatible with our knowledge (or, more specifically, with the knowledge of a given 
person at a given time.)   And tense operators act like quantifiers too—only they range, not over 
worlds, but over moments of time. 
 Time and possibility:  an odd juxtaposition, yet illuminating, for there are rich analogies here.  
For one thing, just as there is a specific temporal moment, the present, which is in a sense uniquely 
real (for the past exists no longer, the future not yet), so there is a specific possible world, the actual 
world, which (for us at least) is uniquely real.   
 A second point of analogy is that in nonpresent moments objects have different properties 
than they do now.  I, for example, am now seated in front of a computer, whereas an hour or two ago 
I was riding my bike.  Not all of what was true of me then is true of me now.  In the same way, objects 
have properties different from those they actually have in nonactual worlds.  I am a philosophy 
professor, but I could have been a farmer; that is, in some possible world I have the property of being 
a farmer, a property I do not actually have. 
 And just as an object (or a person) is typically not a momentary phenomenon, but has 
temporal duration—is "spread out," so to speak, through time—so too is an object "spread out" 
through possibilities.  I am not just what I am at the moment; rather, I am an entire life, a yet-
uncompleted history, from birth to death.  Likewise, or so the analogy suggests, I am not merely what 

I actually am, but also my possibilities—what I could have been and could still be.74 
 Thus time and possibility share certain structural features, and their respective logics ought to 
reflect this fact.  In Section 13.2 we shall see that to some extent they do.  But in the meantime, we 
have run way ahead of Leibniz' conception of alethic modality.  To Leibniz we now return, but with an 

                                                      
73This has given rise to the quip that the optimist is one who, like Leibniz, thinks that ours is the best 
of all possible worlds, while the pessimist is one who is sure of it. 
74cf. Martin Heidegger's contention that Dasein (human existence) is its possibilities and thus is more 
than it factually is; Being and Time, trans. John Macquarrie and Edward Robinson, New York, Harper 
& Row, pp. 68, 183-4, 185. 



 

 

anachronistic twist.  We shall reformulate his insight about alethic operators in contemporary 
metatheoretic terms.  
 To begin, observe that a valuation for predicate logic in effect models a single world.  It 
consists of a domain and assignments of appropriate extensions to predicates and names within that 
domain.  In modal logic, we posit many possible worlds.  A model for modal logic, then, should 
contain many "worlds", each with its own domain.  And because the facts differ from world to world, 
that model should assign to each predicate, not just a single extension, but an extension in each 
world.  To keep things managably (but preposterously) simple, consider a model representing just 
three possible worlds, w1, w2, and w3.  Since this is just a model, we can represent the objects in 

these worlds by anything that is handy.  Numbers are quite handy for this purpose.  So (still 

oversimplifying) let's suppose that w1 contains exactly four objects, , , , and ; w2 contains exactly 

two objects,  and , and w3 contains exactly three objects , , and : 

 
  WORLD   DOMAIN 

  w1   {, , , } 

  w2   {, } 

  w3   {, , } 

 
Now suppose we want to interpret the one-place predicate 'B', which for the sake of definiteness we 
may suppose means "is blue."  Since a thing may be blue in one world but not in another, we cannot 
assign this predicate a single set (the set of blue things), as we would have in predicate logic.  
Rather, we need to assign it a separate set in—or "at" (either preposition may be used)—each world.  
For each world w, the set assigned to 'B' at w then represents the things that are blue in w.  Suppose 

we assign to 'B' the set {,} in w1, { } in w2 and {,,} in w3.  Then, according to our model there are 

two blue things in w1 and none in w2, and in w3 everything is blue. 

 Because extensions differ from world to world (i.e., are world-relative) in modal logic, a 

valuation V now must take into account, not only predicates, but also worlds, in assigning extensions.  

Thus we write: 
 

   V(B,w1) = {,} , 

   V(B,w2) = { } , 

   V(B,w3) = {,,} , 

 
to indicate that at world w1 the set of things that satisfies the predicate 'B' (i.e. the set of blue things) 

is {,}, and so on. 

 Truth, too, is now world-relative.  Blue things exist in w1but not in w2; thus the formula 'xBx' 

ought to be true at w1 but not at w2.  That is, V(xBx,w1) = T, but V(xBx,w2) = F.  Accordingly, when 

we assign truth values to sentence letters, we shall have to assign each letter a truth value for each 
world.  Let 'M', for example, mean "there is motion."  We might let 'M' be true in w1 but not in w2 or 

w3.  Thus V(M,w1) = T, but V(M,w2) = V(M,w3) = F. 

 We shall assume, however, that names do not change denotation from world to world.  Thus 
we shall assign to each name a single object, which may inhabit the domains of several possible 
worlds, and this assignment will not be world-relative.  This models the metaphysical idea that people 
and things are "spread out" through possibilities, just as they are "spread out" through time.  With 
respect to time, for example, the name 'John Nolt' refers to me now, but also to me when I was child, 
and to the old man whom (I hope) I will become.  I occupy many moments, and my name refers to me 
at each of these moments.  Analogously, I have many possibilities, and my name refers to me in 
each.  When I consider that I could be a farmer, part of what makes this possibility interesting to me is 



 

 

that it is my possibility.75  It is I, John Nolt, who could be a farmer; my name, then, refers not only to 
me as I actually am, but to me as I could be.  I am a denizen of possibilities (that is, possible worlds), 
as well as times, and my name tracks me through these possibilities, just as it does through the 
moments of my life. 
 Names, then, as we shall understand them, are rigid designators; they refer to the same 
object in each world in which they refer to anything at all.  The idea that names designate rigidly, a 

brainchild of Saul Kripke,76 is now widely, though not universally, accepted.  Other semantic 
interpretations of names have been offered, but we shall not consider them here.   
 In our semantics we shall model rigid designation by representing the value assigned to a 

name  simply as V(), rather than as V(,w), which would represent the value assigned to  at a 

world w.  The omission of the world variable indicates that the denotations of names are not world-
relative. 
 The concept of rigid designation harbors a metaphysical presupposition:  the doctrine of 
transworld identity.  This is the idea that the same object may exist in more than one possible world.  
It is modeled in our semantics by the fact that we allow the same object to occur in the domains of 
different worlds.  Most logicians who do possible worlds semantics take transworld identity for 

granted, though there are exceptions.77 
 Though a rigidly designating name refers to the same object in different worlds, that object 
need not be "the same" in the sense of having the same properties.  I would have quite different 
properties in a world in which I was a farmer, but I would still be the same person—namely me. 

 These ideas are reflected in the model introduced above.  Object , for example, exists in w1 

and w2.  It therefore exhibits transworld identity.  Moreover, it is in the extension of the predicate 'B' in 

w1, but not in w2.  Thus, though it is the same object in w1 as it is in w2, it is blue in w1 but not in w2.  

If we think of w1 as the actual world, this models the idea that an object that is actually blue 

nevertheless could be nonblue (it is capable, for example, of being dyed or painted a different color, 
yet retaining its identity). 

 Suppose now that we use the name 'n' to denote object , that is, let V(n) = .  (Note the 

absence of a world-variable here; the denotation of a rigidly designating name, unlike truth or the 
denotation of a predicate, is not world-relative.)  Then we would say that the statement 'Bn' ("n is 

blue") is true in w1, but not in w2, i.e. V(Bn,w1) = T, but V(Bn,w2) = F. 

 But what are we to say about the truth value of 'Bn' in w3, wherein  does not exist?  

Consider some possible (but nonactual) stone.  Is it blue or not blue in the actual world?  Both 
answers are arbitrary.  Similarly, it seems arbitrary to make 'Bn' either true or false in a world in which 
'n' has no referent.   
 This problem cannot be satisfactorily resolved without either abandoning bivalence, (so that 
'Bn', for example, may be neither true nor false) or modifying the logic of the quantifiers.  The first 
approach is perhaps best implemented by means of supervaluations, which are discussed in Section 
15.3, the second by free logics, which are covered in Section 15.1.  Discussion of either method now 
would perhaps complicate things beyond what we could bear at the moment.  We shall therefore 
leave the question unsettled.   
 Valuation rules 1 and 2 below give truth conditions for atomic formulas at a world only on the 
condition that the extensions of the names contained in those formulas are in the domain of that 
world.  The truth conditions at w for atomic formulas (other than identities) that contain names which 

                                                      
75Of course not all possibilities are my possibilities.  In a world in which my parents had never met,  I 
would never have existed, and the name 'John Nolt' would not refer to anything in that world (unless, 
of course, there were a different person with that name -- but then the name would simply be 
ambiguous; that person would not be me).  My existence, in other words, is contingent.  In our 
models, this contingency is represented by the fact that an object need not occur in the domain of 
each world. 
76Naming and Necessity,  Cambridge, Harvard University Press, 1980. 
77Most notably David Lewis, in "Counterpart Theory and Quantified Modal Logic," Journal of 
Philosophy, 65, 1968, pp. 113-126. 



 

 

denote no existing thing at w are left unspecified.  (Identity statements are an exception, since their 
truth conditions are not world-relative.)  Our semantics, then, will be deficient in this respect, though 
still usable in other respects.  The deficiency will be remedied in Chapter 15. 
 A valuation, or model, then, consists of a set of things called worlds, each with its own 
domain of objects.  In addition, it assigns to each name an object from at least one of those domains, 
and it assigns to each predicate and world an appropriate extension for that predicate in that world.  
An object may belong to the domain of more than one world, but it need not belong to domains of all.  
Two different worlds may have the same domain.  The full definition is as follows: 
 
DEFINITION:  A Leibnizian valuation or Leibnizian model V for a formula or set of formulas of 

modal predicate logic consists of: 

 1 A nonempty set WV of objects, called the worlds of V,  

 2 For each world w in WV a nonempty set Dw of objects, called  

  the domain of w,  

 3 For each name or non-identity predicate  of that formula or set of formulas 

  and each world w in WV an extension V() (if is a name) or V(,w)  

  (if  is a predicate) as follows: 

  i If  is a name, then V() is a member of the domain of  

   at least one world, 

  ii If  is a zero-place predicate (sentence letter), V(,w)  

   is one (but not both) of the values T or F. 

  iii If  is a one-place predicate, V(,w) is a set of  

   members of Dw. 

  iv If  is an n-place predicate (n>1), V(,w) is a  

   set of ordered n-tuples of members of Dw. 

 
Given any valuation, the following valuation rules describe how truth and falsity are assigned to 
complex formulas: 
 
VALUATION RULES FOR LEIBNIZIAN MODAL PREDICATE LOGIC 

 Given any Leibnizian valuation V, for any world w in WV: 

 1 If  is a one-place predicate and  is a name whose  

  extension V() is in Dw, then: 

  V(, w) = T iff V()  V(,w); 

  V(, w) = F iff V()  V(,w).  

 2 If  is an n-place predicate (n>1) and 1,...,n are names  

  whose extensions are all in Dw, then  

  V(1,...,n ,w) = T iff V(1),...,V(n)  V(,w); 

  V(1,...,n ,w) = F iff V(1),...,V(n)  V(,w). 

 3 If  and  are names then V( = ,w) = T iff V() = V(); 

  V( = ,w) = F iff V() =/  V(). 

 For the next five rules,  and  are any formulas: 

 4 V(,w) = T iff V(,w) =/  T; 

  V(,w) = F iff V(,w) = T. 

 5 V( & ,w) = T iff both V(,w) = T and V(,w) = T; 

  V( & ,w) = F iff either V(,w) =/  T or V(,w) =/  T, or both. 

 6 V(  ,w) = T iff either V(,w) = T or V(,w) = T, or both; 

  V(  ,w) = F iff both V(,w) =/  T and V(,w) =/  T. 

 7 V(  ,w) = T iff either V(,w) =/  T or V(,w) = T, or both; 

  V(  ,w) = F iff both V(,w) = T and V(,w) =/  T. 

 8 V(,w) = T iff either V(,w) = T and V ,w) = T,  



 

 

   or V(,w) =/  T and V(,w) =/  T; 

  V(,w) = F iff either V(,w) = T and V ,w) =/  T,  

   or V(,w) =/  T and V(,w) = T. 

 (For the next two rules,  stands for the result of replacing each  

 occurrence of the variable  in  by , and Dw is the domain that  

 V assigns to world w.)   

 9 V(,w) = T iff for all potential names  of all objects d in Dw,   

   V
(, )

(,w) = T; 

  V(,w) = F iff for some potential name  of some object d in Dw, 

   V
(, )

(,w) =/  T.  

 10 V(,w) = T iff for some potential name  of some object d in Dw, 

   V
(, )

(,w) = T; 

  V(,w) = F iff for all potential names  of all objects d in Dw, 

   V
(, )

(,w) =/  T. 

11 V(□,w) = T iff for all worlds u in WV, V(,u) = T; 

 V(□,w) = F iff for some world u in WV, V(,u) =/  T. 

 12 V(◊,w) = T iff for some world u in WV, V(,u) = T; 

  V(◊,w) = F iff for all worlds u in WV, V(,u) =/  T. 

 
Since the valuation rules are a lot to swallow in one bite, we'll take the propositional fragment of the 
semantics by itself first and come back to the full modal predicate logic later.  There is another reason 
for focusing primarily on propostional logic:  our valuation rules for quantifiers in conjunction with 
those for atomic formulas turn out to have non-classical implications, as will be revealed in Section 
15.1.  Therefore the that the predicate versions of the logics presented in chapters 11-13 are not, 

strictly speaking, classical.78 
 Leaving out the quantifier rules simplifies the definition of a valuation considerably: 
 

DEFINITION:  A Leibnizian valuation or Leibnizian model V for a formula or set of formulas of 

modal propositional logic consists of: 

 1 A nonempty set WV of objects called the worlds of V,  

 2 For each sentence letter  of that formula or set of formulas  

  and each world w in WVan extension V(,w) consisting of  

  one (but not both) of the values T or F. 
 
Here worlds are like the (horizontal) lines on a truth table, in that each is distinguished by a truth 
value assignment to atomic formulas—though not all lines of a truth table need be represented in a 
single model. 

 Consider, for example, the following valuation of the formula '(G  B)' which we may suppose 
means "Sam is good or Sam is bad": 
 

   WV = {1,2,3,4} 

   V(G,1) = T V(B,1) = F 

   V(G,2) = F V(B,2) = F 

   V(G,3) = F V(B,3) = T 

   V(G,4) = F V(B,4) = T 

    

                                                      
78 Thanks to Deborah Smith of Kent State University for pointing this out to me. 
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Here we take the "worlds" themselves to be the numbers 1, 2, 3, and 4.  (Again, in a model, it doesn't 
matter what sorts of objects do the modelling.)  In world 1, 'G' is true and 'B' is false, i.e. Sam is 
virtuous, not wicked.   In world 2 Sam is neither virtuous nor wicked.  And in worlds 3 and 4, Sam is 

wicked, not virtuous.79  Our model represents the situation in which Sam is both virtuous and wicked 
as impossible, since this situation occurs in none of the four possible worlds.  In other words, only 

three of the four lines of the truth table for 'G  B' are regarded as possible.  This is arguably 
appropriate, given the meanings we have attached to 'G' and 'B'. 
 To understand more about how this model works, we must consider the valuation rules for 
propositional modal logic, (rules 4-8 and 11-12 above).  According to rule 6, for example the 

statement 'G  B' has the value T in a world w if and only if either 'G' or 'B' has the value T in that 
world, and false otherwise.  Thus this statement is true in worlds 1, 3, and 4, but false in 2.  The rules 

for the other truth-functional propositional operators ('', '&', '', and ') are all similarly relativized to 
worlds. 
 The real novelty, though, and the heart of Leibniz' insight, lies in rules 11 and 12.  Consider, 

for example the statement '□(G & B)', which according to our interpretation means "it is necessarily 

the case that Sam is not both virtuous and wicked."  According to rule 11, this formula is true at a 

given world w if and only if the statement '(G & B)' is true in all worlds.  Now in our model '(G & B)' 
is in fact true in all worlds.  For there is no world in which both 'G' and 'B' are true; hence by rule 5 

'G & B' is false in each world, and so by rule 4 '(G & B)' is true in each world.  This means by rule 11 

that '□(G & B)' is true in every world. 

 Similarly, the statement '◊G' ("it is possible that Sam is virtuous") is true in all worlds.  For 

consider any given world w.  Whichever world w is, there is some world u (namely world 1) in which 

'G' is true.  Hence by rule 12, '◊G' is true in w. 

 Notice also that since '◊G' is true in all worlds, it follows by another application of rule 11 that 

'□◊G' ("it is necessarily possible that Sam is virtuous") is true in all worlds.  In fact, repeated 

application of rule 11 establishes that '□□◊G', '□□□◊G', etc. are all true at all worlds in this model.  The 

following metatheorem exemplifies the formal use of modal semantics; use it as a model for the 
exercise below: 
 

METATHEOREM:  For any world w of the model just described, V(□◊G,w) = T. 

Proof: Let u be any world of this model, i.e., u  WV.  Since V(G,1) = T, it follows by rule 12 that 

V(◊G,u) = T.  Thus for all u in WV, V(◊G,u) = T.  Now let w be any world in WV.  It follows by rule 11 

that V(□◊G,w) = T.  QED 

 
EXERCISE  11.2.1 
Consider the following model: 
 

  WV = {1,2,3} 

  V(P,1) = T V(Q,1) = F V(R,1) = T 

  V(P,2) = F V(Q,2) = F V(R,2) = T 

  V(P,3) = T V(Q,3) = T V(R,3) = T 

 
Using the valuation rules, prove the following with respect to this model: 

1 V(P  Q,1) = T 

2 V(□R,1) = T 

3 For any world w in WV, V(□R,w) = T 

4 There is no world w in WV such that V(□P,w) = T 

                                                      
79In a sense, world 4 is redundant, since from the point of view of our model it differs in no way from 
world 3.  But this sort of redundancy is both permissible and realistic.  It may, for example, represent 
the idea that world 4 differs from world 3 in ways not relevant to the problem at hand; for example, 
Sam may be a sailor in world 3 but not in world 4.  Of course, if the model were truly realistic, it would 
contain many more worlds representing many such irrelevant differences, but we are simplifying. 



 

 

5 For any world w in WV, V(◊P,w) = T 

6 For any world w in WV, V(□R,w) = F   

7 For any world w in WV, V(◊R,w) = F 

8 For any world w in WV, V(P  P,w) = T   

9 For any world w in WV, V(□(P  P),w) = T   

10 For any world w in WV, V(◊(P & P),w) = T 

 
 Our semantics is democratic:  it treats all possible worlds as equals; none is singled out as 
uniquely actual.  This models another prominent idea in modal metaphysics:  the thesis of the 
indexicality of actuality.  According to this doctrine, no world is actual in an absolute sense; each is 
actual from a perspective within that world but not from any perspective external to it.  For those 
whose perspective (consciousness?) is rooted in other possible worlds, our world is merely possible, 
just as their worlds are merely possible for us.  Actuality, then, is indexed to worlds (world-relative) in 
just the way truth is. 
 The thesis of the indexicality of actuality is much disputed.  Logicians who think that actuality 
is not indexical may incorporate this idea into their semantics by designating exactly one world of 
each model as actual.  But this bifurcates their concept of truth.  They have, on the one hand, a 
notion of nonrelative or actual truth—that is, truth in the actual world—and, on the other, the same 
relative notion of truth (truth-in-a-world) that we use in defining possibility and necessity.  I use the 
indexical conception of actuality here because it requires only one sort of truth (world-relative) and 
hence yields a simpler semantics. 
 Those who find the indexicality of actuality dizzying, may appreciate the following analogy.  
Imagine you are a transcendent God, perusing the actual universe from creation to apocalypse.  As 
you contemplate this grand spectacle, ask yourself:  which moment is the present?   
  In your omniscience you should see at once that this question is nonsensical.  There is a 
present moment only for creatures situated within time, not for a God who stands beyond it.  The 
present moment for me at noon on my third birthday is different from the present moment for me as I 
write these words, which is different from the present moment for you as you read this.  None of these 

is the present moment, for there is no absolute present.80  Presentness is indexed to moments of 
time—that is, relative to temporal position.  If I have lived or will live at a given moment, then that 
moment is present to the temporal part of me that intersects it but not present to other temporal parts 
of me.   
 Analogously, according to the understanding that grounds our semantics, there is an actual 
world only for creatures situated within worlds, not for a God—or a modal semanticist—standing 
beyond them.  A world in which I become a farmer is just as actual for that farmer (i.e. for that 
possible "part" of me) as the world I am currently experiencing is for the professorial portion of me 
that inhabits it.  Neither of these, nor any other, is the actual world in some absolute sense, because 

actuality is always relative to a perspective within some possible world.81     
 That, at any rate, is one way of understanding the "democratic" semantics presented here:  
models do not single out an actual world, because our model theory operates from a perspective 
beyond worlds from which no world is uniquely actual. 
 Having relativized truth to worlds, we must make compensatory adjustments in those 
metatheoretic concepts that are defined in terms of truth.  Consistency, for example, is no longer 
merely truth on some valuation (model), for formulas are no longer simply true or false on a valuation; 
they are true or false at a world on a valuation.  Thus we must revise our definitions of metatheoretic 
concepts as follows: 
 

                                                      
80This is not idle speculation; the thesis that there is no absolute present is central to Einsteinian 
relativity theory, which is the source of the best understanding of time available at the moment. 
81Here we contradict Leibniz, who thought that actuality was something absolute -- namely whatever 
it was that God added to our possible world in order to create it (ours was, according to Leibniz, the 
only world God created).  For a fuller discussion of the indexicality of actuality, see David Lewis, On 
the Plurality of Worlds, Oxford, Basil Blackwell, 1986, Section 1.9, pp 92-6. 



 

 

DEFINITION:  A formula is valid iff it is true in all worlds on all its valuations. 
 
DEFINITION:  A formula is consistent iff it is true in at least one world on at least one valuation. 
 
DEFINITION:  A formula is inconsistent iff it is not true in any world on any of its valuations. 
 
DEFINITION:  A formula is contingent iff there is a valuation on which it is true in some world and a 
valuation on which it is false in some world. 
 
DEFINITION:  A set of formulas is consistent iff there is at least one valuation containing a world in 
which all the formulas in the set are true. 
 
DEFINITION:  A set of formulas is inconsistent iff there is no valuation containing a world in which all 
the formulas in the set are true. 
 
DEFINITION:  Two formulas are equivalent iff they have the same truth value at every world on 
every valuation of both. 
 
DEFINITION:  A counterexample to a sequent is a valuation containing a world at which its premises 
are true and its conclusion is false. 
 
DEFINITION:  A sequent is valid iff there is no world in any valuation on which its premises are true 
and its conclusion is false. 
 
 DEFINITION:  A sequent is invalid iff there is at least one valuation containing a world at which its 
premises are true and its conclusion is false. 
 
 Using these concepts, we now embark upon a metatheoretic exploration of Leibnizian modal 
semantics.  Our first metatheorem confirms the truism that what is necessary is the case. 
 

METATHEOREM:  Any sequent of the form □  ├   is valid. 

Proof: Suppose for reductio that some sequent of this form is not valid—that is, that there is some 

formula , some valuation V, and some world w of V such that V(□,w) = T but V(,w) =/  T.  

Since V(□,w) = T, it follows by valuation rule 11 that V(,u) = T for all worlds u in WV.  

Hence in particular V(,w) = T, which contradicts our supposition that V(,w) =/  T.  

Thus we have shown that any sequent of the form □  ├   is valid.  QED 

 
The converse, of course, does not hold.  What is need not be necessary.  The Earth is populated; but 
this is not necessarily the case.  (It might cease to be the case through any of a variety of 
catastrophic events, and indeed it might never have happened at all).  To vivify the next 
metatheorem, think of 'P' as meaning "the Earth is populated," and think of world 1 as the actual 
world and world 2 as a world in which the Earth is barren.   
 

METATHEOREM:  The sequent 'P  ├  □P' is invalid. 

Proof: Consider the valuation V whose set WV of worlds is {1,2} such that 

  V(P,1) = T 

  V(P,2) = F. 

Now since V(P,2) =/  T, there is some world u in WV (namely world 2) such that , V(P,u) =/  T.  Hence by 

rule 11 V(□P,1)  =/  T.  Therefore we have both V(P,1) = T and V(□P,1) =/  T, which constitutes a 

counterexample.  Thus the sequent is invalid.  QED 
 
 On Leibnizian semantics what is necessary at one world is necessary at all; therefore, what is 
necessary is necessarily necessary.  This is because necessity itself is truth in all worlds, and if 



 

 

something is true in all worlds then it is true in all worlds that it is true in all worlds.  The following 
metatheorem gives the details: 
  

METATHEOREM:  Any sequent of the form □  ├  □□ is valid. 

Proof: Suppose for reductio that some sequent of this form is not valid—that is, that there is some 

formula , some valuation V, and some world w of V such that V(□,w) = T but V(□□,w) =/  

T.  Since V(□□,w) =/  T, it follows by valuation rule 11 that V(□,u) =/  T for some world u in 

WV.  But then again by rule 11, for some world x in WV, V(,x) =/  T.  However, since V(□,w) 

= T, by rule 11 V(,y) = T for all worlds y in WV (in particular for world x) and so we have a 

contradiction.  

Consequently, contrary to our supposition, any sequent of the form □ ├  □□ is valid.  QED 

 
 World variables ('w', 'u', 'x', and 'y', for example, in the previous metatheorem) are a pervasive 
feature of modal metalogic.  Each such variable should be introduced with a metalinguistic quantifier 
to indicate whether it stands for all worlds or just some.  Variables standing for a particular world may 
be repeated later in the proof if there is need to refer to that world again.  Early in the previous 

metatheorem, for example, 'w' is introduced (via existential quantification:  "there is a valuation V 

containing a world w") to stand for a particular world; later it is employed several times to refer to that 
same world.  To avoid ambiguity, it is best to choose a typographically new variable for each 
quantification.  Thus, for example, in the same proof, 'y' is used to make a universally quantified 
statement, and 'u' and 'x' to make separate existentially quantified statements. 

 Our next metatheorem proves one of the two biconditionals expressing the idea that '□' and 

'◊' are duals.  (The other is left as an exercise below.)  In some systems one of these two operators is 

taken as primitive and the other is defined in terms of it using one of these biconditionals. 
 

METATHEOREM:  Any formula of the form ◊  □ is valid. 

Proof: Suppose for reductio that some formula of this form is not valid.  That is, for some formula  

there exists a valuation V and world w of V such that V(◊  □,w) =/  T.  It follows by 

valuation rule 8 that either V(◊,w) = T and V(□,w) =/  T or V(◊,w) =/  T and V(□,w) = 

T.  We show that either case leads to contradiction. 

Suppose, first, that V(◊,w) = T and V(□,w) =/  T.  Since V(◊,w) = T, by rule 12, 

V(,u) = T for some world u in WV.  Hence by rule 4 there is some world u in WV at 

which V(,u) =/  T.  So by rule 11, V(□,w) =/  T.  But we had assumed that 

V(□,w) =/  T, whence it follows by rule 4 that V(□,w) = T; and so we have a 

contradiction. 

Hence it is not the case that both V(◊,w) = T and V(□,w) =/  T.   

Suppose now that V(◊,w) =/  T and V(□,w) = T.  Since V(◊,w) =/  T, by rule 12, 

V(,u) =/  T for all worlds u in WV.  Hence by rule 4  for all worlds u in WV, V(,u) = 

T.  So by rule 11, V(□,w) = T.  But we had assumed that V(□,w) = T, whence it 

follows by rule 4 that V(□,w) =/  T; and so we have a contradiction. 

Therefore it is not the case that both V(◊,w) =/  T and V(□,w) = T.  Thus, since, as we 

saw above, it is also not the case that both V(◊,w) = T and V(□,w) =/  T, then contrary to 

what we had concluded above, V(◊,w) = V(□,w). 

Thus we have shown that every formula of the form □  ◊ is valid.  QED 

 
So far we have been proving metatheorems only in propositional modal logic.  Let’s now consider 
some metatheorems that use quantifiers and identity. 
 One of the most important consequences of the doctrine that names are rigid designators is 
the thesis expressed in the next metatheorem:  the neccessity of identity.  Kripke, who popularized 

this thesis in its contemporary form,82 illustrates it with the following example.  'Phosphorus' is a Latin 

                                                      
82Naming and Necessity, Cambridge, Mass., Harvard University Press, 1972.   



 

 

name for the morning star; 'Hesperus' is the corresponding name for the evening star. But the 
morning star and the evening star are in fact the same object, the planet we now call Venus.  Hence 
the statement 
 
   Hesperus = Phosphorus 
 
is true.  Now if names are rigid designators, then since this statement is true, the object designated by 
the name 'Hesperus' in the actual world is the very same object designated by 'Hesperus' in any other 
world, and the object designated by the name 'Phosphorus' in the actual world is the same as the 
object designated by that name in any other world.  Thus in every world both names designate the 
same object that they designate in the actual world:  the planet Venus.  So 'Hesperus = Phosphorus' 
is not only true in the actual world but necessarily true. 
 Yet this conclusion is disturbing.  So far as the ancients knew, Hesperus and Phosphorus 
could have been separate bodies; it would seem, then, that it is not necessary that Hesperus = 
Phosphorus.   
 But this reasoning is fallacious.  The sense in which it was possible that Hesperus was not 
Phosphorus is the epistemic sense; it was possible so far as the ancients knew—i.e., compatible with 
their knowledge—that Hesperus was not Phosphorus.  It was not genuinely (i.e., alethically) possible.  
The planet Venus is necessarily itself; that is, it is itself in any possible world in which it occurs.  And if 
names are rigid designators, then the names 'Hesperus' and 'Phosphorus' both denote Venus in 
every world in which Venus exists.  Hence, given the dual doctrines of transworld identity and rigid 
designation (both of which are incorporated in our semantics), it is alethically necessary that 
Hesperus is Phosphorus, despite the fact that it is not epistemically necessary.  Keep this example in 
mind while considering the metatheorem below. 
 

METATHEOREM:  Every sequent of the form =├ □= is valid. 

Proof: Suppose for reductio that some sequent of this form is not valid.  Then for some names  and 

 there is a valuation V and world w of V such that V(=,w) = T and V(□=,w) =/  T.  Since 

V(□=,w) =/  T, by rule 11 there is some world u in WV such that V(=,u) =/  T.  Hence by rule 

3 V(a) =/  V(b).  But then again by rule 3, V(=,w) =/  T, which contradicts what we had said 

above. 

Thus, contrary to our supposition, every sequent of the form = ├ □= is valid.  QED 

 
 Modal operators interact with the quantifiers of predicate logic in logically interesting ways.  
The last two metatheorems of this section illustrate this interaction. 
 

METATHEOREM:  The sequent 'x◊Fx  ├  ◊xFx' is valid. 

Proof: Suppose for reductio that 'x◊Fx  ├  ◊xFx' is not valid.  Then there is some valuation V and 

world w of V such that, V(x◊Fx,w) = T and V(◊xFx,w) =/  T.  Since V(x◊Fx,w) = T, it follows 

by rule 10 that for some potential name  and object d in Dw, V
(, )

(◊F,w) = T.  And from this 

it follows by rule 12 that for some world u in WV, V
(, )

(F,u) = T.  But then by rule 10, 

V(xFx,u) = T, and so by rule 12, V(◊xFx,w) = T, contrary to what we had supposed above. 

Thus we have established that 'x◊Fx  ├  ◊xFx' is valid.  QED 

 
 Because of the multiple quantifications, the reasoning of this metatheorem is intricate; but the 
idea is simple.  If there is something which in a given world w is possibly F, then that thing (d in the 

proof) is F in some possible world (which we call u).  Hence at world u it is true that something is F, 
and that means that back at world w, it is possible that something is F.  So given that something is 
possibly F, it follows that it is possible that something is F. 
 The converse, however, is not true.  From the fact that it is possible that something is F, it 
does not follow that the world contains anything which itself is possibly F.  Suppose, for example, that 
we admit that it is (alethically) possible that there are such things as fairies.  (That is, there is a 
possible world containing fairies.)  From that it does not follow that there is in the actual world 



 

 

anything which itself is possibly a fairy.  The counterexample presented in the following metatheorem 
is a formal counterpart of this idea.  Think of world 1 as the actual world, which (we assume) contains 
no fairies and world 2 as a world in which fairies exist.  In this metatheorem we use numbers to 
represent not only worlds and objects in them, but to avoid confusion we use different numbers for 

each.  The fairies are objects  and .  Read the predicate 'F' as "is a fairy." 
 

METATHEOREM:  The sequent '◊xFx  ├ x◊Fx' is invalid. 

Proof: Consider the following valuation V whose set  WV of worlds is {1,2}: 

  WORLD  DOMAIN 

  1  {} 

  2  {} 
where 

  V(F,1) = { } V(F,2) = {} 

Now V(◊xFx,1) = T.  For V
(a,)

(a)—i.e., —is in the domain of world 2 and V
(a,)

  V
(a,)

(F,2), so that 

by rule 1, V
(a,)

(Fa,2) = T.  Thus by rule 10 V(xFx,2) = T.  And from this it follows by rule 12 that 

V(◊xFx,1) = T. 

 However V(x◊Fx,1) = F, for there is no member d of the domain of world 1 which is in the 

extension of the predicate 'F' in any world.  Hence by rule 1 there is no world u in WV, name  and 

object d in the domain of world 1 such that V
(,d)

(F,u) = T.  That is, by rule 12, there is no name  

and object d in the domain of world 1 such that V
(,d)

(◊F,1) = T.  So by rule 10  V(x◊Fx,1) =/  T.  

Thus, since V(◊xFx,1) = T but V(x◊Fx,1) =/  T, we have a counterexample and the sequent is 

invalid.  QED 
 
Notice that in the proof of this theorem we avoided the question of predication for nonexisting objects 

(which we have left unsettled).  In this case, it is the question whether the objects  and , which are 
fairies in world 2, are also fairies in world 1, where they do not exist.  Our valuation rules do not 

answer this question, but the sequent '◊xFx  ├ x◊Fx' is invalid regardless of how it is answered.  

We’ll return to the question of how predicates treat nonexisting objects in section 15.1. 
 
EXERCISE 11.2.2:  Prove the following metatheorems using Leibnizian semantics for modal 
predicate logic: 

1 The sequent 'P  ├  ◊P' is valid. 

2 The sequent '◊P  ├  P' is invalid. 

3 The sequent '◊(P & Q)  ├  ◊P & ◊Q' is valid. 

4 The sequent '◊P & ◊Q  ├  ◊(P & Q)' is invalid. 

5 Every sequent of the form   ├  □◊ is valid. 

6 Every sequent of the form ◊□  ├  □ is valid. 

7 For any formula , if  is a valid formula, then so is □. 

8 Every formula of the form □  ◊ is valid. 

9 Every sequent of the form □  ├ ◊ is valid. 

10 Every sequent of the form □(  )  ├  (□  □) is valid. 

11 Every sequent of the form □(  )  ├  ◊( & ) is valid. 

12 Every sequent of the form ◊( & )  ├  □(  ) is valid. 

13 Every sequent of the form □,     ├  □ is invalid. 

14 Every formula of the form □= is valid. 

15 Every sequent of the form =  ├  □= is valid. 

16 Every sequent of the form ◊=  ├  = is valid. 

17 Every sequent of the form x□Fx  ├  □xFx is invalid. 

18 Every sequent of the form □xFx  ├  x□Fx is valid. 

 

11.3 A NATURAL MODEL? 



 

 

 Our model theory (semantics) deepens our understanding of the alethic modal operators, 
though to get interesting results we have had to make a metaphysical assumption or two along the 
way.  Still we have not learned much about possibility per se.  The models we have so far considered 
are all wildly unrealistic—because they contain too few worlds, because these "worlds" are not really 
worlds at all, but numbers; because their domains are too small; and because we never really said 
what the objects in the domains were.  In this section we seek a more realistic understanding of 
possibility by correcting these oversimplifications. 
 In Section 7.2 we noted that, although most of the models we encounter even in predicate 
logic are likewise unrealistic (being composed of numbers with artificially constructed properties and 
relations) we can, by giving appropriate meanings to predicates and names, produce a natural model.  
A natural model is a model whose domain consists of the very objects we mean to talk about and 
whose predicates and names denote exactly the objects of which they are true on their intended 
meanings.  A natural model for geometry, for example, might have a domain of points, lines, and 

planes.  A natural model for subatomic physics might have a domain of particles and fields.83   
 A natural model for modal discourse will consist of a set of possible worlds  
-- genuine worlds, not numbers—each with its own domain of possible objects.  And that set of worlds 
will be infinite, since there is no end to possibilities.   
 But what is a possible world? 
 Leibniz thought of possible worlds as universes, more or less like our own.  But how much 
like our own?  Can a universe contain just one object?  There is no obvious reason why not.  Can it 
contain infinitely many?  It seems so; in fact, for the century or two preceding Einstein, many 
astronomers thought that the actual universe really did.  We have already said that there is a possible 
world in which I am a farmer.  Is there one in which I am a tree? 
 This is a question concerning my essence, that set of properties which a thing must have in 
order to be me.  What belongs to my essence?  Being a professor is pretty clearly not essential to 
me.  What about being (biologically) human?  There are fairy tales in which people are turned into 
trees and survive.  Do these tales express genuine possibilities?  Such questions have no easy 
answers.  Perhaps they have no answers at all.   
 Philosophers who think that the nature of things determines the answers are realists about 
essence.  Realists believe that essences independent of human thought and language exist "out 
there" awaiting discovery.  (Whether or not we can discover them is another matter.)  Opposed to the 
realists are nominalists, who think that essences—if talk about such things is even intelligible—are 
not discovered, but created by linguistic practices.  Where linguistic practices draw no sharp lines, 
there are no sharp lines; so if we say increasingly outrageous things about me (I am a farmer, I am a 
woman, I am a horse, I am a tree, I am a prime number ... ), there may be no definite point at which 
our talk no longer expresses possibilities.  For nominalists, then, it is not to be expected that all 
questions about possibility have definite answers.  (Extreme nominalists deny that talk about 
possibility is even intelligible.)  The realist-nominalist debate has been going on since the middle 
ages; and, though lately the nominalists have seemed to have the edge, the issue is not likely to be 
settled soon. 
 To avoid an impasse at this point, we shall invoke a distinction that enables us to sidestep the 
problem of essence.  Whether or not it is metaphysically possible (i.e., possible with respect to 
considerations of essence) for me to be a tree, it does seem logically possible (i.e., possible in the 
sense that the idea itself—in this case the idea of my being a tree—embodies no contradiction).   
Contradiction is perhaps a clearer notion than essence; so let us at least begin by thinking of our 
natural model as modelling logical, not metaphysical, possibility. 
 In confining ourselves to logical possiblility, we attempt to think of objects as essenceless.  
What sorts of worlds are possible now?  It would seem that a possible world could consist of any set 
of objects possessing any combination of properties and relations whatsoever.   
 But new issues arise.  Some properties or relations are mutually contradictory.  It is a kind of 
contradiction, for example, to think of a thing as both red and colorless.  Similarly, it seems to be a 
contradiction to think of one thing as being larger than a second while the second is also larger than 
the first.  But these contradictions are dependent upon the meanings of certain predicates:   'is red' 

                                                      
83These would be models for theories expressed in predicate logic, not necessarily in modal logic. 



 

 

and 'is colorless' in the first example;  'is larger than' in the second.  They do not count as 
contradictions in predicate logic, which ignores these meanings (see Section 9.4). 
 If we count them as genuine contradictions, then we must deny, for example, that there are 
logically possible worlds containing objects that are both red and colorless.  If we refuse to count 
them as genuine contradictions, then we must condone such worlds.  In the former case, our notion 
of logical possibility will be the informal concept introduced in Chapter 1.  In the latter, we shall say 
that we are concerned with purely formal logical possibility. 
 Only if we accept the purely formal notion of logical possibility will we count as a logically 
possible world any set of objects with any assignment whatsoever of extensions to predicates.  If we 
accept the informal notion, we shall be more judicious—rejecting valuations which assign informally 
contradictory properties or relations to things.  We shall still face tough questions, however, about 
what counts as contradictory.  Can a thing be both a tree and identical to me?  That is, are the 
predicates 'is a tree' and 'is identical to John Nolt' contradictory?  The problem of essence, in a new 
guise, looms once again.  Only by insisting upon the purely formal notion of logical possibility can we 
evade it altogether. 
 In the next chapter the lovely simplicity of Leibnizian semantics will be shattered, so we might 
as well allow ourselves a brief moment of logical purity now.  Let's adopt, then, at least for the 
remainder of this section, the formal notion of logical possibility.   
 Now, take any set of sentences you like and formalize them in modal predicate logic.  The 
natural model for these sentences is an infinite array of worlds.  Any set whatsoever of actual and/or 
merely possible objects is a domain for some world in this array.  The predicates of the formalization 
are assigned extensions in each such set in all possible combinations (so that each domain is the 
domain of many worlds).  Among these domains is one consisting of all the objects that actually exist 
and nothing more.  And among the various assignments of extensions to predicates in this domain is 
one which assigns to them the extensions that they actually do have.  This assignment on this 
domain corresponds to the actual world.  (Other assignments over the same domain correspond to 
worlds consisting of the same objects as the actual world does, but differing in the properties those 
objects have or the ways they are interrelated.)  If our discourse contains any names, on the intended 
interpretation these names name whatever objects they name in the actual world; but they track their 
objects (i.e. continue to name them) through all the possibilities in which they occur. 
 

11.4 INFERENCE IN LEIBNIZIAN LOGIC 

 Leibnizian propositional logic retains all the inference rules of classical propostional logic, but 
adds new rules to handle the modal operators.  Though we shall examine inferences involving 
identity, we shall not deal with quantifiers in this section, since the quantifier rules depend on how we 
resolve the question of predication for nonexisting objects.  One reasonable way of resolving this 
question is to adopt a free logic—that is, a logic free of the presupposition that every name always 
names some existing thing.  We shall consider free logics in Section 15.1, and we defer the treatment 
of modal inferences involving quantification to that section. 
 The nonquantificational Leibizian logic that we will explore in this section adds to the rules of 
classical propositional logic and the classical rules for identity seven new inference rules (the names 
of most are traditional, and of various origins): 
 

Duality (DUAL)— from either of ◊ and □ infer the other; from either of □ and ◊ 

infer the other. 
 

K Rule (K)—from □(  ) infer (□  □). 

 

T Rule (T)—from □ infer . 

 

S4 Rule (S4)—from □ infer □□. 

 

Brouwer Rule (B)—from  infer □◊. 

 



 

 

Necessitation (N)— If  has previously been proved as a theorem, then any formula of the 

form □ may be introduced at any line of a proof. 

 

Necessity of identity (□=)—from = infer □=. 

 
It is not difficult to show that every instance of each of these rules is valid on a Leibnizian semantics—
and indeed we did this for some of them in Section 11.2 (the rest were left as exercises). 
 The necessitation rule differs from the others in that it uses no premises but refers, rather, to 
theorems established by previous proofs.  A theorem is a valid formula, a formula true in all worlds on 

all valuations.  Therefore, if  is a theorem, □ and any formula of the form □ may be asserted 

anywhere in a proof without further assumptions.  When we use the rule of necessitation, we 
annotate it by writing its abbreviation 'N' to the right of the introduced formula, followed by the 
previously proved theorem or axiom schema employed. 
 These seven inference rules, together with the rules of classical propositional logic and the 
identity rules =I and =E, constitute a system of inference that is sound and complete with respect to a 
Leibnizian semantics for the modal propositional logic with identity—but to show this is beyond our 

scope.  The purely propositional rules (that is, the ones other than =I, =E, and □=) comprise a logic 

known as S5.84  This section is largely an exploration of the valid inferential patterns of S5.   

 We begin by proving the sequent 'P  ├ ◊P': 

   
  1 P    A 

  2 | □P   H (for I) 

  3 | P   2 T 

  4 | P & P   1,3 &I 

  5 □P    2-4 I 

  6 ◊P    5 DUAL 

 

The strategy is an indirect proof.  Recognizing initially that '◊P' is interchangeable with '□P', we 

hypothesize '□P' for reductio.  Using the T rule, the contradiction is obtained almost immediately.  

This yields '□P', which is converted into '◊P' by DUAL at line 6. 

 The rules N and K are often used together to obtain modalized versions of various theorems 

and rules.  The sequent '□(P & Q)  ├  □P', for example, which is a modalized version of &E is proved 

by using N and then K: 
 

 1 □(P & Q)    A 

 2 □((P & Q)  P)    N ((P & Q)  P)85 

 3 □(P & Q)  □P    2 K 

 4 □P     1,3 E 

 
 A similar but more sophisticated strategy utilizing N and K yields sequents involving 

possibility.  Our next example is a proof of  '◊P  ├  ◊(P  Q)', a modalized version of I.  Here we 

apply N to the theorem '(P  Q)  P', the contrapositive of 'P  (P  Q)', which in effect expresses 

I.  (This strategy of applying N to contraposed nonmodal versions of the modal sequent we want to 
prove is typical when the modality involved is possibility.) 
 

 1 ◊P     A 

 2 □((P  Q)  P)   N ((P  Q)  P)86 

                                                      
84The name originates with the logician C. I. Lewis, whose pioneering work on modal logic dates from 
the first few decades of the twentieth century.  Lewis explored a number of modal systems, which he 
christened with such unmemorable labels.  Inexplicably, the labels stuck. 
85This theorem is problem 2 of Exercise 4.4.1. 
86See problem 6 of Exercise 4.4.1. 



 

 

 3 □(P  Q)  □P   2 K 

 4 □P     1 DUAL 

 5 □(P  Q)     3,4 MT 

 6 ◊(P  Q)    5 DUAL 

 
Note the use of the derived rule Modus Tollens at line 5.  Derived rules or classical propositional logic 
(see Section 4.4) are all available in Leibnizian modal logic. 

 N and K are used together once again in this derivation of the theorem '├ ◊P  □P': 

 
 

 1 | ◊P    H (for I) 

 2 | □P    1 DUAL 

 3 | □(P  P)   N (P  P)87 

 4 | □P  □P   3 K 

 5 | □P    2,4 MT 

 6 ◊P  □P    1-5 I 

 

 However, very different strategy may be used to prove the related theorem '├ □P  ◊P': 

 

 1 | □P    H (for I) 

 2 |  ◊P   H (for I) 

 3 | | □P   2 DUAL 

 4 | | □P & □P  1,3 &I 

 5 | ◊P    2-4 I 

 6 □P  ◊P    1-5 I 

 
Here after hypothesizing the theorem's antecedent for conditional proof, we employ an indirect proof, 

hypothesizing '◊P' for reductio at line 2.  The use of DUAL at line 3 immediately provides a 

contradiction, which is recorded at line 4, and the conclusion follows by easy steps of I and I at 
lines 5 and 6.  

 The following proof of the sequent '□(P  Q)  ├  □Q  □P', which is a kind of modalized 

version of modus tollens, displays further uses of N and K: 
 

 1 □(P  Q)    A 

 2 □((P  Q)  (Q  P))  N ((P  Q)  (Q  P)) 

 3 □(P  Q)  □(Q  P)  2 K 

 4 □(Q  P)    1,3 E 

 5 □Q  □P    4 K 

 

The necessitation rule N is used at line 2 with the theorem '├ (P  Q)  (Q  P)', which was 

proved in Section 4.4.  In the use of K at line 3,  is 'P  Q' and  is 'Q  P', but at line 5  is 'Q' 

and  is 'P'. 
 

 The B rule is used in the following proof of '◊□P ├ P': 

 
 

 1 ◊□P     A 

 2 | P    H (for I) 

 3 | □◊P    2 B 

 4 | □(◊P  □P)   N (◊P  □P) 

                                                      
87See problem 3 of Exercise 4.4.1. 



 

 

 5 | □◊P  □□P   4 K 

 6 | □□P    1 DUAL 

 7 | □◊P    5,6 MT 

 8 | □◊P & □◊P   3,7 &I 

 9 P     2-8 I 

 10 P     9 E 
 

Note the use of N with the previously proved modal theorem '◊P  □P' at line 4. 

 We next prove the theorem '├ ◊◊P  ◊P', using the S4 rule: 

 

 1 | ◊◊P    H (for I) 

 2 | | □P   H (for I) 

 3 | | □□P   2 S4 

 4 | | □(□P  ◊P)  N (□P  ◊P) 

 5 | | □□P  □◊P  4 K 

 6 | | □◊P   3,5 E 

 7 | | □◊P   1 DUAL 

 8 | | □◊P & □◊P  6,7 &I 

 9 | □P    2-8 I 

 10 | ◊P    9 DUAL 

 11 ◊◊P  ◊P    1-10 I 

 

This theorem can easily be strengthened to the biconditional '◊P  ◊◊P', using the previously proved 

sequent 'P ├ ◊P' as a derived rule.  This biconditional shows that repetition of possibility operators is 

in effect redundant in Leibnizian logic.  The same can be shown for necessity operators—i.e., '├ □P 

 □□P', but the proof is left as an exercise. 

 As in propositional and predicate logic, we may use derived rules.  We will not, however, 
bother to name them, since few have widely used names.  Instead, we simply list the previously 
proved sequent to the right, together with the line numbers of the premises (if any) that are instances 
of the previously proved sequent's premises.  (Rules derived from theorems have have no premises, 

and we cite no lines for them.)  This proof of '□(P  Q)  ├ ◊P  ◊Q' uses the previously proved 

sequent '□(P  Q)  ├  □Q  □P' as a derived rule at line 4: 

 

 1 □(P  Q)    A 

 2 | ◊P    H (for I) 

 3 | | □Q   H (for I) 

 4 | | □Q  □P  1 □(P  Q)  ├  □Q  □P 

 5 | | □P   3,4 E 

 6 | | □P   2 DUAL 

 7 | | □P & □P  5,6 &I 

 8 | □Q    3-7 I 

 9 | ◊Q    8 DUAL 

 10 ◊P  ◊Q    2-9 I  

 

Notice the use of indirect proof with the duality rule to obtain '◊Q'. 

 As I pointed out in Section 4.4, proof of a sequent establishes the validity of any formula that 
shares that sequent's form.  Thus when we use a sequent as a derived rule, we may use any 

instance of it.  The following proof of the sequent 'a=b  ├ □a=b' utilizes the previously proved 

sequent '□(P  Q)  ├ ◊P  ◊Q' as a derived rule at line 5.  This sequent is used, however, in the 

form '□(a=b  □a=b)  ├  ◊a=b  ◊□a=b', where 'a=b' replaces 'P' and '□a=b' replaces 'Q'.  Similarly, 

the previously proved sequent '◊□P ├ P' is used in the form '◊□a=b ├ a=b' at line 7. 



 

 

 

  1 a=b    A 

  2 | □a=b   H (for I) 

  3 | ◊a=b   2 DUAL 

  4 | □(a=b  □a=b)  N (a=b  □a=b) 

  5 | ◊a=b  ◊□a=b  4 □(P  Q)  ├ ◊P  ◊Q 

  6 | ◊□a=b   3,5 E 

  7 | a=b   6  ◊□P ├ P 

  8 | a=b & a=b  1,7 &I 

  9 □a=b   2-8 I 

  10 □a=b    9 E 

 

At line 4 we use the necessitation rule with the theorm '├ a=b  □a=b'.  We didn't actually prove this 

theorem, but its proof is trivial, give the □= rule, and is left for an exercise below.   

 This proof shows that not only is identity necessary as the □= axiom schema asserts, but also 

nonidentity is necessary—a result fully appropriate in light of the semantics of rigid designation. 
 Our next result establishes that whatever is possible is necessarily possible—i.e. (on 

Leibnizian semantics) possible with respect to any world.  The sequent expressing this idea is '◊P  ├  

□◊P': 

 

 1 ◊P    A 

 2 □◊◊P    1 B 

 3 □(◊◊P  ◊P)  N (◊◊P  ◊P) 

 4 □◊◊P  □◊P  3 K 

 5 □◊P    2,4 E 

 
 And finally we show that whatever is even possibly necessary is necessary.  That is, the 

sequent '◊□P ├ □P' is provable: 

 

 1 ◊□P    A 

 2 □(◊□P  P)   N (◊□P  P) 

 3 □◊□P  □P   2 K 

 4 □◊□P    1 ◊P ├ □◊P 

 5 □P    3,4 E 

 
EXERCISE 11.4:  Prove the following sequents: 

1 ├ a=b  □a=b 

2 □P  ├  □(P  Q) 

3 ├  □P  □P  

4 ◊(P & Q) ├ ◊P 

5 □Q  ├  □(P  Q) 

6 ◊P  ├  □(P  Q) 

7 ├  □P  □□P 

8 ├  ◊(P & P) 

9 □P, □Q  ├  □(P & Q) 

10 □P  ├  □□□P 

  



 

 

CHAPTER 12 
KRIPKEAN MODAL LOGIC 

 

12.1 KRIPKEAN SEMANTICS 
 There is among modal logicians a modest consensus that Leibnizian semantics accurately 
characterizes logical possibility, in both its formal and informal variants.  As we saw in Section 11.3, 
however, his does not tell us all we would like to know about informal logical possibility, because 
Leibnizian semantics does not specify which worlds to rule out as embodying informal contradictions.  
(Is the concept of a dimensionless blue point, for example, contradictory?  What about the concept of 
a God-fearing atheist?  The concept of a largest number?)   Still, the semantic rules of Leibnizian 
logic as laid out in Section 11.2 and the inference rules of Section 11.4 do arguably express correct 
principles of both formal and informal logical possibility. 
 But logical possibility, whether formal or informal, is wildly permissive.  Things that are 
logically possible need not be metaphysically possible (i.e., possible when we take essence into 
account).  And things that are metaphysically possible need not be physically possible (i.e., possible 
when we take the laws of physics into account).  It seems both logically and metaphysically possible 
for example, to accelerate an object to speeds greater than the speed of light.  But this is not 
physically possible.  Moreover, what is physically possible need not be practically possible (i.e., 
possible when we take actual constraints into account).  It is physically possible to destroy all 
weapons of war, but it may not (unfortunately) be practically possible.  Logical, metaphysical, 
physical, and practical possibility are all forms or degrees of alethic possibility.  And there are, no 
doubt, other forms of alethic possibility as well.  Furthermore there are, as we saw earlier, various 
nonalethic forms of "possibility":  epistemic possibility, moral permissibility, temporal possibility, and 
so on.  Does Leibnizian semantics accurately characterize them all —or do some modalities require a 
different semantics? 

 Consider the metatheorem, proved in Section 11.2, that sequents of the form □  ├   are 

valid.  This seems right for all forms of alethic possibility.  What is logically or metaphysically or 
physically or practically necessary is in fact the case.  There are corresponding principles in 
epistemic, temporal, and deontic logic: 
 
 MODALITY PRINCIPLE MEANING   

 Epistemic sK ├  s knows that ; so  

 Temporal H ├  It has always been the case that ; so  

 Deontic  O ├  It is obligatory that ; so  
 
The first is likewise valid.  But the temporal and deontic principles are invalid.  What was may be no 
longer, and what ought to be often isn't.  Both temporal logic and of deontic logic, then, have non-
Leibnizian semantics.  

 Or, to take a more subtle example, consider sequents of the form □  ├  □□, which are also 

valid on a Leibnizian semantics.  Some variants of this principle in different modalities are given 
below: 
 
 MODALITY PRINCIPLE MEANING   

 Alethic  □ ├ □□ It is necessary that ; so it is  

     necessarily necessary that 88 

 Epistemic sK ├ sKsK s knows that ; so s knows that  

     s knows that  

 Temporal H ├ HH It has always been the case that ;  
     so it has always been the case that  

     it has always been the case that  

                                                      
88Necessity can be understood here in any of the various alethic senses -- logical, metaphysical, 
physical, practical, etc. 



 

 

 Deontic  O ├ OO It is obligatory that ; so it is  

     obligatory that it is obligatory that . 
 
The temporal and alethic versions are plausible, perhaps; but the epistemic and deontic versions are 
dubious.  The epistemic version expresses a long-disputed principle in epistemology; it seems, for 
example, to rule out unconscious knowledge.  And the deontic version expresses a kind of moral 
absolutism:  the fact that something ought to be the case is not simply a (morally) contingent product 
of individual choice or cultural norms, but is itself morally necessary.  These are controversial theses.  
We should suspect a semantics that validates them. 
 In fact, Leibnizian semantics seems inadequate even for some forms of alethic modality.  

Consider the sequent 'P ├ □◊P' with respect to physical possibility.  (This sequent is valid given a 

Leibnizian semantics; see problem 5 of Exercise 11.2.2.) 
 What does it mean for something to be physically possible or physically necessary?  
Presumably, a thing is physically possible if it obeys the laws of physics and physically necessary if it 
is required by those laws.  But are the laws of physics the same in all worlds?  Many philosophers of 
science believe that they are just the regularities that happen to hold in a given world.  Thus in a more 
regular world there would be more laws of physics, in a less regular world fewer.  If so, then the laws 

of physics—and physical possibility—are world-relative.89  Leibnizian semantics treats possiblility as 
absolute; all worlds are possible from the point of view of each.  But our present reflections suggest 
that physical possibility, at least, is world-relative. 
 To illustrate, imagine a world, world 2, in which there are more physical laws than in the 
actual world, which we shall call world 1.  In world 2, not only do all of our physical laws hold, but in 
addition it is a law that all planets travel in circular orbits.  (Perhaps some novel force accounts for 
this.)  Now in our universe, planets move in either elliptical or circular orbits.  Thus in world 1 it is 
physically possible for planets to move in elliptical orbits (since some do), but in world 2 planets can 
move only in circular orbits.  Since world 2 obeys all the physical laws of world 1, what happens in 
world 2, and indeed world 2 itself, is physically possible relative to world 1.  But the converse is not 
true.  Because what happens in world 1 violates a physical law of world 2 (namely that planets move 
only in circles), world 1 is not possible relative to world 2.  Thus the very possibility of worlds 
themselves seems to be a world-relative matter! 
 Kripkean semantics takes the world-relativity of possibility seriously.  Within Kripkean 
semantics, various patterns of world-relativity correspond to different logics, and this variability 
enables the semantics to model a surprising variety of modal conceptions.   
 The fundamental notion of Kripkean semantics is the concept of relative possibility (which is 
also called alternativeness or accessibility).  Relative possibility is the relation which holds between 

worlds x and y just in case y is possible relative to x.  The letter 'R' is customarily used to express this 

relation in the metatheory.  Thus we write: 

    xRy 

to mean "y is possible relative to x" or "y is an alternative to x" or "y is accessible from x."  (These are 
all different ways of saying the same thing.)  So in the example just discussed it is true that 1R2 

("world 2 is possible relative to world 1"), but it is not true that 2 1.  Each world is also possible 

relative to itself, since each obeys the laws which hold within it.  Hence we have 1R1 and 2R2.  The 

structure of this two-world model is represented in the following diagram, where each circle stands for 
a world and an arrow indicates that the world it points to is possible relative to the world it leaves: 
 

 

                                                      
89I should confess that virtually everything I am saying here is controversial.  But I have suppressed 
objections, not because I am confident that what I am saying here is true, but because I am trying to 
trace a line of thought that makes the transition from Leibnizian to Kripkean semantics intelligible.  
The metaphysics I spin out in the process should be regarded as illustration, not as gospel. 



 

 

 A Kripkean model is in most respects like a Leibnizian model, but it contains in addition a 

specification of the relation R—that is, of which worlds are possible relative to which.  This is given by 

defining the set of pairs of the form x,y where y is possible relative to x.  In the example above, for 
instance, R is the set: 

 

    {1,2, 1,1, 2,2} 
 
The definition of a Kripkean model mimics that of a Leibnizian model, with the addition of the 

requirement that R be defined (item 2 below): 

 
DEFINITION:  A Kripkean valuation or Kripkean model V for a formula or set of formulas of modal 

predicate logic consists of: 

 1 A nonempty set WV of objects, called the worlds of V, 

 2 A relation R, consisting of a set of pairs of worlds from WV,   

 3 For each world w in WV a nonempty set Dw of objects, called  

  the domain of w,  

 4 For each name or nonidentity predicate  of that formula or set  

  of formulas an extension V() (if is a name) or V(,w) (if  is a  

  predicate and w a world in WV) as follows: 

  i If  is a name, then V() is a member of the domain of  

   at least one world, 

  ii If  is a zero-place predicate, V(,w) is one (but not both)  

   of the values T or F. 

  iii If  is a one-place predicate, V(,w) is a set of members  

   of Dw. 

  iv If  is an n-place predicate (n>1), V(,w) is a set of  

   ordered n-tuples of members of Dw. 

 

 The addition of R brings with it a slight but significant change in the valuation rules for '□' and 

'◊'.   Necessity at a world w, is no longer simply truth in all worlds, but truth in all worlds that are 

possible relative to w.  Likewise, possibility in w is truth in at least one world that is possible relative to 
w.  Thus instead of the valuation rules 11 and 12 for Leibnizian semantics (Section 11.2), Kripkean 
semantics has the modified rules: 
 

11' V(□,w) = T iff for all worlds u such that wRu, V(,u) = T; 

 V(□,w) = F iff for some world u, wRu and V(,u) =/  T. 

 12' V(◊,w) = T iff for some world u, wRu and V(,u) = T; 

  V(◊,w) = F iff for all worlds u such that wRu, V(,u) =/  T. 

 
No other valuation rules are changed. 
 Consider now a Kripkean model for propositional logic (which allows us to ignore the domains 
of the worlds), using the sentence letter 'P', which we interpret to mean "Planets move in elliptical 

orbits."  Let WV be the set {1,2} and R be the set: 

 

    {1,2, 1,1, 2,2} 
 
as mentioned and diagrammed in the example recently discussed.  Suppose further that: 
 

    V(P,1) = T 

    V(P,2) = F 

 



 

 

as in that example.  (That is, planets move in elliptical orbits in world 1 but not in world 2.)  Now the 

sequent 'P ├ □◊P', which was valid on Leibnizian semantics, is invalid on this Kripkean model.  For 

V(P,1) = T, but V(□◊P,1) =/  T.  That is, world 1 provides a counterexample. 

 We can see that V(□◊P,1) =/  T as follows.  Note first that the only world in WV accessible from 

world 2 is 2 itself; in other words, the only world u in WV such that 2 u is world 2.  Moreover, V(P,2) =/  

T.  Hence for all worlds u in WV such that 2 u and V(P,u) =/  T.  So by rule 12' V(◊P,2) =/  T.  Therefore 

since 1R2, there is some world x in WV (namely world 2) such that 1Rx and V(◊P,x) =/  T.  It follows by 

rule 11' that V(□◊P,1) =/  T.  We restate this finding as a formal metatheorem: 

 

METATHEOREM:  The sequent 'P ├ □◊P' is not valid on Kripkean semantics. 

Proof: As given above. 
 

Moreover, neither of the other sequents mentioned in this section—'□P ├ P' and '□P ├ □□P'—is valid, 

either.  Let's take '□P ├ P' first. 

 

METATHEOREM:  The sequent '□P  ├  P' is not valid on Kripkean semantics. 

Proof: Consider the following Kripkean model for propositional logic.  Let the set WV of worlds be 

{1,2} and the accesibility relation R be the set {1,2, 2,2}, and let: 

    V(P,1) = F 

    V(P,2) = T 

Now  V(P,2) = T and 2 is the only world possible relative to 1; that is 2 is the only world u such that 

1Ru.  Hence for all worlds u such that 1Ru, V(P,u) = T.  Therefore by rule 11' V(□P,1) = T.  But V(P,1) 

=/  T.  Therefore '□P  ├  P' is not valid on Kripkean semantics.  QED 

 

This result poses a problem.  The sequent '□P  ├  P' is (or ought to be) valid on the alethic and 

epistemic interpretations.  But it should not come out valid on the deontic interpretation (which, to 
distinguish it from the other interpretations, we usually write as 'OP  ├  P) or on the temporal 
interpretation discussed above.   
 The reasoning for the deontic interpretation is straightforward.  Think of world 1 as the actual 
world, world 2 as a morally perfect world, and 'P' as expressing the proposition "Everything is morally 

perfect."  Then, of course, 'P' is true in world 2 but not in world 1.  Moreover, think of R as expressing 

the relation of permissibility or moral possibility.  Now world 2 is morally permissible, both relative to 
itself and relative to world 1 (because what is morally perfect is surely morally permissible!).  But 
world 1 is not morally permissible, either relative to itself or relative to world 2, because all kinds of 
bad (i.e., morally impermissible) things go on in it.  Our model, then, looks like this: 

 
 Now since in this model every world that is morally permissible relative to the actual world is 
morally perfect (since there is, in the model, just one such world, world 2), it follows (by the semantics 

for '□', i.e., formally, rule 11) that it ought to be the case in world 1 that everything is morally perfect, 

even though that is not the case in world 1.   Thus when we interpret '□' as "it ought to be the case 

that,"90 we can see how '□P  ├  P' can be invalid.  Kripke semantics, then, seems right for the deontic 

interpretation, but wrong for the epistemic, temporal, and alethic interpretations. 
 But in fact Kripke semantics is applicable to the other interpretations, as well, provided that 
we are willing to relativize our concept of validity.  The key to this new conception can be found by re-
examining the proof from an alethic viewpoint.  From this viewpoint the proof is just wrong.  Surely, if 
it is alethically necessary that P, then P.  But where is the mistake? 

                                                      
90We could, of course, have used the symbol 'O' instead of '□' to express the deontic reading, but we 

are considering several different readings simultaneously here. 



 

 

 It lies, from the alethic point of view, in the specification of R.  The alethic sense of possibility 
requires that every world be possible relative to itself, for what is true in a world is certainly alethically 

possible in that same world.  But the relation R used in the proof does not hold between world 1 and 

itself.  The model is therefore defective from an alethic point of view. 
 To represent the alethic intepretation, we must insist that R be reflexive—that is that each 

world in the set WV of worlds be possible relative to itself.  Thus the model given above as a 

counterexample is not legitimate for the alethic interpretation.  The only admissible models—the only 
models that count—for the alethic interpretation are models whose accessibility relation is reflexive.  
This is also true for the epistemic modalities, but not for the deontic or temporal ones.   
 This suggests the following strategy:  each of the various modalities is to be associated with a 

particular set of admissible models, that set being defined by certain restrictions on the relation R.  

Validity, then, for a sequent expressing a given modality is the lack of a counterexample among 
admissible models for the particular sorts of modal operators it contains.  Other semantic notions 
(consistency, equivalence, and the like) will likewise be defined relative to this set of admissible 
models, not the full range of Kripke models.  In this way we can custom-craft a different semantics for 
each of the various modalities. 
 Let us, then, require admissible models for alethic or epistemic modalities, but not for the 
deontic or temporal ones, to be reflexive.  Then we must redefine the notion of a valid sequent as 
follows: 
 
 A sequent is valid relative to a given set of models (valuations) iff there is 
 no model in that set containing a world in which the sequent's premises 
 are true and its conclusion is not true. 
 
To say that a sequent is valid relative to Kripke semantics in general is to say that it has no 

counterexample in any Kripke model, regardless of how R is structured.   

 With this new relativized notion of validity, we can now prove that all sequents of the form □  

├   are valid—relative to the class of reflexive models: 
 

METATHEOREM:  All sequents of the form □  ├   are valid relative to the set of models whose 

accessibility relation is reflexive. 

Proof: Suppose for reductio that this is not the case—that is, for some formula  there exists a 

valuation V whose accessibility relation R is reflexive and some world w of V such that 

V(□,w) = T and V(,w) =/  T.  Now since V(□,w) = T, by rule 11' V(,u) = T, for every world 

u such that wRu.  But since R is reflexive, wRw.  Therefore V(,w) = T, which contradicts 

what we had concluded above. 

Thus we have shown that all sequents of the form □  ├   are valid relative to the set of models 

whose accessibility relation is reflexive.  QED 
 

We may say, then, that all sequents of the form □  ├   are valid when '□' is interpreted as an 

alethic, or epistemic operator, but not if we interpret it as a deontic or temporal operator of the sort 
indicated earlier.  But the validity of all sequents of this form is the same thing as the validity of the T 
rule introduced in Section 11.4.  Thus we may conclude that the T rule is valid for some modalities but 
not for others. 

 It is the reflexivity of the accessibility relation that guarantees that sequents of the form □ ├ 

 are valid.  Such sequents were valid as a matter of course on Leibnizian semantics, where it is 
assumed that each world is possible relative to each, and hence that each world is possible relative to 
itself.  Accessibility in Leibnizian semantics is therefore automatically reflexive.  But Kripkean 
semantics licenses accessibility relations that do not link each world to each, thus grounding the 
construction of logics weaker in various respects than Leibnizian logic. 

 Just as the reflexivity of R guarantees the validity of □ ├ , so other requirements on R 

correspond to other modal principles.  Principles which hold for all Kripke models apply to all the 
logics encompassed by Kripkean semantics.  Those which hold only in restricted classes of Kripke 



 

 

models (such as models in which R is reflexive) are applicable to some intepretations of the modal 

operators but not to others.   

 We noted above that the principle □ ├ □□ seems plausible for temporal and alethic 

modalities, but questionable for deontic or epistemic ones.  This principle is in fact just the S4 rule 
discussed in Section 11.4.  It is valid on Leibnizian semantics, as we saw in the last chapter, but it is 

invalid on Kripkean semantics, since, for example, the instance '□P  ├  □□P' is invalid: 

 

METATHEOREM:  The sequent '□P  ├  □□P' is not valid on Kripkean semantics. 

Proof: Consider the following Kripkean model for propositional logic.  Let the set WV of worlds be 

{1,2,3} and the accesibility relation R be the set {1,2, 2,3}, and let: 

    V(P,1) = T 

    V(P,2) = T 

    V(P,3) = F 

Now  V(P,2) = T and 2 is the only world possible relative to 1; that is 2 is the only world u such that 

1Ru.  Hence for all worlds u such that 1Ru, V(P,u) = T.  Therefore by rule 11' V(□P,1) = T.  However, 

since 2 3 and V(P,3) =/  T, by rule 11' V(□P,2) =/  T.  And since 1R2 and V(□P,2) =/  T, again by rule 11' 

V(□□P,1) =/  T.  Therefore, since V(□P,1) = T and V(□□P,1) =/  T, we have a counterexample, and so 

'□P  ├  □□P' is not valid on Kripkean semantics.  QED 

 

Yet the S4 rule is valid relative to models whose accessibility relation is transitive.  The relation R is 

transitive if and only if for any worlds x, y and z, if xRy and yRz, then xRz.  Think of this in relation to 

physical possibility.  We said that a world y is physically possible relative to a world x if and only if y 
obeys the same physical laws (and perhaps some additional physical laws as well).  That is: 
 

  xRy if and only if y obeys all the physical laws that hold in x. 

 
Now clearly if y obeys all the laws that hold in x and z obeys all the laws that hold in y, then z obeys 

all the laws that hold in x.  That is, if xRy and yRz, then xRz.  So the accessibility relation for physical 

possibility is transitive.  The next metatheorem shows how we get from this fact about the 

accessibility relation to the conclusion that all sequents of the form □  ├  □□ are valid, where '□' is 

interpreted as physical necessity. 
 

METATHEOREM:  All sequents of the form □ ├ □□ are valid relative to the set of models whose 

accessibility relation is transitive. 

Proof: Suppose for reductio that this is not the case—that is, for some formula  there exists a 

valuation V whose accessibility relation R is transitive and some world x of V such that 

V(□,x) = T and V(□□,x) =/  T.  Now since V(□,x) = T, by rule 11' V(,u) = T for every world 

u such that xRu.   But since V(□□,x) =/  T, by rule 11' there is a world y such that xRy and 

V(□,y) =/  T.  And since V(□,y) =/  T, again by rule 11' there is a world z such that yRz and 

V(,z) =/  T.  Now since xRy and yRz, and R is transitive, it follows that xRz.  But we saw 

above that V(,u) = T for every world u such that xRu.  So in particular V(,z) = T, contrary 

to what we just concluded. 

Thus all sequents of the form □ ├ □□ are valid relative to the set of models whose accessibility 

relation is transitive.  QED 
 

 For our last example, we return to the principle  ├  □◊, which was valid on Leibnizian 

semantics (indeed, it is just the B rule introduced in Section 11.4) but seemed invalid for physical 
possibility.  (The fact that planets move in elliptical orbits does not mean that it is necessarily possible 
that planets move in elliptical orbits, for there are physically possible worlds in which planetary orbits 

are necessarily circular and hence in which elliptical orbits are impossible.)  The property of R that 

would make this sequent valid is symmetry.  R is symmetric if and only if for any worlds x and y, if 

xRy, then yRx.  The accessibility relation for physical possibility is not symmetric, since a world with 

our physical laws plus some "extra" laws would be physically possible relative to our world, but ours 



 

 

would not be physically possible relative to it (since our world violates its "extra" laws).  Logical 
possibility, however, presumably does have a symmetric accessibility relation—assuming (as is 
traditional) that the laws of logic are the same for all worlds.  The final metatheorem in this section 

shows why symmetry guarantees the validity of   ├  □◊. 

 

METATHEOREM:  All sequents of the form   ├  □◊ are valid relative to the set of models whose 

accessibility relation is symmetric. 

Proof: Suppose for reductio that this is not the case—that is, for some formula  there exists a 

valuation V whose accessibility relation R is symmetric and some world x of V such that 

V(,x) = T and V(□◊,x) =/  T.  Now since V(□◊,x) =/  T, by rule 11' there is a world y such 

that xRy and V(◊,y) =/  T.  And since V(◊,y) =/  T, by rule 12' for all worlds u such that yRu, 

V(,u) =/  T.  But R is symmetric; and so since xRy it follows that yRx.  Thus since for all 

worlds u such that yRu, V(,u) =/  T, it follows in particular that V(,x) =/  T.  But we concluded 

above that V(,x) = T, which is a contradiction. 

So, contrary to our hypothesis,   ├  □◊ is valid relative to the set of models whose accessibility 

relation is symmetric.  QED 
 
 We have said so far that the accessibility relation for all forms of alethic possibility is reflexive.   
For physical possibility, I have argued that it is transitive as well.  And for logical possibility seems 
also to be symmetric.  Thus the accessibility relation for logical possibility is apparently reflexive, 
transitive, and symmetric.  It can be proved, though we shall not do so here, that these three 
characteristics together define the logic S5, which is characterized by Leibnizian semantics.  That is, 
making the accessibility relation reflexive, transitive and symmetric has the same effect on the logic 
as making each world possible relative to each. 
 Leibnizian semantics can in fact be viewed as a special case of Kripkean semantics—the 
case in which we restrict admissible models to those whose accessibility relation is universal, i.e., 
those in which each world is accessible from each.  Universal relations are, of course, automatically 
reflexive, transitive, and symmetric.  Thus, for example, any sequent which is valid in all reflexive 
models is also valid in all universal models.  Sequents valid on Leibnizian semantics can from the 
Kripkean perspective be regarded as sequents valid relative to the special class of models with 
universal accessibility relations.  Since Leibnizian semantics seems appropriate for logical possibility, 
from a Kripkean point of view logical possibility is characterized by the class of Kripkean models with 
universal accessibility relations. 

 If we drop the requirement of symmetry, we lose the law   ├  □◊ (the inference rule B of 

Section 11.4), and principles derivable from it, and obtain a weaker logic, S4, which is a good 
candidate for being the logic of physical possibility.   

 Logics for the other modalities involve other principles and other properties of R, many of 

which are disputed.  The chief merit of Kripkean semantics is that it opens up new ways of conceiving 
and interrelating issues of time, possibility, knowledge, obligation, and so on.  For each we can 
imagine a relevant set of worlds (or moments) and a variety of ways an accessibility relation could 
structure this set and define an appropriate logic.  This raises intriguing questions that, were it not for 
Kripke's work, we never would have dreamed of asking. 
 
EXERCISE 12.1:  Prove the following metatheorems.  (Note that saying that a form is valid relative to 
the set of all Kripke models is just another way of saying that it is (unqualifiedly) valid on Kripkean 
semantics.) 

1   ├  ◊ is valid relative to the set of models whose accessibility relation  

 is reflexive. 

2 ◊◊  ├  ◊ is valid relative to the set of models whose accessibility  

 relation is transitive. 

3 ◊□  ├   is valid relative to the set of models whose accessibility  

 relation is symmetric. 

4 'P  ├  ◊P' is not valid relative to the set of all Kripke models. 

5 '◊◊P  ├  ◊P' is not valid relative to the set of all Kripke models. 



 

 

6 '◊□P  ├  P' is not valid relative to the set of all Kripke models. 

7 □(  )  ├  □  □ is valid relative to the set of all Kripke models. 

8 □  ├  ◊ is valid relative to the set of models whose accessibility  

 relation is reflexive. 

9 ◊  ◊ is valid relative to the set of models whose accessibility  

 relation is reflexive. 

10 ◊( & ) is valid relative to the set of all Kripke models. 

 
12.2 INFERENCE IN KRIPKEAN LOGICS 
 In Section 11.4 we introduced the full Leibnizian logic S5.  Since then we have seen that 
some of the rules of S5 are inappropriate for certain forms of modality.  The T rule, for example, (from 

□ infer ) is plainly invalid when '□' is taken to express obligation, as it is in deontic logics.  We have 

now seen that this rule was validated by the reflexivity of the accessibility relation.  Likewise, the B 

rule (from  infer □◊), which is validated by the symmetry of the accessibility relation, seems invalid 

for physical possibility.  And again the S4 rule (from □ infer □□), which is validated by the 

transitivity of the accessibility relation, is of questionable validity for several modalities. 
 Just as Kripkean semantics permits nonreflexive, nonsymmetric, or nontransitive accessibility 
relations, which are fragments, as it were, of the full universal accessibility relation of Leibnizian 
semantics, so Kripkean logics may be fragments of the full Leibnizian logic S5.  Less metaphorically, 
Kripkean logics may lack some of the rules of inference (either basic or derived) that are available in 
S5. 
 There are, however, certain rules that are valid relative to the set of all Kripkean models.  
These rules, in other words, have no counterexamples no matter how severely we diminish the 
accessibility relation.  Three rules in particular are fundamental in this way: 
 

Duality (DUAL)— from either of ◊ and □ infer the other; from either of □ and ◊ 

infer the other. 
 

K Rule (K)—from □(  ) infer (□  □). 

 

Necessitation (N)— If  has previously been proved as a theorem, then any formula of the 

form □ may be introduced at any line of a proof. 

   
These rules are common to all Kripkean modal logics.  Together with the ten basic rules of classical 
propositional logic they constitute a logic that is sound and complete relative to the set of all Kripke 
models.  This logic is known as the system K (for Kripke!).  In other words, a sequent of propositional 
modal logic (modal logic without the identity predicate or quantifiers) is provable in the system K iff it 

has no counterexample in any Kripke model.91 
 K itself is not very interesting.  But by adding various rules to K we may obtain differing logics 
that are useful for different purposes.  Each rule corresponds to a particular structural requirement on 
the accessibility relation.  Imposing new structural requirements diminishes the range of admissible 
models—models that may serve as counterexamples.  Thus imposing new structural requirements on 
R increases the number of valid rules.  Among systems we have considered, the one with the most 

structural requirements is S5, for whose admissible models R must be reflexive, transitive and 

symmetric.  In a sense S5 is the maximal Kripkean logic, since it is sound and complete for the most 
restrictive class of models, the class of models whose accessibility relation is universal.  (Though 
reflexivity, transitivity and symmetry don't entail universality, the class of all universal models 
determines the same logic, S5, as the class of reflexive, transitive, and symmetric models does.)  The 
following table summarizes some characteristics of five important Kripkean logics.  But there are, in 
fact, infinitely many Kripkean logics, dozens if not hundreds of which have received detailed 
treatment.  This table, then, presents only a small sample: 

                                                      
91Proofs of the soundness and completeness of a great variety of Kripkean systems may be found in 
Brian F. Chellas, Modal Logic: An Introduction, Cambridge, Cambridge University Press, 1980, ch. 3.  



 

 

 

Some Important Kripkean Propositional Modal Logics 

 

Logic Basic Rules  
(in addition to the ten rules of classical 
propositional logic) 

Accessibility 
Relation 

Application 

K DUAL—from either of ◊ and 

□ infer the other; from 

either of □ and ◊ infer the 

other; 

K—from □(  ) infer (□  

□); and 

N— If  has previously been 
proved as a theorem, then any 

formula of the form □ may be 

introduced at any line of a 
proof. 

No restrictions Minimal Kripkean logic 

D DUAL, K, and N, together with: 

D—from □ infer ◊ 

Serial (see Section 
13.1) 

Good candidate for minimal 
deontic logic 

T DUAL, K, and N, together with: 

T—from □ infer . 

Reflexive Minimal alethic Logic 

S4 DUAL, K, N, and T together 
with:  

S4—from □ infer □□. 

Reflexive, 
transitive 

Good candidate for logic of 
physical possibility; closely 
related to intuitionistic logic 
(See Section 16.2) 

S5 DUAL, K, N, T and S4, 
together with: 

B—from  infer □◊ 

Reflexive, 
transitive, 
symmetric 

Logic of logical possibility, 
perhaps other kinds of 
possibility as well (see Section 
13.2). 

 
EXERCISE 12.2:  Note that in the problems below it is not safe to use the sequents proved in Section 
11.4 as derived rules, since these were proved using the full logic S5 and the systems in which we 
are working are fragments of S5 in which certain rules are unavailable.  Nevertheless, some of the 
strategies illustrated in that section may be useful here. 
I Construct proofs for the following sequents in the system K: 

 1 ◊P  ├  □P 

 2 □P  ├  ◊P 

 3 ├□(P  P)  

II Construct proofs for the following sequents in the system D: 

 1 ├ ◊(P  P) 

 2 ├ □(P & P) 

 3 ◊P  ├  □P 

 4 □□P  ├  □◊P 

III Construct proofs for the following sequents in the system T: 

 1 □P  ├  ◊P 

 2 ◊P  ├  P 

 3 P  ├  □P 

IV Construct proofs for the following sequents in the system S4: 

 1 ├  ◊P   ◊◊P 

 2 ◊□P  ├ ◊P 

 3 ◊P  ├ □◊P 

 



 

 

12.3 STRICT CONDITIONALS 
 We have until now been using the material conditional, symbolized by ‘’ to render the 
English operator 'if ... then' into formal logic.  This practice, as we noted in Section 3.1, is, strictly 
speaking, illegitimate.  The material conditional is at best only a loose approximation to 'if ... then'.  
Many inferences which are valid for the material conditional are invalid for English conditionals.  
Consider, for example: 
 
 Socrates grew to manhood. 

 If Socrates died as a child, then Socrates grew to manhood. 
 
 Socrates did not die as a child. 

 If Socrates died as a child, then Socrates grew to manhood. 
 
 It is not the case that if Socrates was a rock then Socrates was a man. 

 Socrates was a rock, but not a man. 
 
 If we eliminate auto accidents, then we save thousands of lives. 
 If we nuke the entire planet, then we eliminate auto accidents. 

 If we nuke the entire planet, then we save thousands of lives. 
 
 If the Atlantic is an ocean, then it's a polluted ocean. 

 If the Atlantic is not a polluted ocean, then it's not an ocean.  
 
In each case, the premises are true and the conclusion is false in the actual world, using our ordinary 
understanding of the conditional.  Yet in each case, the argument is valid if we interpret 'if ... then' as 
the material conditional.  The last two arguments have forms that at first glance appear to be 
paradigms of good reasoning:  hypothetical syllogism: 

  A  B, B  C  ├  A  C 
and contraposition: 

  A  B  ├  B  A 
(sometimes called "transposition").  Yet these forms are apparently invalid for 'if ... then'. 
 C. I. Lewis, the inventor of S4, S5 and other modern modal systems, was one of the first 
formal logicians to investigate the disparity between English and material conditionals.  Lewis noticed 
that ordinary English conditionals seemed to express, not just a truth function, but a necessary 
connection between antecedent and consequent.  Defying scepticism about the intelligibility of the 
concept of necessary connection, Lewis introduced in 1918 a new conditional that incorporated a 

notion of necessity.  Lewis symbolized it by the operator ‘⥽’, which is often called a fishhook.   ⥽  

is true if and only if it is impossible for both  to be true and  false.   ⥽  is true in other words, if 

and only if it is necessarily the case that if  then , where 'if ... then' signifies the material 

conditional.  Thus '⥽' is often introduced as a defined operator into modal systems using the 

definition: 
 

    ⥽   iff  □(  ), 

 
An equivalent definition in terms of the possibility operator is: 
 

    ⥽   iff  ◊( & ). 

 
Translated into Kripkean semantics, the truth conditions for the strict conditional are as follows: 
 

 V(⥽ ,w) = T iff for all worlds u such that wRu and V(,u) = T, V(,u) = T; 



 

 

 V( ⥽ ,w) = F iff for some world u such that wRu, V(,u) = T and V(,u)  T. 

 
Instead of the truth clause just given can equivalently say: 
 

 V(⥽ ,w) = T iff there is no world u such that wRu, V(,u) = T and V(,u)  T. 

 
 
 The strict conditional is in some respects a better approximation to English conditionals than 
is the material conditional.  But the closeness of the approximation depends in part upon which brand 
of alethic necessity we intend the strict conditional to express.  Usually, the necessity built into the 
connection expressed by English conditionals seems to be something more like practical than 

physical, metaphysical, or logical necessity.  So, though R, like all alethic accessibility relations, 

should be reflexive, it is doubtful that it need also be transitive and symmetric (as the accessibility 
relation for logical possibility probably is.)  Accordingly, we adopt as admissible for strict 

conditionals all and only those Kripke models in which R is reflexive. 

 We began this section with five arguments, the forms of the first three of which were as 
follows: 
 

 B  ├  A  B 
 

 A  ├  A  B 
 

 (A  B)  ├  A & B 
 

All three are valid, reading '' as the material conditional, but outrageous reading '' as an English 
conditional.  (Indeed, the first two have often been called the "paradoxes of material implication.")  Yet 

if we replace '' by '⥽', we get the reasonable result that none of the three are valid. 

 Let's consider the sequent 'B  ├  A ⥽ B' first.  To facilitate comparison with the first argument 

above, think of 'B' as meaning "Socrates grew to manhood" and 'A' as meaning "Socrates died as a 
child."  Socrates did, of course, grow to manhood; yet it is (or was) possible for him to have died as a 
child and not grown to be a man.  So the premise is true and the conclusion false.  To represent this 
counterexample formally we need two worlds:  world 1, representing the actual world, a world in 
which Socrates did grow to be a man, and a merely possible world, world 2, in which he died as a 
child: 
 

METATHEOREM:  The sequent 'B  ├  A ⥽ B' is invalid relative to the admissible models for strict 

conditionals. 
Proof: Consider Kripke model V in which: 

  WV = {1,2}     V(A,1) = F 

  R = {1,1,1,2,2,2}   V(B,1) = T 

       V(A,2) = T 

       V(B,2) = F 

This model is admissible for strict conditionals, because R is reflexive.  Since 1R2, V(A,2) = T, and 

V(B,2) =/  T, it follows that V(A ⥽ B,1) = F.  Thus, since V(B,1) = T, the sequent is invalid.  QED 

 

 The same counterexample establishes the invalidity of the sequent 'A  ├  A ⥽ B'.  In the 

actual world, Socrates did not die as a child, which makes 'A' true; but, since it was possible (relative 

to the actual world) that he did and never grew to manhood, 'A  B' is false.  Proof of the invalidity of 
this sequent is left to the reader (see the exercise at the end of this section). 

 The sequent '(A ⥽ B)  ├  A & B' is also invalid.  The fact that A does not necessitate B tells 

us nothing about the truth values of either A or B.  The formal treatment of this problem is left entirely 



 

 

to the reader. 
 While these forms of reasoning are not valid for the strict conditional, many natural and 
familiar patterns—modus ponens and modus tollens, for example—are valid.  So far, then, the strict 
conditional seems to answer accurately to our understanding of 'if ... then' in English. 
 But the situation is not as tidy as it seems.  The last two of our five arguments have the forms 
hypothetical syllogism and contraposition, respectively.  These forms, as we saw, seem invalid for 
English conditionals, but they are valid for the strict conditional.  We shall prove this for contraposition 
only, leaving the proof for hypothetical syllogism as an exercise: 
 

METATHEOREM:  The sequent 'A ⥽ B  ├ B ⥽ A' is valid relative to the admissible models for strict 

conditionals. 
Proof: Suppose for reductio that this sequent is invalid relative to the admissible models.  Then 

there exists some admissible model containing a world w such that V(A ⥽ B,w) = T and 

V(B ⥽ A,w) = F.  Since V(B ⥽ A,w) = F, there exists a world u such that wRu, V(B,u) = 

T and V(A,u) =/  T.  Hence by the valuation rule for negation V(A,u) = T and V(B,u) =/  T.  But 

since wRu, this implies that V(A ⥽ B,w) =/  T, and so we have a contradiction. 

Therefore, the sequent 'A  B  ├ B ⥽ A' is valid relative to the admissible models for strict 

conditionals.  QED 
  
 The fact that it makes hypothetical syllogism and contaposition valid might be seen as an 
advantage, rather than a disadvantage of the strict conditional.  These are, after all, common and 
persuasive forms of reasoning.  But since they are apparently invalid for at least some English 
conditionals, their validity for the strict conditional is in fact a disadvantage, insofar as the strict 
conditional is supposed to accurately analyze the English. 
 The disparity beween strict and English conditionals also crops up in "paradoxes" reminiscent 

of the paradoxes of material implication.  These concern the sequents '□B  ├  A ⥽ B' and '◊A  ├   

A ⥽ B', both of which are "paradoxically" valid.  Reading '⥽' as an English conditional, we can 

produce preposterously invalid instances.  For example: 
 
 It is necessarily the case that humans are mortal. 

 If humans are immortal, then humans are mortal. 
 
and 
 
 It is impossible for Socrates to be a rock. 

 If Socrates is a rock, then Socrates is a chihuahua. 
 
In both cases (thinking of the necessity or possibility invoked in the premise as practical, rather than, 
say, logical), the premise is true and the conclusion (understood as an English conditional) is false.  
Thus it is rash to identify even strict conditionals with their English counterparts. 
 
EXERCISE 12.3:  Prove the following metatheorems for the logic of strict conditionals—whose 

admissible models are all Kripke models in which R is reflexive. 

1 The sequent 'A  ├  A ⥽ B' is invalid. 

2 The sequent '(A ⥽ B)  ├  A & B' is invalid. 

3 The sequent '□B  ├  A ⥽ B' is valid. 

4 The sequent '◊A  ├  A ⥽ B' is valid. 

5 The formula 'A ⥽ A' is valid. 

6 The sequent 'A ⥽ B, A  ├  B' is valid. 



 

 

7 The sequent 'A ⥽ B, B  ├  A' is valid. 

8 The sequent 'A ⥽ B,  B ⥽ C  ├  A ⥽ C' is valid. 

9 The sequent 'A, B  ├  A ⥽ B' is invalid. 

10 The sequent 'A, B  ├  (A ⥽ B)' is valid. 

 

12.4 LEWIS CONDITIONALS 

 What, then, does the English 'if ... then' mean?  Logicians are divided on this question, and it 
is presumptuous even to assume that English conditionals all mean the same thing.   But for a good 
many English conditionals, the best answer I know of is this picturesque morsel from David Lewis: 
 

'If kangaroos had no tails, they would topple over' seems to me to mean something like this:  
in any possible state of affairs in which kangaroos have no tails, and which resembles our 
actual state of affairs as much as kangaroos having no tails permits it to, the kangaroos 

topple over.92 
 
More generally, we may say: 
 

 If  then  is true at a world w iff in all the worlds most like w in which  

  is true,  is also true. 
 
Contrast this with similarly stated truth conditions for the strict conditional: 
 

  ⥽  is true at a world w iff in all the worlds possible relative to w  

 in which  is true,  is also true. 
 
Here, of course, we have to specify the relevant sense of possibility; that is, we have to know which 
form of alethic modality we are dealing with. 
 Lewis' truth conditions, however, do not require us to specify the sort of possibility we intend.   
The antecedent of the conditional does that automatically.  We are to consider, not all practically, or 
physically, or logically possible worlds, but rather all the worlds most like ours in which the antecedent 
is true.   
 As a result, Lewis' truth conditions do not flounder, as those for the strict conditional do, when 
the antecedent is impossible.  With the strict conditional, if there are no possible worlds in which the 
antecedent is true, then, trivially, the consequent is true in all such worlds—no matter what that 
consequent may say.  Thus, as we saw, given that it is impossible for Socrates to be a rock and 
reading 'if ... then' as a strict conditional using the practical sense of possibility, we must concede that 
the absurd sentence 'If Socrates is a rock, then Socrates is a chihuahua' is true. 
 Lewis' semantics avoids this consequence.  Having not found any practically possible worlds 
in which the antecedent is true, we do not simply punt and declare the conditional true; rather, rising 
to the challenge, we consider more and more remote possibilities.  In our example, since it seems 
impossible, even in the metaphysical sense, for Socrates to be a rock, we must extend our 
consideration all the way out to mere logical possibilites before finding worlds in which he is.  When 
we come to the first of these (i.e., those most like the actual world—so that, despite the fact that in 
them Socrates is a rock, as much as possible of the rest of the world is as it actually is), we stop.  
Then we ask:  is Socrates a chihuahua in all these worlds?  The answer, pretty clearly, is no.  And so 
the sentence 'If Socrates is a rock, then Socrates is a chihuahua' is false. 
 Though this example is artificial, the general procedure is not.  When considering whether or 

not a statement of the form if  then  is true, we do in fact imagine things rearranged so that  is 

true and then try to determine whether under these new conditions  would also be true.  But we do 

this conservatively, excluding ways of making  true that are wilder than necessary.  That is, we try to 
keep as much as possible of our world unchanged.  Most of us would assent to the conditional 'if 

                                                      
92Counterfactuals, Cambridge, Harvard University Press, 1973, p. 1.   



 

 

kangaroos had no tails, they would topple over', even though we can envision worlds in which 
kangaroos have no tails but do not topple over because, for example, there is no gravity.  But the 
conditional asks us only to entertain the possibility of depriving kangaroos of tails.  Depriving them of 
gravity too is impertinent; it changes the world in ways not called for by the conditional's antecedent.  
Hence it is not relevant to determining the truth value of the conditional. 
 Yet there may be more than one equally conservative way of changing the world to make the 
antecedent true.  Consider the conditional 'if forests were not green, then they would not be so 
beautiful.'  Now there are many worlds equally minimally different from ours in which the antecedent 
is true:  worlds in which forests are brown or blue or yellow, and so on.  Only if we regarded the 
consequent as true in all these worlds would we assent to the conditional.  If we regarded brown 
forests, but not blue, as more beautiful than green, we would judge the conditional false.  That's why 

Lewis stipulates that if  then  is true iff among all the worlds (plural) most like w in which  is true, 

 is also true. 
 The one element required by Lewis' semantics that has not appeared in any model we have 
considered so far is a measure of "closeness" or similarity among worlds.  While Lewis uses these 
terms, I prefer to think in terms of degree of possibility; where Lewis would speak of worlds as being 
more or less similar to a given world, I regard them as being more or less possible relative to that 
world.  There are two reasons for this.  First, it allows us to make the transition to Lewis' semantics 
without introducing the entirely new concept of similarity; the only change we need make is to think of 

R as having degrees, rather than being an all-or-nothing affair.  Second, similarity is symmetric; A is 

precisely as similar to B as B is to A.  But, as we have seen, R should not, in general, be assumed to 

be symmetric. 

 How might a model treat R as a matter of degree?  The simplest way would be to set up 

some arbitrary scale (say, from 0 to 1), where 0 represents complete lack of relative possibility and 1 
the highest degree of relative possibility.  Presumably, then, each world is maximally possible relative 

to itself, i.e., has degree 1 of R to itself, and all other worlds are less possible relative to it.   
 Such a numerical scale is, however, not quite satisfactory.  There is no a priori reason to 
suppose that degrees of relative possibility can be ordered like the real numbers from 0 to 1.  A more 
abstract mathematical treatment of order could address this problem but would introduce complexities 
beyond the scope of this book.  We shall, then, at the risk of slight (and not very significant) 
oversimplification, suppose degrees of R can be ranked along a 0 to 1 scale. 

 Accordingly, instead of treating R as a set of pairs, as we did before, we may treat it as a set 

of triples, in which the third member is a number from 0 to 1, indicating the degree to which the 
second member is possible relative to the first.  Thus for a model consisting of worlds 1 and 2, we 
might have, for example: 

  R = {1,1,1,1,2,0.7,2,1,0,2,2,1} 

This means that worlds 1 and 2 are each fully possible relative to themselves, world 2 is possible 
relative to world 1 with a degree of 0.7, and world 1 is not at all possible relative to world 2.  Rather 

than writing this all out in English, let's use the notation R(1,2) = 0.7 to mean that the degree to which 

world 2 is possible relative to world 1 is 0.7.  We shall stipulate that 
 
 (1) each pair of worlds in the model must be assigned a number  
  from 0 to 1 
 
 and that  
 
 (2) no pair of worlds may be assigned more than one number,  
 

so that for any worlds x and y in the model, R(x,y) will exist and will be unique.  (Where in a Kripke 

model we would say that it is not the case that xRy, now we shall say R(x,y) = 0.)   We further 

stipulate that  
 

 (3) for any worlds x and y, R(x,y) = 1 iff x = y. 

 



 

 

This implies that no world is as possible relative to a world x as x itself is.  A Lewis model, then, will 

be exactly like a Kripke model except for these differences in R.    

 Lewis represents his conditional formally as the binary operator '□', and we shall do 

likewise.  But we shall differ from Lewis in reading this operator simply as "if ... then."  Lewis reads  

□  as "if  were the case,  would be the case," confining his analysis to so-called subjunctive or 

counterfactual conditionals.  But I am persuaded that this analysis is more broadly applicable.93  Its 
formal truth clause is as follows: 
 

 V( □ ,w) = T iff there is some world u such that V(,u) = T,  

  and there is no world z such that R(w,z)R(w,u), V(,z) = T,  

  and V(,z) =/  T. 

 
This is just a transcription in our new terminology of the informal truth conditions given above.  The 
world u is some arbitrary one of the worlds most possible relative to the actual world in which the 

antecedent  is true.  We are saying, in other words, that  □  is true at w iff: 

 

 1  is true in some world u, which is such that 
 
 2 there is no world at least as possible relative to w as u is  

  in which  is true and  is not.   
 

Clause 2 implies that  is true in u, as well as in any worlds more possible relative to w in which  is 
true.  Putting both clauses together, this is to say that in all the worlds most possible relative to w in 

which  is true,  is also true.  The corresponding falsity clause is: 
 

 V( □ ,w) = F iff for all worlds u such that V(,u) = T there is some 

  world z such that R(w,z)R(w,u), V(,z) = T, and V(,z) =/  T. 

 

 If we wish to retain the operators '◊' and '□', we can do so in the Kripkean fashion, by 

stipulating that for any worlds x and y, xRy iff R(x,y) =/  0.  That is, y counts as accessible from x if and 

only if y is accessible to even the slightest degree from x.  This allows the standard Kripkean clauses 
to be used for these operators. 
 We shall illustrate the use of Lewis semantics first by proving that modus ponens is valid for a 
Lewis conditional: 
 

METATHEOREM:  The sequent 'A □ B, A  ├  B' is valid for Lewis models. 

Proof: Assume for reductio that this sequent is invalid; that is, there is a Lewis model containing a 

world w such that V(A □ B,w) = T, V(A,w) = T, and V(B,w) =/  T.  Now by the definition of a 

Lewis model, for any world u, R(w,w)R(w,u).  Hence for all worlds u, there is some world z, 

namely w, such that R(w,z)R(w,u), V(A,z) = T, and V(B,z) =/  T.  Hence, in particular, for all 

worlds u such that V(A,u) = T, there is some world z such that R(w,z)R(w,u), V(A,z) = T, 

and V(B,z) =/  T.  But this is to say that V(A □ B,w) =/  T, and so we have a contradiction. 

Hence  the sequent 'A □ B, A  ├  B' is valid for Lewis models.  QED 

 
 It turns out, however, that contraposition and hypothetical syllogism, which we saw were 
invalid for English conditionals, are both also invalid for Lewis' conditionals.  We shall prove this for 
contraposition, leaving hypothetical syllogism as an exercise.  To set the stage, consider the invalid 
instance of contraposition mentioned above: 
 

                                                      
93See Michael Kremer,"'If' Is Unambiguous," Nous 21 (1987). pp. 199-217, for a fuller discussion of 
this point. 



 

 

 If the Atlantic is an ocean, then it's a polluted ocean. 

 If the Atlantic is not a polluted ocean, then it's not an ocean.  
 
 According to Lewis, we evaluate a conditional by considering the worlds most similar to (or, in 
my terms, most possible relative to) the actual world in which the antecedent is true.  In the case of 
this argument's premise, there is only one such world, the actual world itself; for the Atlantic is in fact 
an ocean.  We now check to see if the consequent is true among all members of this (one-
membered) class of worlds.  And indeed it is, for the Atlantic is a polluted ocean.  Therefore, the 
premise is true in the actual world. 
 We then subject the conclusion to the same procedure.  The conclusion's antecedent is not 
true in the actual world, so we must move in imagination out to those worlds most like the actual 
world (or most possible relative to the actual world) in which the Atlantic is clean.  Presumably, there 
are many approximately equally possible ways in which this could have happened.  The industrial 
revolution might never have occurred; or we might have developed an ecological conscience before it 
did; or we might have developed technology for cleaning up oceans.  The details matter little; for, 
whatever we imagine here, it will not include the Atlantic's being transmuted into something other than 
an ocean.  That possibility is much wilder than these others.  It seems not even to be a metaphysical 
possibility, but merely a logical one.  The others are all physical, if not practical, possibilities.  In none 
of these more homey possibilities is the Atlantic not an ocean.  Therefore, the conditional's 
consequent is false in all the worlds most like the actual world in which its antecedent is true.  And so 
the conditional is false. 
 We can model this counterexample with a domain of two worlds:  world 1, representing the 
actual world, and world 2, representing one of the "homey" worlds in which the Atlantic is clean but 
remains an ocean. Read 'A' as "the Atlantic is an ocean" and 'B' as "the Atlantic is a polluted ocean": 
 

METATHEOREM:  The sequent 'A □ B  ├  B □ A' is invalid for Lewis models. 

Proof: Consider the model V defined as follows: 

 WV = {1,2}      V(A,1) = T 

 R = {1,1,1,1,2,0.7,2,1,0.5,2,2,1}   V(B,1) = T 

        V(A,2) = T 

        V(B,2) = F 

This meets conditions (1)-(3) and so is a Lewis model.  Clearly there is no world z such that 

R(1,z)R(1,1), V(A,z) = T, and V(B,z) =/  T.  But V(A,1) = T.  Hence there is a world u, namely world 1, 

such that V(A,u) = T and there is no world z such that R(1,z)R(1,u), V(A,z) = T, and V(B,z) =/  T.  

Therefore V(A □ B,1) = T.  Now there is only one world u such that V(B,u) = T:  this is world 2.  Yet 

R(1,2)R(1,2), V(B,2) = T, and V(A,2) =/  T.  Thus for all worlds u such that V(B,u) = T, there is 

some world z, namely world 2, such that R(1,z)R(1,u), V(B,z) = T, and V(A,z) =/  T.  But this is to 

say that V(B □ A,1) = F.  Thus since, as we saw above, V(A □ B,1) = T, it follows that the 

sequent 'A □ B  ├  B □ A' is invalid.  QED 

 
 Further investigation of Lewis' semantics reveals many more respects in which his 
conditionals behave like English conditionals.  (See the Exercise below.)  Of the conditionals we have 
examined, Lewis' is surely the best approximation to the English.  But whether it is uniquely correct as 
a formal semantics for the English conditional remains a disputed question. 
 

EXERCISE:  Prove the following metatheorems for '□' using Lewis models. 

1 The sequent 'A □ B, B  ├  A' is valid. 

2 The sequent 'A □ B,  B □ C  ├  A □ C' is invalid. 

3 The sequent 'A  ├  A □ B' is invalid. 

4 The sequent 'B  ├  A □ B' is invalid. 

5 The sequent '(A □ B)  ├  A & B' is invalid. 

6 The sequent 'A, B  ├  A □ B' is valid. 

7 The sequent 'A, B  ├  (A □ B)' is valid. 



 

 

8 The sequent 'A □ C  ├  (A & B)□ C' is invalid. 

9 The sequent '□B  ├  A □ B' is invalid. 

10 The sequent '◊A  ├  A □ B' is invalid.  



 

 

CHAPTER 13 
DEONTIC AND TENSE LOGICS 

 

13.1 A MODAL DEONTIC LOGIC 

 Deontic logic has often been studied as it was presented (briefly) above—independently of 
alethic logic, using Kripke-style models whose accessibility relations represent permissibility rather 
than alethic possibility.  While this approach has been fruitful, more can be learned by considering 
deontic and alethic operators together in the same model.  Some important deontic principles, such 
as Immanuel Kant's dictum that “ought implies can,” involve both deontic and alethic elements (the 
'can' signifies some form of alethic possibility).  These principles remain unexamined when deontic 
logic is studied in isolation. 

 To do modal and deontic logic together, we need two pairs of monadic modal operators:  '□' 

and '◊' to express necessity and possibility, and 'O' and 'P' to represent obligation and permission.   

Thus we also need two accessibility relations:  an alethic relation which we shall represent, as before, 

by the letter 'R', and a deontic relation, which we represent by the letter 'S'.  For any two worlds x and 

y, xRy if and only if y is possible relative to x, and xSy if and only if y is morally permissible relative to 

x.   
 What it means for y to be morally permissible relative to x is a question that lies outside logic.  
Presumably, for a utilitarian like Jeremy Bentham or John Stuart Mill it means that, among the worlds 
possible relative to x (the kinds of sentient beings, desires, and so on that exist there), world y is one 
in which happiness is maximal.  For a deontologist like Kant it might mean that in y all actions accord 
with the moral law that holds in x—and perhaps for Kantians the same moral law holds in all worlds, 
so that any world that is permissible relative to one world is permissible relative to them all.  The logic 
presented here is compatible with these interpretations, as well as others, and does not decide 
between them.  To construct a logic adequate for some specific ethic, we would need to incorporate 
constraints on the deontic accessibility relation like those just mentioned. 
 The valuation rules are just those for Kripkean modal logic, together with two new clauses for 

the deontic operators.  These mirror the clauses for '□' and '◊', except that that they have S in place of 

R: 

 

13 V(O,w) = T iff for all worlds u such that wSu, V(,u) = T; 

 V(O,w) = F iff for some world u, wSu and V(,u) =/  T. 

 14 V(P,w) = T iff for some world u, wSu and V(,u) = T; 

  V(P,w) = F iff for all worlds u such that wSu, V(,u) =/  T. 

 

 Because we want R and S have different functions, admissible models must treat them 

differently.  We saw in the last section that all alethic accessibility relations are reflexive.  So we 

require this of R.   

 Deontic accessibility relations, as we saw, are generally not reflexive.  However, they are 
usually assmed to satisfy a weaker condition —namely, that each world has at least one permissible 

alternative.  More precisely, the relation S must be such that for every world w, there is a world u such 

that wSu.  Such a relation is called serial, because if S meets this condition, then starting with any 

world w1, there must be a world w2 such that w1 w2 and then a world w3 such that w2 w3, and then a 

world w4 such that w3 w4, ... and so on in an endless series.  Nothing prevents some or all of these 

worlds from being identical with one another.  Thus, for example, if we have just one world w and 
wSw, S is still serial.  In other words, the series may run in a circle as well as a line—and in other 

more complex ways.  In general, all reflexive relations are serial.  However, not all serial relations are 
reflexive. 
 The reason for making S serial is that if we don’t, every statement, including every 

contradiction, is obligatory at some world.  Seriality is therefore a kind of consistency condition on 
morality; if the accessibility relation is not serial, then our morality is so strong that under some 



 

 

conditions it demands literally everything (including contradictions) of us.  The following metatheorem 
proves this: 
 

METATHEOREM:  If S is not serial, then there is a world w such that V(O,w) = T for any formula . 

Proof: Suppose that S is not serial.  This means that there is a world w such that it is not the case 

that wSu for any world u.  Now consider any formula .   Since there are no worlds u such 

that wSu, trivially V(,u) = T for all worlds u such that wSu.  Hence by valuation rule 13 

V(O,w) = T. 

Thus we have shown that if S is not serial, then there is a world w such that V(O,w) = T for any 

formula .  QED 
 

Here  may be any formula, including any contradiction.94 
 Thus in order to require consistency for our morality, we define an admissible model for 

modal deontic logic as a Kripke model with a reflexive relation R and a serial relation S on the set 

WV of worlds.  Validity and related semantic concepts are defined relative to such admissible models, 

as described in the previous section. 
 Having defined our semantics, let’s now see what it does. To begin, we can prove the 
standard dual relationships between O and P:   
 

METATHEOREM:  Any formula of the form O  P is valid relative to the class of admissible 
models. 

Proof: Suppose for reductio that for some formula , O  P is not valid, i.e.,  

 there exists an admissible model V containing a world w such that V(O  P,w =/  T.   

By valuation rule 8, either V(O,w) = T and  V(P,w) =/  T or V(O,w) =/  T and  V(P,w) 

= T.  We show that this leads to contradiction. 

 Suppose, first, that V(O,w) = T and V(P,w) =/  T.  Since V(O,w) = T, it follows 

by rule 13 that for all worlds u such that wSu, V(,u) = T.  Hence by rule 4 there is no 

world u such that wSu and V(,u) = T.  Hence by rule 14 V(P,w) = F, so that 

V(P,w) =/  T, whence it follows by rule 4 that V(P,w) = T.  But we had supposed 

that V(P,w) =/  T, and so we have a contradiction. 

 Hence it is not the case that V(O,w) = T and V(P,w) =/  T.  By similar reasoning we can 

also show that it is not the case that V(O,w) =/  T and V(P,w) = T.  Thus, contrary to what 

we had concluded above, V(O,w) = V(P,w), and so again we have a contradiction. 

Thus we have shown that any formula of the form O  P is valid.  QED 
 
We also, of course, have the dual result: 
 

METATHEOREM:  Any formula of the form P  O is valid relative to the class of admissible 
models. 
 
The proof is left as an exercise. 
 Let’s now consider common patterns of deontic reasoning.  Unsophisticated reasoners often 
employ the following pattern: 
 

  OB,  A  B  ├  OA 
 
For instance: 
 
  We ought to eliminate AIDS.  If we adopt a policy of strict quarantine 
  of AIDS victims, we eliminate AIDS.  Therefore, we ought to adopt a  

                                                      
94An analogous problem would arise in alethic logic if we allowed nonserial relations there.  But we 
have banned them, having required alethic accessibility relations to be reflexive, and hence serial. 



 

 

  policy of strict quarantine of AIDS victims. 
 
With respect to the sequent above 'We eliminate AIDS' is 'B' and 'We adopt a policy of strict 
quarantine of AIDS victims' is 'A'.  The fallacy is obvious:  there may be better policies that would 
achieve the same goal—like finding a cure.  That is, we can envision a world, call it w, in which AIDS 
ought to be eliminated (i.e., is eliminated in all of w's morally permissible alternatives) and in which a 
quarantine would eliminate AIDS, but in which it is not the case that we ought to quarantine (i.e., 
there is a morally permissible alternative world in which we do not quarantine).  We can model this 
counterexample with just two worlds, world 1, which we may think of as the actual world, and world 2, 
a possible and permissible alternative to world 1 in which AIDS is eliminated by some means other 
than quarantine.  Here is what it looks like in formal terms: 
 

METATHEOREM:  The sequent 'OB,  A  B  ├  OA' is invalid relative to the class of admissible 
models. 

Proof: Consider the model V in which:  

 WV = {1,2}     V(A,1) = F 

 R = {1,1,1,2,2,1,2,2}   V(B,1) = F 

 S = {1,2,2,2}     V(A,2) = F 

       V(B,2) = T 

This model is admissible, since R is reflexive and S is serial.  Since 2 is the only world u in the model 

such that 1Su, and since V'('B,2) = T, it follows that  V'('B,u) = T for all u such that 1Su.  Hence by rule 

14, V(OB,1) = T.  But since 1S2 and  V'('A,2) =/  T, by rule 14 and bivalence, V(OA,1) = F.  Moreover 

since V(A,1) =/  T, V(A  B,1) = T by rule 7.  Thus, since V(OB,1) = T, V(A  B,1) = T, and V(OA,1) = 

F, the sequent is invalid.  QED 
 
 The next metatheorem illustrates a valid pattern of deontic reasoning: 
 

METATHEOREM:  The sequent 'OA,  O(A  B)  ├  OB' is valid relative to the class of admissible 
models. 
Proof: Suppose for reductio that this sequent is invalid; that is, that there is an admissible model in 

which there is a world w such that V(OA,w) = T, V(O(A  B),w) = T, and V(OB,w) = F.  Since 

V(OB,w) = F, by rule 13 there is a world u such that wSu and V(B,u) =/  T.  But since 

V(OA,w) = T and wSu, it follows, again by rule 13, that V(A,u) = T.  And since V(A,u) = T and 

V(B,u) =/  T, it follows by rule 7 that V((A  B),u) =/  T.  Finally, since wSu, it follows again by 

rule 13 that V(O(A  B),w) =/  T.  But we said above that V(O(A  B),w) = T, and so we have 

a contradiction. 

Thus, contrary to our hypothesis, the sequent 'OA,  O(A  B)  ├  OB' is valid.  QED 
 
“Ought” Implies “Can” 
 Of more philosophical interest is Immanuel Kant's famous thesis that “ought” implies “can.”  

This idea mixes alethic and deontic operators, for it is the principle that O  ◊.  Logic alone does 

not require this thesis.  We can envision an arrangement of possibility and permissibility for which it 
does not hold—namely a modal deontic model in which, from the perspective of a given world, no 
permissible world is possible.  Such an arrangement is sometimes called a moral tragedy.  Suppose, 
for example, that we ought to respect human rights but are nevertheless fated to violate them.  Then 
none of the permissible worlds (those in which we respect human rights) are possible.  Using 'A' to 

mean "We respect human rights," 'OA' would be true and '◊A' false in our world.   

 The following metatheorem employs this counterexample.  Think of world 1 as the actual 
world and world 2 as what ought to be.  World 1 is the only world in the model that is possible relative 
world 1; this models the idea that what actually happens is "fated," i.e., is the only thing that could 
happen. World 2 is the only world that is permissible relative to world 1, but world 2 is not possible 
relative to world 1; this models the idea that what ought to be is impossible. 
 

METATHEOREM:  The formula 'OA  ◊A' is not valid relative to the class of admissible models. 



 

 

Proof:  Consider the model V in which:  

 WV = {1,2}    V(A,1) = F 

 R = {1,1,2,2}    V(A,2) = T 

 S = {1,2,2,2} 

This model is admissible, since R is reflexive and S is serial.  Since 2 is the only world u in this model 

such that 1Su and since V(A,2) = T, it follows that V(A,u) = T for all worlds u such that 1Su.  Thus by 

rule 13 V(OA,1) = T.  But since 1 is the only world u such that 1Ru, and since V(A,1) =/  T, there is no 

world u such that 1Ru and V(A,1) = T.  Hence by rule 12 V(◊A,1) =/  T.  But then since both V(OA,1) = 

T and V(◊A,1) =/  T, by rule 7 V(OA  ◊A,1) =/  T; and so 'OA  ◊A' is not valid.  QED 

 
The problem of moral tragedy is perhaps most worrisome for deontologists such as Kant.  It less 
worrisome for consequentialists, since for them all permissible worlds must be possible.  This is 
because consequentialists define the permissible worlds as those worlds possible relative to ours in 
which total goodness is no less than in other worlds that are possible relative to ours.  (If all the 
possible worlds are bad, then the permissible worlds are those that are no worse than any other.)  
Given that relative to any world at least one world is possible (a condition guaranteed by the 
reflexivity of the alethic accessibility relation), there must relative to each world be at least one 
possible world in which total goodness is no less than in any other possible world.  Hence there must 
relative to each world be at least one world that is both possible and permissible.   Moral tragedy is 
thus excluded.  (This is not to say, of course, that things can’t get really bad.) 
 Indeed, we can prove as a metatheorem that if we add to admissible models the extra 
condition that all permissible worlds are possible, then “ought” implies “can.”  Let's define a strongly 

admissible model as a modal deontic model in which S is serial, R is reflexive and S is a subset of 

R—that is, for any worlds x and y, if xSy then xRy (all permissible worlds are possible).  We may now 

reconceive the semantic concepts of validity, consistency, and so on, as relative to the class of 
strongly admissible models.  Given this understanding we can now show that “ought implies can” is 
valid: 
 

METATHEOREM:  The formula 'OA  ◊A' is valid relative to the set of strongly admissible models. 

Proof: Suppose for reductio that this formula is not valid relative to this class; that is, there is a 

strongly admissible model containing a world w such that V(OA  ◊A,w) =/  T.  Then by rule 7 

V(OA,w) = T and V(◊A,w) =/  T.  Since the model is strongly admissible, S is serial; so there is 

some world u such that wSu.  Since wSu and V(OA,w) = T, by rule 13 V(A,u) = T.  But, again 

since the model is strongly admissible, S is a subset of R; hence wRu.  Thus since wRu and 

V(A,u) = T, by rule 12 V(◊A,w) = T, contrary to what we said above. 

Thus 'OA  ◊A' is valid relative to the set of strongly admissible models.  QED 

 
Because consequentialism assumes, by its definition of permissibility, that all permissible worlds are 
possible worlds, it is justified in using the logic associated with strongly admissible models and hence 
in assuming that “ought” implies “can.”  Whether deontology can provide a similarly well-motivated 
justification is, to my mind, unclear. 
 Let’s now take up some business left unfinished at the end of Section 9.4.  This concerns the 
argument: 
 
  I should live. 
  It is necessarily the case that if I live Bad Bart dies. 

  Bad Bart should die. 
 
We saw in Section 9.4 that the form of this argument is not straightforwardly representable in 
predicate logic.  But it is easily representable in modal deontic logic.  Using 'A' for "I live", 'B' for "Bad 
Bart dies", the form is: 
 

  OA, □(A  B)  ├  OB 

 



 

 

This is invalid in general.  For, as in the case of “ought implies can,” maybe what we have here is a 
genuine moral tragedy.   Perhaps what ought to to be the case is that no life is lost, even though, 
given the circumstances, this can't be the case.  We can thus use a counterexample similar to the 
one used to refute the thesis that “ought” implies “can.”  Once again, world 1 is the actual world—in 
which, we shall suppose, Bart gets me.  (I hesitated too long in my moral deliberations.)  World 2 
represents what ought to be—a world in which we both live, but which, unfortunately, is impossible 
relative to world 1. 
 

METATHEOREM:  The sequent 'OA, □(A  B)  ├  OB' is invalid relative to the class of admissible 

models. 
Proof: Consider the model in which:  

 WV = {1,2}     V(A,1) = F 

 R = {1,1,2,2}     V(B,1) = F 

 S = {1,2,2,2}     V(A,2) = T 

       V(B,2) = F 

This model is admissible, since R is reflexive and S serial.  Now V(A,1) =/  T; hence by rule 7, 

V(A  B,1) = T.  Since 1 is the only world u such that 1Ru, by rule 11 V(□(A  B),1) = T.  Moreover, 

2 is the only world u such that 1Su.  Therefore, since V(A,2) = T, it follows that V(OA,1) = T; and since 

V(B,2) =/  T, it follows that V(OB,1) = F.  Thus, since V(OA,1) = T, V(□(A  B),1) = T, and V(OB,1) = F, 

the sequent is invalid.  QED 
 
The same sequent is, however, valid in strongly admissible models.  The proof is left as an exercise.  
Thus whether or not we count it as valid depends on whether or not we admit the possibility of moral 
tragedy. 
 As the previous example illustrates, the validity of “ought implies can” is only one of many 
changes that our logic undergoes if we move from our former notion of admissible models to stongly 
admissible models. 
 Inferentially, our modal deontic logic requires separate rules for the modal and deontic 
operators.  The rules DUAL, K, and N (see Section 11.4), being valid for all Kripkean logics, are valid 

for both sets of operators.  Since we have required S to be serial, we have the rule D (from O infer 

P) for the deontic operators (the proof of its validity is left as an exercise below).  Given that R is 

reflexive, we need for the modal operators the additional rule T.  Strongly admissible models require 

in addition the rule:  from O infer ◊These rules, then, constitute logics that are sound and 
complete relative to the semantics presented here. 
 
EXERCISE 13.1.1:  For each of the following sequents, prove metatheoretically either that it is valid 

or that it is invalid, relative to the class of admissible models in which R is reflexive and S is serial.  

Where the sequent is invalid, describe a counterexample informally, as well as giving the formal 
proof.  Does the validity of any inference change if we switch to strongly admissible models? 
1 A  ├  OA 
2 OA  ├  A 
3 OA  ├  PA 

4 □A  ├  PA 

5 □A  ├  OA 

6 P(A & B) ├  PA 
7 OA,  OB  ├  O(A & B) 
8 PA,  PB  ├  P(A & B) 

9 OA,  A  B  ├  OB 

10 A,  O(A  B)  ├  OB 

11 A,  (A  OB)  ├  OB 

12 PA,  O(A  B)  ├  PB 

13 PA,  P(A  B)  ├  PB 

14 PA,  □(A  B)  ├  PB 

 



 

 

EXERCISE 13.1.2:  Prove that the following formulas are valid relative to the class of models in which 

R is reflexive and S serial: 

1 P(A & A) 

2 O(A  A) 

3 (OA & OA) 

4 (□A & □A) 

5 PA  PA 
 
 Can one validly derive an “ought” statement from an “is” statement?  For a long time it was 
assumed that one could.  Medieval scholastics posited for each sort of creature its own specific 
nature, established and sanctioned by God.  Hence, assuming divine design, they argued from what 
was natural or "in accord with a thing's nature" to what ought to be or what might be permitted with 
respect to that thing.  But Enlightenment skeptics (most notably David Hume), rejecting the idea that 
moral “oughts” are built into the structure of the universe, dismissed all reasoning from “is” to “ought.”  
Most empiricists have agreed.  
 But many deontologists have persisted in trying to obtain “ought” from “is.”  Immanuel Kant, 
who sought to retain a morally structured universe, countered by positing a realm of pure reason from 
whose truths “oughts” could be deduced a priori.  But those alleged truths (the categorical imperative 
and some of the assumptions used to justify it) are themselves of a moral character. 
 What can we learn from this?  If we assume, as the scholastics and Kant did, that moral 
structure is built into the nature of things, then we can validly derive “ought” conclusions.  But 
because such metaphysical assumptions already embody “oughts,” we are then not deriving “ought” 
solely from “is.”  The skeptics seem to have been right about at least this much:  logic alone cannot 
carry us from ‘is’ to ‘ought’. 
 Still, the temptation to think that it can remains great.  Even empiricists (though only those 
less skeptical than Hume) have argued from “is” to “ought.”  During the 19

th
 century, for example, 

wealth-loving and typically racist Social Darwinists were notorious for making this sloppy inference: 
  It is natural that the fittest survive. 

  The fittest ought to survive. 
(They took themselves, of course, to be among the fittest.)  But it is child’s play to imagine 
counterexamples to such inferences. 
 Here is a more contemporary example:  in debates on the ethics of eating, on often hears 
arguments like this: 
  Humans evolved as omnivores. 

  It's okay for us to eat meat. 
That is, from the fact that it is "natural" for humans to eat meat, it is alleged to follow that it is 
permissible for humans to eat meat.  (Here the conclusion is a ‘may’ not an ‘ought’.)  But again 
counterexamples are easy to imagine.  Consider, for example, a world in which humans evolved as 
omnivores but have since discovered that meat-eating has become an unnecessary, unjustifiable, 
and impermissible evil. 
   But what, precisely, does it mean to say that we can't derive an “ought” from an “is”?  The 
fundamental idea is that statements of value (including “ought” statements) never validly follow from 
statements of fact.  One initially plausible interpretation of this claim is: 

Hume’s Claim (first version):  We can’t validly derive any formula of the form O 
from premises that contain no deontic operators.   

This, however, is false, though only trivially so.  To see why, notice that all formulas of the form O, 

where  is valid, are themselves valid.  This is because if  is valid, then  is true in every world of 
every model and hence in every world deontically accessible from any given world in any model.  But 

this means that O is true in any world in any model, i.e., valid.  Since we know that a valid formula 

follows from any formula, we can see that if  is valid, O follows from any formula, and in particular 
from formulas containing no deontic operators at all.  The sequent: 

  P ├ O(P  P) 
for example, is valid in any of the usual forms of deontic logic.  In this sense, we can derive an “ought” 
from an “is.” 



 

 

 But so what?  The fact that tautologies are obligatory is a logical curiosity irrelevant to 
Hume’s claim.  And even though the conclusion does validly follow from the premise, there is a sense 
in which we did not really derive it from the premise, since we can get the same conclusion without 
the premise—indeed, without any premises at all.  This is not a relevant inference (see Section 16.3). 
 We can, similarly, get an “ought” from an “is” if we start with inconsistent premises, for from 
an inconsistency anything follows.  But, of course, any sound inference from “is” to “ought” must 
employ true (and hence consistent) premises.  
 These considerations suggest a more sophisticated formulation of Hume's claim: 

Hume’s Claim (second version):  We can't validly derive any formula of the form 

O, where  is contingent, from consistent premises that contain no deontic 
operators.   

But what counts as a valid derivation depends, as we have seen, on the system of logic that we use.  
In some systems, we can produce valid inferences that meet even these restrictions.  If, for example, 
we build into our logic the principle that “ought” implies “can,” we will count as admissible only models 

in which every permissible world is possible—that is, we will stipulate that the deontic relation S must 

be a subset of the alethic relation R.  In such a logic, the sequent ‘~A ├ O~A’, for example, is valid, 

even though ‘~A’ is consistent and ‘~A’ is contingent.  In this case the premise contains no deontic 
operator, but it does contain an alethic possibility operator.  Similar forms of validity may arise from 

allowing alethic operators in the conclusion.  If we make our alethic relation R universal, for 
example—as we might if we want the alethic modality to be logical possibility—then the sequent ‘A ├ 

OA’ is trivially valid.  Hence this second interpretation of Hume’s claim is also false, at least for some 
deontic logics. 
 Maybe, then, we should interpret the claim in a still more specific way, by banning all modal 
operators (whether alethic or deontic or of any other sort) from the premises and the interior of the 
conclusion: 

Hume’s Claim (third version):  We can't validly derive any formula of the form O, 

where  is contingent and contains no modal operators of any kind, from consistent 
premises that contain no modal operators of any kind. 

This claim seems reasonable, since in thinking of an “is-ought” derivation, we usually take “is” to 
signify plain fact, not some modal notion, and “ought” to suggest a single modal operator, not just the 
widest scope operator in some fancy iterated modality.  In fact, this third version is provable.  The 

claim, to put it formally, is that every sequent of the form 1, …, n  ├  O, where the set {1, …, n} 

is consistent,  is contingent, and 1, …, n and  contain no modal operators, is invalid.  Here is  
the proof, which applies to all standard systems of deontic logic: 
 

Let 1, …, n  ├  O be any sequent such that {1, …, n} is consistent,  is contingent, 

and 1, …, n and  contain no modal operators.  Since {1, …, n} is consistent and its 
member formulas contain no modal operators, there is a nonmodal predicate logic valuation 

V1 that makes each of  1, …, n true.  And since  is contingent and contains no modal 

operators, there is a nonmodal predicate logic valuation V2 such that V2(,w) = F.  Now we 

construct a deontic model V3 of 1, …, n and  as follows.  Let V3 contain just two worlds, 

w1 and  w2, which are internally structured just like V1 and V2, respectively.  That is, the 

domains of w1 and  w2 are just the domains of V1 and V2, respectively, and for any name or 

predicate , V3(,w1) = V1() and V3(,w2) = V2().  (If V1 or V2 assign no values to some 

names or predicates because they occur in the premises but not in the conclusion, or vice 

versa, we can introduce arbitrary values to fill out V3, as these will not affect the truth values 

that concern us.)  Since 1, …, n contain no modal operators, their truth values are 

determined only by conditions in w1, and so V3 makes 1, …, n all true in w1.  Likewise, 

since  contains no modal operators, V3(,w2) = F.  Further, let the deontic relation S of V3 

be <w1,w2>.  Then since V3(,w2) = F and w1Sw2, by the valuation rule for 'O', V3(O,w1) = F.  

Thus we have a counterexample to 1, …, n  ├  O, since we saw above that V3 makes 

1, …, n all true in w1.  It follows that 1, …, n  ├  O is invalid.  
 



 

 

This proof shows that there is a general formal sense in which Hume was right.  For any "is-ought" 
sequent of the specified kind, we can construct a formal counterexample.  There is not in any 
standard deontic logic a valid inference from a nonmodal “is”-statement to an “ought”-statement that 
is nonmodal apart from the “ought” itself. 
 This, however, is not quite sufficient to show that we can never validly derive an interesting 
“ought” from an “is.”  Two questions remain:  (1) Have we really considered all the interesting "is-
ought" inferences (or were we, perhaps, too hasty in dispensing with all modal operators)? and (2) 
are the formal counterexamples whose construction the proof describes always convertible into 
counterexamples for specific arguments (as opposed to sequents—i.e., argument forms)?  Let’s 
consider each question in turn. 
 With regard to question (1), many of the most interesting arguments to “ought” conclusions 
contain alethic modal operators in their premises.  In environmental ethics, for example, some 
authors reason from the premise that a living thing or system is in itself capable of being harmed or 
benefited to the conclusion that we ought to grant it moral consideration.  ‘Capable’ expresses, of 
course, an alethic possibility operator.  Such an argument would not be covered by the proof I just 
gave, since my proof supposes that the premises contain no modal operators of any kind.  I noted 
above that we might decide not to classify such inferences as “is-ought” inferences because alethic 
operators express more than plain fact, i.e., more than just “is.”  But I think this would be a mistake.  
Much of our factual talk is implicitly alethic—as, for example, when we speak of salt being soluble in 
water or a membrane being permeable.  Surprisingly little can be said without alethic operators.  So if 
our notion of “is” prohibits alethic operators, then (because facts are often expressible only alethically) 
the invalidity of “is-ought” inferences does not show that we can never derive deontic statements from 
statements of fact. 
 Question (2) takes us back to a concern first raised in Section 3.4—the fact that formal 
counterexamples to sequents do not always provide genuine counterexamples to instances of those 
sequents, since they may describe situations (or, in modal logic, arrangements of worlds) that are not 
genuinely possible on the interpretation that defines the instance.  That’s why an invalid sequent may 
have valid instances.  All my proof does is to give a method for constructing formal counterexamples 
to sequents of the specified sort.  It need not yield counterexamples for all the arguments whose 
forms those sequents represent.  We can say only that if any such “is-ought” arguments are valid, 
their validity is a product of semantic structures not representable in the deontic logics covered in this 
book.    
 Yet these two questions remain just that.  They have yielded no results.  There is, so far as I 
know, no valid derivation of a nontrivial deontic conclusion from nondeontic “is” premises in all of 
ethical theory.   
 

EXERCISE 13.1.3:   Prove that the sequent ‘P ├ O(P  P)’ is valid in admissible models and that the  

sequent ‘~A ├ O~A’ is valid in strongly admissible models.   
 

13.2 A MODAL TENSE LOGIC 
 "What then is time?" asks St. Augustine.  "I know what it is if no one asks me what it is; but if I 

want to explain it so someone who has asked me, I find that I do not know."95 
 Ordinarily we understand time as a linearly-ordered sequence of moments.  We have a 
position in time, the present moment.  All other moments lie either in the past or the future.  The 
present constantly advances toward the future and this advance gives time a direction.  The past is a 
continuum of moments stretching behind us, perhaps to infinity.  It is unalterable.  Whatever has been 
is now necessarily so.  The future, however, is not frozen into unalterability but alive with possibilities.  
Starting with the present, events could take various alternative courses.  There is, in other words, 
more than one possible future.  While only one of these courses of events will in fact be realized (we 
may not, of course, know which one), still the others are genuinely possible, in a way that alternative 
pasts are not genuinely possible.   
 These considerations suggest a model on which time is like a tree with a single trunk (the 
past) that at a certain point (the present) begins to split and split again into ramifying branches 

                                                      
95Confessions, Book X, Ch. 14. 



 

 

(various possible futures).  As time moves forward, the lower branches (formerly live possibilities, lost 
through passage of time) disappear.   Only one path through the tree represents the actual course of 
time, i.e., the actual world.  More and more of it is revealed as time moves on and lower branches 
vanish.  If time were finite, eventually all the branches representing merely possible futures would 
disappear and only this single path from trunk to branch tip would remain:  the entire history of the 
actual world from the beginning to the end of time.  But we might also think of time as infinite—at 
least toward the future, and perhaps also backwards into the past.  If time is infinite toward the past, 
then the tree's trunk extends endlessly downward, never touching ground; and if time is infinite toward 
the future, then its branches stretch endlessly upward, never touching the sky.  In either case, we 
might picture at least a part of the tree like this: 

 
 It would be rash to claim that this picture of time 
is true.  Time, as we learn from relativity physics, is 
insperarable from space and relative to motion, and while 
it is experienced as past, present, and future, these are 
probably not objective features of time itself.  Even if they 
are, our picture may well be inaccurate for the very 
distant past (in the vicinity of the big bang) and the very 
distant future, because we do not fully understand the 
behavior of time at these extremes.  Moreover, if the 
world is deterministic, then possible alternative futures 
(the thin branches) are merely illusions.  But this is not 
the place for a detailed physical or philosophical 
discussion of the nature of time.  The logic presented in 
this section should be regarded not as the one true tense 
logic, but as an example of a tense logic that accords 
reasonably well with our everyday understanding of time.  
The literature on tense logic is replete with logics for 
relativistic time, discrete time, circular time, ending time, 
and so on, all of which differ substantially from the logic 

presented here.96   
 A tense logic is a logic that includes operators expressing tense modifications.  The logic we 

shall consider here is a modal97 tense logic because it contains alethic modal operators in addition to 
tense operators.  It has four tense operators: 
 

 Hit has always been the case that 

 Pit was (at some time) the case that 

 Git will always be the case that 

 Fit will (at some time) be the case that 
 
These are all monadic operators on sentences.  The first two and last two are duals.  That is, on any 
reasonable semantics, the following are valid formulas:   
 

  H  P 

  P  H 

  G  F 

  F  G 
 

                                                      
96The classic source for many of these variants is Arthur Prior, Past, Present and Future, Oxford, 
Oxford University Press, 1967.  Prior's use of Polish notation may be a barrier for readers 
accustomed to the more ususual notation employed in this book, but with a little practice one can 
easily adapt to it.  Many variants of tense logic are also discussed in Nicholas Rescher and Alasdair 
Urquhart, Temporal Logic, New York, Springer-Verlag, 1971. 
97'Modal' here is used in its narrow sense, as a synonym for 'alethic'. 

 

 
A Picture of Time:  The thick line represents the 
actual world.  The thinner lines represent 
temporal portions of merely possible worlds that 
share the actual world's past.  Specific times are 
represented by points on any of the lines. 

  



 

 

 Using these four operators, we can express a great variety of tense modifications.  Here are 
some examples: 
 
Group I 

 GH  It will always be that it has always been that  

   (this means that  is the case at all times—past,  
   present, and future) 

 FH                It will be the case that it has always been that  

   ( has always been the case and will continue to be for  
   some time) 

 H  It has always been the case that  

 PH               It was the case that it had always been that  
   (there was a time before which it was always the case  

   that ) 

 HP  It has always been that it had (at some time) been the  

   case that (i.e., there have always been times past at which  

    was the case, but these may have occurred intermittently) 

 P  It was the case that  

 GP               It will always have been that 

 FP  It will be the case that it has (at some time) been that 
 
Group II 

 HG  It has always been the case that it would always be that  

   ( is the case at all times—past, present, and future) 

 PG  It was (at some time) the case that it always would be that  

 G  It always will be the case that  

 FG  It will (at some time) be the case that it will always be that  

   (i.e., there will come a time after which  is always the case) 

 GF  It will always be the case that it will sometimes be the case  

   that (moments at which  is the case will always lie in the  
   future, though perhaps intermittently)  

 F  It will be the case that  

 HF  It has always been that it will be the case that  

 PF  It was (at some time) the case that it would (later) be the  

   case that  
 
An adequate tense logic will, for example, determine which of these statement forms imply which 
others, but of course it will do a good deal more than that.  (In fact, on the assumption that there is no 
first or last moment of time—an assumption discussed below—each formula of either group implies 
all formulas listed below it in the same group; and the first members of the two groups are equivalent, 
as are the last.)   

 There is in most tense logics no special operator for the present tense.  To assert that  is 

presently the case, we simply assert .  We anticipate, then, that sequents such as the following are 
valid: 
 
     FHA  ├  A 
     A ├  HFA 
     PGA  ├ A 
     A  ├  GPA 
 
 Our ordinary picture of time includes multiple possible futures.  Indeed each path through the 
tree from the base of the trunk (if it has a base) to the tip of a branch (if branches have tips) 
represents a complete possible world.  These possible worlds share a portion of their histories with 
the actual world but split off at some specific time.  This is a picture we often use in decision-making.  



 

 

Suppose I am considering whether go to the mountains for a hike or just stay at home and relax this 
weekend.  These are (we assume) real possibilities, though undoubtedly not the only ones.  
Corresponding to each is at least one possible world—i.e. at least one course of events that the world 
might take from the beginning of time through and beyond the moment of my decision.  Suppose I 
decide to hike and I carry out that intention.  Then the world (or one of the worlds) in which I hike is 
the actual world, and the worlds in which I stay at home that weekend are possible but nonactual.  In 
these nonactual worlds, everything up to the moment of my decision occurs exactly as it does in the 
actual world, though events depart from their actual course more or less dramatically thereafter. 
 When the weekend is over, I may say, "I could have stayed home, I can't now go back and 
change the past; it is now necessarily the case that I went hiking,"  mixing tenses and alethic 
modalities in ways that our picture nicely illustrates.  To say that I could have stayed home is to say 
that up to the beginning of the weekend a world in which I stayed home (represented by a path up the 
trunk through one of the thin branching lines) was possible.  This branch, however, has disappeared 
as time has moved on.  To say that my having gone hiking is now necessary is to say that I did go 
hiking in all currently possible worlds, a circumstance represented in our picture by the fact that all 
currently possible worlds have exactly the same past as the actual world (the tree has but one trunk).   
 What we have been thinking of as the disappearance of the tree's lower branches can also 
be understood in Kripkean terms as the termination of accessibility.  In a sense these "vanished" 
branches are still there; they still represent worlds that are possible in some absolute sense.  But 
these worlds are no longer possible relative to (i.e., no longer accessible from) the actual world.  In 
tense logic, in other words, accessibility is time-relative.  Thus to represent alethic modalities in 
familiar Kripkean fashion in the context ot tense logic, we must add a temporal index to the 
accessibility relation R.  Instead of saying flatly that world w2 is accessible from world w1, we must 

specify a time relative to which accessibility is asserted.  Thus we shall write, for example, 'w1Rw2t' to 

indicate that w2 is accessible from w1 at time t.98  Worlds in which I stayed home on the weekend in 

question are accessible from the actual world prior my leaving, but not thereafter. 
 Truth, already relativized to worlds in alethic modal logic, must in tense logic be further 
relativized to times.  It is true now that I am sitting at my computer, but this will not be true a few hours 
hence.  Thus the statement 'I am sitting at my computer' is true at one time and not at another within 
the actual world.  Moreover, though it is true now in the actual world, it is not true in a world (possible 
until very recently) in which I got up and went for a snack a moment ago.  Thus a statement may have 
different truth values at different times within the same world and different truth values at the same 
time within different worlds.  Valuations for predicates (including zero-place predicates) must, 

accordingly, be indexed to both worlds and times.  We shall write, for example, 'V(,t,w) = T' to 

indicate that formula  is true at time t in world w.  But we shall treat names, as before, as rigid 
designators, relativizing their denotations neither to worlds nor to times. 
 Now times (or, as many authors prefer, "moments") do not just occur randomly within worlds, 
but successively in a strict linear order.   In fact, a world may simply be defined as a linear 
progression of times.  To do this formally, we must specify the relation by which the times are 
ordered.  We shall call this the earlier than relation and represent it as 'E'.  Thus 't1Et2' means that 

time t1 is earlier than time t2.  To say that the times that comprise a world are linearly ordered is to 

say that for any times t1 and t2 belonging to the same world, either t1Et2 or t2Et1 or t1 = t2.  This 

implies that the moments comprising a given world can all be arrayed as points along a single 
(possibly curved but more or less vertical) line, with each earlier moment beneath all later moments.   

                                                      
98It is customary in tense logic to dispense with a separate Kripkean semantics for the alethic 
operators and to analyze possibility and necessity in terms of the tenses.  See, for example, Robert 
P. McArthur, Tense Logic, Dordrecht, D. Reidel, 1976, Chapter 3, or Rescher and Urquhart, op. cit., 
ch. XII.  But elegant versions of this procedure badly distort the meaning either of the tense operators 
or of the alethic operators, and more accurate ones are cumbersome and inelegant.  Thus I depart 
from the custom. 



 

 

 E, moreover, must in general be transitive—that is, for any times t1  t2, and t3, if t1Et2 and 

t2Et3, then t1Et3—for it violates our conception "earlier" to think of t1 as earlier than t2 and t2 as earlier 

than t3 but not t1 as earlier than t3.99   

 Finally, we must recognize that even domains, which in alethic logic were relativized to 
worlds, must now be relativized to times as well.  Objects come into and go out of existence as time 
passes.  Thus within a single world what exists at one time differs from what exists at another.  But 
also at a given time what exists in one world may differ from what exists in another.  I am now poised 
over a soap bubble, ready to pop it with my finger.  If I choose to do so, then a moment afterward the 
actual world contains one less soap bubble than exists at the very same moment in the world that 
would have been actual had I not poked.   
 Having made these observations, we are now ready to say what a formal model for modal 
tense logic looks like: 
 

DEFINITION:  A model or valuation V for a formula or set of formulas of modal tense logic consists 

of: 
 1 A nonempty set T of objects called the times of V 

 2 A transitive relation E, consisting of a set of pairs of times from T 

 3 A nonempty set WV of objects called the worlds of V 

 4 Corresponding to each world w, a set Tw of times called the  

  times in w100 such that for any pair of times t1 and t2 in this set, either  

  t1Et2 or t2Et1 or t1=t2 

 5 For each world w and time t in w a nonempty set D(t,w) of objects,  

  called the domain of w at t  

 6 For each name or nonidentity predicate  of that formula or set of  

  formulas an extension V() (if is a name) or V(,w) (if  is a  

  predicate and w a world in WV) as follows: 

  i If  is a name, then V() is a member of D(t,w) for at least one  

   time t and world w 

  ii If  is a zero-place predicate (sentence letter) and t is in w,  

   then V(,t,w) is one (but not both) of the values T or F 

  iii If  is a one-place predicate and t is in w, V(,t,w) is a set of  

   members of D(t,w) 

  iv If  is an n-place predicate (n>1) and t is in w, V(,t,w) is  

   a set of ordered n-tuples of members of D(t,w). 

  
 Notice that this definition allows worlds to share times, though it permits what is true at a time 
in a given world to be false at that same time in a different world (as happens after worlds diverge).  A 
world need not contain all times.  One world may begin or end sooner than another, and some might 
be temporally infinite—having no beginning and no end.  And worlds need not share any times at all.  
There may be worlds with times wholly distinct from ours.  However, the earlier-than relation 
transcends worlds in the sense that if  t1Et2 , t1 is earlier than t2 in any world that includes both these 

times.  Our definition even allows us to model worlds that skip times—jumping as it were from an 

                                                      
99We might also be tempted to insist that  is irreflexive (that is, for all times t, it is not the case that 
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).  But we will resist these 

temptations.  Making  irreflexive and asymmetric would prevent us from modeling the kind of circular 

time envisioned in Nietzsche's idea of the eternal recurrence and from envisioning other interesting 
kinks in time, and there seems to be no a priori reason to rule such models out.    
100This definition permits us to write the more intutive expression 't is in w' rather than the formal 't  

w
'.  There is no point in trying to remember the meanings of too many symbols. 



 

 

earlier time to one much later.  I doubt that we have much use for such models, but it is harmless to 
suppose that logic does not rule them out. 
 Notice, finally, that our definition of a model does not include a specification of the alethic 
accessibility relation R.  This is because R is definable in terms already available to us.  Specifically, 

we may say that world w2 is accessible from w1 at time t iff w2 has exactly the same history as w1 up 

to time t.101   If w2 differs in any respect from w1 before t, then w2 is no longer possible relative to w1, 

for otherwise the past would not be necessary.  (Note, however, that in order to be accessible from 
w1 at time t, w2 need not diverge from w1 precisely at time t; the divergence of the two worlds may yet 

lie some distance into the future.)  Two worlds w1 and w2 have the same history iff they consist of 

the same moments up to time t and every atomic formula that is true at a given moment before t in 
one is true at the same moment in the other, that is, if they meet conditions 1 through 3 of the 
following definition: 
 
DEFINITION:  Given a model V for a formula or set of formulas, then for  

any worlds w1 and w2 and time t of V, w1Rw2t iff: 

1 t is a time in both w1 and w2 

2 w1 and w2 contain the same times up to t; that is, for all times t', if t'Et,  

 then t' is in w1 iff t' is in w2  

3 w1 and w2 have the same atomic truths at every moment up to t;  

 that is, for all times t' such that t'Et, and all predicates , V(,t',w1) = 

 V(,t',w2).   

 
Since names are not relativized to either worlds or times, stipulating that all predicates (this includes 
zero-place predicates) have the same valuation in the two worlds at all times up to time t is sufficient 
to guarantee that all atomic formulas do as well.  It also guarantees that most nonatomic formulas 
have the same truth values in w1 and w2—but not that all nonatomic formulas do.  We should expect, 

for example that a formula of the form F might have different truth values in w1 and w2 even at times 

before t, since though the two worlds' histories up to t are the same, their futures need not be. 
 Notice that we require for accessibility only that a world share its history with a given world up 
to the time t in question.  Thus, for example, a world may be accessible from the actual world, even if 
it differs at the present moment, provided only that its past history is exactly the same.  If instead we 
required sameness up to and including t we would make not only the past but also the present 
necessary.  For then only worlds exactly like the actual world at t would be accessible from the actual 
world at t, so that anything that happens at t happens necessarily at t.  This conflicts with our feeling 

that our present choices are not determined.  It must be admitted, however, that either definition of R 

is metaphysically presumptuous.  It is a matter of whether we choose to locate the earliest point of 
potential freedom or contingency in the present moment or the immediate future.  Our semantics 
places it in the present. 

 It is not difficult to see from our definition of the accessibility relation that R is reflexive, 

symmetric, and transitive—in the sense that, for any worlds w1, w2 and w3 and any time t in them: 

   w1Rw1t 

   if w1Rw2t, then w2Rw1t 

   If w1Rw2t and w2Rw3t, then w1Rw3t. 

                                                      
101We assume here that if two worlds that are exactly alike up to a certain time t are both possible 
(i.e., members of the set of possible worlds), then nothing that occurs in either before that time 
dictates which of their two courses events must follow from t onward.  Hence at t either world is 
possible relative to the other.  This assumption seems reasonable, but as we shall see below it 
implies a very strong alethic logic, S5.  Alternatively, we might have insisted that having the same 
initial history up to t is a necessary, though not sufficient, condition for accessibility at t.  This would 
permit a variety of weaker alethic logics. 



 

 

Together with the valuation rules to be stated below, this implies that the alethic logic associated with 
our version of modal tense logic is S5.  However, it is not this alethic logic that interests us here, but 
the logic of the tense operators.  The semantics for this logic given by our previous definitions 
together with the following valuation rules.  Rules 1-12 are just the Kripkean rules for alethic modal 
logic, relativized to times as well as worlds.  The novelty lies in rules 13-16.  We omit falsity rules 
here, since the list is getting long.  But no matter; a formula is still false iff it is not true. 
 
VALUATION RULES FOR MODAL TENSE LOGIC 

 Given any valuation V of modal tense logic whose set of worlds is WV, for any  

 world w in WV and time t in w: 

 1 If  is a one-place predicate and  is a name whose extension V() is  

  in D(t,w), then V(,t,w) = T iff V()  V(,t,w) 

 2 If  is an n-place predicate (n>1) and 1,...,n are names whose  

  extensions are all in D(t,w), then 

  V(1,...,n ,t,w) = T iff V(1),...,V(n)  V(,t,w) 

 3 If  and  are names then V( = ,t,w) = T iff V() = V() 

 For the next five rules,  and  are any formulas: 

 4 V(,t,w) = T iff V(,t,w) =/  T 

 5 V( & ,t,w) = T iff both V(,t,w) = T and V(,t,w) = T 

 6 V(  ,t,w) = T iff either V(,t,w) = T or V(,t,w) = T, or both 

 7 V(  ,t,w) = T iff either V(,t,w) =/  T or V(,t,w) = T, or both 

 8 V(,t,w) = T iff V(,t,w) = V(,t,w) 

 For the next two rules,  stands for the result of replacing each occurrence of the variable 

 in  by , and D(t,w) is the domain that V assigns to world w at time t.   

 9 V(,t,w) = T iff for all potential names  of all objects d in D(t,w),   

  V
(, )

(,t,w) = T 

 10 V(,t,w) = T iff for some potential name  of some object d in  

  D(t,w), V(, )
(,t,w) = T 

11 V(□,t,w) = T iff for all worlds u such that wRut, V(,t,u) = T 

 12 V(◊,t,w) = T iff for some world u such that wRut, V(,t,u) = T 

 13 V(H,t,w) = T iff for all times t' in w such that t'Et, V(,t',w) = T 

 14 V(P,t,w) = T iff for some time t' in w, t'Et and V(,t',w) = T 

 15 V(G,t,w) = T iff for all times t' in w such that tEt', V(,t',w) = T 

 16 V(F,t,w) = T iff for some time t' in w, tEt' and V(,t',w) = T 

 
 Since truth is now relativized, not only to worlds, but to times, we must once again revise the 
definitions of our chief semantic concepts: 
 
DEFINITION:  A formula is valid iff it is true at all times in all worlds on all its valuations. 
 
DEFINITION:  A formula is consistent iff it is true at at least one time in at least one world on at least 
one valuation. 
 
DEFINITION:  A formula is inconsistent iff it is not true at any time in any world on any of its 
valuations. 
 
DEFINITION:  A formula is contingent iff there is a valuation on which it is true at some time in some 
world and a valuation on which it is false at some time in some world. 
 
DEFINITION:  A set of formulas is consistent iff there is at least one valuation containing a world in 
which there is a time at which all the formulas in the set are true. 



 

 

 
DEFINITION:  A set of formulas is inconsistent iff there is no valuation containing a world in which 
there is a time at which all the formulas in the set are true. 
 
DEFINITION:  Two formulas are equivalent iff they have the same truth value at every time in every 
world on every valuation of both. 
 
DEFINITION:  A counterexample to a sequent is a valuation containing a world in which there is a 
time at which its premises are true and its conclusion is false. 
 
DEFINITION:  A sequent is valid iff there is no world in any valuation containing a time at which its 
premises are true and its conclusion is false. 
 
 DEFINITION:  A sequent is invalid iff there is at least one valuation containing a world in which there 
is a time at which its premises are true and its conclusion is false. 
 
 The primary application of modal tense logic is in clarifying our understanding of the relation 
between time and possibility.  One of the perennial philosophical issues concerning that relation is the 
question of determinism.  Determinism is the thesis that at any given time the only possible world is 
the actual world—that, in terms of our picture, the tree of time has no thin branches.   
 There are many arguments purporting to prove this.  It has been argued, for example, that 
since God knows everything that will happen, the course of events cannot deviate from what God 
foresees and is therefore determined.  Other possibilities are illusory.  This argument depends, 
however, on a dubious theological premise. 
 More cogent, at least initially, are arguments that aim to deduce determinism, not from 
assumptions about God's foreknowledge, but from assumptions about the structure of time itself.  As 
an example, consider the following argument, which purports to show that anything that happens has 
always been predetermined (i.e., has always necessarily been going to happen): 
 
 Suppose that as a matter of fact, a certain event happens -- 
 for example, that you read this logic book.   Then it has always  
 been the case that you would read this logic book.  Therefore it was  
 always necessary that you would read this book.  Since the same  
 reasoning can be applied to any actual event, anything that happens 
 was always destined to happen. 
 
The core of this argument consists of two inferences, which, using 'R' for 'You read this book', we 
may formalize as follows: 
 
  R  ├  HFR 

  HFR  ├  H□FR 

 
Analysis of these inferences provides a good illustration of the uses of our semantics.  The first is 
valid.  We can see this as follows.  Suppose for reductio that this inference is invalid—i.e., that you 
are now at this moment, t, reading this book, but that it is not the case that you have always been 
going to read this book.  Since you have not always been going to read this book, there was a time 
earlier than t, call it t', at which it is not the case that you were going to read this book.  But then it was 
true at t' that at all later moments you would not read this book.  Since in particular the current 
moment t is later than t', it follows that you are not reading this book now at t—which contradicts what 
we said above.  Hence the first inference is valid.  Here is the same reasoning in strict metatheoretic 
terms: 
 
METATHEOREM:  'R  ├  HFR' is valid. 

Proof:  Suppose for reductio that this sequent is invalid, i.e., that there is a valuation V containing 

some world w in which there is a time t such that V(R',t,w) = T and V(HFR',t,w) =/  T.  Since 

V(HFR',t,w) =/  T, by valuation rule 13 there is some time t' in w such that t'Et and V(FR',t',w) =/  



 

 

T.  But then by rule 16 for all times t'' in w such that t'Et'', V(R',t'',w) =/  T.  Now since t is in w 

and t'Et, this means in particular that V(R',t,w) =/  T, which contradicts our conclusion above 

that  V(R',t,w) = T. 
Therefore 'R  ├  HFR' is valid.  QED 
 

 However, the second inference, 'HFR  ├  H□FR', is invalid.  To show this, we must construct 

a model on which the premise is true and the conclusion false.  The model will consist, at minimum, 
of two diverging worlds, the actual world w1 and a merely possible world w2.  In the actual world w1, 

you have (we shall assume) at the present moment just begun to read this book.  In w1, then, the 

premise that you have always been going to read this book is true.  Now w2 is exactly like w1 right up 

to the present moment.  In w2, however, you never at any time read this book.  Thus the conclusion 

'H□FR' is false in w1, because it has not always been the case that you would neccessarily read this 

book.  Up to the present moment it was still possible for you not to be going to read this book, since 
you had the option represented by w2. 

 To make this informal reasoning rigorous, we must formalize this counterexample.  We aim to 
make it simple—though that also makes it unrealistic.  Our model need contain only two times, a past 

time t1 and the present t2, and two worlds, w1 and w2, each containing both times.102  (The future 

plays no role in this example, nor do changes in the past that would require more than one past time 
in either world.)  The sentence letter 'R' will be false at t1 and true at t2 in the actual world w1 and 

false at both t1 and t2 in the merely possible world w2.  It is, of course, arbitrary which objects we use 

to represent the times and worlds.  We might, for example, use the negative numbers -1 and -2 to 
represent worlds w1 and w2 and the positive numbers 1 and 2 to represent times t1 and t2, 

respectively.  But doing so would make the proof harder to follow.  We shall therefore dispense with 
this step and simply call the worlds (whatever they are) w1 and w2 and the times t1 and t2.  These 

stipulations define the model.  Having done that, the only work that remains is to apply the truth 
clauses for the operators to verify that this model does indeed make the premise 'HFR' true and the 

conclusion 'H□FR' false: 

 

METATHEOREM:  'HFR  ├  H□FR' is invalid. 

Proof:  Consider the valuation V whose set  of times is {t1,t2}, whose earlier-than relation E is {t1,t2} 

and whose set of worlds is {w1,w2}.  The set of times for both worlds is {t1,t2}; that is, both the times of 

this valuation are in both worlds, and furthermore: 
  V(R,t1,w1) = F   V(R,t1,w2) = F 

  V(R,t2,w1) = T   V(R,t2,w2) = F 

(Since we are dealing here with propositional logic, it is unnecessary to stipulate domains for the 
various worlds at various times.) 
 Now time t2 is in world w1, t1Et2 and V(R,t2,w1) = T.  Hence by rule 16 V(FR,t1,w1) = T.  But t1 

is the only time t' in w1 such that t'Et2.  Hence for all times t' in w1 such that t'Et2, V(FR,t',w1) = T.  

Thus by rule 13 V(HFR,t2,w1) = T. 

 Furthermore, t2 is the only time t' in world w2 such that t1Et'.  And V(R,t2,w2) =/  T.  Hence by 

rule 16 V(FR,t1,w2) =/  T.  Now by the definition of  R, w1Rw2t1 (since t1 is a time in both w1 and w2 

and—trivially!—w1 and w2 contain the same times up to t and have the same atomic truths at every 

moment up to t).  Since, then, w1Rw2t1 and V(FR,t1,w2) =/  T, by rule 11 V(□FR,t1,w1) =/  T.  And since 

t1 is a time in w1 and t1Et2, it follows by rule 13 that V(H□FR,t2,w1) =/  T. 

 We have now shown that V(HFR,t2,w1) = T and V(H□FR,t2,w1) =/  T; hence 'HFR  ├  H□FR' is 

invalid.  QED 
 

                                                      
102Technically, we could get by even without the past moments, but the resulting model is so 
counterintuitive that it does not make a good illustration. 



 

 

 Have we, then, refuted determinism?  Of course not.  We have only refuted one argument for 
it.  And this refutation employs a semantics based on controversial assumptions about time and 
possibility.  Indeed, it is a semantics designed from the outset to represent nondeterministic time—
time with many possible futures.  That it yields counterexamples to deterministic arguments is 
therefore no wonder.  The determinist could well retort that we have used the wrong semantics and 
hence the wrong logic, that the true semantics represents time not as a branching tree but as a single 
nonbranching line, and that our semantics simply begs the question.   
 Logic alone cannot settle this issue.  For any purported solution, one can always ask whether 
the correct semantics, and hence the correct logic has been used.  But here opinions will differ.  One 
can be extremely conservative, allowing into one's semantics only the the most strictly logical 
presuppositions or one can be more venturesome, adopting presuppositions with a metaphysical 

tinge.  (I have been somewhat venturesome, for example, in assuming that E is transitive and, within 

worlds, linear, and also in assuming that accessibility amounts to shared history; the determinist, who 
makes the strong assumption that only one world is possible at any given time, is more venturesome 
still.)  Conservative logics, which operate with fewer presuppositions, are less controversial.  But, 
because they validate fewer inferences, they are also less interesting.  The most interesting tense 
logics venture some way into the hazy borderland between logic and metaphysics. 
 Though it leaves the problem of determinism unsolved, logical analysis arguments for 
determinism is not merely an empty exercise.  Surely we clarify our conceptions if we take the time to 
formalize them and relate them to various models.  Moreover, the fact that we can model 
nondeterministic time shows that there is no contradiction in its conception—so far, at least, as we 
have conceived it.  Even if real time is wholly unlike our models, the existence of these models shows 
that a nondeterministic universe cannot be ruled out on logical grounds alone.  There is a logic of 
nondeterministic time, whether or not time itself is deterministic. 
 We now turn to some general features of our modal tense logic.  Note, first, that tense logic 
reflects the most fundmental patterns of modal reasoning.  In addition to the dualities already 

mentioned, we have, corresponding to the rule of necessitation in modal logic this rule:  If  is valid 

then so are H and G.  Similarly, coresponding to the Kripke axiom K, every formula of either of the 
following forms is valid: 
 

   H(  )  (H  H) 

   G(  )  (G  G). 
 

However, since the relation E need not be reflexive, we do not have the principles: 

 

    H   

    G   
 

which correspond to the T axiom □  .  These principles are incorrect for tense logic since the 

first says that whatever will always be true in the future is true already and the second that whatever 
has always been true in the past is still true.  To both of these theses there are easy 
counterexamples. 
 Two interesting principles that are not valid on our semantics are: 
 

    P  PP 

    F  FF 
 

The first asserts that if there was a time at which  was the case then there was a (presumably more 

recent) time at which it had already been that ; the second asserts that if there will be a time at 

which  is the case then there will be a (presumably still earlier) time at which  is going to be the 
case.  These schemata express the thesis that time is dense, i.e., that between any two times there 
exists a third.  Any model some of whose worlds contain only finitely many times falsifies instances of 
these theses.  Since time as we experience it certainly seems to be dense, we might want to build 

density into our definition of a model.  We could do this by requiring that E be a dense as well as 

transitive relation—i.e., by requiring that for any times t1 and t2 in a world w, if t1Et2, then there exists 



 

 

a time t3 in w such that t1Et3 and t3Et2.  That would imply, among other things, that all worlds contain 

infinitely many times, and it would make the two density principles valid. 
 All instances of the converses of the density principles: 
 

    PP  P 

    FF  F 
 
are, by contrast, valid on our semantics.  This can be shown from our stipulation in the definition of a 

valuation that E is transitive. 

 Tense logic displays some interesting oddities if time has a first or last moment.  If there is a 

first moment—i.e., a moment t at which time begins—in some world w, for example, then P is false 

for any formula , even if  is valid.  This is because there is no time t' in w such that t'Et and 

V(,t',w) = T, so that valuation by rule 14 V(P,t,w) =/  T.  But the real oddity is that H is true at t for 

any formula , even if  is a contradiction.  This is because, since there are no times t' in w such that 

t'Et and V(,t',w) =/  T (since there are no times t' in w such that t'Et), it follows trivially that for all times 

t' such that t'Et, V(,t',w) = T, so that valuation by rule 13, V(H,t,w) = T. 

 As a matter of fact, the formula 'PH(A & A)', which says that there was a time at which the 

contradiction 'A & A' had always been the case, is a way of asserting that there was a first moment 

in time.  Similarly, 'FG(A & A)' says in effect that there will be a last moment in time.  It follows, then, 

that 'PH(A & A)' and 'FG(A & A)' assert, respectively, that time has no first moment and no last 
moment.  However, this is not the same as asserting that time has gone on or will go on forever.  
Suppose that time will end exactly one second from now, but that there still will be a moment of time 
1/2 second from now, 3/4 of a second from now, 7/8 of a second from now, and so on.  Then there 
will be no last moment, even though time does not go on forever.  There is no way in our version of 
tense logic to say that time goes on forever, since our logic deals only with the topological properties 
of time (i.e., roughly, with time's "shape"), rather than with its duration.  Logics dealing with duration 
are called chronological logics or metric temporal logics, but they are beyond the scope of this 

book.103 
 Some of the valid formulas of tense logic have no analogs in the other modal logics we have 
studied.  Among these are the following "mixing axioms" (so called because they mix past and future 
operators): 
 

      GP 

      HF 
 

The first of these asserts that if  then it will always be that  was the case; the second that if , then 

it always had been that  would be the case. 
 Likewise peculiar to tense logic are these axioms of past and future linearity: 
 

   (P & P)  (P( & )  ((P( & P)  P(P & ))) 

   (F & F)  (F( & )  ((F( & F)  F(F & ))). 
 

The first asserts that if  and  are both the case in times past, then either they are both the case at 

the same past moment, or  is the case before , or  is the case before .  The second is an 
analgous assertion about the future.  The validity of these principles follows from our stipulation in the 
definition of a valuation that time within a world is linear.   

 We have designed our semantics (primarily through the definition of the relation ) to model 

the notion that the past is necessary.  Thus we might expect that all formulas of the form P  □P 

turn out to be valid.  This is almost, but not quite, true.  All formulas of this form in which  contains 
no occurrence of either of the future operators 'F' or 'G' are valid.  But the use of 'F' or 'G' would allow 

                                                      
103For an account of metric temporal logics, see Rescher & Urquhart, op. cit., Ch. X. 



 

 

us to make statements about what is going to be true in the future, and since the future need not be 
determined on our semantics, their inclusion may result in false instances.   
 To see why, let's consider a world w and a time t in w at which Alice, standing on the edge of 
a precipice with a hang glider, decides to leap—a thing she has never done before.  Suppose also 
that this decision was voluntary; that is, though in w she decides to leap and actually takes the 
plunge, she need not have done so.  In other words, there is some other possible world u which has 
the same history as w up to t, in which her decision at time t is not to leap.  In u, we shall suppose, 
she stays put, deciding then and there that hang gliding is not for her and never attempting it again.   
In w, then, at some time after t Alice is hang gliding, but in u she never hang glides.  Let's use the 

letter 'A' to stand for 'Alice is hang gliding.'  Then 'PFA  □PFA', which is an instance of the general 

form P  □P, is false in w at t.   For consider some time t' in w that is earlier than t.  Then clearly 

'FA' is true at t' in w.  Hence 'PFA' is true at t in w.  However, '□PFA' is false at t in w.  This is because 

'A' is false at all times in u.  Hence in u there is no time before t at which 'FA' is true.  So 'PFA' is false 
at t in u.  Hence, since u is accessible from w at t (both worlds having the same history up to t), 

'□PFA' is false at t in w.  It is, in other words, not necessary at t in w that it was the case that Alice 

would hang glide—for at t, the moment of her decision, a world in which she would never leap was 
still possible. 

 Though instances of P  □P may not be valid when  contains F or G, still, from those 

instances not containing F or G, all of which are valid, we can see that our semantics incorporates a 
strong form the doctrine of essentiality of origin.  Any object which now actually exists has, as a 
matter of necessity, the the entire past it actually did have, from the moment of its origin up to the 
present.  Worlds whose history deviates from ours at some time before now are now no longer 
possible relative to the actual world, though they may once have been possible. 
 You have probably noticed that principles of tense logic tend come in pairs—one principle for 
the past and one for the future.  This suggests a general principle, known as the mirror image rule: 
 

  If  is a valid formula, then so is the formula  obtained from  by 
  replacing each occurrence of G by H and each occurrence of F 
  by P, or vice versa. 
 

The mirror image rule justifies, for example, an inference from 'A  GPA' to 'A  HFA' and vice 
versa. 
 This rule is, in fact, valid for semantic systems that make the past and future topologically 
symmetrical.  Our semantics is not one of these, however, since we have designed it to make past 
but not future events necessary.  Consequently, not all instances of the mirror image rule are valid on 

our semantics.  For example, though the formula 'PA  □PA' is valid, as noted previously, the 

corresponding formula 'FA  □FA' is contingent. 

 Finally, let us take note of an interesting principle involving the interaction of quantification 
with modal and tense operators—Murphy's Law:  "whatever can go wrong will."  Using 'W' for 'goes 

wrong' we might at first blush just literally transcribe this principle as 'x(◊Wx  FWx)', but that 

misinterprets the tenses.  It says, "whatever can now go wrong will at some future time go wrong."  
But it is truer to the intent to say that whatever can at some future time go wrong will at some future 
time go wrong—that is: 
 

   x(◊FWx  FWx) 

 
Our nondeterministic semantics provides countermodels to this thesis, but deterministic semantics do 
not. 
 
EXERCISE 13.2.1:  Prove that the following sequents are valid on our semantics for modal tense 
logic. 
1 FHA  ├ A 
2 FHA  ├ HA 
3 PA  ├  GPA         
4 PPA  ├ PA 



 

 

5 HA & PB  ├  P(A & B) 

6 GA  FA  ├  G(A & A) 
7 GHA, FA  ├ HGA 
Hint: it is important to the proofs of the last three problems that the sentence letter 'A' does not 
contain the operators 'F' or 'G': 

8 PA  ├  □PA 

9 ◊FHA  ├ A 

10 A  ├ ◊PFA 

 
EXERCISE 13.2.2:  Prove that the following sequents are invalid: 
1 PA ├ A 

2 PA  ├  ◊A 

3 □A  ├  FA 

4 □PA  ├  P□A 

5 PA  ├ PPA 
 
EXERCISE 13.2.3:  Prove that the following formulas are not valid: 

1 A  (PA  FA) 

2 FA  □FA 

3 FA  FA 

4 P(A  ~A) 

5 x(◊FWx  FWx) 

  



 

 

CHAPTER 14 
HIGHER ORDER LOGICS 

 

14.1 HIGHER ORDER LOGICS:  SYNTAX 

 Consider the following obviously valid inference:   
 
  Al is a frog. 
  Beth is a frog. 

  Al and Beth have something in common. 
 

We might symbolize this in predicate logic by 'Fa, Fb  ├  xHabx', where 'H' is a three-place predicate 
meaning "___and___have___in common."  But this sequent is invalid and so does not capture the 
relevant features of the argument.  What Al and Beth have in common, of course, is the property 
expressed by the predicate 'F', the property of being a frog.  This is the "something" referred to in the 
conclusion.  'Something' normally indicates the presence of existential quantification, but in this case 
the quantifcation seems to generalize, not the places occupied by the names, but the place occupied 
by the predicate.  The form, in other words, appears to be this:   

  Fa, Fb  ├  X(Xa & Xb) 
where 'X' is, not a specific predicate, but a variable replacable by predicates—a variable that stands 
for properties.  Thus the conclusion asserts that there is a property X which both Al and Beth have—
or, more colloquially, that they have something in common. 
 If we allow such quantification, then many ideas not previously expressible in any direct way 
become formally expressible.  We may formalize 'Everything has some property', for example, as 

'xYYx'.  Notice that we now need two styles of variables, one for properties (upper case variables) 
and one for individuals (lower case variables).  A logic which quantifies over both individuals and 
properties of individuals is called a second order logic, as opposed to systems such as classical 
predicate logic, which quantify only over individuals and are therefore called first order logics.  It is 
also possible to quantify over properties of properties, as in the inference: 
 
  Socrates is snub-nosed. 
  Being snub-nosed is an undesirable property. 

  Socrates has a property that has a property. 
 
Here being undesirable is asserted to be a property of the property of being snub-nosed.  Using the 

extra-large typeface symbol 'U' to stand for 'is undesirable', the equally large variable 'Y' to quantify 

over properties of properties,104 's' for 'Socrates', and 'N' for 'is snub-nosed', we may express this as: 
 

  Ns,  UN  ├  X(Xs & YYX). 

 
'N' occupies the predicate position in the first premise but the subject position in the second, where it 
is treated as a name for the property of being snubnosed.  Logics which quantifiy over properties of 
properties in this fashion are called third order logics.  And there are fourth order logics, fifth order 
logics, and so on.  Any logic of the second order or higher is called a higher order logic.  Higher 
order logics use a different type of variable for each domain of quantification (individuals, properties of 
individuals, properties of properties of individuals, and so on).  An infinite hierarchy of higher order 
logics is called a theory of types. 
 Higher order logic was invented by Gottlob Frege late in the nineteenth century as a way of 
analyzing the concept of a natural number.  To understand Frege's idea, let's consider the number 
two.  What, exactly, is this number?  It seems to be a property of some sort, since it is exemplified by 
various things:  world wars in the twentieth century, wings of a hummingbird, truth values of classical 

                                                      
104This difference is usually marked by special subscripts or superscripts, but for the simple 
illustrations given here, variation in size is more graphic. 



 

 

logic, letters in the word 'ox', poles of the Earth—to mention a few.  Consider, in particular, the last of 
these, the poles.  In what sense do the poles exemplify twoness?  Certainly not individually.  The 
North Pole does not exemplify twoness.  Neither does the South Pole.  Each pole by itself is just a 
single thing.  What exemplifies twoness is not the poles taken individually, but the set defined by the 
property of being a pole—i.e., the set that contains just the two poles.  Twoness, then, is a property of 
this set or its defining property, not of the individual letters.  Frege defined twoness as the property of 
being a property with two exemplars.  On this analysis, the property of being a pole has the higher 
order property of twoness because it is exemplified by two individual objects. 
 Frege's idea is readily formalizable in second order logic.  Let the first order predicate 'P' 
stand for 'is a pole'.  Then, using ordinary first order logic, we can say that there are exactly two 
poles, as follows: 
 

  xy(x=y & z(Pz  (z=x  z=y)). 
 
(The general technique for symbolizing expressions of this sort is explained in Section 6.3.)  More 
generally, using the predicate variable 'X', we can say that exactly two things have property X like 
this: 
 

  xy(x=y & z(Xz  (z=x  z=y)). 
 
This expression is in effect a one-place predicate whose instances are properties rather than 
individuals.  If we replace 'X' by a predicate expressing a property exemplifed by exactly two 
individuals, the resulting formula is true.  If we replace 'X' by any other predicate of individuals, it is 
false.  Using our convention of extra-large type face to indicate predicates of properties, we may thus 

abbreviate this expression as '2X', where '2' is a predicate meaning "has the property of being 

exemplifed by two individuals".  Formally, we can do this by adopting a definintion of the following 
form: 
 

  X(2X  xy(x=y & z(Xz  (z=x  z=y))). 

 

To say that there are exactly two poles, we may now simply write '2P'.  This means that the property 

of being a pole has the property of being exemplified by two individuals.  Similar analyses may be 
offered of the other natural numbers.  So, for example: 
 

X(0X  yXy). 

X(1X  xy(Xy  y=x)). 

X(3X  xyz(((x=y & x=z) & y=z) & w(Xw  ((w=x  w=y)  w=z)))). 

 
and so on. 
 Higher order logic enables us to quantify over these numbers and introduce still higher order 
predicates that apply to them (such as 'is prime' or 'is greater than).  Thus it provides the resources to 
construct arithmetic—and much of the rest of mathematics—in what appear to be purely logical 

terms.105  For this reason Frege and also Alfred North Whitehead and Bertrand Russell106, writing 
near the beginning of the twentieth century held that mathematics itself is nothing more than logic.  
More precisely, they argued that all mathematical ideas can be defined in terms of purely logical 

                                                      
105The details of this construction are beyond the scope of this book.  The classic introduction to 
them is Bertrand Russell's Introduction to Mathematical Philosophy, London, Allen and Unwin, 1919. 
106The arguments of Whitehead and Russell were developed in their historic three-volume work 
Principia Mathematica, Cambridge, Cambridge University Press, 1910-1913. 



 

 

ideas and that all mathematical truths are logical truths.  This thesis, known as logicism, has, 

however, met with serious technical difficulties and is now in disrepute.107 
 In addition to providing an analysis of number, second order logic also provides an analysis 
of identity.  Identity can be defined in terms of second order quantification and the biconditional by a 
principle known as Leibniz' Law.  (However, we shall not adopt this definition but will retain the 
identity sign as a separate, primitive operator.)  This is the principle that objects are identical to one 
another if and only if they have exactly the same properties.  In formal terms: 

  a = b    X(Xa  Xb) 
Leibniz' Law itself is sometimes further analyzed into two subsidiary principles, the identity of 
indiscernibles: 

  X(Xa  Xb)  a = b 
and the indiscernibility of identicals: 

  a = b    X(Xa  Xb). 
The first of these formulas says that objects that have exactly the same properties are identical, and 
the second says that identical objects have exactly the same properties.  Leibniz' Law is equivalent to 
their conjunction. 
 Higher order quantifiers may range not only over properties but over relations as well.  For 
example, the argument: 
 
  Al loves Beth. 

  Al has some relation to Beth. 
 

may be formalized as 'Lab  ├  ZZab'.108   
 Analogies, to take another example, are often expressed in the form: 
  a stands to b as c stands to d. 
For instance: 
  Washington D.C. is to the USA as Moscow is to Russia, 
the analogy here being the relationship between a country and its capital city.  The general assertion 
that there is such an analogy among four particular items may be formalized as: 

  Z(Zab & Zcd). 
This says that there is some respect in which a stands to b as c stands to d. 
 Many important generalizations in logic are naturally formulated as higher order sentences.  
Take, for example, the assertion that every asymmetric relation is irreflexive.  An asymmetric relation 
is one such that if it holds between x and y it does not hold between y and x.  An irreflexive relation 
is one that does not hold between any object and itself.  Accordingly, 'All asymmetric relations are 
irreflexive' may be formalized as: 

  Z(xy(Zxy  Zyx)  xZxx) 
 Type hierarchies involving relations can be extraordinarily complex.   For the remainder of 
this chapter we shall confine our consideration just to second order logic, since much of what is novel 
about type theory appears already at the second order. 
 Some second order logics allow quantification not only of one-place and many-place 
predicates, but of of zero-place predicates (sentence letters) as well.  On such logics, for example, we 

may infer from the valid formula 'P  P' the formula 'X(X  X)', which may be interpreted as "every 

                                                      
107For good accounts of the demise of logicism, see Rudolf Carnap's "The Logicist Foundations of 
Mathematics" and Kurt Gödel's "Russell's Mathematical Logic," both in D. F. Pears, ed., Bertrand 
Russell:  A Collection of Critical Essays, New York, Doubleday & Company, 1972.  See also Paul 
Benacerraf and Hilary Putnam, eds., Philosophy of Mathematics:  Selected Readings, 2nd ed., New 
York, Cambridge University Press, 1983. 
108It is common practice in higher order logic to mark variables standing for n-place predicates with 
the superscript or subscript 'n'; but since we require that a quantified variable always occurs both with 
the quantifier and at least once later in the formula, this is unnecessary, for we can tell which sort of 
predicate the variable stands for by counting the names after one of the later occurrences of the 

variable in the formula.  Thus we know that in 'ZZab', 'Z' is a variable ranging over two-place 
relations, for in its second occurrence it is followed by two names. 



 

 

proposition is such that either it or its negation holds."  But the interpretation of such formulas is 
problematic, unless we regard propositions as truth values—in which case it is trivial.  So we will not 
discuss this sort of quantification here. 
 The syntax of second order logic is like that of first order predicate logic (including the identity 
predicate), with two exceptions:  (1) we now reserve the captial letters 'U' through 'Z', which before 
were predicates, to be used with or without subscripts as predicate variables, and (2) we add the 
following clause to the formation rules: 
 

If  is a formula containing a predicate , then any expression of the form / or /  

is a formula, where /is the result of replacing one or more occurrences of  in  by some 

predicate variable  not already in . 
 

This is just like the quantifier clause for predicate logic, except that it concerns predicates and 
predicate variables, rather than names and individual variables. 
 
EXERCISE 14.1:  Formalize the following arguments in second order logic, using the interpretation 
suggested below.  All these arguments are valid. 
 NAMES   ONE-PLACE PREDICATES  TWO-PLACE PREDICATE 

 aAl   His human   Lloves 

 bBud   Mis mortal 

    Pis perfect 
    
1 All humans are mortal.  Therefore, all humans have something in common. 
2 Al is human.  No humans are perfect.  Therefore there is at least one  
 property which Al has and at least one which he doesn't have. 
3 All objects are such that there is no property which they both have and lack. 
 Therefore, for any object and any property, either it has that property or it  
 does not. 
4 Al is Bud.  Therefore, Al and Bud have exactly the same properties. 
5 Everything is either human or nonhuman; therefore, there is a single property  
 which every object has. 
6 Everything is identical to itself; therefore, there is some relation which  
 everything has to itself. 
7 Al loves himself.  Therefore not all relations are irreflexive. 
8 Some relations are asymmetric.  Therefore some relations are irreflexive. 
 

14.2  SECOND ORDER LOGIC:  SEMANTICS 

 We have been treating one-place predicate variables informally as ranging over properties 
and n-place predicate variables (n>1) as ranging over relations.  But what are properties and 
relations?  The usual answer is that properties are sets and n-place relations are sets of n-tuples.  
This is also the answer we shall give, though it leads to some counterintuitve consequences.  Since, 
for example, there is only one empty set (See Section 7.1), it also follows that there is only one 
property that is had by no objects.  We must concede, for instance, that the properties of being a 
purple kangaroo and of being a frictionless machine (neither of which is had by any object), though 
nominally distinct, are actually the same property.  There are more sophisticated notions of what 
properties and relations are, but these would take us into the field of intensional logic, which is 

beyond the scope of this book.109 
 One advantage of treating properties and relations as sets or sets of n-tuples is that it makes 
generalization of the notion of a valuation to second order logic elegant and easy.  We may define a 
valuation for second order logic in just the way we did for first order predicate logic; it is just a 
domain together with an assignment of appropriate extensions to predicates and names.  We must, 
however, generalize the idea of an expansion of a valuation and provide additional valuation rules for 

                                                      
109There is no easy introduction to intensional logic.  Some of the most interesting work remains that 
of Richard Montague.  See his Formal Philosophy, New Haven, Yale University Press, 1974. 



 

 

second order quantification. 

 To illustrate, let's take the formula 'XXa', which says that object a has some property—i.e., 
on our current interpretation, is a member of some set.  This is clearly true.  What makes it true is that 

we can always drop the quantifier and substitute some one-place predicate  for 'X', which we can 

interpret so as to make a true.  (The simplest way to do this is to let V( be the set whose sole 

member is the object denoted by 'a'.)  In other words, 'XXa' is true iff we can expand our language 

with a possibly new predicate  interpreted so as to make a true.  To state this formally we must 
define the concept of a second order expansion.  Instead of introducing a new name that denotes an 
object in the domain, as in a first order expansion, a second order expansion adds a new n-place 
predicate that denotes a set of objects (if n = 1) or n-tuples (if n>1) from the domain. 
 To simplify this definition and the valuation rules that follow, we shall regard a set of objects 
as a set of one-tuples, so that instead of the awkward phrasing 'set of objects (if n = 1) or n-tuples (if 
n>1)', we may say simply 'set of n-tuples (n>0)'.  We now define the notion of a potential characterizer 
and a second order expansion.  These are perfectly analogous to the first order conceptions of a 
potential name and expansion.  
 

DEFINITION:  Let V be any valuation,  any n-place predicate (n>0), and N any set of n-tuples of 

objects in the domain of V.  Then  potentially characterizes N with respect to V if and only if V 

does not assign some extension other than N to .  (In other words,  potentially characterizes N if 

and only if either V() = N or V assigns nothing to .) 

  

DEFINITION:  Let V be any valuation, N any set of  n-tuples (n>0) from the domain of V, and  any 

n-place predicate which potentially characterizes N with respect to V.  Then the second order 

expansion V
(, )

 of V with respect to N and  is the valuation which has the same domain as V and 

which assigns the same extensions to the same predicates and names, but which in addition assigns 

to  the extension N, if V does not already assign  an extension.  If V already assigns N to , then 

V
(, )

 is just V.   

 

Now to the valuation rules of first order predicate logic, we add the the following new clauses.  Let  

be any n-place predicate variable (n>0) and (/) the result of replacing all occurrences of the  in  

by   Then: 
 

 11 V() = T iff for all sets N of n-tuples from D and for all  

   n-place predicates that potentially characterize N,  

   V
(,N)

((/)) = T; 

  V() = F iff for some set N of n-tuples from D and some  

   n-place predicate that potentially characterizes N,  

   V
(,N)

((/)) =/  T; 

 12 V() = T iff for some set N of n-tuples from D and some  

   n-place predicate that potentially characterizes N,  

   V
(,N)

((/)) = T; 

  V() = F iff for all sets N of n-tuples from D and for all  

   n-place predicates that potentially characterize N,  

   V
(,N)

((/)) =/  T; 

 

Using this semantics, we can see, for example that the formula 'XXa', which we considered earlier, 
is not merely true on some particular valuations, but is a valid formula. 
 

Metatheorem: 'XXa' is valid. 

Proof:   Suppose for reductio that there is some valuation V such that V(XXa) =/  T.  Then by 

valuation rule 12, for all sets N of 1-tuples (objects) from D and for all 1-place predicates 



 

 

that potentially characterize N  V
(,N)

(a) =/  T.  Now (by the definition of a valuation) V 

assigns to the name 'a' some object d in D.  It follows in particular, that for the one-place 

predicate 'F' and the set {d}, V
(F,{ })(Fa) =/  T.  This means, by valuation rule 1, that it is not the 

case that V
(F,{ })('a)  V

(F,{ })(F), that is that it is not the case that d  {d}—which is a 

contradiction. 

Therefore 'XXa' is true on all valuations.  QED 
  
 Trees in second order logic are just like those for first order predicate logic, except that they 
employ four new rules—two each for each of the two new second order quantifiers.  Except for the 
universal quantifier rule, they are little different from the corresponding rules for first order quantifiers.  
The existential rule is: 
 

Second Order Existential Quantifier (2):  If an unchecked formula of the form , where  is an 

n-place predicate variable, appears on an open path, check it.  Then choose an n-place predicate  

that does not yet appear anywhere on that path and write (/), the result of replacing every 

occurrence of  in  by , at the bottom of every open path that contains the newly checked formula. 
 

We may use this rule to show, for example, that the form 'X(Xa & Xb)  ├  a=b' is invalid.  (Just 
having at least one property in common does not guarantee identity!)  Here is the tree: 
 

  1          X(Xa & Xb)  premise 

  2 a=b   negation of conclusion 

  3          Fa & Fb  1 2
  4 Fa   3 & 
  5 Fb   3 & 
 
The tree exhibits a counterexample in a domain of two distinct individuals, both of which have the 
property F. 
 The tree rules for negated quantifiers are exactly like those for first order predicate logic, 
except that they mention predicate variables instead of individual variables: 
 

Negated Second Order Existential Quantification (2 ):  If an unchecked formula of the form 

 (where  is a predicate variable) appears on an open path, check it and write  at the 
bottom of every open path that contains the newly checked formula. 
 

Negated Second Order Universal Quantification (2 ):  If an unchecked formula of the form 

 (where  is a predicate variable) appears on an open path, check it and write  at the 
bottom of every open path that contains the newly checked formula. 
 

The following tree uses 2 and 2 to show that 'a=b  ├  X(Xa  Xb)' is valid: 
 
  1 a=b   premise 

  2          X(Xa  Xb)  negation of conclusion 

  3          X(Xa  Xb)  2 2 

  4          (Fa  Fb)  3 2 

  5 Fa   4  

  6 Fb   4  
  7 Fb   1,5 = 
  8 X   6,7 
 
 The second order universal quantification rule, however, is a bit more complicated.  To see 
the need for the complication, consider the following example.  It is certainly true (indeed valid) that if 

Al has any property then Al does not not have that property.  In symbols:  X(Xa  Xa).  It ought to 



 

 

follow in particular that if Al is loved then Al is not not loved.  But the property of being loved is, on at 
least one useful formalization denoted, not by a simple predicate but by the complex expression 

'xLxy', where 'L' is a two-place predicate meaning "loves."  The complex expression reads, "there is 

something that loves y," or, more simply, "y is loved."  Correspondingly, 'Al is loved' is 'xLxa'.  Thus 

what follows as an instance of 'X(Xa  Xa)' is 'xLxa  xLxa'.   

 Notice that to obtain this instance we had to replace the predicate variable 'X' in 'X(Xa  

Xa)', not a by single one-place predicate, but by the entire expression 'xLxy'.  In the process, the 
place of the unquantified variable 'y' was taken by the name 'a'. 
 Now let's consider a more sophisticated example.  It is also true (and valid) that for any 

relation, if Al has that relation to Beth, then something has that relation to Beth—i.e.:  Z(Zab  

xZxb).  And from this it ought to follow (since nonidentity is a relation) that if Al is not identical to 

Beth, then something is not identical to her—i.e.:  a=b  xx=b.  Now the relation of nonidentity is 

expressed by the complex formula 'x=y'.  To obtain 'a=b  xx=b' as an instance of 'Z(Zab  

xZxb)', we remove the quantifier and replace each occurrence of the predicate variable 'Z' by 'x=y', 
substituting the first name or variable following that occurrence of 'Z' for 'x' and the second name or 
variable following that occurrence of 'Z' for 'y'.  It is this sort of substitution that makes the universal 
quantification rule somewhat difficult to express. 

 Notice that expressions such as 'xLxy' and 'x=y' are not officially formulas, since they 
contain unquantified variables.  They are, rather, expressions that could be obtained by removing 
initial first order quantifiers from quantified formulas.  The unquantifed variables in such expressions 
are known as free variables, and such an expression containing exactly n free variables is called an 

n-place open sentence.  Thus 'xLxy' is a one-place open sentence, because it has one free 

variable, 'y', and 'x=y' is a two-place open sentence.  What we count in determining the number of 
places is the number of distinct variables, not the number of occurrences of variables.  So, for 

example, 'Lxx  Lxx' is a one-place open sentence, even though its one variable occurs four times. 
 An instance of a second order universally quantified formula, then, is a formula obtained by 
removing the quantifier with its attached n-place predicate variable and replacing remaining 
occurrences of that variable with an n-place open sentence so that names and variables wind up in 
the right places in the manner illustrated above.  More precisely: 
 

DEFINITION:  Let  be an n-place predicate variable and  be an n-place open sentence whose free 

variables (in no particular order) are 1,...,n.  Then an instance of a formula of the form  with 

respect to  is the formula that results from replacing each occurrence of 1...n in  where 

1,...,n are lower case variables or names, with (1/
1
,...,n/

n
), the result of replacing each 

occurrence of the lower case variables 1,...,n in  by 1,...,n, respectively. 

 
Being an instance is an easier thing to show than to say!  Having gotten this far, however, we should 
not find the universal quantifier rule too difficult: 
 

Second Order Universal Quantification (2):  If a formula of the form , where  is an n-place 

predicate variable, appears on an open path and  is any n-place open sentence whose predicates 

(excluding the identity predicate) and names all occur on that path, then write any instance of  

with respect to  at the bottom of the path.  Do not check . 
 

The following tree  uses the second order universal rule (2) to show that the form 'Fa  ├  XXa' is 
valid: 
 
   1 Fa   premise 

   2          XXa   negation of conclusion 

   3 XXa   2 2 

   4 Fa   3 2 
   5 X   1,4 
 



 

 

Here we may think of the one-place open sentence that replaces the predicate variable 'X' at step 4, 
simply as 'Fx'—or 'Fy', etc.:  the choice of the lower case variable is arbitrary.  Notice that in 
accordance with the rule 'Fx' contains no names or predicates not already on the path. 
 Sometimes, however, the path may contain no names or predicates at all.  In that case we 
can still form instances by using the identity predicate, for which explicit exception is made in the rule.  

Consider this tree, which shows that the assertion that something has some property, 'XyXy', is 
valid: 
 

   1          XyXy  negation of given 

   2 XyXy  1 2 

   3          yy=y  2 2 

   4          yy=y  3  

   5 a=a   4  
   6 X   5 
 
Here we may think of the open formula replacing 'X' at step 3 as 'x = x'. 
 Finally, let's use the tree rules to demonstrate a mildly surprising result—namely that being 
identical to something amounts just to having every property that thing has (or, more properly, 

belonging to every set it belongs to).  That is, we are going to show that the formula 'a=b  X(Xa  
Xb)' is valid.  This is an apparently stronger version of Leibniz' Law, which asserts that two things are 

identical iff they have exactly the same properties, i.e.:  a=b  X(Xa  Xb).  It turns out, however, 
that if b has all of a's properties, then as a matter of logic a has all of b's—so that the two formulations 
are really equivalent.  We can see this as follows.  Suppose for reductio that b has all of a's properties 
but that a does not have all of b's.  Then there is some property F that b has but a doesn't.  Since a 

doesn't has F, then a has the property F.  And since b has all of a's properties, it follows that b has 

F, and hence has both F and F—a contradiction.  That explains the equivalence of 'X(Xa  Xb)' 

and 'X(Xa  Xb)'.  Here is the tree that shows that 'a=b' and 'X(Xa  Xb)' are equivalent (i.e., that 

'a=b  X(Xa  Xb)' is valid): 
 

1            (a=b  X(Xa  Xb)) negation of given 

 
2 a=b   1   X(Xa  Xb  1 

3          X(Xa  Xb)  1   a=b   1  

4          X(Xa  Xb)  3 2           (a=a  a=b) 2 2 

 
5          (Fa  Fb)  4 2 a=a 4    a=b 4   

6 Fa   5  X 5   X 3,5  

7 Fb   5  
8 Fb   2,6 = 
9 X   7,8 
 

The trick here is in the right branch at step 4 where we instantiate the predicate variable 'X' in 'X(Xa 

 Xb' with the one-place open sentence 'a=y' to obtain '(a=a  a=b)'.  'X(Xa  Xb' asserts that b 
has every property that a has.  We take that quite strictly, concluding that if a has the property being 
identical with a (expressed by the formula 'a=y), then b also has this property. 
 Second order logic has a big surprise in store when we consider the questions of soundness, 
completeness, and decidability.  Second order logic is undecidable, of course, since it contains first 
order predicate logic, and we proved in Section 10.6 that first order predicate logic is undecidable.  
That means that some invalid forms in second order logic have infinite trees.  No surprise there.  But 
though the tree rules for second order logic are provably sound, it can be shown that no validity test 



 

 

for second order logic is complete.  That is, every test, including the tree test, fails to recognize some 
valid forms as valid.  This surprising and frustrating fact is a consequence of Gödel's historic proof of 

the incompleteness of arithmetic, which is beyond the scope of this book.110 
 
EXERCISE 14.2.1:  Prove the following metatheorems: 

1 'XXa  ├ Fa' is valid 

2 'Fa  ├ XXa' is invalid. 

3 'XyXy' is valid. 

4 'XyXy' is valid. 
 
EXERCISE 14.2.2:  Test the following formulas for validity, using trees. 

1 XXa  Fa 

2 XyXy 

 ZxZxx 

4 ZZab 

5 Z(xy(Zxy  Zyx)  xZxx) 

6 Z(x(Zax  Zbx)  a=b) 
 
 
 
  

                                                      
110If you would like to pursue these matters, I heartily recommend George Boolos and Richard 
Jeffrey, Computability and Logic, 2nd ed., Cambridge, Cambridge University Press, 1980. 



 

 

CHAPTER 15 
MILDLY NONCLASSICAL LOGICS 

 
 
 All the logics we have examined until now have presupposed that (1) the logical meaning of a 
statement is its truth conditions, (2) all statements are either true or false but not both, and (3) every 
name refers to some existing thing.  The logics we have developed under these assumptions are 
called classical logics.  But while these assumptions are justifiable for some applications of logic, for 
others they are not.  In this chapter and the next we shall raise specific challenges to these 
assumptions.  The result, as we shall see, is not anarchy or chaos but an intriguing plurality of 
nonclassical logics.  In this chapter we shall focus on some relatively tame departures from 
classicism (hence the chapter title).  In the next we shall consider more radical deviations.  This 
division is, however, somewhat arbitrary and some logicians regard some of the developments even 
of this chapter as beyond the pale. 
 
15.1 FREE LOGICS 
 Where  is any name,  x x= is valid in classical predicate logic.  Such formulas count as 
logical truths, not for any deep metaphysical reason, but merely because in our definition of a 
valuation for predicate logic we have stipulated that each name must refer to something.  But that is 
not the case in ordinary language.  'Vulcan', 'Pegasus', 'Phlogiston', 'the Ether', 'Bilbo Baggins', 
'Hamlet', 'the Easter Bunny', 'the Loch Ness Monster' and  so on, are names that do not refer to any 
existing thing.  Thus classical predicate logic cannot allow such names, on pain of asserting the 
existence of something that does not exist. 
 This problem is not confined to fictional names.  Even a perfectly respectable name, like 
'Arkansas', becomes problematic in modal logic, which may entertain the possibility of worlds in which 

Arkansas does not exist.  In such a world 'x x=a' is plainly false, reading 'a' as 'Arkansas'; but 

according to classical predicate logic 'x x=a' is a logical truth.  Nor is the difficulty confined to alethic 
modalities.  It arises too in tense logic, where we may, for example, consider the actual world at times 

before Arkansas existed.  At such times, once again, 'x x=a' surely ought to be false. 

 Indeed, related difficulties arise where no names are used at all.  The formula 'x x=x', which 
may be read as "something self-identical exists" or even just "something exists," is also classically 
valid.  Its validity results from the stipulation in the classical definition of a valuation that domains are 
nonempty.  This stipulation is made to ensure that names have something to denote.  But, while true, 

'x x=x' seems not to be a genuine logical truth.  "Why is there something, and not rather nothing?" 
asks the philosopher Martin Heidegger; and the answer, if there is one, surely does not lie in the 
semantic conventions of classical predicate logic.  No merely logical response can placate such 
questioning.  A more modest logic would allow empty domains and would therefore have no such 

theorems as 'x x=x'. 
 There is good reason then to seek a logic capable of handling nondenoting names, names 
denoting objects that do not exist at a given world, and, perhaps, empty domains.  Such a logic is 
called a free logic, because it is free from the presupposition that a name must denote some existing 
thing.  The development of free logics has followed two different strategies. 
 The first is simply to allow some names to have no denotation at all.  This seems most 
appropriate in the case of fictional names or theoretical names (like 'the ether) that turn out to have 
been based on misconceptions.  This strategy requires a modification of the valuation rules for atomic 
sentences containing names, since it is ordinarily presupposed that the names denote something.  In 
classical predicate logic, for example, we expressed the valuation rule for atomic formulas with one-
place predicates as follows: 
 

 1 If  is a one-place predicate and  is a name, then V ) = T iff  

  V()  V(). 

 



 

 

But where  has no denotation, V() does not exist, so this rule must be supplemented by some 

additional convention.   
 There are various ways of handling nondenoting names.  We might, for example, make 

V ) false whenever  does not denote.  Or we might allow either truth value to be assigned to such 

formulas—modeling, for example, the idea that although Hamlet does not exist, it is true that he is a 
character in one of Shakespeare's plays, but false that he is buried in Rome.  We might also make 

 truth-valueless when  does not denote.  This third choice is best implemented in a 
supervaluational semantics of the sort discussed in Section 15.3.  There it will be seen on at least one 
natural rendering to lead not to free logic, but to a classical logic with a nonstandard semantcs.  The 
first two options for handling nondenoting names are problematic in various ways and will not be 

considered here.111 
 The second strategy for developing free logics is to retain the idea that all names denote but 
to represent some of the things names may denote as not existing.  This is accomplished by defining 
two domains—one representing actually existing objects, the other representing both existing and 
nonexisting objects.  Names may denote any object in the second and wider domain, but the familiar 
existential and universal quantifiers range only over the narrower domain of existing things.  This is 
called a Meinongian semantics, after the philosopher Alexius Meinong, who held that names or 
definite descriptions that do not denote existing things nevertheless denote objects which, though 
they do not exist, have "being."   
 Meinongian semantics is especially suited to various forms of modal logic (including tense 
logics).   In an alethic modal logic it is usually implemented by defining two domains.  The first of 
these, called the inner domain, is world-relative and represents, as usual, the domain of objects 
existing in that world.  The second, called the outer domain, is, according to the version of 
Meinongian semantics I shall describe, not world relative.  The outer domain represents the set of all 
things that can be named, including all things in the inner domains of one's own world as well as 
merely possible things, and perhaps also fictional things—even if these exist in no possible world.  It 
thus contains all the objects that exist in any world of the model and maybe some other objects as 
well.  (In a tense logic, the inner domain of a time is, analogously, the set of things existing at that 
time; the outer domain contains all things existing at any time in the same time sequence—and 
perhaps also some things, like fictional objects, that exist outside this sequence.) 

 On a Meinongian semantics, the formula 'x x=a' is true at a given world w if and only if the 
object denoted by 'a' is in that world's inner domain.  If this object is not in w's inner domain, but only 

in the outer domain, i.e., if it does not exist at w, then 'x x=a' is false at w.   
 Moreover, on Meinongian semantics, since names need not denote existing objects, there is 

no reason not to allow the inner domains of some worlds to be empty, thus falsifying 'x x=x' at those 
worlds. 
 Furthermore, Meinongian semantics provides a way of completing the truth conditions for 
atomic formulas of modal predicate logic, which we left incomplete in Section 11.2.  For example, 
where Dw is the (classical) domain of world w, we there defined the truth conditions for an atomic 

formula of the form  as follows: 
 

 If  is a one-place predicate and  is a name whose extension V() is in Dw, then: 

  V(, w) = T iff V()  V(,w); 

  V(, w) = F iff V()  V(,w).  

 
The problem is that while the extension of a name need not be a member of Dw, the extensions of 

predicates are in classical modal logic confined to Dw.  Given this restriction, we intentionally 

formulated the truth conditions to say nothing about the truth value of  if V()   Dw (that is, if  

denotes an object that does not exist in w), for it would have been arbitrary to stipulate truth 
conditions where we had assigned no extensions to justify them.  Thus, for example, if 'a' names 

                                                      
111An excellent survey is to be found in the essay "Free Logics" by Ermanno Bencivenga in D. 
Gabbay and F. Guenthner, eds., Handbook of Philosophical Logic, Volume III:  Alternatives to 
Classical Logic, Dordrecht, D. Reidel, 1985. 



 

 

Arkansas, 'S' is a predicate meaning "is a state," and w is a world in which Arkansas does not exist, 
these truth conditions say nothing about the truth value of 'Sa' at w.  There simply is no structure 
within classical modal semantics on which to base such a truth value. 
 Meinongian semantics provides the needed structure.  In a Meinongian semantics Dw 

becomes the inner domain of world w and there is in addition an outer domain, which we shall call .  

The extensions of predicates, instead of being confined to Dw, are now defined for the outer domain 

.  So, for example, for a one-place predicate , V(,w) is now a subset of  rather than of Dw.   

Similarly, each name denotes an object in , though the extension of a name—in contrast to that of a 

predicate—is always rigid, i.e., not world-relative.  On Meinongian semantics it becomes part of the 
task of constructing a model to stipulate for each predicate and each world not only which existing 
objects that predicate is true of in that world, but also which nonexisting objects it is true of in that 
world.  We define extensions of predicates at worlds not simply for all the actual objects in those 
worlds, but for all nameable objects. 
 Such a semantics does not automatically decide whether it is true or false that Arkansas is a 
state in a world in which Arkansas doesn't exist.  We must make that decision in defining the 
extension of the predicate 'is a state' for the various worlds.  The choice itself seems largely a matter 
of convention or stipulation.  But the semantics does allow us to model this choice once we have 
made it.  There is nothing in the classical semantics of Section 11.2 that allows us even to model it. 

 While the extensions of predicates and names are chosen from the outer domain , we retain 

the standard quantifier rules, according to which quantifiers range only over the inner domain Dw.  

Thus if we decide to make 'Sa' ("Arkansas is a state") true in some world w where neither Arkansas 
nor any other state exists (i.e., no member of V(S,w) is in Dw), then even though 'Sa' is true in w, 

'xSx' is false there.  So one way in which Meinongian semantics differs from classical semantics is 

that it makes the rule I invalid. 
 Since nothing essential to the understanding of free logic hinges on whether we take a 
Kripkean or Leibnizian approach to modality, we shall here adopt the simpler Leibnizian approach, 

ignoring the accessibility relation R.  We thus characterize a valuation V as follows: 

 

DEFINITION:  A Meinongian valuation or Meinongian model V for a formula or set of formulas of 

modal predicate logic consists of: 

 1 A nonempty set WV of objects, called the worlds of V, 

 2 A nonempty set O of objects, which is called the outer domain of V,   

 3 For each world w in WV a possibly empty subset Dw of , called the  

  inner domain of w,  

 4 For each name or nonidentity predicate  of that formula or set of  

  formulas an extension V() (if is a name) or V(,w) (if  is a  

  predicate and w a world in WV) as follows: 

  i If  is a name, then V() is a member of , 

  ii If  is a zero-place predicate (sentence letter), V(,w) is  

   one (but not both) of the values T or F. 

  iii If  is a one-place predicate, V(,w) is a set of members of . 

  iv If  is an n-place predicate (n>1), V(,w) is a set of ordered  

   n-tuples of members of . 

 
We may now complete the valuation rules for atomic formulas containing n-place predicates, n>0.  
These rules need no longer be restricted to the case in which the extensions of the relevant names 
are in Dw.  Instead, they now read simply: 

 

 1 If  is a one-place predicate and  is a name, then: 

  V(, w) = T iff V()  V(,w); 

grand
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  V(, w) = F iff V()  V(,w).  

 2 If  is an n-place predicate (n>1) and 1,...,n are names, then  

  V(1,...,n ,w) = T iff V(1),...,V(n)  V(,w); 

  V(1,...,n ,w) = F iff V(1),...,V(n)  V(,w). 

 
These rules give us the truth conditions for atomic formulas under all conditions, not just under the 
condition that the objects denoted by the names are in Dw. 

 The other valuation rules may be stated precisely as in Section 11.2.  Specifically, we have 
for the existential quantifier: 
 

  V(,w) = T iff for some potential name  of some object d in Dw,  

   V
(, )

(/,w) = T; 

  V(,w) = F iff for all potential names  of all objects d in Dw,  

   V
(, )

(/,w) =/  T. 

 
But because of the revised definition of a valuation, the logic of the quantifiers has been substantially 

altered.  We noted informally a few paragraphs back that the rule of existential introduction (I) is 
invalid on this semantics, for there might be a world (or time) in which it is true that Arkansas is a 
nonexisting state.  In fact, to turn this into a formal counterexample, we may for simplicity's sake 
suppose that there is only one possible world, w, in which neither Arkansas nor anything else exists.  
This is the strategy of the following metatheorem (in which the number 1 is a surrogate for Arkansas): 
 

METATHEOREM:  The sequent 'Sa  ├  xSx' is invalid on Meinongian semantics. 

Proof:  Consider the Meinongian valuation V such that: 

  WV = {w}  V(a) = 1 

  O = {1}   V(S,w) = {1} 

  Dw = { } 

Since 1  {1}, it follows that V(a)  V(S,w), and hence (by valuation rule 1) that V(Sa,w) = T.  

However, since Dw = { }, there is no potential name  of some object d in Dw such that V
(, )

(S,w) = 

T.  Therefore V(xSx,w) =/  T, and so the sequent is invalid.  QED 

 
Because inner domains may be empty, as the previous metatheorem illustrates, the logic itself does 

not presuppose the existence of anything.  In particular, the assertion that something exists, 'x x=x' 
is no longer valid as it is in classical logic: 
 

METATHEOREM:  The formula 'x x=x' is not valid on Meinongian semantics. 

Proof:  Consider the Meinongian valuation V such that: 

 WV = {w} 

 O = {1} 

 Dw = { } 

Since Dw = { }, there is no name  of some object d in Dw such that V
(, )

(=,w) = T.  Therefore V(x 

x=x,w) =/  T, and so 'x x=x' is not valid.  QED 
 

 Formulas of the form x x= are true at a world w iff V()  Dw—that is, iff the object denoted 

by  is a member of the set of things that actually exist at w.  Thus x x= means " exists."  It is 

customary to abbreviate such formulas using the symbolism 'E!', which, again, may simply be read 

as " exists."  We saw with our first metatheorem that existential introduction (or existential 
generalization) is invalid on a Meinongian semantics, but a restricted version of it still holds, as the 
following metatheorem shows: 
 



 

 

METATHEOREM:  Any sequent of the form /, E!  ├  , where / is the result of replacing 

each occurrence of the variable  in  by the name , is valid on Meinongian semantics.  

Proof: Suppose for reductio that /, E!  ├   is invalid; that is, that there is some Meinongian 

valuation V and world w of V such that V(/,w) = T and V(E!,w) = T but V(x,w) =/  T.  

Since V(E!,w) = T—that is, V(x x=,w) = T—it follows by the valuation rule for the 

existential quantifier that there is some potential name  of some object d in D such that 

V
(, )

(=,w) = T.  Hence by the valuation rule for identity, V
(, )

() = V
(, )

().  But by the 

definition of an expansion; see Section 7.2, V
(, )

() = d, and so V
(, )

() = d.  Moreover, since 

V is a valuation of / and so assigns some extension to , it follows (again by the 

defininition of an expansion) that V
(, )

() = V().  So V() = d.   Hence  is a potential name 

of d with respect to V.  Thus since / contains  and V(/,w) = T, V(x,w) = T, contrary 

to our supposition. 

Therefore all sequents of the form /, E!  ├   are valid.  QED 
 
So, for example, we might reason concerning a particular rabbit named Allison: 
 
  Allison is a rabbit. 
  Allison exists. 

  Some rabbit exists. 
 
In symbols: 
 

  Ra, E!a  ├ xRx. 
 

This is a simple sequent of the form /, E!  ├  , which is the subject of the metatheorem 
above. 
 Having provided a Meinongian semantics for quantified Leibnizian modal logic, we can now 
take care of the unfinished business of supplying inference rules for the quantifiers of Leibnizian 
modal logic.  The rules given here apply to free logic in general, not just to modalized forms of free 
logic.  As with classical predicate logic, we need an introduction and elimination rule for each of the 
quantifiers.  But all four of these rules require slight modification.  Since, for instance, the name 'a' 

need not denote anything in the actual or present situation, to infer 'xFx' from the premise 'Fa', we 

need the additional premise 'x x=a'.  Similarly, to infer 'Fa' from the premise 'xFx', we need that 
same additional premise.  Indeed, each of the classical quantifier rules must be modified by the the 
addition of this kind of existence statement at one place or another:  
 

Free Existential Introduction (FI) -- Let  be any formula containing some name  and 

 be the result of replacing at least one occurrence of  in  by some variable  not 

already in .  Then from  and x x= infer . 
 

Free Existential Elimination (FE)— Let  be any existential formula,  any formula, and 

 any name that occurs neither in  nor in .  And let  be the result of replacing all 

occurrences of the variable  in  by .  Then given a derivation of  from the hypothesis 

 & x x=, end the hypothetical derivation and from  infer , provided that  does not 
occur in any other hypothesis whose hypothetical derivation has not ended or in any 
assumption. 
 

Free Universal Introduction (FI)— Let  be a formula containing a name , and let  

be the result of replacing all occurrences of  in  by some variable  not already in .   

Then given a derivation of  from the hypothesis x x=, end the hypothetical derivation and 

infer , provided that  does not occur in any other hypothesis whose hypothetical 
derivation has not yet ended or in any assumption. 



 

 

 

Free Universal Elimination (FE)— Let  be any universally quantified formula and  

be the result of replacing all occurrences of the variable  in  by some name .  Then from 

 and x x=  infer 

 

By adding FI, FE, FI, and FE to the seven rules listed in Section 11.4, we obtain a logic that is 
sound and complete with respect to the Meinongian semantics outlined here.  That is, a sequent of 
modal predicate logic is provable in that logic iff it has no counterexample in our Meinongian 
semantics.  Like classical predicate logic, however, and for essentially the same reasons, this logic is 
undecidable. 
 We now illustrate this inferential system with a few simple proofs.  We begin with the sequent 

'x(Fx  Gx), Fa, x x=a  ├  xGx': 
 

 1 x(Fx  Gx)    A 
 2 Fa     A 

 3 x x=a     A 

 4 Fa  Ga    1,3 FE 

 5 Ga     2,4 E 

 6 xGx     3,5 FI 
 

Without the premise 'x x=a', this proof would fail, for 'a' might refer to a nonexisting object that has 
the property F but not the property G, even though all actual things having F also have G.  Notice 

that, unlike their classical counterparts which utilize only one premise each, FE and FI always 
require two premises.  Uses of these rules must therefore be annotated with two line numbers. 

 This proof of the theorem '├ x(Fx  yFy)' illustrates the use of the rule FI: 
 

 1 | x x=a    H (for FI) 

 2 | | Fa   H (for ) 

 3 | | yFy   1,2 FI 

 4 | Fa  yFy   2-3 I 

 5 x(Fx  yFy)    1-4 FI 
 

Unlike classical universal introduction, FI requires a hypothetical derivation.  The hypothesis (which 

is introduced in this proof at line 1) is always of the form x x=, where  denotes a representative 
individual—i.e., an individual about which we have made no particular assumptions.  The hypothesis 

at line 2 is for conditional proof.  Notice that while 'x(Fx  yFy)' is a theorem, instances of it, such 

as 'Fa  yFy' are not theorems, since the name 'a' need not denote an existing thing. 

 The next proof illustrates FE and the integration of free logic with modal principles.  It is a 

proof of the sequent 'xFx  ├  x◊Fx': 

 

 1 xFx     A 

 2 | Fa & x x=a   H (for FE) 
 3 | Fa    2 &E 

 4 | ◊Fa    3 P ├ ◊P112 

 5 | x x=a    2 &E 

 6 | x◊Fx    4,5 FI 

 7 x◊Fx     1,2-6 FE 

 
At line 2 we hypothesize a conjunction.  The first conjunct is a representative instance of the 
existential formula at line 1, using the name 'a' as the representative individual.  The second asserts 

                                                      
112This sequent, which was proved in Section 11.4, is used here as a derived rule in the manner 
described in that same section. 



 

 

that the object denoted by 'a' exists.  From this conjunctive hypothesis ( & x x= in the statement 

of the FE rule) we derive the formula 'x◊Fx' ( in the statement of the FE rule).  This hypothetical 

derivation enables us to infer 'x◊Fx' from 'xFx' by FE at line 7. 

 We now prove the theorem '├ xFx  (Fa  x x=a)': 
 

 1 | xFx    H (for I) 

 2 | | Fa   H (for I) 

 3 | | | x x=a  H (for I) 

 4 | | | Fa  1,3 FE 

 5 | | | Fa & Fa 2,4 &I 

 6 | | x x=a   3-5 I 

 7 | Fa  x x=a   2-6 I 

 8 xFx  (Fa  x x=a)  1-7 I 
 
The strategy is a simple reductio nested within two conditional proofs. 

  Finally, we prove the sequent '□xFx, ◊x x=a  ├  ◊Fa'.  This proof illustrates the use of 

several modal rules together with free logic.  Note especially the use of the previous  theorem 
together with the N rule at line 3: 
 

1 □xFx     A 

2 ◊x x=a     A 

3 □(xFx  (Fa  x x=a))  N  (xFx  (Fa  x x=a)) 

4 □xFx  □(Fa  x x=a)  3 K 

5 □(Fa  x x=a)   1,4 E 

6 □Fa  □x x=a   5 K 

7 □x x=a    2 DUAL 

8 □Fa     6,7 MT 

9 ◊Fa     8 DUAL 

 
For a fuller account of free logic, see my article in the Stanford Encyclopedia of Philosophy. 
 
EXERCISE 15.1.1:  Construct proofs for the following sequents in free Leibnizian predicate logic: 

1 x x=a, Fa  ├  xFx 

2  x□Fx  ├  xFx 

3 xFx  ├  x◊Fx 

4 ├ x x=x 

5 ├ x◊x=x 

6 x x=a  ├  x x=x       

7 xFx  ├  xFx 

8 x x=a  ├  x□x=a 

9 ├ (Fa & y a=y)  yFy 

10 y□(Fy & x x=y)  ├  □yFy 

EXERCISE 15.1.2:  Prove the following metatheorems: 

1 Every instance of FE is a valid sequent on Meinongian semantics. 

2 The sequent 'xFx  ├  Fa' is invalid on Meinongian semantics. 

3 The sequent '□xFx  ├ x□Fx' is invalid on Meinongian semantics. 

4 The sequent 'x□Fx  ├  □xFx' is invalid on Meinongian semantics. 

 

15.2 MULTIVALUED LOGICS 
 In Section 3.1, I summarily announced that we would consider only two truth values, T and F, 
and that we would assume that each statement had exactly one of these truth values in every 
possible situation.   We have followed that policy ever since.  But there are reasons not to be satisfied 

http://plato.stanford.edu/entries/logic-free/


 

 

with it.  There are, for example, sentences which, though grammatically well-formed, seem to have no 
intelligible meaning.  Suppose someone says, for example, "Development digests incredulity."  This 
might be a striking metaphor of some kind, but what it means, if anything, is hardly clear.  One might 
argue that it is simply false.  Then 'Development does not digest incredulity' is true.  But this 
statement is hardly more intelligible than the first.  We might, then, decide to rule them both out of 
court;  they both, we might conclude, are neither true nor false.  Against this conclusion, some have 
objected that since neither statement is really intelligible, neither makes a statement, and where no 
statement is made there is nothing that can be either true or false.  The question of truth or falsity 
simply does not arise.  On this view, unintelligible sentences do not challenge the principle of 
bivalence because that principle applies only to statements. 
 A different, and perhaps stronger, challenge to the principle of bivalence stems from 

reference failure.  Consider, for example, the statement 'The Easter Bunny is a vegetarian'.113  In one 
sense, this is not true, since there is no Easter Bunny.  But if we conclude that it is false, then we 
must assent to 'The Easter Bunny is not a vegetarian'.  Is he, then, a carnivore?  The problem, of 
course, is that since the term 'The Easter Bunny' does not pick out an object of which we may 
predicate either vegetarianism or nonvegetarianism, it seems misleading to think of these sentences 
as either true or false.  We might reasonably conclude, then, that because of the reference failure 
they are neither.  Notice that here it is less plausible to argue that no statement has been made.  We 
understand perfectly well what it means to say that the Easter Bunny is a vegetarian.  But what is 
asserted seems not to be either true or false. 
 Semantic paradox supplies even stronger arguments against the principle of bivalence.  
Consider the following sentence, which we shall call S: 
 
  Sentence S is false. 
 
Here we can actually offer a metalinguistic proof that it is neither true nor false.  For suppose for 
reductio that it is true.  Then what it says (that it is false) is correct, and so it is false.  It is, then, on 
this supposition both true and false, which contradicts the principle of bivalence.  Suppose, on the 
other hand, that it is false.  Then, since it says of itself that it is false, it is true.  Hence once again it is 
both true and false, in contradiction to the principle of bivalence.  Hence from the principle of 
bivalence itself, we derive by reductio both the conclusion that this sentence is not true and the 
conclusion that it is not false.  It is, then, certainly not bivalent. 
 One might also reject bivalence on metaphysical grounds.  Jan L/ ukasiewicz, who constructed 
the first multivalued semantics early in the twentieth century, held that contingent statements about 
the future do not become true until made true by events.  Suppose, for example, that a year from now 
you decide to write a novel.  Still it is not true now that a year from now you will decide to write a 
novel; the most that is true now is that it is possible that you will and possible that you won't.  Only 
when you actually do decide a year hence does it become true that a year earlier you were going to 
decide to write a novel a year hence.  Obviously, L/ ukasiewicz' conception of time is different from that 
presented in Section 13.2, where we modeled a nondeterministic time in which contingent statements 
about the future may be true at present.  L/ ukasiewicz assumed that the present truth of contingent 
statements about the future implies determininsm.  In any case, the idea that the truth of a contingent 
statement does not "happen" until a specific moment in time, whether right or not, is of logical 
interest.  It implies that many statements about the future are neither true nor false now, so that there 
is some third semantic status, which L/ ukasiewicz called 'possible' or 'indeterminate', in addition to 
truth and falsity. 
 There may also be more mundane, practical grounds for rejecting bivalence.  The designers 
of a computer database of propositions, for example, might want to list some propositions as true, 
some as false, and others as unknown.  There is, of course, no metaphysical basis for the third value 
in this case.  The propositions listed as unknown may all in fact be true or false.  But in practice the 
inferential routines used with the database may work best if they embody a three-valued logic. 

                                                      
113We are here regarding 'The Easter Bunny' as a proper name, rather than a definite description.  
Thus it is by no means obvious that we could successfully deal with this reference failure by 
appealing to Russell's theory of descriptions. 



 

 

 Finally, phenomena of vagueness might motivate us to reject bivalence.  The seemingly 
simple and clear sentence 'This is a car' asserted of a mid-sized sedan is certainly true.  Asserted of 
a an eighteen-wheeler it is certainly false.  But what if it is asserted of a van?  Many people feel that 
such assertions are "sort of true, but not exactly true."  Since, like 'car', virtually all words are 
somewhat vague, for virtually all statements there are borderline situations in which we are hesitant to 
say that the statement is either true or false.   But the notion that truth comes in degrees leads 
beyond consideration of a mere third alternative to truth and falsity and into the realm of infinite 
valued and fuzzy logics (see Section 16.1). 
 All these considerations seem to point to the existence or usefulness of at least one new truth 
value in addition to truth and falsity.  Let us, for the moment, posit just one, which we shall call I or 
"indeterminate."  Adoption of this third truth value requires substantial revision of the valuation rules 
and of truth tables for propositional logic.  For one thing, a valuation may assign not just T or F to a 
sentence letter, but also I.  For another, we will have to decide how the logical operators should treat 
the new value—and there is not just one way to do this.  We shall assume that formulas governed by 
the operators have their usual truth values when their components are all true or false.  But what 
values should complex formulas take in cases in which one or more of the components have the 
value I?  Two general policies suggest themselves: 
 1 Indeterminacy of the part should infect the whole, so that  
  if a complex formula has an indeterminate component,  
  then the formula as a whole should be indeterminate. 
 2 If the truth value of the whole is determined on a classical  
  truth table by the truth or falsity of some components, even  
  if other components are indeterminate, then the whole formula  
  should have the value so determined. 
The difference between these two policies is easily seen in the case of disjunction.  Suppose that the 
sentence letter 'P' has the value T and that the letter 'Q' has the value I.  Then what is the truth value 

of 'P  Q'?  According to the first policy, the indeterminacy of 'Q' infects the whole formula, so that the 

truth value of 'P  Q' should be I.  But on the second policy, we must recognize that the truth of either 

disjunct is classically sufficient for the truth of the disjunction, and so the truth value of 'P  Q' should 
be T. 
 It is not obvious which of these policies is preferable.  Indeed, one may be preferable for 
some applications, the other for others.  Thus we shall discuss them both and, toward the end of this 
section, add a third to the mix. 
   In the late 1930s the Russian logician D. A. Bochvar proposed a three-valued semantics for 
propositional logic based on the first policy—namely that the indeterminacy of a part infects the 
whole.  This semantics is encapsulated in the following truth tables: 
 

                   

T F   T T  T   T   T   T  
F T   T F  F   T   F   F  
I I   T I  I   I   I   I  
    F T  F   T   T   F  
    F F  F   F   T   T  
    F I  I   I   I   I  
    I T  I   I   I   I  
    I F  I   I   I   I  
    I I  I   I   I   I  

 
Notice that whereas in classical logic for formulas or formula sets containing n sentence letters there 

are 2n valuations (horizontal lines on the truth table), in three-valued logic there are 3n.  The truth 
table for a binary operator, for example, has nine lines. 
 The valuation rules for Bochvar's logic reflect this new complexity.  We shall not state them 

all, but the rules for '' and '&', may serve as examples: 
 

  V() = T iff V() = F.  



 

 

  V() = F iff V() = T. 

  V() = I iff V() =/  T and V() =/  F. 

 

  V( & ) = T iff both V() = T and V() = T.  

  V( & ) = F iff either V() = F and V() = T, or V() = T  

   and V() = F, or V() = F and V() = F. 

  V( & ) = I iff either V() = I or  V() = I, or both  

 
 The resulting logic has some striking features.  For one thing, all those formulas which were 
classically tautologous (i.e., valid by their truth tables) are on Bochvar's semantics tautologies no 

longer.  The classical tautology 'P  P', for example, has the value I in the case in which 'P' has the 
value I.  It is not, therefore, true on all valuations and hence not a tautology.  In fact, every formula of 
ordinary propositional logic is indeterminate on any Bochvar valuation in which any one of its 
sentence letters is indeterminate.  Those formulas which were tautologies in classical logic still, 
however, have a special character:  there is no valuation on which they are false.  But they are not 
tautologies, as we have defined that term. 
 We might, of course, broaden our definition of tautology.  We could say that a tautology is 
any formula which is not false on any line of its truth table—i.e., which is either true or indeterminate 
on all lines.  Then the classical tautologies would count as tautologies, even on Bochvar's semantics.  
Thus it comes down to a question of which truth values we shall accept as designated—that is, 
which values count toward tautologousness.  If a statement must be true on all lines of its truth table 
to count as a tautology, then T is the only designated value.  If a statement need merely be either true 
or indeterminate on all valuations, then both T and I are designated values.  For Bochvar, only T was 
designated. 
 The definition of validity itself presents us with similar choices.  In a bivalent logic, it makes no 
difference whether we say that a sequent is valid iff: 
 
  there is no valuation on which its premises are all true and its  
  conclusion is untrue  
or 
  there is no valuation on which its premises are all true and its  
  conclusion is false. 
 
Given bivalence, untruth and falsity are the same thing.  In a multivalued logic, however, the 
difference between the two definitions is substantial, for there may be valuations on which the 
premises are true and the conclusion is indeterminate.  Should these count as counterexamples?  If 
we think so, we will adopt the first definition of validity.  If we think not, we will adopt the second.  
Bochvar adopted the first, and it is the one that we shall use here.  Indeed, we stipulate now that we 
shall for the purposes of this section (and particularly the exercise at the end ) retain the wording of all 
the definitions of semantic concepts presented in Chapter 3. 
 Another interesting feature of Bochvar's semantics is that it invalidates a number of sequents 
that at least some logicans have regarded as suspect.  The so called "paradoxes of material 
implication," for example: 

  Q  ├  P  Q 

  P  ├  P  Q, 
though valid in classical logic, are on Bochvar's semantics invalid.  In the first case, the 
counterexample is the valuation on which 'Q' is true and 'P' indeterminate, which makes the premise 
true and the conclusion indeterminate (hence untrue).  In the second, the counterexample is the 
valuation on which 'P' is false and 'Q' indeterminate.  Indeed, the invalidity of these sequents is an 
instance of the following general principle: 
 

METATHEOREM:  Let 1,...,n  ├  be a sequent of ordinary propositional logic (as defined by the 

formation rules of Chapter 2).   Then on Bochvar's semantics if {1,...,n} is consistent and  

contains a sentence letter not found in 1,...,n, that sequent is invalid. 



 

 

Proof: Suppose that {1,...,n} is consistent and  contains a sentence letter not found in 1,...,n.  

Since {1,...,n} is consistent, there is some Bochvar valuation V of 1,...,n that makes 

each of these formulas true. But now consider the valation V' which is just like V except that 

in addition it assigns the value I to each of the sentence letters that appear in  but not in 

1,...,n.  V' makes 1,...,n true but  indeterminate, and so V' is a counterexample, which 

proves the sequent invalid. 

Therefore  if {1,...,n} is consistent and  contains a sentence letter not found in 1,...,n, that 

sequent is invalid.  QED 
 
In stating this metatheorem I said explicitly that the formulas in question were to be formulas "of 
ordinary propositional logic (as defined by the formation rules of Chapter 2)."  The reason for this 
qualification is that Bochvar added a novel operator to his logic, and the metatheorem does not apply 
to formulas containing this novel operator. 
 Following Susan Haack, I shall symbolize this operator as 'T', since it means in effect "it is 

true that."114 Like negation, it is a monadic operator, so to add it to our language we adopt this new 
formation rule: 
 

  If  is a formula, so is T. 
 
The truth table for 'T' is: 
 
  T  

 T T  
 F F  
 I F  
 

That is, if a formula  is true, then it is true that .  But if  is false or indeterminate, then it is not true 

that .   
 This "truth operator" gives Bochvar's logic a new twist, for any formula of which it is the main 
operator is bivalent.  And though, as we saw above, Bochvar's logic contains no tautologies among 
the formulas of ordinary propositional logic, it does have tautologies.  These, however, are all 
formulas containing the truth operator.  Here are some examples: 
 

   TP  TP 

   TP  TP 

   T(P  P)  (TP & TP) 
    

Notice, by contrast, that 'TP  TP' is not tautologous, for it is false when 'P' is indeterminate. 
 Bochvar hoped that his new semantics would solve the problem of semantic paradox.  
Consider, for example, the semantically paradoxical sentence that we have called S: 
 
   Sentence S is false 
 
We argued above that S is neither true nor false.  But if we adopt Bochvar's semantics, there is a third 
option:  it might have the value I.  Suppose, then, that it does.  In that case, using the sentence letter 
'S' to represent sentence S, though the formula 'S' has the value I, the formula 'TS' has the value F, 
for it is in fact not true that sentence S is false. 
 This three-valued approach seems neatly to dissolve the paradox.  Unfortunately, however, a 
new paradox emerges to take its place.  Let U be the sentence: 
 
   Sentence U is untrue 
 

                                                      
114Philosophy of Logics, Cambridge, Cambridge University Press, 1978, p. 207. 



 

 

As before, suppose for reductio that this sentence is true.  Then what it says is correct, and so it is 
untrue.  Hence it is both true and untrue—a contradiction.  Therefore, it is not true.  It follows, on 
Bochvar's semantics, that it has one of the values F or I.  But in either case it is untrue, and so what it 
says is correct; hence it is true.  Once again we have a contradiction—despite the third value. 
 Bochvar's semantics does not, therefore, provide a general solution to semantic paradoxes—
nor does any other three-valued or multi-valued semantics.  If semantic paradox is the problem, multi-
valued semantics is not the solution. 
 Bochvar, as we have seen, settled upon the first of the valuational policies mentioned 
above—the policy of making indeterminacy of a part infect the whole.  The second policy is to assign 
truth values to the whole even if some components are indeterminate, so long as the truth or falsity of 
the remaining components is sufficient to determine the truth value of the whole by the classical 
valuation rules.  This second policy results in a different set of truth tables: 
 

                   

T F   T T  T   T   T   T  
F T   T F  F   T   F   F  
I I   T I  I   T   I   I  
    F T  F   T   T   F  
    F F  F   F   T   T  
    F I  F   I   T   I  
    I T  I   T   T   I  
    I F  F   I   I   I  
    I I  I   I   I   I  

 
The three-valued propositional semantics expressed by these tables was first proposed by S. C. 
Kleene.   (Kleene also investigated Bochvar's system independently.)  As with Bochvar's logic, we 
may also introduce the operator 'T', which has the same truth table as before. 
 On Kleene's semantics, as on Bochvar's, classically tautologous formulas are 
nontautologous.  For, as on Bochvar's semantics, any statement of ordinary propositional logic all of 
whose atomic components have the truth value I has itself the truth value I; hence, for any formula, 
there is always a valuation (namely the valuation that assigns I to all its sentence letters) on which 
that formula is not true. 
 Yet Kleene's logic differs from Bochvar's in that it makes most of the classical inference 
patterns, including the paradoxes of material implication, valid.  There are, however, some 
exceptions:  in particular, inferences to what are classically tautologies from irrelevant premises still 

fail.  The sequent 'P  ├  Q  Q', for example, though classically valid, is invalid on Kleene's 
semantics, for the valuation on which 'P' is true and 'Q' indeterminate is a counterexample. 
 Kleene's semantics assigns the classical values T and F to more complex formulas than 
Bochvar's semantics does.  L/ ukasiewicz, who was the first to explore three-valued logic, proposed a 
semantics that goes even further in this direction.  L/ ukasiewicz' semantics is like Kleene's, except that 
where Kleene makes the conditional and biconditional indeterminate when both their components are 
indeterminate, L/ ukasiewicz makes them true.  L/ ukasiewicz' semantics is thus expressed by the 
following truth tables:  
 

                   

T F   T T  T   T   T   T  
F T   T F  F   T   F   F  
I I   T I  I   T   I   I  
    F T  F   T   T   F  
    F F  F   F   T   T  
    F I  F   I   T   I  
    I T  I   T   T   I  
    I F  F   I   I   I  
    I I  I   I   T   T  

 



 

 

Again we may augment L/ ukasiewicz' semantics with Bochvar's operator 'T', which has the same truth 
table as before. 
 L/ ukasiewicz' semantics, unlike Kleene's or Bochvar's, makes some of the classical 

tautologies valid;  'P  P', 'P  (P  Q)', '(P & Q)  P', and 'P P', for example, are each true on 

all L/ ukasiewicz valuations.  But the classical tautologies 'P  P' (the law of excluded middle) and 

'(P & P)' (the law of noncontradiction) are nontautologous, because each takes the value I when 'P' 
itself is indeterminate.  Some classical tautologies may even be false on L/ ukasiewicz semantics.   

'(P  P)', for example, is false when 'P' is indeterminate. 
 On L/ ukasiewicz' semantics, as on Kleene's, most of the familiar classically valid sequents 
remain valid.  An exception is the inference of certain classical tautologies from unrelated premises.  

For example, 'P  ├  Q  Q' is invalid since its premise is true while its conclusion is indeterminate in 

the case in which 'P' has the value T and 'Q' the value I.  Anomalously, however, 'P  ├  Q  Q' 
remains valid. 
 Moreover, L/ ukasiewicz' semantics dispenses with the classical logical equivalences between 

( & ) or    and   , precisely because of this case.  For although    is true when 

both  and  are indeterminate, both ( & ) and    are indeterminate in that case.  Some 
logicians find these features inelegant.  
 The move to three-valued systems suggests still further generalizations to semantics allowing 
four or more values—perhaps even infinitely many values.  Some of the early semantics for modal 
logic, for example, used four values:  contingently true, contingently false, necessarily true, and 
necessarily false, with the first two as designated values.  And there are many other variants—too 

many to catalogue here.115 
 One can also, of course, create multivalued predicate logics.  This generally requires some 
adjustment of the definition of a valuation and of the valuation rules for atomic formulas.  We might, 
for example, as in free logics, allow names to lack referents.  Then either all or some of the formulas 
containing these names could be stipulated to have the truth value I.  Or we attempt to dichotomize 
atomic formulas into those that are meaningful and those that are meaningless, assigning the latter 
the value I.  Or, if we are doing tense logic, we might design our models so that atomic statements 
about the future always receive the value I.  But again, we shall not bother with the details of these 
variations. 
 
EXERCISE 15.2.1:  Construct truth tables to test each of the following formulas for tautologousness 
(validity) on the semantics of L/ ukasiewicz, Kleene, and Bochvar, respectively (that is, do three tables 
for each formula), and record your results by writing 'tautologous' or 'nontautologous' next to each 
table: 

 1 P  P 

 2 P  P 

 3 (P  Q)  (P  Q) 

 4 TP  P 

 5 P  TP 

 6 (P  P)  (TP  & TP) 
EXERCISE 15.2.2:  Use truth tables to test each of the following sequents for validity on each of 
these three semantics.  (Recall that, according to the definition given in Chapter 2 and still in effect 
here, a counterexample is a valuation on which all the premises are true and the conclusion is 
untrue.)  Record your results by writing 'valid' or 'invalid' next to each table: 

 1 P  Q, P  ├ Q 

 2 P  ├ (Q & Q) 

 3 P  ├  P  Q 
 

15.3 SUPERVALUATIONS 

                                                      
115A good source for further study is Alasdair Urquhart, "Many-valued Logic," in D. Gabbay and F. 
Guenthner, eds., Handbook of Philosophical Logic, Volume III:  Alternative to Classical Logic, 
Dordrecht, D. Reidel, 1985.   



 

 

 The motive for moving to multivalued logics is that certain kinds of propositions seem to be 
neither true nor false.  This leads some logicians to posit a third value:  neutral, possible, 
indeterminate—or something of the sort.  But once we have added a third truth value, why not a 
fourth, a fifth, and so on?  One way to stem this regress is to stipulate that propositions that are 
neither true nor false do not have some other truth value; they have no truth value at all.  Such 
propositions are said to exhibit truth value gaps.  But how, then, could we calculate the truth value of 
a complex formula if, for example, some of its component propositions have no truth value? 
 The simplest response would be to declare all such formulas truth-valueless.  The result 
would be just like Bochvar's three-valued semantics, except that in the truth tables where Bochvar's 
logic has an 'I', this semantics would have a blank.  Or one could create truth tables like those for 
other forms of three-valued logic.  But this approach is hardly novel, differing in no essential respect 
from three-valued logics themselves.   
 A more interesting method—and one that, unlike most multivalued logics, preserves the 
validity of all classical inference patterns—is the technique of supervaluations invented by Bas van 

Fraassen.116  In propositional logic, a supervaluational semantics assigns to sentence letters either 
the value T, the value F, or no value at all.  We shall call such an assignment a partial valuation.  
(Note that at one extreme some partial valuations assign truth values to all the sentence letters of a 
formula or set of formulas and, at the other, some assign no truth values at all.)   The truth values of 
complex formulas, however, are not calculated by truth tables directly from the truth values of their 
components.  Rather, the calculation takes into account all what are called the classical completions 
of a given partial valuation.   
 Let  be any partial valuation.  Then a classical completion of  is a classical valuation (one 

that assigns each sentence letter in the relevant formula or set of formulas one and only one of the 
values T or F) that fills in all the truth value gaps left by .   In other words, a classical completion of  

does not change any truth value assigment to a sentence letter that has already been made by , but 

merely supplements assignments made by , giving each sentence letter of the given formula or set 

of formulas a truth value.  Since each truth value gap can be filled in by the assignment either of T or 

of F, each partial valuation, unless it is classical to begin with117, has more than one classical 

completion.  Consider, for example, the formula '(P  Q) & (R  S)', and let  be the partial valuation 

of this formula that assigns the value T to both 'P' and 'R' but no value to 'Q' or 'S'.  Then  has with 

respect to this formula four classical completions, corresponding to the four ways of assigning truth 
value to the sentence letters 'Q' and 'R'.  Each classical completion of  is represented by a horizontal 

line in the truth table below: 
 
 P Q R S (P  Q) &  (R  S) 

 T T T T T T T T T T T 
 T T T F T T T T T T F 
 T F T T T T F T T T T 
 T F T F T T F T T T F 

 
The columns under 'P' and 'R' list only T's, because these are the values assigned by the partial 
valuation , and they are retained in each classical completion. 

 To determine the truth value of the compound formula '(P  Q) & (R  S)', we expand  into a 

new nonclassical valuation  called the supervaluation of .  This is done by calculating the truth 

value of '(P  Q) & (R  S)' on each of the classical completions of , using the valuation rules of 

classical logic, as in the table above.  If '(P  Q) & (R  S)' is true on each of these classical 

completions (as the table shows that it is), then '(P  Q) & (R  S)' is true on the supervaluation .  If 

                                                      
116See his "Singular Terms, Truth Value Gaps, and Free Logic," Journal of Philosophy 67, pp. 481-
495. 
117The definition of a partial valuation given above treats classical valuations as special cases of 
partial valuations.  Thus if  is a partial valuation which is also classical, the classical completion of  

is  itself. 



 

 

it had been true on none of them, then would have been false on .  And if it had been true on some 

but not others, then it would have been assigned no truth value on . 

 A supervaluation, then, is constructed in two stages.  First, we define a partial valuation , 

which assigns to each sentence letter either the value T, the value F, or no value.  Next, at the 
second stage, we construct all the classical completions of  and use the classical valuation rules to 

calculate the truth values of complex formulas on each of these classical completions.   A formula  
(whether atomic or complex) is then assigned a truth value by the supervaluation  if and only if all 

the classical completions of  agree on that truth value; if not,  assigns no value to .  More 

formally: 
 
DEFINITION:  A supervaluational model of a formula or set of formulas consists of: 

1 a partial valuation , which assigns to each sentence letter of that  

 formula or set of formulas either the value T, the value F, or no value. We 

 use the notation ' ()' to denote the value (if any) assigned to  by . 

2 A supervaluation  of  that assigns truth values () to formulas   

 according to these rules: 

  () = T iff for all classical completions ' of , '() = T; 

  () = F iff for all classical completions ' of , '() = F; 

   assigns no truth value to  otherwise.  

 
 Supervaluations may leave truth value gaps, not only in atomic formulas but in complex 

formulas as well.  Consider, for example the partial valuation  of 'P  Q' that assigns F to 'P' and no 

value to 'Q'.  Then the corresponding supervaluation  assigns no value to 'P  Q'.  For on the 

classical completion that makes 'Q' true this formula is true, but on the classical completion that 

makes 'Q' false, this formula  is false.  Thus, since the classical completions of  do not agree on 'P  

Q', it receives no truth value on the supervaluation . 

 One might suppose that supervaluations just mimic Kleene's three-valued semantics (which 
assigns as many classical truth values as possible)—with a blank in place of the truth value I.   But 
this is not so.  Supervaluational semantics is not truth-functional.  That is, it does not provide a table 
for calulating the truth value of a formula from the truth values of its parts.  Consider disjunctions, for 
example, in the case in which both disjuncts lack truth value.  Some of these are truth-valueless on 

supervaluations, but some are true.  Take, for instance, the partial valuation  of the formula 'P  Q' 

that makes both 'P' and 'Q' truth-valueless.  Then both disjuncts 'P' and 'Q' and the disjunction 'P  Q' 
are truth-valueless on the corresponding supervaluation , because all three formulas are true on 

some classical completions of  and false on others.  But contrast this with the partial valuation  of 

the formula 'P  P' on which 'P' has no truth value.  Here there are two classical completions of —

one that makes 'P' true and one that makes 'P' false.  And again both disjuncts are truth-valueless on 
the corresponding supervaluation  because each disjunct is true on one of the the classical 

completions of  and false on the other.  Yet the disjuction 'P  P' itself, since it is classically valid, is 

true on every classical completion of .  So although 'P  Q' is truth-valueless on the supervaluation 

on which both its disjuncts are truth-valueless, 'P  P' is true on the supervaluation on which both its 
disjuncts lack truth value.  It follows that disjunction cannot be represented by a truth table in a 
supervaluational semantics.  The other binary operators are likewise non-truth-functional. 
 In a supervaluational semantics we may retain the classical definitions of such semantic 
terms as validity and consistency, but we must now understand the valuations mentioned in their 
definitions as supervaluations.  Thus, for example, a formula is valid iff it is true on all 
supervaluations; and a sequent is valid iff there is no supervaluation on which its premises are true 
and its conclusion is untrue.  (And, of course, there are two ways of being untrue:  being false and 
being truth-valueless.) 



 

 

 Surprisingly, the logic that results from these stipulations is just classical propositional logic—
even though, as we have seen, its semantics differs significantly from that of classical logic.  Thus, for 
example, an inference is valid on supervaluational semantics if and only if it is valid on classical 
bivalent semantics, despite the fact that the former, but not the latter, permits truth value gaps.  Let's 
prove this: 
 

METATHEOREM:  Let 1, ..., n, be any formulas of propositional logic.  Then the sequent 1, ..., 

n  ├   is classically valid iff it is valid on supervaluational semantics. 

Proof: Suppose for conditional proof that 1, ..., n  ├   is classically valid.  That is, there is no 

classical valuation on which 1, ..., n are all true and  is untrue. 

Now suppose for reductio that this sequent is invalid on supervaluational semantics.  

Then there is a supervaluation  such that 1, ..., n are all true on  but () =/  T.  

Thus there is a partial valuation  of {1, ..., n, }, each of whose classical 

completions makes 1, ..., n true but at least one of whose classical completions 

makes  untrue.  But a classical completion is by definition a classical valuation, and 

we saw above that there is no classical valuation on which 1, ..., n are all true and 

 is untrue.  Thus we have a contradiction. 

Therefore, contrary to our hypothesis, 1, ..., n  ├   is valid on supervaluational semantics. 

So, by conditional proof, if 1, ..., n  ├   is classically valid, then it is valid on supervaluational 

semantics. 

Now suppose for conditional proof that 1, ..., n  ├   is valid on supervaluational 

semantics.  Then there is no supervaluation on which 1, ..., n are all true and  is untrue.  

Thus there is no partial valuation of {1, ..., n, }, each of whose classical completions 

makes 1, ..., n true and at least one of whose classical completions makes  untrue.  In 

particular, none of the partial valuations of {1, ..., n, } which assigns truth values to all the 

sentence letters in these formulas is such that each of its classical completions makes 1, ..., 

n true and at least one of its classical completions makes  untrue.  Hence since every 

classical valuation is just the unique classical completion of some partial valuation which 
assigns truth values to all sentence letters, it follows that there is no classical valuation on 

which 1, ..., n are all true and  is untrue.  Thus 1, ..., n  ├   is classically valid. 

Therefore, once again by conditional proof, if 1, ..., n  ├   is valid on supervaluational semantics, 

then it is classically valid.  Thus we have shown that 1, ..., n  ├   is classically valid iff it is valid on 

supervaluational semantics.  QED 
 
 Let's now extend supervaluational semantics to predicate logic.   It may appear that 
supervaluations are especially suited to those forms of free logic which permit truth value gaps (see 
Section 15.1).  For just as supervalutions model our ability to make assertions that are neither true 
nor false by permitting truth-valueless formulas, so such free logics model our ability to give names to 
things that do not exist by permitting denotationless names.  But at least one natural supervaluational 
semantics for predicate logic leads, not to free logic, but (as in the propositional case) to a logic 
whose inferences are classical but whose semantics is nonbivalent. 
 We extend supervaluational semantics to predicate logic by beginning as in propositional 
logic with partial valuations.  A partial valuation for predicate logic is an assignment of the usual 
sorts of extensions in a nonempty domain to names and predicates and of truth values to sentence 
letters.  It need not, however, assign extensions to all (or any) of the names and sentence letters.  
That is, it may leave names denotationless or sentence letters truth-valueless.  Partial valuations 
must, however, assign extensions to all n-place predicates (n>0)—though, as in classical predicate 
logic, n-place predicates may still be made "denotationless" by being assigned the empty set.  A 
classical completion of a partial valuation for predicate logic, then, is simply a classical valuation for 
predicate logic that assigns the same values that  does but fills in the gaps where S assigns no 



 

 

values.  Then we stipulate that for each partial valuation , formulas are true on the supervaluation  

of  iff they are true on all classical completions of —i.e, true no matter what object in the domain we 

assign to the denotationless names or what truth value we assign to truth-valueless sentence letters.  
Similarly, formulas are false on  iff they are false on all classical completions of . 

 This makes most, but not all, atomic formulas containing nondenoting names truth-valueless.  
If, for example, a partial valuation assigns to the one-place predicate 'P' the entire domain as its 

extension, then for any name , even if  is denotationless, P is true on the corresponding 

supervaluation, since no matter which object in the domain we could assign to , P will be true.  

Similarly, if the extension of 'P' is { }, then P is false, regardless of whether or not  has denotation.  

However, if the extension of 'P' contains some but not all of the objects in the domain, then P is 

truth-valueless when  lacks denotation, since some assignments of denotation to  would make P 
true while others would make it false.  Various generalizations of these results also hold for relational 
predicates. 

 All formulas of the form = are true on all supervaluations—a pleasing result.  However, 

where  and  are different names one or both of which are denotationless, = is truth-valueless, 
unless the domain contains but one object. 
 This semantics validates the inferences: 

   Fa  ├  xFx 
and 

   xFx  ├  Fa, 
which are invalid on free logics.  Indeed, the resulting logic is—despite the truth value and denotation 
gaps—plain old classical predicate logic.  The semantics presented here is, however, only one of 
several ways to implement supervaluational predicate logics.  Other, generally more complicated, 

semantic variations yield logics more akin to the free logic of Section 15.1.118 
 In both propositional and predicate logic, supervaluational semantics allows us to retain all 
the inferential structure of classical logic while abandoning the semantic principle of bivalence.  It is 
thus an interesting compromise between classical and nonclassical logics. 
 
EXERCISE 15.3:   
1 Prove that a formula of propositional logic is classically valid iff it is  
 valid on supervaluational semantics.  

2 Prove that the inferences 'Fa  ├  xFx' and 'xFx  ├  Fa' are valid on the  
 supervaluational semantics for predicate logic sketched in this section. 
 
  

                                                      
118For a discussion of these semantic alternatives, see Ermanno Bencivenga, "Free Logics," in D. 
Gabbay and F. Guenthner, eds., Handbook of Philosophical Logic, Volume III:  Alternatives to 
Classical Logic, Dordrecht, D. Reidel, 1985, especially pp. 402-12. 



 

 

CHAPTER 16 
RADICALLY NONCLASSICAL LOGICS 

 
16.1 INFINITE VALUED AND FUZZY LOGICS 

 Consider the following argument: 
 
  A global population of 1,000,000,000 is sustainable. 
  If a global population of 1,000,000,000 is sustainable, so is a 
   global population of 1,000,000,001. 

  A global population of 1,000,000,001 is sustainable. 
 
Is this sound?  The reasoning (which is just modus ponens) seems valid, and the premises are true—
or at least almost true.  But if we iterate the same reasoning 999 billion times, like this: 
 
  A global population of 1,000,000,000 is sustainable. 
  If a global population of 1,000,000,000 is sustainable, so is a 
   global population of 1,000,000,001. 

  A global population of 1,000,000,001 is sustainable. 
  If a global population of 1,000,000,001 is sustainable, so is a 
   global population of 1,000,000,002. 

  A global population of 1,000,000,002 is sustainable. 
   . 
   . 
   . 

  A global population of 999,999,999,999 is sustainable. 
  If a global population of 999,999,999,999 is sustainable, so is a 
   global population of 1,000,000,000,000. 

  A global population of 1,000,000,000,000 is sustainable. 
 
we obtain an egregiously false conclusion. 
 The trouble seems to lie in the iteration of "almost true" premises of the form: 
 
  If a global population of n is sustainable, so is a global  
  population of n+1. 
 
Early in the sequence of inferences these premises lead to conclusions that are either wholly true or 
approximately true.  But as they are used to draw conclusion after conclusion, the conclusions 
become less and less true, so that by the end of the sequence we arrive at a conclusion that is wholly 
false. 
 It is obvious that no particular statement in this sequence is the source of the error.  All the 
conditional premises are true, or nearly so.  Rather, there is a gradual progression from truth into 
error.  The reason we cannot locate the error in any single premise is that the predicate 'is 
sustainable' is vague.  There are paradigm cases:  populations that are clearly sustainable, and also 
populations that are clearly unsustainable.  But there are also intermediate cases in which it is "sort of 
true" but also "sort of false" that the population is sustainable.  Our vague notion of sustainability 

defines no sharp boundary at which a population of n is sustainable, but a population of n1 is not.  
Rather, as the numbers increase it becomes less and less true that the population is sustainable. 
 The novelty of this explanation is that it makes truth a matter of degree.  There are, it 
appears, not just two truth values, but a potential continuum of values, from wholly false to wholly 
true.  If we take this seriously, the result is an infinite valued semantics. 
 The obvious way to represent these truth values is on a scale from 0 to 1 with 0 being wholly 
false and 1 being wholly true.  Then, in propositional logic, instead of assigning propositions just the 
values T or F, a valuation may assign them any real number from 0 to 1.  This, of course, forces us to 



 

 

revise the valuation rules for the connectives.  It is by no means obvious how to do this.  Several 
options are available, as we saw in Section 15.2, when we move from two values to three; many 
more present themselves when we contemplate an infinity of values.  We shall sample only one 
infinite-valued semantics—one of the simplest. 

 Consider, first, the negation operator.  If  is wholly true, then  is wholly untrue, and vice 

versa.  Likewise, it seems reasonable to suppose that if  is three quarters true,  is only one 

quarter true.  Thus, as a general rule  has all the truth that  lacks and vice versa.  More formally: 
 

  1 V() = 1V(). 

 
This gives negation many of the properties we expect it to have.  It follows from this definition, for 
example, that the double negation of a formula has the same truth value as the formula itself.  That is: 
 

  V() = 1V()  by valuation rule 1 

   = 1(1V())  by valuation rule 1 

   = 11V()  by algebra 

   = V()   by algebra 

 
 A conjunction would seem to be as true as the least true of its conjuncts. The truth conditions 
for conjunctions are best expressed using the notation 'min(x,y)' to indicate the minimum or least of 
the two values x and y—or the value 'x' and 'y' both express if x=y.  Thus, for example, min(0.25,0.3) 
= 0.25 and min(1,1) = 1.  The valuation rule for conjuctions, then, is: 
 

  2 V( & ) = min(V(),V()). 

 

Again, we can prove some familiar properties.  A conjunction of the form  & , for example, has the 

same truth value as : 
 

  V( & ) = min(V(),V())  by valuation rule 2 

    = V()   by definition of min 

 
 Disjunctions are as true as the most true of their disjuncts.  This idea may be expressed by 
the notation 'max(x,y)', which indicates the maximum or greatest of the two values x and y, or the 
value both variables express if x = y: 
 

  3 V(  ) = max(V(),V()). 

 
We can now show, for example, that generalizations of DeMorgan's Laws hold on this semantics.  For 

example, V( & ) = V((  )): 

 

 V( & ) = min(V(),V())  by valuation rule 2 

   = min((1- V()), (1- V()))  by valuation rule 1 

   = 1- max(V(),V())  by algebra119 

   = 1V(  )   by valuation rule 3 

   = V((  ))   by valuation rule 1 

 
 There are many ways of dealing with conditionals; again we shall choose one of the simplest.  
We shall assume that a conditional is wholly true if its consequent is at least as true as its antecedent, 
but that if the consequent is less true than the antecedent by some amount x, then the conditional is 

less than wholly true by that amount.  If, for example, V() = 0.3 and V() = 0.4, then V(  ) = 1, 

since the degree of truth of the consequent exceeds that of the antecedent.  If, however, the values 

are reversed, so that V() = 0.4 and V() = 0.3, then, since the antecedent's degree of truth exceeds 

                                                      
119The algebraic principle used here is that min(1-x,1-y) = 1 - max(x,y). 



 

 

the consequent's by 0.1, the conditional is that much less than wholly true; in other words V(  ) = 

10.1 = 0.9.  These truth conditions can be expressed by the equation: 
 

  4 V(  ) = 1min(V(),V())V() 

 

If  is at least as true as , i.e., V()V(), then min(V(),V())V() = 0 and so V(  ) = 1.  If 

V()>V(), then min(V(),V())V() = V()V(), so that V(  ) = 1V()V() =  

1(V()V()); that is, the conditional is less than wholly true by the amount V()V(). 

 Notice that    is wholly false only if V() = 1 and V() = 0.  Otherwise it has some 

degree of truth—i.e., V(  )>0. 

 For the biconditional, we shall assume that its truth value is 1 iff the truth values of its 
components are equal and that otherwise it is less than wholly true by the amount of their difference.   

Thus if V() = V(), then V(  ) = 1.  But if, say, V() = 0.3 and V() = 0.7, so that the difference 

between V() and V() is 0.4, then V(  ) = 10.4 = 0.6.  These truth conditions are expressible 

by the equation: 
 

  5 V(  ) = 1min(V(),V())max(V(),V()) 

 

This makes the truth value of    equal to that of (  ) &   ), as the following equations 
show: 
 

V((  ) &   ))  

= min(V(  ),V(  ))     by valuation rule 2 

= min((1min(V(),V())V()),(1min(V(),V())V()))  by valuation rule 4 

= min((1min(V(),V())V()),(1min(V(),V())V()))  by algebra120 

= 1min(V(),V())min(-V(),-V())    by algebra121 

= 1min(V(),V())max(V(),V())    by algebra122 

= V(  )       by valuation rule 5 

 
 These valuation rules yield familiar systems if we restrict the number of truth values.  If we 
consider just the values 1 and 0, taking 1 as T and 0 as F, then these rules define the classical 
semantics for propositional logic.  If we allow a third value, ½, and take it to be I, they yield L/
ukasiewicz' three-valued semantics.  In fact L/ ukasiewicz was the first to state these rules, though he 
had in mind applications, not to problems of vagueness, but to the problem of future contingents. 
 Knowledge of these correlations can be used to generate counterexamples to certain specific 

theses in the infinite valued semantics.  For example, we may wonder whether 'P  P' is valid (true 
on all valuations), which in the context of fuzzy logic means having the value 1 on all valuations.  We 
saw, however, in Section 15.2 that this formula is invalid on L/ ukasiewicz' semantics, the 

counterexample being the case in which V(P) = I.  Since I translates into the value ½ on the infinite 

valued semantics, the truth value assignment V(P) = ½ should also produce a counterexample here.  

Indeed it does: 
 

METATHEOREM:  The formula 'P  P' is not valid on this infinite valued semantics. 

Proof: Consider the valuation V such that V(P) = ½.  Now by valuation rule 3, V(P  P) = 

max(V(P),V(P)), which is by valuation rule 1 max(V(P),(1V(P))).  But since V(P) = ½, this is just 

max(½,(1½)) = max(½,½) = ½.  Thus since V(P  P) = ½, 'P  P' is not valid.  QED  

 

It is interesting to note, however, that the truth value of formulas of the form    can never drop 
below ½.  These formulas, while not in all instances valid, are always at least half true!   

                                                      
120For clearly min(x,y) = min(y,x). 
121Here we appeal to the fairly obvious fact that min((x - y),(x - z)) = xmin(-y,-z). 
122This inference relies on the fact that min(-x,-y) = -max(x,y). 



 

 

 This does not hold for all classically valid formulas, however.  We saw that the classical 

tautology '(P  P)' is false on L/ ukasiewicz' three-valued semantics when P is indeterminate.  

Similarly, on the infinite valued semantics V((P  P)) = 0 when V(P) = ½. 

 And, as on L/ ukasiewicz' three-valued semantics, some formulas—those of the form   , 
for example—are valid despite the infinity of values: 
 

METATHEOREM:  For any formula ,    is valid on the infinite valued semantics. 

Proof: Let  be any formula.  By valuation rule 4, V(  ) = 1min(V(),V())V() = 

1V()V() = 10 = 1.  Hence    is valid.  QED 

 
 In general, formulas which are classically valid may take any truth value on the infinite valued 
semantics, though those of particular forms may be confined to a particular range of values, or even 
to one value. 
 With infinitely many truth values available, we also have various choices for what counts as 
valid reasoning.  We might, for example, define the concept of validity in either of these ways: 
 
 1 A sequent is valid iff there is no valuation on which its premises are  
  wholly true and its conclusion is not wholly true (i.e., one which the  
  truth value of the premises is 1 but the truth value of the conclusion  
  is less than 1). 
 
 2 A sequent is valid iff there is no valuation on which the lowest of the  
  truth values of its premises exceeds the truth value of its conclusion. 
 
Or, generalizing definition 2, we might even make validity itself a matter of degree: 
 

 3 A sequent is valid to degree 1x iff there is no valuation on which  
  the lowest of the truth values of its premises exceeds the truth  
  value of its conclusion by more than x.  
 

On definition 3, for example, the sequent 'Q  ├ P  P' is valid to degree ½.  For the highest value 'Q' 

can have is 1, while the lowest value 'P  P' can have is ½.  Thus there is no valuation on which the 
truth value of the premise exceeds the truth value of the conclusion by more than ½.  Hence this 
sequent is valid to degree 1- ½ = ½. 
 A sequent is valid to degree 1 according to definition 3 iff it is valid by definition 2.  And any 
sequent valid by definition 2 is also valid by definition 1, though the converse does not hold.  There 
are other possible definitions of validity as well.  None is uniquely correct.  Rather, on an infinite 
valued semantics the concept of validity splinters into an array of concepts. 
 In particular cases various concepts of validity may coincide.  For example, the sequent 'P & 
Q  ├  P' is valid on definitions 1 and 2 and hence valid to degree 1 on definition 3.  But in other cases 
different concepts of validity yield different results.  Consider, for example, modus ponens in the form 

of the sequent 'P, P  Q  ├  Q'.  While valid on definition 1, this sequent is invalid on definition 2 and 
valid only to degree ½ on definition 3.  For on the valuation V such that V(P) = ½ and V(Q) = 0: 

 

V(P  Q) = 1min(V(P),V(Q))V(P)  by valuation rule 4 

  = 1min(½,0)½ 

  = 10½ 
  = ½ 
 

On V, therefore, both premises have the value ½ but the conclusion has the value 0.  Thus there is a 

valuation (namely V) on which the lowest of the truth values of the premises exceeds the truth value 

of the conclusion, and so the sequent is invalid by definition 2.  This example also shows that the 
sequent is valid at most to degree ½ on definition 3.  To show that it is valid exactly to degree ½ takes 
more work, but we have already seen what we need to see. 



 

 

 Let's now return to the problem with which we began this section.  We note first that 
conditionals of the form: 
 
  If a global population of n is sustainable, so is a global population  
  of n+1 
 
are not wholly true on our semantics.  For at high values of n, each statement of the form: 
 

  A global population of n1 is sustainable 
 
is slightly less true than each statement of the form: 
 
  A global population of n is sustainable 
 
To obtain the truth value of the conditional, we subtract the difference between the values of these 
two statements from 1.  Thus each such conditional has a truth value slightly less than 1. 
 Moreover, we have just seen that with less than perfectly true premises modus ponens may 
yield conclusions that are less true than either of the premises.  Hence it is now intelligible how even 
with premises that are almost wholly true, the truth values of successive conclusions by modus 
ponens may diminish.  A long sequence of such inferences, then, may lead us from near truth to 
absolute falsehood. 
 As this example illustrates, infinite valued semantics holds considerable promise for the 
semantic treatment of at least some kinds of vague inferences.  But it is not wholly satisfactory.  While 
we might agree, for example, that the truth value of 'A global population of 6,000,000,001 is 
sustainable' is slightly less than the truth value of 'A global population of 6,000,000,000 is 
sustainable', there is no fact of the matter as to what these numerical truth values are.  Is the truth 
value of the first statement, for example, 0.3? 0.5? 0.9?  And, what, exactly is the numerical 
difference between the truth values of the two statements? 
 Part of our inability to answer lies in our ignorance.  We don't understand the earth as an 
ecosystem well enough to know, except within a very broad range, what populations are sustainable.  
But part of the problem lies also in the vagueness of the term 'sustainable'.  Even if we knew 
everything there is to know about the earth, we would at best be able to offer only aritifically precise 
numbers for truth values, because the concept of sustainability is essentially vague and qualitative, 
lacking any rigorously quantifiable structure. 
 In the mid 60's Lofti Zadeh set out to improve upon infinite valued semantics by making the 
truth values themselves imprecise.  That is, instead of assigning to a statement like 'A global 
population of 6,000,000,000 is sustainable' an arbitrarily precise numerical truth value, Zadeh 
proposed that we assign it an imprecise range of values.  By this he meant not merely an interval of 
values (say the interval between .4 and .5, which itself is a precisely defined entity) but a fuzzy 
interval of values.  A fuzzy interval is a kind of fuzzy set.  And a fuzzy set is a set for which 
membership is a matter of degree.   
 Most concepts, Zadeh argued, define, not classical sets, but fuzzy sets.  Take the concept of 
redness.  Some things are wholly and genuinely red.  But others are almost red, somewhat red, only 
a little bit red, and so on.  So while fresh blood or a red traffic light might be fully a member of the set 
of all red things, the setting sun might be, say, halfway a member, and a peach only slightly a 
member.  Now in fuzzy set theory, membership is assigned strict numerical values from 0 to 1, like 
the truth values in infinite valued semantics.  But in definining truth values Zadeh compounds the 
fuzziness.  He might, for example, define a truth value AT (almost true), which is a fuzzy set of 
numerical values in which, say numbers no greater than 0.5 have membership 0, 0.6 has 
membership .3, 0.7 has membership 0.5,  0.9 has membership 0.8, and 0.99 has membership 0.95.  
Such a fuzzy set of numerical values is for Zadeh a truth value.  A logic whose semantics is based on 
such fuzzy truth values is called a fuzzy logic. 
 If infinite valued semantics presents a bewildering array of choices of truth conditions and 
semantic concepts, fuzzy logic compounds the complication.  Already in infinite valued predicate 
logic, the extensions assigned to predicates must be fuzzy sets; for if they were classical sets, atomic 
formulas containing n-place predicates (n>0) would always be either true or false.   So, for example, 



 

 

the predicate 'is red' has as its extension the fuzzy set of red things described above.  Consequently, 

infinite valued semantics has the following truth clause for one-place predicates  and names : 
 

 V() = x  iff V() is a member of the fuzzy set V() to degree x. 

 
But on Zadeh's fuzzy semantics the extensions of predicates are structures still more complex than 
fuzzy sets, structures which, when applied to the extensions of names, yield fuzzy truth values.  The 
valuation rules for the operators, and the semantic concepts of validity, consistency, and so on must 
all be redefined once again to accomodate these fuzzy values.  In the process these concepts 
"splinter" even more wildly than concept of validity does in infinite valued logic. 
 Yet despite the complication upon complication, arbitrariness remains.  Zadeh suggests that 
a fuzzy logic should not employ all possible fuzzy truth values (a very large set of values indeed!), but 
only a small finite range of them, and that it should correlate them with such natural language 
expressions as 'very true', 'more or less true', and so on.  But which fuzzy set of numbers 
corresponds the English expression 'more or less true'?  And why should we suppose that precisely 
that set is what we mean when we say that a particular sentence is more or less true?  The choice of 
any particular fuzzy value is just as arbitrary as the assignment of a precise numerical truth value to a 
vague statement.  The arbitrariness does not go away; it is merely concealed in the complexity. 
 Arbitrariness notwithstanding, fuzzy logic has found useful application in artificial intelligence 
devices.  But it has also acquired a certain unwarranted mystique.  Many people are attracted to the 
idea of a (warm and?) fuzzy logic because it sounds as if it might offer relief from overtaxing 
precision.  As a result of this popularity, the term 'fuzzy logic' is often used loosely.  In popular science 
publications it may mean no more than an infinite valued logic—or even statistical or just plain 
muddle-headed reasoning.   
 
EXERCISE 16.1:  Prove the following metatheorems using infinite valued semantics. 
1 The sequent 'P & Q  ├  P' is valid on definitions 1 and 2 of validity and  
 valid to degree 1 on definition 3. 

2 The sequent 'P, P  Q  ├  Q' is valid on definition 1. 

3 The formula '(P & P)' is not valid. 
 

16.2 INTUITIONISTIC LOGICS 

 All the logics thus far considered have as their fundamental semantic concept the notion of 
truth.  Truth is usually understood as a kind of correspondence between propositions or thoughts and 
reality.  But many philosophers, believing that we have no access to reality as it is in itself, doubt that 
we can ever attain truth in this sense.  I may think that the soup is boiling and then go to the stove 
and see that it is.  In this sense I may confirm my thought that the soup is boiling.  But my seeing or 
hearing (or even touching) the soup does not, so this line of reasoning goes, reveal the soup as it is in 
reality, but only the soup as I see or hear or feel it.  I may, in other words, compare my thought with 
the soup as perceived by me, but never with the soup as it is in itself.  But if I can never know the 
relation between my thought and reality itself, then I can never know truth.  And if truth is something 
unknowable, then perhaps our semantics should be based on something more empirical. 
 One suggestion is to base it on relations, not between thought and reality, but between 
thought and evidence—relations such as proof, warrant, or confirmation.  My perception of the soup 
is a form of evidence that proves, warrants, or confirms my thought or assertion that the soup is 
boiling.  Thus thought or assertion, which I experience, is compared with evidence, which I also 
experience, rather than with reality or the world, which I allegedly never experience as it is in itself.   
Another word for such direct experience is 'intuition'.  Accordingly, the resolve to restrict semantics to 
entities that can be made evident to direct experience is called intutionism. 
 Intutionists reject the notion of truth because it posits a world-as-it-is-in-itself—something we 
never experience as such—as that to which thought or assertion corresponds.   For the intuitionist 
this world-in-itself is irrelevant to semantics.   Having gone this far, one might even be tempted to 
conclude that there is no such thing as the world as it is in itself.  Some prominent philosophers have 
drawn this conclusion. 



 

 

 Others have accepted it only in regard to certain kinds of reality.  The originator of 
intuitionism, L. E. J. Brouwer, was concerned primarily with mathematics, not with the world in 
general.  He held that mathematical objects (numbers, functions, sets, etc.), exist only insofar as we 
construct them or define the means for their construction.  The propositions of mathematics, then, are 
not true in the sense of corresponding to some independently existing reality, but rather merely 
confirmable, refutable, or neither, by the evidence of our calculations and proofs.   
 Lately others—most notably Michael Dummett—have held that even the semantics of 
ordinary discourse is best understood as intuitionistic.  Dummett's view is less "subjectivistic" than 
that of earlier intuitionists.  He holds that what consitutes the meanings of terms must be publicly 
observable; otherwise our ability to learn language would be inexplicable.  Thus we learn the 
meanings of terms by observing them in use and so associating them with publicly evident 
assertibility conditions.  Meaning, then, is constituted, not by truth conditions (for truth, as we know, is 
not always publicly evident!), but by assertibility conditions.  To know the meaning of a term is to 
know the publicly evident conditions under which it is appropriate to assert various sentences 
containing it. 
   Regardless of whether intuitionism is confined to a specific domain, or applied universally, the 
strategy is always the same:  replace the traditional concept of truth with some notion of warrant or 
evidence.  This warrant or evidence may be regarded more or less subjectively, as was the case with 
the original intuitionists, or as publicly accessible, as in Dummett.  We shall use the general term 
confirmation to stand for all of these notions of warrant or evidence.  Replacement of truth by 

confirmation subtly shifts the meaning of each formula or statement.  To assert a formula  is to say, 
not that it corresponds to reality, but that it is evident, warranted, or (in our jargon) confirmed.  In the 

domain of mathematics, Brouwer interpreted this to mean that we have a proof of ; in more ordinary 

contexts, it means that the assertion of  is warranted.  Correlatively, to assert  is to say that  is 

refutable.  In mathematics, this means that we have a disproof of —typically the derivation of a 

contradiction from ; in ordinary contexts, it means that the denial of  is warranted.   
 But not every proposition is either confirmed or refuted; indeed, not every proposition can be 
either confirmed or refuted, even in principle.  Consider, to use one of Brouwer's examples, this 
proposition, which we shall symbolize as 'P': 
  There are seven consecutive sevens in the decimal expansion of  

  the number , i.e. 3.141... .   
If there are seven consecutive sevens, say in the first million (or billion, or trillion) digits of this decimal 
expansion, then we can know conclusively that there are simply by calculating that many digits.  In 

fact, though I don't, someone may know this already, since  has in fact been calculated by 
computers to many millions of digits.  But suppose that no matter now far we calculate, we never find 
seven consecutive sevens.  Then since neither we nor our computers (both being finite creatures) 
can calculate all the infinitely many digits of this decimal expansion, then (provided that there is no 
noncalculational way to decide the question—and there does not seem to be) proposition P is in that 
case neither confirmable nor refutable, even in principle.  There can, in other words, never, not even 

in principle, be sufficient evidence to confirm the disjunction P  P, whose intuitionistic meaning is 
that P is either confirmed or refuted.  Hence intuitionists reject, even as an ideal, the law of excluded 

middle,   , which they read as asserting that  is either confirmed or refuted. 
 The reasons for this rejection appear, perhaps even more clearly, in nonmathematical 
examples.  It is unlikely, for example, that we will ever either confirm or refute certain statements 
about the past.  Maybe the statement that Napoleon ate breakfast on September 9, 1807 is one of 
these.  It is, from a classical point of view, either true or false that Napoleon did so.  But the intuitionist 
is not interested in, and may not even believe in, truth in this sense.  Interested, rather, in what we 
can (at least in principle) have warrant to believe, she has replaced the notion of truth with the idea of 
confirmation. 
 So far, this sounds like little more than a three-valued logic, the values being  "confirmed," 
"refuted," and "neither."  But it is more subtle than that.   
 We can begin to appreciate the subtlety by considering the inference rule of double negation 

or E (from , infer ), which is valid in both classical and multivalued systems; it is invalid in 

intuitionistic logic.  For to an intuitionist, since negation signifies refutation,  means "it is refuted 

that  is refuted."  But suppose we somehow refute the view that the proposition that Napoleon had 



 

 

breakfast on September 9, 1807 is refuted.  That is not tantamount to confirming this proposition; it 

may only demonstrate our ignorance.  Hence from  an intuitionist may not in general infer .  This 
is a drastic departure both from classical logic and from multivalued logics based on the notion of 
truth! 
 Moreover, if intuitionistic logic were three-valued in the way suggested above, then the 

intuitionistic operator '' would have a truth (or, rather, confirmation!) table that would tell how to 

calculate the value of  from the value of .  But there can be no such table.  For suppose the value 

of  were "neither,"  i.e., neither confirmed nor refuted.  Then  could not have the value 

"confirmed," since that would mean that it is confirmed that  is refuted, and hence that  itself is 

refuted, rather than having the value "neither".  But the meaning assigned by the intuitionist to '' 

does not determine which of the other two values ("neither" or "refuted")  ought to have.  We saw 

in the last paragraph that  might be refuted though  is "neither."  But it might also be "neither" if  

is "neither;" that is, both the proposition  that Napoleon had breakfast on September 9, 1807, and its 

negation may be neither confirmed nor refuted.   Thus when  is "neither"  may be either refuted 
or "neither."  It follows that intuitionist propositional logic is non-truth-functional (or, more accurately, 
non-confirmation-functional).  That is, the semantic values assigned to a complex formula in a given 
situation cannot in general be calculated merely from the values of its subformulas in that situation.  
Thus no confirmation-functional three-valued logic will do. 
 The most natural formal semantics for intutionistic logic is in fact bivalent (two-valued).  We 
shall think of the values as "confirmed" and "unconfirmed" and abbreviate them 'C' and 'U', though in 
the literature they are usually written as 'T' and 'F' or '1' and '0'.   
 Refutation, on this semantics, is merely a subspecies of nonconfirmation.  More specifically, 

 is refuted if and only if  is confirmed—in which case  has the value U and  the value C.   

may, however, have the value U even if  also has the value U.  The following chart illustrates the 
relations of these concepts: 
 

POSSIBLE SEMANTIC CLASSIFICATIONS OF A STATEMENT  ACCORDING TO INTUITIONISM 
 

  Confirmation Value of  

 
 is confirmed     is unconfirmed 

 
    is refuted    is neither confirmed 

   (i.e.,  is confirmed)  nor refuted (i.e., neither 

        nor  is confirmed) 
 
 The particular version of this bivalent semantics which I shall present here was developed by 

Saul Kripke.123  It has illuminating connections to Kripkean semantics for modal logic—in particular, 
for the modal system S4.  If the material on Kripkean semantics in Section 12.1 is not fresh in your 
mind, it might be helpful to review it before reading on. 

 A Kripke model V for intuitionistic logic, like Kripke models for modal logics, specifies a set 

WV of "possible worlds" and an accessibility relation R on those worlds.  However, the modality 

represented by the model is not alethic possibility, but a specific kind of epistemic possibility—that 
is, possibility relative to what has been confirmed.  If we think of them as worlds, then their possibility 
consists in the fact that everything that is the case within them is consistent with the available 
evidence. 

                                                      
123See Kripke's "Semantical Analysis of Intuitionistic Logic I," in J. Crossley and M. Dummett, eds., 
Formal Systems and Recursive Functions,  Amsterdam, North Holland, 1963, pp. 92-129.  My 
presentation in this section is based on this article. 



 

 

 But this is not the most illuminating way to think of them.  Indeed, the central idea of 
intuitionism is to avoid positing such worlds-in-themselves and to formulate a semantics only in terms 
of the available evidence.  It is better, then, to regard these "worlds" as representations of states of 
evidence—that is, of the total evidence available to a person or culture at a given time.  In each such 
state, propositions are categorized not as true or false, but as confirmed or unconfirmed.  Now a 
proposition which is confirmed in an evidential state w must also be confirmed in every evidential 
state that is epistemically possible with respect to w.  For example, if I have confirmed (by calculation, 

say) that 472389 = 861, then in every evidential state that is consistent with my current evidence, 

472389 = 861.  It is, in other words, epistemically necessary for me that  472389 = 861.  
Confirmation is thus a kind of epistemic necessity. 

 Accordingly, the confirmation of a proposition  in a given evidential state w must be 

represented semantically, not merely by the assignment of the value C to  at w, but by the 

assignment of the value C to  at w and at all "worlds" (evidential states) accessible from w.   
 This is a fundamental difference from the way truth is modelled in Kripkean semantics for 

classical modal logic.  In classical Kripkean models, if we make a sentence letter  true in a given 

world of some model, that does not prevent us from making  false in any other world of that model.  
We may distribute the truth values for a given sentence letter among worlds in any pattern we like, 
regardless of how the accessibility relation is structured.  (The same principle applies to the 
extensions of predicates in modal predicate logic.)  Not so on the Kripkean semantics for intuitionistic 
logic.  Because confirmation, unlike truth, is a kind of necessity, not every distribution of confirmation 

values is admissible.  If we assign to  the value C at one "world" w of our model, then we must also 

assign C to  at every "world" u such that wRu. 

 Consequently, as we follow accessibility relations out from a given world, the set of confirmed 
propositions can only get larger or, at minimum, remain constant; it never decreases.     

 Some accounts of intuitionistic logic suggest that R be understood temporally, so that 

accessible evidential states are those we might arrive at through time as we learn more.  But this 
interpretation is misleading, particularly for nonmathematical applications.  What we confirm in the 
future may contradict what we confirm in the present, if only because (from a classical standpoint) the 
world has changed in the meantime.  In reality it may also happen that evidence we obtain in the 
future contradicts our present evidence, even if the relevant facts haven't changed, because our 
present evidence is mistaken.  (What I think is the boiling of the soup, for example, may turn out on 
closer inspection to be only the play of shadow from a nearby fan.)  Kripkean semantics, however, 
never allows anything confirmed in an evidential state accessible from w to conflict with anything 

confirmed in w.  Therefore R is best understood as taking us, not to possible future states of 
evidence, but to states that, consistent with the evidence that we have currently, we might now enjoy 

if we could now have more evidence.124 
 Because R expresses this specific kind of epistemic possibility (namely, consistency with 

current evidence), R must have a specific structure.  It must, first of all, be reflexive—at least if we 

suppose (as Kripke does) that evidential states are noncontradictory, i.e., self-consistent.   
 Moreover, R must be transitive.  That is, if an evidential state w2 is consistent with 

(accessible from) another state w1, and a third state w3 is consistent with w2, then w3 is consistent 

with w1.  This follows from the assumption noted above that every proposition confirmed in a 

particular evidential state w is also confirmed in all evidential states accessible from w.  For then if 
w1Rw2 and w2Rw3, all the propositions confirmed in w1 are also confirmed in w2 and all those 

confirmed in w2 are confirmed in w3.  Hence all those  confirmed in w1 are confirmed in w3.  But this 

means that w3 is consistent with the evidential state w1, so that (since R represents consistency with 

current evidence) w1Rw3. 

 Finally, with respect to predicate logic, we must assign a domain to each evidential state.  
Intuitively, this domain represents the objects whose existence we have confirmed.  Since it is 
epistemically possible for there to be objects whose existence we have not confirmed, we allow that 

                                                      
124It is, of course, possible to provide explicitly for such future (and also past) states of evidence by 
adding tense operators to Kripkean intuitionistic logic. 



 

 

as we move out from a given evidential state along a trail of accessibility, the domain may grow.  But 
it may not diminish, for if the existence of an object is confirmed, then it is not epistemically possible 
for that object not to exist.  That is, if w1Rw2, then the domain of w2 must include all the objects in the 

domain of w1, and maybe some additional objects as well.  With these principles in mind we make the 

following definition: 
 

DEFINITION:  A Kripkean valuation or Kripkean model V for a formula or set of formulas of 

intuitionistic predicate logic consists of: 

 1 A nonempty set WV of objects, called the worlds or evidential states  

  of V, 

 2 A reflexive, transitive relation R, consisting of a set of pairs of worlds  

  from WV,   

 3 For each world w in WV a nonempty set Dw of objects, called the  

  domain of w, such that for any worlds x and y, if xRy, then  Dx  

  is a subset of  Dy. 

 4 An assignment to each name  in that formula or set of formulas  

  of an extension V() that is a member of the domain of at least  

  one world. 

 5 An assignment to each predicate  and world w in that formula  

  or set of formulas, an extension V(,w) such that: 

  i If  is a zero-place predicate, V(,w) is one (but not both)  

   of the values C or U such that if V(,w) = C, then for all u  

   such that wRu, V(,u) = C. 

  ii If  is a one-place predicate, V(,w) is a set of members  

   of Dw such that if d  V(,w), then for all u such that wRu,  

   d  V(,u). 

  iii If  is an n-place predicate (n>1), V(,w) is a set of  

   ordered n-tuples of members of Dw such that if  

   d1 ,...,dn  V(,w), then for all u such that wRu,  

   d1 ,..., dn   V(,u). 

 
Now, rather than the truth conditions for complex formulas, we give what we might call their 

confirmation conditions.  Let  and  be any formulas and V any valuation of  and  whose 

accessibility relation is R.  Then: 

 1 If  is a one-place predicate and  is a name, then V(, w) = C iff  

   V()  V(,w); 

  V(, w) = U iff V()   V(,w).  

 2 If  is an n-place predicate (n>1) and 1,...,n are names, then  

  V(1,...,n ,w) = C iff V(1),...,V(n)  V(,w); 

  V(1,...,n ,w) = U iff V(1),...,V(n)   V(,w). 

 3 If  and  are names then V( = ,w) = C iff V() = V(); 

  V( = ,w) = U iff V() =/  V(). 

 For the next five rules,  and  are any formulas: 

 4 V(,w) = C  iff for all u such that wRu, V(,u) =/  C. 

  V(,w) = U  iff for some u such that wRu, V(,u) = C. 

  5 V( & ,w) = C  iff both V(,w) = C and V(,w) = C. 

  V( & ,w) = U  iff either V(,w) =/  C or V(,w) =/  C, or both. 

  6 V(  ,w) = C  iff either V(,w) = C or V(,w) = C, or both. 

  V(  ,w) = U  iff both V(,w) =/  C and V(,w) =/  C. 

  7 V(  ,w) = C  iff for all u such that wRu, V(,u) =/  C or  



 

 

   V(,u) = C, or both. 

  V(  ,w) = U  iff for some u such that wRu, V(,u) = C and  

   V(,u) =/  C. 

  8 V(  ,w) = C  iff for all u such that wRu, V(,u) = V(,u). 

  V(  ,w) = U  iff for some u such that wRu, V(,u) =/  V(,u). 

 For the next two rules,  stands for the result of replacing each  

 occurrence of the variable  in  by , and Dw is the domain that  

 V assigns to world w.   

 9 V(,w) = C iff for all worlds u such that wRu and for all potential  

   names  of all objects d in Du, V
(, )

(,u) = C; 

  V(,w) = U iff for some world u such that wRu, and some  

   potential name  of some object d in Du, V
(, )

(,u) =/  C.  

 10 V(,w) = C iff for some potential name  of some object d in Dw,  

   V
(, )

(,w) = C; 

  V(,w) = U iff for all potential names  of all objects d in Dw,  

   V
(, )

(,w) =/  C. 

 
The clauses for atomic formulas, identity, conjunction, disjunction, and the existential quantifier are 
the same as in Kripkean or Leibnizian modal logic, except that we have replaced 'T' with 'C' and 'F' 
with 'U'.  But the clauses for negation, the conditional and biconditional, and the universal quantifier 
are novel.   
 The negation operator expresses, not merely nonconfirmation, but refutation.  Refutation is a 

kind of epistemic impossibility.  Intuitively,  is confirmed (i.e.,  is refuted) iff current evidence 

precludes any possibility of the confirmation of .  Formally,  is confirmed in a given evidential 

state w iff no state in which  is confirmed is compatible with (accessible from) w.  Thus negation is 

an epistemic impossibility operator; '' has the same semantics in intuitionistic logic, as '□'—or, 

equivalently, '◊'—in Kripkean modal logic.     

 To assert    is to say that any evidential state that confirms  also confirms .  

Formally,    is confirmed in an evidential state w iff in each evidential state compatible with 

(accessible from) w, either  is not confirmed or  is confirmed.  Except for the replacement of truth 
by confirmation and falsehood by nonconfirmation, the semantics for the intuitionistic conditional is 
the same as that for the classical strict conditional (see Section 12.3).   

 The biconditional is in effect a conjunction of strict conditionals.  To assert    is to say 
that no evidential state differentiates the two. 

 The universal quantifier '' means "for all epistemically possible objects," rather than just "for 

all objects whose existence has been confirmed."  It has the same semantics as '□' in Kripkean 

modal logic.  To assert  in intuitionistic logic, then, is not just to say that  is confirmed to apply to 

all objects whose existence has been confirmed, but to assert that  has been confirmed to apply to 
all objects whose existence is compatible with our current evidential state. 
 The intuitionistic meanings of conjunctions, disjunctions, and existential statements are, by 

contrast, more direct analogues of their classical meanings.  To assert  &  is to assert that both  

and  are confirmed.  To assert    is to assert that at least one of these disjuncts is confirmed.  

And to assert  is to claim confirmation of the existence of an object to which  applies. 
 This new semantics requires new definitions for the fundamental semantic concepts.  We 
shall call a sequent intuitionistically valid iff there is no intuitionistic Kripke model containing some 
evidential state in which the sequent's premises are confirmed and its conclusion is unconfirmed.  
Intuitively, this means that any evidence that confirmed the premises would also confirm the 
conclusion.  A formula is intuitionistically valid if it is confirmed in all evidential states in all 
intuitionistic Kripke models.  A formula is intuitionistically inconsistent iff it is unconfirmed in all 
evidential states in all intutitionistic Kripke models.  And so on.  We now demonstrate formally some 
of the ideas discussed informally above: 



 

 

 

METATHEOREM:  The formula 'P  P' is not intuitionistically valid. 

Proof:  Consider the valuation V whose set WV of worlds is {1,2} and whose relation R is 

{1,1,2,2,1,2} such that: 
   V(P,1) = U  V(P,2) = C. 

(Clearly R is reflexive and transitive and V meets the conditions on confirmation value assignments 

imposed by the definition of a valuation.)  Since V(P,2) = C and 1R2, there is some world u (namely 

2) such that 1Ru and V(P,u) = C.  Thus by valuation rule 4, V(P,1) =/  C.  So, since V(P,1) =/  C, by 

rule 6 V(P  P,1) =/  C.  Hence 'P  P' is not intuitionistically valid.  QED 

 
The model here represents an evidential state (world 1) in which 'P' is neither confirmed nor refuted, 
but relative to which it is epistemically possible that 'P' be confirmed (world 2).   

 This same evidential state provides a counterexample to the inference from 'P' to 'P'.  In 
this case, because world 2 holds out the possibility that 'P' may yet be confirmed, it is refuted that 'P' 

is refuted—i.e. 'P' is confirmed—even though 'P' is unconfirmed.  Here is the proof: 
 

METATHEOREM:  The sequent 'P  ├  P' is intuitionistically invalid. 

Proof:  Consider the valuation V whose set WV of worlds is {1,2} and whose relation R is 

{1,1,2,2,1,2} such that: 
   V(P,1) = U  V(P,2) = C. 

(As above, R is reflexive and transitive and V meets the conditions on confirmation value 

assignments imposed by the definition of a valuation.)   

 Now, as before, since V(P,2) = C and 1R2, there is some world u (namely 2) such that 1Ru 

and V(P,u) = C.  Thus by valuation rule 4, V(P,1) =/  C.   

 Moreover, since V(P,2) = C and 2R2, there is some world u (namely 2) such that 2Ru and 

V(P,u) = C.  .  Thus by valuation rule 4, V(P,2) =/  C.   

 We have now seen that V(P,1) =/  C and V(P,2) =/  C.  But 1 and 2 are the only worlds u such 

that 1Ru.  Hence for all worlds u such that 1Ru, V(P,u) =/  C.  Thus again by rule 4, V(P,1) = C.  

But V(P,1) =/  C.  Therefore 'P  ├  P' is intuitionistically invalid.  QED 

 

The inference from 'P' to 'P', however, remains valid, as in classical logic.  The proof is as follows: 
 

METATHEOREM:  The sequent 'P  ├  P' is intuitionistically valid. 
Proof: Suppose for reductio that this is not the case; that is, there is some intuitionistic Kripke model 

V with accessibility relation R and some world w of V such that V(P,w) = C but V(P,w) =/  C.  

Since V(P,w) =/  C, there is by valuation rule 4 some world u such that wRu and V(P,u) = 

C.  And since V(P,u) = C, again by rule 4, for all worlds x such that uRx, V(P,x) =/  C.  Now 

since V is an intuitionistic Kripke model, R is reflexive, and so uRu.  Thus in particular V(P,u) 

=/  C.  However, again since V is an intuitionistic Kripke model and V(P,w) = C, it follows that 

V(P,y) = C for all worlds y such that wRy.  Hence in particular, since wRu, V(P,u) = C, which 

contradicts our previous conclusion. 

Therefore, the sequent 'P  ├  P' is intuitionistically valid.  QED 
 

Many classically valid formulas remain valid in intuitionistic logic.  "P  P' is an example: 
 

METATHEOREM:  The formula 'P  P' is intuitionistically valid. 
Proof: Suppose for reductio that this is not the case; that is, there is some intuitionistic Kripke model 

V with accessibility relation R and some world w of V such that V(P  P,w) =/  C.  Then by 

valuation rule 7, for some world u such that wRu, both V(P,u) = C and V(P,u) =/  C.  But this is 

absurd. 

Therefore, 'P  P' is intuitionistically valid.  QED 
 



 

 

Though intuitionism dispenses with the law of excluded middle, it retains the classical principle that 
anything follows from a contradiction: 
 

METATHEOREM:  The sequent 'P, P  ├  Q' is intuitionistically valid. 
Proof: Suppose for reductio that this is not the case; that is, there is some intuitionistic Kripke model 

V with accessibility relation R and some world w of V such that V(P,w) = C and V(P,w) = C, 

but V(Q,w) =/  C.  Since V(P,w) = C, by valuation rule 4, for all worlds u such that wRu, 

V(P,u) =/  C.  But since V is an intuitionistic Kripke model, R is reflexive, so that wRw.  Hence 

in particular, V(P,w) =/  C, which contradicts our supposition.  

Accordingly, 'P, P  ├  Q' is intuitionistically valid.  QED 
 
In intuitionistic natural deduction, the rule that allows us to infer anything from a formula together with 

its negation replaces the now invalid classical negation elimination rule:  from  , infer .  The 
other natural deduction rules are the same. 

 Also in intuitionism, we lose the interdefinability of most connectives.  The connectives '', '&', 

'', and '' must all be taken as primitive, though    is definable as (  ) & (  ).  This 

means, for example, that it is not the case that    is confirmed iff    is.  For    asserts 

that any evidential state in which  is confirmed is also one in which  is confirmed (confirmation of 

 is automatically confirmation of ).  But    asserts that we have either confirmation of  or 

confirmation of .  We may confirm either of these formulas without confirming the other. 
 I said earlier in this section that Kripke's semantics for intuitionistic propositional logic is 
illuminatingly connected to his semantics for the modal logic S4—the classical modal logic 
determined by the stipulation that the accessibility relation R be reflexive and symmetric.  The 

connection can be seen by observing that in intuitionistic semantics confirmation is a kind of necessity 

and refutation a kind of impossibility.  That is, to assert that  is confirmed is to assert that  is 
confirmed in all accessible worlds (under the presumption that accessibility is reflexive and transitive), 

and to assert that  is refuted is to assert that  is not confirmed in any accessible world. 

 Indeed, any formula  of intuitionistic logic can be translated into a formula  of S4 such that 

 is valid in intuitionistic logic iff  is valid in S4 and  follows intuitionistically from a set of premises 

iff  follows in S4 from the translations of those premises.  Using T() to stand for the translation of 

intuitionistic formula  into the language of S4, the following rules stipulate recursively how the 

translation may be carried out.  For any formulas  and : 
 

1 If  is atomic, then T() = □ 

2 T() = □T() 

3 T( & ) = T() & T() 

4 T(  ) = T()  T() 

5 T(  ) = □(T()  T()) 

6 T(  ) = □(T()  T())  

7 T() = □T() 

8 T() = T() 

 
 Comparing the valuation rules and the definition of an intuitionistic valuation to the 
corresponding rules and definitions of Kripke semantics for classical modal logic makes the rationale 

for these rules clear.  The operators '&', '' and '' work essentially the same way in intuitionistic logic 
as in S4, so the translations of conjunctions and disjunctions are straightforward.  But atomic 
formulas, negations, conditionals, biconditionals, and universally quantified formulas are all, if 
confirmed, confirmed necessarily, so their translations always introduce an occurrence of the 

necessity operator.  Take, for example, the inference 'P  ├  P', which is intuitionistically valid.  To 
translate this, we apply the following steps: 
 

 T(P)  ├  T(P)  = □P  ├  T(P)   by rule 1 

    = □P  ├  □T(P)  by rule 2 



 

 

    = □P  ├  □□T(P)  by rule 2 

    = □P  ├  □□□P  by rule 1 

 
The translated sequent at the end of this list is valid in S4.   

 Or consider, for example, the formula 'P  P', which is not intuitionistically valid.  Its 
translation runs as follows: 
 

 T(P  P)  = T(P)  T(P)   by rule 4 

   = □P  T(P)   by rule 1 

   = □P  □T(P)   by rule 2 

   = □P  □□P   by rule 1 

 
This last formula is not valid in S4.  We can via such translations reduce any problem in intuitionistic 
propositional logic to an equivalent problem in propositional S4.   
 In summary, the decision to take confirmation rather than truth as the fundamental semantic 
concept yields a logic with some, but not all, of the features of classical logic.  Decisions about 
fundamental semantic concepts may affect the scope of valid reasoning.  
 
EXERCISE 16.2:  Prove that each of the following sequents are valid on Kripkean intuitionistic 
semantics: 
1 P & Q  ├  P 
2 P, Q  ├  P & Q 

3 P, P  Q  ├  Q 

4 P  ├ P  Q 

5 P, P  Q  ├ Q 

6  P  Q, Q  R  ├ P  R 
Prove that the following are not intuitionistically valid: 

7 P  Q  ├  P  Q 

8 P  Q  ├  Q  P 
Prove that the following are intuitionistically inconsistent: 

9 P & P 

10 (P  P) 
 

16.3  RELEVANCE LOGICS 

 Relevance logic (also called relevant logic) is a form of logic that does not count an 
inference valid unless its premises are relevant to its conclusion.  All the logics we have considered 

until now validate irrelevant inferences.  In particular, the sequent 'P, P  ├  Q' is valid in every 
system we have surveyed.  And while most of the nonclassical logics we have considered lack some 
of the valid formulas of classical logic, still the formulas which are valid in those systems validly follow 
from any set of premises, whether relevant or not.   
 In relevance logic, by contrast, an argument is valid only if there is some relevant connection 
between its premises and its conclusion.  But the nature of this connection is disputed.  Relevantists 
generally agree, however, on three things: 
 1 Inconsistent premises do not imply every proposition, 
  but only propositions relevantly related to them.   
 2 A valid formula does not validly follow from every set of premises, 
  but only from premises relevant to it. 
 3 There is a kind of conditional that is true only if its antecedent  
  and consequent are relevantly connected.   
How might one justify these theses? 

 Advocates of classical logic often argue that there is no problem in allowing inconsistent 
premises to imply any conclusion; since inconsisent premises cannot all be true, arguments which 
employ them are always unsound and hence always negligible.  But is it safe for all applications of 
logic to assume that inconsistencies are never the case?  Consider, for example, the domain of 



 

 

statutory law.125  Statutes are enacted by legislatures.  Once in effect, they create certain legal 
"realities," which shape our social and political institutions.  But legislatures can make mistakes and 
even, on occasion, contradict themselves.  A legislature may, for example, pass one law which 
implies that under certain conditions a corporation is liable and a second law which implies that under 
those same conditions that corporation is not liable, the contradiction remaining for some time 
unnoticed.  Since corporate liability is constituted wholly by the law (there is no independent fact of 
the matter), the result may be a situation in which a corporation both is and is not liable.  In practice, 
of course, there are procedures for resolving such contradictions.  But they can arise and they persist 
until resolved.  Similar contradictions may arise in other humanly constructed realms, such as games 
and fiction—and perhaps even in semantics itself, in the case of such paradoxical sentences 'This 
sentence is not true' (see Section 15.2). 
 To grant, on the basis of such examples, that inconsistencies are sometimes the case while 
retaining classical logic is disasterous.  If the law contains a true contradiction, for example, then 
using classical logic we may soundly infer that everyone is guilty of embezzlement, that bologna is 
blue, and infinitely many other absurdities.  It would be useful, then, to have for the domain of law and 
for other domains that may admit contradictions a logic which allows only relevant conclusions to be 
validly derived from these contradictions.  Unlike most other forms of logic, this new logic would 
isolate the consquences of contradictions, preventing them from "infecting" irrelevant areas of 
knowledge.  Logics according to which contradictions do not  imply all propositions are said to be 
paraconsistent.  Relevance logics are paraconsistent logics. 
 But we need not hold that there actually are true contradictions to have reservations about 
such reasoning.  Contradictions are frequently encountered in hypothetical reasoning, and even there 
it seems odd, if no worse, to reach a contradiction and then infer something wholly irrelevant. 
 It seems similarly perverse to "prove" a valid formula from an irrelevant premise.  Suppose, 
for example, that someone challenges us prove that nothing is both alive and not alive, and we argue 
as follows:   
 
  Abe Lincoln was truthful. 

  Nothing is both alive and not alive. 
 

(In symbols this might be 'Ta  ├  x(Ax & Ax)'.)  Now the premise is true and the reasoning is 
classically valid, so the argument is sound.  But to respond this way to a person who was genuinely 
puzzled about whether something might be both alive and not alive would be flippant, to say the least.  
It is perfectly evident that the premise of this argument does not prove, support, or provide any 
evidence for its conclusion.  In that sense, the argument is not valid.  We seem, then, to have a 
nonclassical notion of validity.  Relevantists hope to formalize that notion. 
 Finally, relevantists hold that there is a "natural" conditional that is true only if its antecedent 
and consequent are relevantly connected. Using '' to express this conditional, the proposition 'Snow 
is white  Rome is in Italy', for example, is false because its antecedent and consequent, though 
both true, are irrelevant to one another.  None of the conditionals we have considered so far, not even 
Lewis conditionals, require relevance for their truth, so that the relevantist's understanding of 'if' is 
distinctive.  In particular, where 'A' and 'B' express unrelated propositions, relevantists object to 
inferences such as: 

  A, B  ├  A □ B, 

which is valid for the Lewis conditional, 

  B  ├  A  B 

  A  ├  A  B 
which are valid for the material and intuitionistic conditionals, and 

  □B  ├  A  B 

  ◊A  ├  A  B 

which are valid for all the conditionals we have so far studied, except for the conditional of Bochvar's 
multivalued logic.  For the conditionals of relevance logic, none of these sequents are valid. 

                                                      
125A relevance logic for statutory law is outlined in John Nolt, Grayfred B Gray, Donald R. Ploch, and 
Bruce J. MacLennan, "A Logic for Statutory Law," Jurimetrics Journal, 35 (Winter 1995), pp. 121-151. 



 

 

 A great variety of semantics have been offered for relevance logics.  Some of these 
incorporate a non-truth-functional form of relevant conjunction, called fusion, which seems to have 
no straighforward natural language equivalent.  Indeed, in some of the most interesting forms of 

relevance logic, fusion is employed in the metalanguage to define validity.126  Treatment of the 
semantics of fusion is, however, beyond the scope of this book. 
 Here I will present a simple truth-functional relevance semantics for propositional logic 

without conditionals.  This semantics can be extended to conditionals, but not very happily.127  No 
one has yet produced a completely satisfying semantics for relevance logic as a whole. 
 The essence of this semantics is a radical rejection of bivalence.  Classically a sequent is 

valid iff it lacks a counterexample.  This leads us to accept such sequents as 'P, P  ├  Q' and 'P ├  

Q  Q' as valid.  Relevance logicians find this definition too permissive.   There are two ways to 
tighten it up.  The first is to incorporate some additional criterion of relevance into the definition of 
validity.  The second is to retain that definition but liberalize our notion of a counterexample to allow 
novel counterexamples capable of invalidating sequents like those just mentioned.  The semantics we 
shall examine here uses the second method.   
 A counterexample is a valuation which makes the premises, but not the conclusion, of a 

sequent true.   But what sort of valuation could make the premises of 'P, P  ├  Q' both true or the 

conclusion of 'P  ├  Q  Q' untrue? 

 Actually, we have already seen valuations on which 'Q  Q' is not true.  It is not true, for 
example, on the three-valued semantics of either Kleene or Bochvar when 'Q' has the value I.  Thus, 
in general, a three-valued logic can provide counterexamples to sequents whose conclusions are 

classical tautologies.  But a counterexample to 'P, P  ├  Q' would have to make both 'P' and 'P' 
true.  What sort of valuation could do that? 

 Both premises could, perhaps, be true if 'P' were both true and false.  For in that case 'P' 
would also, presumably, be both true and false.  Hence both premises would be true, and both would 
also be false.  Semantics which permit the assignment of both values to a proposition are called 
dialethic (literally, "two-truth").  To see how such a semantics might have some practical application 

in the field of law, consider this instance of 'P, P  ├  Q': 
 
  Corporation X is liable. 
  Corporation X is not liable. 

  Balogna is blue. 
 
To this argument we can imagine the following counterexample.  Suppose that the legislature has 
enacted contradictory laws which make it both true and false that Corporation X is liable.  Then since 
it is true that Corporation X is liable, the first premise is true.  And since it is false that Corporation X is 
liable, the second premise is true.  But the conclusion, let us agree, is not true.  Of course the 
premises are both false as well.  But if we define a counterexample as a situation in which the 
premises are true and the conclusion is not true, this situation fits that definition. 
 Originally, however, in Chapter 1, we characterized an informal counterexample as a 
coherently conceivable situation in which the premises are true and the conclusion untrue.  It is not so 
clear that the situation I have described is coherently conceivable.  In one sense it is.  Contradictory 
legislation can be enacted.  But in another sense it is not coherently conceivable for a proposition to 
be both true and false.  Dialethicists in effect propose a liberalization of our notion of coherence so 
that we can coherently conceive such contradictions in certain situations.  Let's humor them. 
 We might fear that their proposal would generate counterexamples everywhere, leading us to 
a wholsesale denial of validity.  In fact, however, the new counterexamples it produces (classical 
counterexamples still stand) apply only to sequents that we would generally recognize as irrelevant.  
Dialethicism does not invalidate, for example, the sequent 'P & Q  ├  P' (simplification).  Any truth 
value assignment (whether dialethic or not) that makes the premise true must also make the 

                                                      
126See Read, Stephen, Relevant Logic, Oxford, Basil Blackwell, 1988. 
127The best effort that I know  of is is that of Graham Priest and Richard Sylvan, in "Simplified 
Semantics for Basic Relevant Logics," Journal of Philosophical Logic 21 (1992), pp. 217-232.  The 
extension of the semantics presented here to conditionals is presented on pp. 228-30 of that article. 



 

 

conclusion true; there is no counterexample.  Of course if 'P' is both true and false and 'Q' is true, 
then the premise is both true and false and so is the conclusion.  Hence the premise is true and the 
conclusion false.  But this is still not a counterexample.  For we have defined a (formal) 
counterexample as a valuation on which the premises are all true and the conclusion is not true.  The 
conclusion of this inference might be false when the premise is true—and false as well --, but in any 
case this conclusion cannot fail to be true when the premise is true.  Thus simplification remains valid 
on a dialethic semantics. 

 For the same reason 'P & P  ├  P' is valid, though 'P & P  ├ Q' is not.  Contradictions thus 
have consequences—but only relevant consequences.   
 Before going on, we ought to be more explicit about the semantics we are using.  Recall that 
we are considering only the nonconditional fragment of propositional logic.   Since this logic is purely 
propositional, a valuation can be merely an assignment of truth values to sentence letters.  But since 
propositions may receive either value, neither, or both, it is convenient to think of what is assigned to 
a sentence letter as a set of truth values.  Any of these four sets may be assigned: 
 
    {T} {F} {T,F} { }. 
 
More precisely: 
 
DEFINITION:  A dialethic valuation or dialethic model for a formula or set of formulas of 
propositional logic is an assignment of one, but not more than one, of the sets {T}, {F}, {T,F} or { } to 
each sentence letter in that formula or set of formulas. 
 
 As usual, truth values are assigned to complex formulas by valuation rules.  These rules 

mimic the classical rules as closely as possible.  Where some components of a complex formula  

lack truth value but values of the other parts suffice to determine the value (or values) of  by 

classical truth tables, then that truth value is what is assigned to .  (This is in effect the procedure of 
Kleene's multivalued semantics, but with truth value gaps instead of a third truth value.)  Where one 
or more components of a formula have both values, then the value(s) of that formula are calculated 
classically for both.   

 For example, suppose that V(P) = {T,F} and V(Q) = F.  What is V(P & Q)?  Since 'Q' is false 

(and not true) at w, the classical truth table makes 'P & Q' false both in the case in which 'P' is true at 
w and also in the case in which 'P' is false at w.  Hence regardless of whether we combine the falsity 
of 'Q' with the truth of 'P' or with the falsity of 'P', we get the same result:  'P & Q' is false.  Therefore 

V(P & Q, w) = {F}. 

 If, however V(P) = {T,F} and V(Q) = T, then V(P & Q, w) = {T,F}.  For in combining the truth of 

'Q' with the truth of 'P' we see that 'P & Q' is true, and in combining the truth of 'Q' with the falsity of 'P' 
we see that 'P & Q' is false.   
 The following valuation rules express these principles in full generality: 
 

 1 T  V()  iff  F  V(). 

  F  V()  iff  T  V(). 

 2 T  V( & )  iff T  V() and T  V(). 

  F  V( & )  iff F  V() or F  V(), or both. 

 3 T  V(  )  iff T  V() or T  V(), or both. 

  F  V(  )  iff F  V() and F  V(). 

 
These rules may also be represented, though less compactly, as four-valued truth tables: 
  
                             Truth Table for Negation 
   

 {T} {F} 
 {F} {T} 
 {T,F} {T,F} 
 { } { } 



 

 

 
                             Truth Table for Conjunction 
    &  

 {T} {T} {T} 
 {T} {F} {F} 
 {T} {T,F} {T,F} 
 {T} { } { } 
 {F} {T} {F} 
 {F} {F} {F} 
 {F} {T,F} {F} 
 {F} { } {F} 
 {T,F} {T} {T,F} 
 {T,F} {F} {F} 
 {T,F} {T,F} {T,F} 
 {T,F} { } {F} 
 { } {T} { } 
 { } {F} {F} 
 { } {T,F} {F} 
 { } { } { } 
 
                             Truth Table for Disjunction 
      

 {T} {T} {T} 
 {T} {F} {T} 
 {T} {T,F} {T} 
 {T} { } {T} 
 {F} {T} {T} 
 {F} {F} {F} 
 {F} {T,F} {T,F} 
 {F} { } { } 
 {T,F} {T} {T} 
 {T,F} {F} {T,F} 
 {T,F} {T,F} {T,F} 
 {T,F} { } {T} 
 { } {T} {T} 
 { } {F} { } 
 { } {T,F} {T} 
 { } { } { } 
 

Notice that where  and  have exactly one truth value each, these are just the classical truth tables, 
and that in other cases these tables retain as much as possible of the classical valuation rules. 
 Just as bivalent truth tables can be used to establish the validity or invalidity of sequents in 
classical propositional logic, so these tables can be used to demonstrate the validity or invalidity of 
sequents in the nonconditional fragment of propositional relevance logic.  We simply construct the 
table according to the valuation rules or truth tables for the operators and then scan it, looking for a 
line on which the premises are all true (whether or not they are also false) and the conclusion is not 
true (whether or not it is false).  The following table, for example, demonstrates the validity of one 
version of DeMorgan's laws (in fact, all versions of DeMorgan's laws are valid on this semantics): 
 



 

 

 P Q P  Q ├  ( P & Q) 

 {T} {T}  {T}   {T} {F} {F} {F} 
 {T} {F}  {T}   {T} {F} {F} {T} 
 {T} {T,F}  {T}   {T} {F} {F} {T,F} 
 {T} { }  {T}   {T} {F} {F} { } 
 {F} {T}  {T}   {T} {T} {F} {F} 
 {F} {F}  {F}   {F} {T} {T} {T} 
 {F} {T,F}  {T,F}   {T,F} {T} {T,F} {T,F} 
 {F} { }  { }   { } {T} { } { } 
 {T,F} {T}  {T}   {T} {T,F} {F} {F} 
 {T,F} {F}  {T,F}   {T,F} {T,F} {T,F} {T} 
 {T,F} {T,F}  {T,F}   {T,F} {T,F} {T,F} {T,F} 
 {T,F} { }  {T}   {T} {T,F} {F} { } 
 { } {T}  {T}   {T} { } {F} {F} 
 { } {F}  { }   { } { } { } {T} 
 { } {T,F}  {T}   {T} { } {F} {T,F} 
 { } { }  { }   { } { } { } { } 

 
There is no horizontal line on which the premise is true and the conclusion untrue, and hence no 
counterexample, though there are lines on which both the premise and the conclusion have the value 
{T,F}. 
 Somewhat surprisingly, however, disjunctive syllogism fails.  The following table shows that 

the sequent 'P  Q, P  ├  Q' is invalid for dialethic relevance logic. 
 
 P Q P  Q,   P  Q 

 {T} {T}  {T}  {F}  {T} 
 {T} {F}  {T}  {F}  {F} 
 {T} {T,F}  {T}  {F}  {T,F} 
 {T} { }  {T}  {F}  { } 
 {F} {T}  {T}  {T}  {T} 
 {F} {F}  {F}  {T}  {F} 
 {F} {T,F}  {T,F}  {T}  {T,F} 
 {F} { }  { }  {T}  { } 
 {T,F} {T}  {T}  {T,F}  {T} 
 {T,F} {F}  {T,F}  {T,F}  {F} 
 {T,F} {T,F}  {T,F}  {T,F}  {T,F} 
 {T,F} { }  {T}  {T,F}  { } 
 { } {T}  {T}  { }  {T} 
 { } {F}  { }  { }  {F} 
 { } {T,F}  {T}  { }  {T,F} 
 { } { }  { }  { }  { } 
 
On the tenth line of the table, the one on which 'P' has the value {T,F} and 'Q' the value F, we see that 
the premises are both true (and false) but the conclusion is untrue.  This valuation is a 
counterexample.  (So also is the valuation displayed on the twelfth line). 
 Informally, it may help to conceive the counterexample once again in legal terms.  Suppose 
that 'P' stands for 'Corporation X is liable', which has turned out to be both true and false in the way 
described above, and suppose that 'Q' stands for 'The Constitution is invalid'.  Then since Corporation 
X is liable, the disjunction 'Either Corporation X is liable or the Constitution is invalid' is also true.  But 
since 'Corporation X is liable' is also false, the second premise, 'Corporation X is not liable', is true.  
Still this does not mean that the Constitution is invalid!  
 The invalidity of disjunctive syllogism (DS) may seem a high price for relevance, but in fact if 

we allow DS and also allow I, the sequent 'P, P  ├  Q' becomes provable at once: 
 
  1 P    A 



 

 

  2 P    A 

  3 P  Q    1 I 
  4 Q    2,3 DS 
 
Since any relevance logic must reject this sequent, relevance logicians have generally regarded DS 
as invalid. 

 Some, however, have rejected I (or both DS and I) instead.  The rejection of I is more in 
keeping with the criterion of relevance suggested in Section 1.3—that an inference is relevant only if 

any idea that occurs in the conclusion also occurs in at least one of the premises—for I apparently 
violates this criterion by introducing a disjunct that may have nothing to do with any of the previously 
asserted premises. 
 To obtain a dialethic relevance logic that satisfies this criterion, we could adopt the Bochvar 
idea that the indeterminacy of the part infects the whole (See Section 15.2)—using the value { }, of 
course, instead of the value I.  Thus, for example, while on the dialethic semantics given above a 
disjunction whose disjuncts have the values { } and T is true, on this Bochvar-inspired semantics, 

such a disjunction has the value { }.  This makes I invalid and, more generally, guarantees the 
invalidity of any sequent whose conclusion contains an "idea" (sentence letter) not occurring in its 
premises, thereby satisfying the criterion of Section 1.3.  However, the resulting logic, which lacks 

both I and DS, is extremely weak.   
 This is the problem with relevance logics generally:  those that satisfy some of our ideas 
about relevance tend to be objectionable in other ways.  Thus while many relevance logics have been 
invented, none has emerged as clearly right or best.  
 Before leaving the topic of relevance logic, we ought to say a word about relevant 
conditionals.  Relevance logic was initially developed to formalize the idea of entailment, or relevant 
implication.  An entailment conditional, like a strict conditional in classical modal logic, expresses a 
kind of necessary connection between antecedent and consequent; but for the entailment conditional 
that connection must also be relevant.  Thus, whereas a strict conditional is automatically true 
whenever its antecedent is impossible or its consequent necessary, an entailment conditional might 
be false under these conditions if the relevant connection was lacking. 
 Because entailment is a kind of necessary connection, many attempts to formulate a 
semantics for entailment have employed a modified Kripkean possible worlds approach.  The most 

prominent of these replace the Kripkean accessibility relation R with one or two three-place relations 

on worlds, which are used to define the truth conditions for the entailment conditional.  There are 

several ways of doing this, however, and all have their problems.128 
 
EXERCISE 16.3.1:  Use truth tables to determine whether or not the following sequents are valid on 
the dialethic semantics for relevance logic given above: 
1 P  ├  P 

2 P  ├  P  P 

3 P  ├  Q  Q 

4 P  ├  P  Q 
5 P, Q  ├  P 

EXERCISE 16.3.2:  Create dialethic truth tables for the operators '', '&', and '' to implement the 
Bochvar's idea (mentioned above) that the indeterminacy of the part infects the whole (i.e., that if a 
component of a formula has the value { }, so does the entire formula).  Then test the five sequents of 
EXERCISE 16.3.1 with these new truth tables. 
 

16.4  A NONMONOTONIC LOGIC:  PROLOG 

 We often reason from assumptions that we accept provisionally but do not really know to be 
true.  As we gain information, we may find that these assumptions were wrong.  Then conclusions 
that we had taken to be true may turn out to be false.  Of course, if we always reasoned deductively 

                                                      
128Priest and Sylvan, op. cit., Read, op. cit., and Routley, et. al., op. cit. all discuss various forms of 
Kripkean semantics for relevance logics with entailment. 



 

 

from true premises, this could never happen.  But if our assumptions are unreliable it can happen 
despite our reasoning deductively. 
 Classical deductive reasoning does not make explicit allowance for mistaken assumptions.  If 
we begin with a body of information (premises) and then add further information (new premises) that 
contradict what we originally assumed, we are still able to infer all the conclusions that followed from 
the original body of information.  For example, if we begin with these assumptions: 
 1 Offer is valid if not prohibited. 
 2 The offer is not prohibited. 
We may validly infer: 
 C The offer is valid. 
But suppose assumption 2 was just a presumption which we later find out ot be false.  Then we have 
a new piece of information, which contradicts it: 
 3 The offer is prohibited.  
But if we simply add 3 to 1 and 2, the conclusion C, though no longer justified, is still provable.  
Obviously, then, we need not only to add premise 3 to our stock of information but also to delete 
premise 2 and conclusion C.  But there is within classical logic no formal mechanism for doing this. 
 There is, of course, the mechanism of reductio ad absurdum.  But reductio rejects 
suppositions that were made in order to be refuted by the derivation of a contradiction.  The situation 
here is different.  We were not making the supposition that the offer is not prohibited in order to refute 
it.  Rather, we believed it and reasoned with it nonhypothetically—until we found out that it, 
specifically, was false.  Since this assumption is not singled out as hypothetical by our formalism, 
when we deduce a contradiction the formalism does not tell us which assumption to reject.  Should 
we reject 2 or 3—or even 1?  Classical logic is indifferent to all these choices.  It allows us to do any 
of these things—or to continue drawing random conclusions from the contradictory amalgam of 
premises 1, 2, and 3. 
 What ought to be rejected, however, is 2; and the reason it ought to be rejected is that it was 
merely a kind of "default" assumption, which the new information specifically refuted.  If we want a 
formalism that makes the right choice here, then we need to build into it a distinction between 
categorical assumptions (assumptions proper, those explicitly asserted to be true) and 
presumptions (those not explicitly asserted but taken to be true merely by default and subject to 
refutation by new information).  Presumptions remain in effect unless and until they are specifically 
refuted, at which time they are rejected, along with whatever conclusions depend on them. 
 Reasoning that incorporates a mechanism enabling new premises to refute old presumptions 
or their consequences is called nonmonotonic.  Classical reasoning is monotonic (one-directional) 
in the sense that by adding new premises to a premise set we can only add to the conclusions validly 
derivable from them.  In nonmonotonic reasoning, by contrast, new premises may, by refuting 
presumptions, subtract from as well as add to the set of validly derivable conclusions. 
 Nonmonotonic logics may have many applications.  Visual information processsing, for 
example, seems to involve something analogous to nonmonotonic inference.  Given incomplete 
information (when looking, say, at a crowd from a distance), the visual system seems to utilize certain 
"default" hypotheses.  We tend, for example, to see in terms of familiar patterns; thus, "assuming" in 
the absence of contrary information that what is before me is familiar, I may see the face of a friend—
only to have that face resolve itself on closer inspection into the unfamiliar visage of a stranger.  The 
seeing of the friend is a kind of conclusion drawn on the basis of a presumption of familiarity.  The 
new information provided by the closer look is akin to a set of new premises that refute that 
presumption and replace the initial conclusion with a new one:  the face is that of a stranger.  In view 
of these analogies, simulations of this visual processing on a computer might naturally treat it as a 
form of nonmonotonic inference. 
 There are many systems of nonmonotonic logic, but we shall consider just one:  PROLOG 
(PROgramming in LOGic), a computer programming language designed for artificial intelligence 

applications.129  PROLOG is designed to facilitate the programming of logical inferences on a 

                                                      
129Unlike machine languages, such as the language of the ABACUS programs described in 
Sections 10.1-10.3, programming languages like PROLOG do not give specific directions as to 
what changes to make in which registers or storage units in a particular kind of machine.  Because 
they ignore such specifics, they may be used on computers of many different designs.  However, a 



 

 

computer.  Given a set of premises (consisting of the PROLOG program) together with a statement in 
the form of a question called the query, the PROLOG system returns an answer to the query.  It does 
this by using a built-in algorithm to determine whether the query statement follows from these 
premises.  The logic by which it does so, however, is nonmonotonic and radically nonclassical. 
 To understand this logic, it is important to note that PROLOG was designed, not primarily to 
model presumptive reasoning, but to maximize computational efficiency.  When falsehood is 
represented by the absence of positive assertion, the computer's memory is not occupied with 
negative statements and need not invoke special computational routines to handle them.  This 
streamlines the program's operation.  But because this streamlining was the main design goal, 
PROLOG is cumbersome and primitive as a device for representing presumptive reasoning.  Still it is 
useful as an example, since among nonmonotonic systems that have real applications it is one of the 
simplest. 
 There are many variants of PROLOG, and each incorporates, in addition to its inferential 
capabilities, the ability to direct a number of other tasks (such as erasing the screen, or creating and 
writing to files) that are essential to the operation of computers but logically unimportant.  We shall 
therefore consider only the logical core of PROLOG, as opposed to these nonlogical parts of the 
language. 
 Moreover, we shall consider only propositional PROLOG, not the full PROLOG language 

(which, like classical predicate logic, has variables that may be universally quantified).130  This will 
enable us to focus on nonmonotonic reasoning while avoiding extraneous complications associated 
with this implicit universal quantification. 
 The atomic formulas, or atoms, of propositional PROLOG are not sentence letters, as in 
propositional logic, but concatenations of lower case letters and (occasionally) numerals that usually 
represent natural language sentences.  Spaces are indicated by underline marks.  Thus the English 
sentence 'The offer is valid' could be represented in PROLOG as 'the_offer_is_valid'.   
 PROLOG has three logical operators:   

  a generalized conditional operator ':', which is usually read as "if";  
  a conjunction operator, written as a comma; and  

  a negation operator, which is written simply as 'not', but which, unlike '' comes with a  
   pair of brackets.   
Conditionals are written consequent first, and their antecedents are often written on a new line and 
indented.  Moreover, if the antecedent is conjunctive, it is customary to write each conjunct on a new 
line.  Thus, for example, the statement 'Offer is valid if not prohibited and not taxed' might be written 
as follows: 
 

  offer_is_valid : 
   not(offer_is_prohibited), 
   not(offer_is_taxed). 
 
Conjunctions need no brackets, since all ways of bracketing them are equivalent, so that there is no 
possibility of ambiguity. 

 I said that ':' is a generalized conditional operator, because although it functions as a 
conditional when provided with an antecedent and consequent, either the antecedent or the 

consequent or both may be omitted.  To see what ':' means in these cases and to understand how 

all the meanings are related, it is helpful to think of a conditional of the form   :  1,...,n as the 

classically equivalent disjunction   1  ...  n.131  The formula :  1,...,n, then, is just this 

                                                                                                                                                                     
programming language must first be translated into the machine language for the particular kind of 
machine on which it is to be used.  This is accomplished by a machine-specific translating program 
called a compiler.  The compiler in effect tells the computer how to carry out the details of the tasks 
that the programmer specifies in the programming language. 
130In PROLOG, however, the universal quantifiers are implicit -- i.e., there are no symbols for them -- 
and there are no existential quantifiers. 
131Notice that I am using the notation of propositional logic here, not the notation of PROLOG, though 

I am omitting unnecessary brackets; PROLOG does not contain the operators '' and '' . 



 

 

disjunction without the first disjunct—i.e., 1  ...  n.  Consequently :  1,...,n asserts that at 

least one of 1,...,n is false, i.e., that not all of 1,...,n are true.  Similarly,  : is just   1  ... 

 n with all disjuncts but the first missing.  It is therefore simply a redundant way of asserting .  

The clause ':' is a "disjunction" with no disjuncts; it is called the empty clause.  Since there are no 
disjuncts, there is no way for this "disjunction" to be true, and so the empty clause is a contradiction; it 
invariably receives the value F.   

 We define a literal as an atom or an expression of the form not(), where  is an atom.  A 
formula of PROLOG is known as a clause: 
 

DEFINITION:  If 1,...,n (n0) and  are literals, the following are clauses: 

  : 1,...,n 

    :  1,...,n. 

Nothing else counts as a clause. 
 

This definition is PROLOG's sole formation rule.  The notation '1,...,n' stands for a sequence of 

literals separated by commas, i.e., an n-membered conjunction—or a single literal in the case n = 1.  

In the case n = 0, this definition makes the symbol ':' and all formulas of the form  : clauses.  ':', 

as we noted earlier, is the empty clause.  Clauses of the form - may simply be written as , since 

in that case ':', as we also noted earlier, is redundant.   

 Where   :  1,...,n is a clause,  is called the head and 1,...,n the tail of the clause.  

Some clauses have no head, some have no tail, some have neither a head nor a tail, and some have 
both.   
 Notice that conditionals may not occur as subformulas of conditionals or conjunctions, and 
that only atoms may be negated.  Even with the language thus restricted, it is possible to translate 
any statement of propositional logic into a list of PROLOG clauses. 
 Two classes of clauses, in particular, must be singled out, because each serves a different 
function: 
 
DEFINITION:  A program clause is a clause with a head. 
 
DEFINITION:  A goal clause is a clause with a tail but without a head. 
 

 A list of program clauses is called a program.132   The program functions as a set of 
assumptions that are categorically asserted to be true.  A goal clause, by contrast, represents a 
conclusion to be proved or refuted. 
 PROLOG's logical semantics is bivalent.  The valuation rules for PROLOG's operators are as 
follows (here n>0): 
 

 1 V( : 1,...,n) = T iff V() = T or V(1) =/  T or ... or V(n) =/  T; 

  V( : 1,...,n) = F iff V() =/  T and V(1) = T and ...  

   and V(n) = T. 

 2 V(: 1,...,n) = T iff V(1) =/  T or ... or V(n) =/  T; 

  V(: 1,...,n) = F iff V(1) = T and ... and V(n) = T. 

                                                      
132In most actual implementations what we are calling the program is divided into the program 
proper and the database.  The program proper consists mainly of conditionals (clauses with both 
heads and tails) that represent more or less enduring principles, while the database consists mainly 
of atoms (clauses with heads but no tails) that represent the facts or the state of a computation at the 
moment.  Usually databases are more fluid, being updated frequently.  The distinction between the 
program proper and database is, however, pragmatic, not logical (from a logical point of view, both 
consist of program clauses functioning as categorical assumptions), and we will take no further notice 
of it here.   



 

 

 3 V(:) = T iff V() = T; 

  V(:) = F iff V() =/  T. 

 4 V(:) = F. 

 5 V(not()) = T iff V() =/  T; 

  V(not()) = F iff V() = T. 

 
To understand these rules, it is useful to think of conditionals as disjunctions in the way suggested 
earlier.  Though they concern an unfamiliar operator, these rules are perfectly classical.  PROLOG's 
departure from classicism lies, as we shall see, not in its valuation rules, but in its handling of 
presumptions.   

 Notice that in the case n = 1, ': 1,...,n' and 'not(1)' are semantically identical.  They are 

not, however, syntactically identical.  ':' may prefix conjunctions, whereas 'not' only prefixes atoms; 

moreover ':' is always a goal clause and may not appear in programs.   Though the operator 'not' is 
available in all practical implementations of PROLOG, PROLOG was first conceived as a theoretical 
language that did not include this operator.  'Not' was added to give PROLOG more expressive power 
for practical applications, and this accounts for the partial redundancy. 
 PROLOG systems incorporate a proof procedure called a resolution algorithm to check 
arguments for validity.  These arguments are all of a particular type.  Their premises  are a program, 
and their conclusion is a query to be tested against that program.  (To keep things simple, we shall 
consider only atomic queries.) The resolution algorithm aims to construct a proof of the query from 

the program.  The strategy is always reductio.  Hence, where  is the query, the proof takes the 

program clauses as assumptions and hypothesizes the goal clause : , which is in effect the 

negation of  (see valuation rule 2 in the case n = 1).  To these clauses, the algorithm now applies 
certain inference rules.  If the application of these rules produces the empty clause (a contradiction), 
the procedure classifies the conclusion as true by by reductio.  If, however, there comes a point at 
which all possible moves with the rules have been made and the empty clause has not been 
deduced, then the procedure classifies the conclusion as false.  It may also happen that the rules can 

be applied infinitely.133  Propositional PROLOG has only three inference rules.  The first of these is 

just a notational variant of the classical I.  We shall call it reductio ad absurdum: 
 

Reductio Ad Absurdum (RAA)—Given a derivation of the empty clause ':' from a hypothesis : , 

end the derivation and infer  :.  
 

As we just noted,  is in effect the negation of , and  : is just  written as a program clause 

(appending ':' does not change 's meaning). 
 The second rule of inference, the resolution rule, is more novel: 
 

Resolution Rule (R):  Given clauses of the forms :,1,...,n and  : 1,...,m (n0 and m0), 

infer : 1,...,m,1,...,n.   

 
To see how the resolution rule works, we shall consider a small PROLOG program, which might be a 

fragment of a tree identification program.  This program consists of four clauses:134 
 

                                                      
133The program consisting of the single clause 'p : p', for example, fails to halt when given the query 
'p'.  PROLOG's resolution algorithm is therefore not a decision procedure, though certain closely 
related algorithms are.  The availability of potentially infinite procedures makes PROLOG a more 
flexible programming tool than it would have been otherwise.   
134In a real implementation, the first two of these would belong to the program proper (see footnote 
11), while the second two would probably belong to the database, representing, for example, our 
current observations. 



 

 

  tree_is_a_jack_pine :  
   tree_has_needles_4_cm_long, 
   needles_are_divergent 
   

  needles_are_divergent :  
   needles_spread_away_from_one_another 
 

  needles_spread_away_from_one_another : 
 

  tree_has_needles_4_cm_long : 
 
These constitute our assumptions. 
 Now suppose that we present this system with the query whether the tree in question is a 
jack pine.  A query is a request to try to prove a conclusion; in this case the conclusion 
'tree_is_a_jack_pine'.  Thus the problem is to prove the sequent whose premises are the four clauses 
listed above and whose conclusion is 'tree_is_a_jack_pine'.  In a running PROLOG program, if the 
proof is successful, the computer responds that the query is true.  And because PROLOG presumes 
that what is not stated in or implied by its program is false, if the attempt to prove this sequent failed, 
the computer would report that 'tree_is_a_jack_pine' is false. 
 We shall first construct the proof purely syntactically, just to show how the resolution rule 
works.  Then we shall consider what it means.  
 PROLOG's overall proof strategy, as noted above, is reductio; it attempts to derive a 
contradiction from what is in effect the negation of the conclusion.  We begin as usual in a reductio 
strategy by listing the assumptions, which are simply the program clauses and hypothesizing the 
"negation" of the conclusion: 
 

1 tree_is_a_jack_pine :  
  tree_has_needles_4_cm_long, 
  needles_are_divergent      A 

2 needles_are_divergent :  
  needles_spread_away_from_one_another   A 

3 needles_spread_away_from_one_another :    A 

4 tree_has_needles_4_cm_long :     A 

5 | : tree_is_a_jack_pine      H 
 
Now in a PROLOG proof, goal clauses direct strategy.  So we look to line 5, the only goal clause, to 

find out how to proceed.  The resolution rule says that given a goal clause of the form : ,1,...,n 

and a program clause of the form  : 1,...,m (n0 and m0), we may infer the goal clause : 

1,...,m,1,...,n.  Now the clause at line 5 is of the form : ,1,...,n, where  = 

'tree_is_a_jack_pine' and n = 0.  And the clause at line 1 is of the form  : 1,...,m, where 1 = 

'tree_has_needles_4_cm_long', 2 = 'needles_are_divergent', and m = 2.   Thus we may infer : 

1,...,m,1,...,n, which in this case (since m = 2 and n = 0) is just : 1,2—that is: 

 

6 : tree_has_needles_4_cm_long, needles_are_divergent  1,5 R 
 
The remainder of the proof proceeds by similar applications of R.  The complete proof is: 
 

1 tree_is_a_jack_pine :  
  tree_has_needles_4_cm_long, 
  needles_are_divergent      A 

2 needles_are_divergent :  
  needles_spread_away_from_one_another   A 



 

 

3 needles_spread_away_from_one_another :    A 

4 tree_has_needles_4_cm_long :     A 

5 | : tree_is_a_jack_pine      H 

6 | : tree_has_needles_4_cm_long, needles_are_divergent 1,5 R 

7 | : needles_are_divergent     4,6 R 

8 | : needles_spread_away_from_one_another   2,7 R 

9 | :        3,8 R 

10 tree_is_a_jack_pine :               5-9 RAA 
 
The empty clause (a contradiction) emerges at line 9, showing that not all five of the assumptions can 
be true.  To grasp the syntactic features of this final step, notice that the goal clause at line 8 is of the 

form : ,1,...,n, where  = 'needles_spread_away_from_one_another' and n = 0.  Similarly, the 

program clause at line 3 is of the form  : 1,...,m, where m = 0.   Thus we may infer : 

1,...,m,1,...,n, which in this case (since m = 0 and n = 0) is just ':'. 

 So far, all this is just meaningless symbol manipulation.  But its meaning will come alive when 
we give it a semantics.  Actually, PROLOG proofs may usefully be interpreted from either of two 
distinct semantical perspectives:  the logical semantics defined in part by the valuation rules above, 
and a procedural semantics, according to which the clauses in the proof are not declarative 
statements, but rather instructions to the computer.  We shall employ both perspectives, though our 
account of the procedural semantics will be very informal. 
 We begin with the logical semantics.  Here it will be useful to translate the proof into the more 
familiar notation of propositional logic, using the following interpretation scheme: 
 

   J  tree_is_a_jack_pine 

   L  tree_has_needles_4_cm_long 

   D  needles_are_divergent 

   S  needles_spread_away_from_one_another 
 
Rather than treating PROLOG conditionals directly as conditionals, we shall translate them into 
equivalent disjunctions (see valuation rule 1).  The following proof in propositional logic corresponds 
step-for-step to the PROLOG proof above: 
 

  1 J  (L  D)    A 

  2 D  S     A 
  3 S     A 
  4 L     A 

  5 | J    H (for I) 

  6 | L  D    1,5 

  7 | D    4,6 

  8 | S    2,7 

  9 | S & S    3,8 &I 

  10 J     5-9 I and E 
 
This, understood classically, is what the PROLOG proof means from a logical point of view.  Lines 6-8  
are all obtained by variants of disjunctive syllogism (DS) that are obviously valid.  (In fact, in this 
format the resolution rule can be seen as a kind of generalization of DS, though some of its instances 
are a good bit more complex than DS itself.  R also serves the function of &I at line 9!)  Thus from the 
logical perspective, this PROLOG proof is just an ordinary derivation in classical propositional logic, 
despite the unfamiliarity of the resolution rule. 
 Of course we can't quite be satisfied with this.  The fact that the resolution rule produces a 
valid derivation in this case doesn't show that it is always valid.  ('Valid' here has its usual classical 
meaning.)  To have confidence in a rule, especially a rule of this complexity, we need to prove that it 
is valid.  So we shall: 
 



 

 

METATHEOREM:  All instances of the resolution rule are valid. 
Proof: Suppose for reductio that some instance of the resolution rule is not valid; that is for some 

literals 1,...,m,1,...,n (n>0 and m>0) and atom  there exists a valuation V such that 

V(: ,1,...,n) = T,  V( : 1,...,m) = T and, V(: 1,...,m,1,...,n) =/  T. Since V(: 

1,...,m,1,...,n) =/  T, by valuation rule 2 V(1) = T and ... and V(m) = T and V(1) = T 

and ... and V(n) = T. 

Now suppose, again for reductio that V() = T.  Then V() = T and V(1) = T and ... 

and V(n) = T, so that by rule 2 V(: ,1,...,n) =/  T, which contradicts what we said 

above. 

Hence V() =/  T.  But then since V(1) = T and ... and V(m) = T, it follows by rule 1 that V( 

: 1,...,m) =/  T again contradicting a conclusion above. 

Therefore all instances of the resolution rule are valid.  QED 
 
The resolution rule is therefore just as legitimate as modus ponens.  Its complexity makes it a bit of a 
nuisance for humans to use, but it is an efficient rule for machine computation. 
 So much for the logical perspective.  Now let's reconsider the same proof (the PROLOG 
original, not the translation) procedurally, as the running of a computer program.  From this 
perspective it takes on a wholly different meaning.  A goal clause, for example, instead of being read 
as a negative declarative statement,  is an instruction to the computer to pursue the goal of proving 

the first literal to the right of the ':' symbol. (The literals to the right of this first literal, if any, represent 
a succession of such proof goals, to be attempted later if this first goal succeeds.)  That is why goal 

clauses are called goal clauses.  Indeed, on the procedural semantics, we may read the symbol ':' 
prefixing a goal clause as the English phrase 'try to prove'.  Thus, for example, the clause on line 5 
instructs the computer to try to prove that the tree is a jack pine.  The computer responds by scanning 
down the existing proof for clauses whose head is 'tree_is_a_jack_pine'.  Line 1 contains such a 
clause.   

 Now a program clause of the form  : 1,...,n, such as is found on line 1, is on the 

procedural interpretation the following conditional instruction:  to prove , prove 1,...,n.  Line 1 

therefore tells the computer that it could prove that the tree is a jack pine if it could show that the tree 
has needles 4 cm long and that these needles are divergent.  Thus proving these two things becomes 
the computer's intermediate goal at line 6.  Once again the computer scans down the existing proof 
and determines that at line 4 it is given that the tree has needles 4 cm long.  The first of the two goals 
has thus been attained.  Hence at line 7 the computer deletes this first goal, leaving only the second: 
to prove that the needles are divergent.  It scans down the list yet again and finds at line 2 the 
conditional instruction:  to prove that the needles are divergent, prove that they spread away from one 
another.  So proving that they spread away from one another becomes the goal at line 8.  Again the 
computer scans down the proof and notes that at line 3 it is given that the needles spread away from 
one another.  Thus the last goal is attained, and there is no more work to be done.  The empty clause 
at line 9 may be read as an instruction to stop and output the result that the query has been proved, 
i.e., that the tree is a jack pine. 
 In all this it may be seen that on the procedural interpretation the resolution rule is not merely 
an inference rule, but a device for prioritizing goals and deleting them once they are achieved. 
 These two semantic viewpoints, the logical and the procedural, provide equally correct and 
mutually illuminating understandings of PROLOG proofs.  Neither uniquely represents what is really 
going on; they are just two different ways of understanding what is from a computational point of view 
a purely syntactic exercise in symbol manipulation.  When dealing with PROLOG programs, it is 
useful to keep them both in mind.   
 PROLOG has a third inference rule, the negation as failure rule, which (since it is the 
source of PROLOG's nonmonotonicity) is a good bit more interesting than the other two.  To see how 
it works, we shall return to the problem with which we began this section.  We shall take as our sole 
premise the clause: 
 



 

 

   offer_is_valid : 
    not(offer_is_prohibited). 
 

Our query is 'offer_is_valid'.  We are thus seeking a proof of the sequent 'offer_is_valid : 
not(offer_is_prohibited)  ├  offer_is_valid'.  We will examine the reasoning first from a procedural 
point of view. 
 This sequent represents a query, the conclusion 'offer_is_valid', addressed to a very simple 
program consisting of one program clause, the premise.  The query sets the goal of trying to prove 
'offer_is_valid', i.e., of determining whether the program makes 'offer_is_valid' true.  To do this, the 
computer scans the program for instructions.  In this case the query matches the head of the one and 
only program clause, which gives the instruction:  to prove 'offer_is_valid' prove 
'not(offer_is_prohibited)'.  But how can we prove this?  PROLOG's method is to set as its next goal a 
proof of 'offer_is_prohibited'.  We shall represent the attempt to prove this as a hypothetical derivation 

subsidiary to the main proof.  The first step is to hypothesize ': offer_is_prohibited', which from a 
logical point of view amounts to hypothesizing the negation of 'offer_is_prohibited'.  As with the main 
proof itself, the strategy of this hypothetical derivation, then, is reductio; we aim to deduce the 

contradiction ':'.  From a procedural point of view, however, to hypothesize ': offer_is_prohibited' is 
simply to establish the subsidiary goal:  prove 'offer_is_prohibited'.  If the hypothetical derivation 
yields a contradiction, this goal succeeds, which means that the prior goal of proving 
'not(offer_is_prohibited)' fails.  But if all possible moves are exhausted and we still have not attained a 
contradiction, then the subsidiary goal of proving 'offer_is_prohibited' fails.   It is at this point that 

PROLOG makes its great nonclassical leap.  For PROLOG counts the failure to prove a clause  as 

a proof of not().  In classical logic, such reasoning would be said to commit ad ignorantium fallacy 
(argument from ignorance), but PROLOG tolerates it as a matter of expedience.  The mechanism by 
which failure of proof becomes proof of negation is the negation as failure rule.  Use of this rule, in 
other words, enables us to deduce 'not(offer_is_prohibited)'.  But, as we saw earlier, this suffices to 
establish 'offer_is_valid', and thus complete the proof.   That is the reasoning in a nutshell.  Now let's 
consider it more formally.  We begin with a more explicit statement of the negation as failure rule: 
 

Negation as Failure Rule (NF):  Given a derivation from the hypothesis :  in which ':' is not 
deduced after R and NF have been used as many times as possible, end the hypothetical derivation 

and infer not() :. 
 

 Now let's construct a formal proof of the sequent 'offer_is_valid : not(offer_is_prohibited)  ├  
offer_is_valid'.  We begin as before by assuming the premise and hypothesizing the result of 
transforming the conclusion or query into a goal clause: 
 

 1 offer_is_valid : not(offer_is_prohibited)   A 

 2 | : offer_is_valid      H 
 

From a logical point of view ': offer_is_valid' is the negation of 'offer_is_valid'.  From a procedural 
point of view, it is the instruction "prove 'offer_is_valid'." 

 ': offer_is_valid' is a goal clause (headless clause).  As noted above, the structure of the 
goal clauses in a proof determines the strategy.  A goal clause must have one of two forms: 

  : ,1,...,n 

  : not(),1,...,n 

where  is an atom, 1,...,n are literals, and n0.  With clauses of the first form there is no choice 

but to use the resolution rule; if it is not applicable, the clause cannot be used.  But  with clauses of 
the second form, though we can still use the resolution rule, a second strategy is available:  

hypothesize  and, depending on whether or not the ensuing hypothetical derivation eventually yields 
a contradiction, end this hypothetical derivation either by RAA or by NF. 

 ': offer_is_valid' is of the first form (where  is 'offer_is_valid' and n = 0), so it requires the 
resolution rule.  But the resolution rule is applicable to a goal clause only if the first conjunct of its tail 
is the head of some other rule.  In this case the first and only conjunct is 'offer_is_valid', which is the 



 

 

head of the clause at line 1, so that the resolution rule is applicable.  In terms of the statement of the 

rule above,  = 'offer_is_valid', n = 0, 1 = 'not(offer_is_prohibited)', and m = 1.  The rule tells us to 

infer : 1,...,m,1,...,n, i.e., ': not(offer_is_prohibited)':  

 

 1 offer_is_valid : not(offer_is_prohibited)   A 

 2 | : offer_is_valid       H 

 3 | : not(offer_is_prohibited)   1,2 R 
 

Since ': not(offer_is_prohibited)' is of the form : not(),1,...,n, where n = 0, and since 

'not(offer_is_prohibited)' does not match the head of any other clause, the next step, as explained 

above, is to hypothesize ': offer_is_prohibited' for either RAA or NF: 
 

 1 offer_is_valid : not(offer_is_prohibited)   A 

 2 | : offer_is_valid       H 

 3 | : not(offer_is_prohibited)   1,2 R 

 4 | | : offer_is_prohibited   H 
 
We must now see whether this new hypothesis will yield a contradiction.  This hypothesis is of the 

form : ,1,...,n, where  is 'offer_is_prohibited' and n = 0.  Hence the only rule that might be 

applicable to it is the resolution rule.  But there is no clause of the form offer_is_prohibited : 

1,...,m, which would be needed to apply the resolution rule.  We have also exhausted our options 

with the other goal clauses at lines 2 and 3.  Therefore the attempt to prove 'offer_is_prohibited' has 
failed.   

 Now the negation as failure rule says that if we have hypothesized :  and failed to deduce 

':' after R and NF have been used as many times as possible, we should end the hypothetical 

derivation and infer not() :.  In this case  = 'offer_is_prohibited'.  Thus the next step in the proof is 
this: 
 

 1 offer_is_valid : not(offer_is_prohibited)   A 

 2 | : offer_is_valid       H 

 3 | : not(offer_is_prohibited)   1,2 R 

 4 | | : offer_is_prohibited   H 

 5 | not (offer_is_prohibited) :   4-4 NF 
 
Now we go back and check the remaining goal statements to see if anything further can be done.  

Clause 3 is of the form : ,1,...,n, where  is 'not(offer_is_prohibited)' and n = 0.  And clause 5 is 

of the form  : 1,...,m, where m = 0.  Hence the resolution rule allows us to infer 

1,...,m,1,...,n, i.e., ':'.  This is contradiction, which permits us to apply RAA and complete the 

proof: 
 
 

 1 offer_is_valid : not(offer_is_prohibited)   A 

 2 | : offer_is_valid       H 

 3 | : not(offer_is_prohibited)   1,2 R 

 4 | | : offer_is_prohibited   H 

 5 | not (offer_is_prohibited) :   4-4 NF 

 6 | :      3,5 R 

 7 offer_is_valid :      2-5 RAA 
 
 Steps 6 and 7 can be understood either procedurally or logically.  From a procedural 
perspective, we have at line 5 met the goal of proving 'not(offer_is_prohibited)', the goal listed on line 

3.  This goal may then be eliminated, leaving, ':', the empty goal to be accomplished.  There is, in 



 

 

other words, nothing more to be done.  We have proved 'offer_is_valid'; we only need to record this at 
line 7.    
 From a logical point of view, by contrast, the clause on line 3 is a double negation of 
'offer_is_prohibited' (see valuation rules 2 and 5), whereas the clause on line 5 is just its negation.  
Hence these two lines yield a contradiction, which may be expressed in PROLOG by the empty 

clause ':'.  This enables us to reject the hypothesis at line 2 and so infer 'offer_is_valid'.   
 In constructing this proof I followed a strategy which ought now to be expressed more 
explicitly.  This strategy is the resolution algorithm.  To apply it, first list the program statements as 

assumptions, followed by the hypothesis : , where  is the conclusion (query), and then begin with 
step 2: 
 

1 If an unfinished hypothetical derivation ends with ':', apply RAA, then go to step 2; if not, just 
go on to step 2. 

2 If there is a clause of the form : , 1,...,n (n0) and another clause of the form  : 

1,...,m (m0) and R has not yet been applied to these two, apply R to them and go to step 

1; otherwise go on to step 3. 

3 If there is a clause of the form : not(), 1,...,n (n0), but :  has not been hypothesized, 

hypothesize :  and go back to step 1; otherwise go on to step 4. 

4 If there is a hypothetical derivation that has not yet ended, then the attempt to deduce ':' 
within this derivation has failed; apply NF; then go back to step 2.  If there is no hypothetical 
derivation that has not yet ended, stop; the proof is complete and the formula on the last line 
is the answer to the query. 

 
I have stated this algorithm a bit loosely.  In actual implementations there are strict directions for 
scanning down the proof to locate the first unused formula of a given type.  These details matter to 
programmers, but we need not bother with them. 
 If you were attentive to the earlier exposition, you might have been bothered by the fact that I 
did not annotate hypotheses with a rule name.  The algorithm explains why.  When we introduce a 
hypothesis—either when we hypothesize negation of the conclusion or when we follow step 3 of the 
algorithm—we may not know which of the two rules RAA or NF will be used to end the hypothetical 
derivation.  To hypothesize the negation a formula is in effect to treat that formula as a query.  If that 
hypothesis leads to contradiction, we will apply RAA and conclude that the orginal formula is true.  If 
not, we will apply NF.  Which rule we will eventually use depends on how the proof goes after the 
hypothesis has been made.  So we don't know how to annotate the hypothesis until the hypothetical 
derivation has ended.  But by then then is no point in annotating it at all, since the annotation 
functions merely to remind us of our strategy as we construct the proof. 
 If the rule NF bothered you, it should have.  It is, in fact, invalid, for it enabled us to prove the 
plainly invalid sequent: 
 

  offer_is_valid : not(offer_is_prohibited)  ├  offer_is_valid. 
 
Consider, for example, a possible situation in which the offer is prohibited and is invalid.  More 

formally, let V(offer_is_valid) = F and V(offer_is_prohibited) = T.  By valuation rule 5 this makes 

V(not(offer_is_prohibited)) = F, so that V(offer_is_valid : not(offer_is_prohibited)) =T by valuation 

rule 1.  Thus we have a counterexample. 
 Many logicians are apt to conclude at this point that PROLOG is simply a botched attempt to 
make logic simple enough to meet the computational demands of computers.  (PROLOG can reason 
efficiently from large databases, which is what it was designed to do; systems employing more 
classical forms of logic are less efficient).  But there is another perspective from which PROLOG's 
logic is not utterly irrational.  It all depends on how we understand the sequent itself.  The sequent we 
proved has only one assumption.  But PROLOG operates, not only with assumptions, but also with 

presumptions that are not explicitly stated.   Specifically, for any atom , if  is not deducible from the 

program, then not( is a presumption.  There are, then, indefinitely many presumptions, one of 
which is 'not(offer_is_prohibited)'.  If we count these, too, as premises, then the resulting sequent is 



 

 

valid; the conclusion follows by modus ponens.  In that case, the alleged counterexample turns out to 

be a simple mistake.  By setting V(offer_is_prohibited) = T, we make the premise 

'not(offer_is_prohibited)' false; but a counterexample must make all the premises true. 
 Thus if we count presumptions as actual premises, PROLOG's reasoning is purely classical.  
On this conception, the negation as failure rule is not a genuine rule of inference at all, but a device 
for identifying relevant presumptions and inserting them as premises into proofs.  When we prove a 
sequent, then, we should actually list all the clauses obtained by NF in the proof as premises.  But 
since these presumptions are identified in the process of constructing the proof, on this view we don't 
really know which sequent we are proving until we have proved it!  This is very odd. 
 If, on the other hand, we do not count presumptions as premises, then we avoid this oddity.  
On this view, NF is a genuine inference rule, so that PROLOG's presumptions, instead of being 
treated as premises, are built right into its logic, making that logic radically nonclassical.  In that case, 

the conclusion 'offer_is_valid' really does follow from the premise 'offer_is_valid : 
not(offer_is_prohibited)'.  But then adding new premises may defeat the presumption that the offer is 
not prohibited (a presumption made automatically by the logic, unless there is explicit information to 
the contrary).  Thus, for example, the following sequent is not provable by PROLOG's logic: 
 

 offer_is_valid : not(offer_is_prohibited), offer_is_prohibited  ├  offer_is_valid. 
 
Thus PROLOG, as we said at the outset, is nonmonotonic.  The additional information 
'offer_is_prohibited' defeats the presumption 'not(offer_is_prohibited)' and cancels the implication to 
the conclusion 'offer_is_valid'. 
 In fact, if a PROLOG program consisting of these premises is presented with the query 
'offer_is_valid', it answers 'false'.  The reasoning is as follows: 
 

 1 offer_is_valid : not(offer_is_prohibited)  A 

 2 offer_is_prohibited :     A 

 3 | : offer_is_valid    H 

 4 | : not(offer_is_prohibited)   1,3 R 

 5 | | : offer_is_prohibited   H 

 6 | | :     2,5 R 

 7 | offer_is_prohibited :    5-6 RAA 

 8 not(offer_is_valid) :     3-7 NF   
   
The offer is now presumed not to be valid, since the attempt to prove that it is valid (lines 3-7) has 
failed. 
 PROLOG may at first seem too arcane for practical application; but once one gets used to 
how it handles presumptions, it begins to seem quite natural.  Moreover, if one can manage to 
formulate a program so that it implies as true just those propositions in the relevant field of knowledge 
that are in fact true, then PROLOG's logic gives the same results as classical logic.  But even if not, 
the results obtained from a PROLOG program are readily intelligible.  And PROLOG has been used 
in the construction of much useful software—including the ABACUS program supplied with this book. 
 
EXERCISE 16.4:  Prove the following sequents, using PROLOG's resolution algorithm (premises are 
separated with semicolons to avoid confusion with the conjunctive commas):   

1 p:q,t;  s:t;  q: r,s;  t:;  r:  ├  p 

2 p:q,not(r);  q:;  r:s  ├  p 

3 p:q,not(r);  q:;  r:s;  s:  ├  not(p) 
 

16.5 CONCLUSION:  LOGICAL PLURALISM 

 Is there a uniquely true logic?  This book's answer, quite obviously, is no.  Classical logic has 
dominated the field, particularly in mathematics, and it has the advantage of simplicity, but it is not the 
best logic for all applications.   The advent of artificial intelligence systems has spurred the creation of 
hundreds of alternative logics for specific applications.  Some, like PROLOG, sacrifice strict logical 
validity to gain computational efficiency.  Others make use of three or more semantic values, because 



 

 

for some applications classical two-valued semantics is too restrictive.  (We don't always know which 
propositions in our database are true or false, so we can't always make an accurate two-valued 
assignment—or we may want to grant these propositions degrees of truth and falsity.)  The pressure 
toward nonclassical concessions is especially acute when we attempt to design intelligent systems 
that use something akin to natural language.  Here we encounter in bewildering complexity problems 
of relevance, nonsense, semantic paradox, reference failure, and so on, all of which raise challenges 
to the classical principle of bivalence.  And even on the most fundamental issues, such as whether a 
semantics should be based on confirmation or on truth, there are deep disagreements; intuitionists 
take the former view, classicists the latter.   
 Moreover, there motives for rejecting classicism that we have not even mentioned in this 
book.  The weird behavior of the most fundamental particles of matter, for example, has convinced 
some physicists that the subtatomic world is best characterized by a form of nonclassical logic called 

quantum logic.135  And, to take a very different example, some researchers in cognitive science 
believe that thought should be understood as operating, not primarily on propositions, but on image-
like structures.  The main difference between a proposition and an image is that a proposition is 
composed of definite and discrete units (represented by names, predicates, logical operators, etc.), 
while an image is continuous in the sense that its parts may shade and blur off into one another.  
Inference, on this view, is not the discrete deduction of one proposition of others, but the continuous 
transformation of images into new images.  Such transformations, some researchers now speculate, 
may form the subject matter of wholly new logics called continuous logics.  This work, however, is 
still in its infancy. 
 Despite these manifold developments, some logicians still believe that beneath all the 
novelties, complexities, praciticalities, and concessions to our various inabilities lies a philosophically 
pure logic, a unique language of ideal reason.  Maybe.  But if so, we are far from discerning it.  On the 
contrary, the tendency of philosophical logic in the last century has been almost entirely toward 
greater diversity, rather than greater unity. 
 As a result, many logicians, your author among them, have grown mightily sceptical of the 
idea of a single true or best logic.  Each logic, or at least each semantically interpreted logic, carries 
with it its own notion of truth.  What could it mean to talk of the truth of a logic itself?  Is there some 
overarching notion of truth against which we might compare individual logics and find them more or 
less true?  If so, no one has articulated it.  And what could it mean to say that one logic is best?  Best 
for what?   
 Logics are tools.  And just as there is no single tool that is simply and unqualifiedly best, so 
too there is no single logic that is simply and unqualifiedly best.  Best is always relative to an 
application.  For pounding nails, a hammer is best; for cutting wood, a saw.  Likewise with logics. 
 

       

                                                      
135For a good account of quantum logic, see Maria Luisa Dalla Chiara, "Quantum Logic," in D. 
Gabbay and F. Guenthner, eds., Handbook of Philosophical Logic, Volume III:  Alternatives to 
Classical Logic, Dordrecht, D. Reidel, 1985, pp. 427-469. 
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